JP2627090B2 - Bonded body of boride ceramics and metal-based structural member and bonding method - Google Patents

Bonded body of boride ceramics and metal-based structural member and bonding method

Info

Publication number
JP2627090B2
JP2627090B2 JP1320684A JP32068489A JP2627090B2 JP 2627090 B2 JP2627090 B2 JP 2627090B2 JP 1320684 A JP1320684 A JP 1320684A JP 32068489 A JP32068489 A JP 32068489A JP 2627090 B2 JP2627090 B2 JP 2627090B2
Authority
JP
Japan
Prior art keywords
ceramic phase
ceramic
sintered body
atomic ratio
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1320684A
Other languages
Japanese (ja)
Other versions
JPH03183667A (en
Inventor
豪二 梶浦
修一 武田
秀樹 柴芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1320684A priority Critical patent/JP2627090B2/en
Publication of JPH03183667A publication Critical patent/JPH03183667A/en
Application granted granted Critical
Publication of JP2627090B2 publication Critical patent/JP2627090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硼化物セラミックスと金属系構造部材との
接合体及び接合方法に関し、さらに詳しくは、複合化さ
れた各相の化学量論組成が特定の原子比に十分制御され
た強度、耐蝕性、導電性、硬度、耐酸化性等に優れた硼
素系複合セラミックス焼結体と金属系構造部材とを特定
のろう材を用いて接合する方法及びそれによって得られ
る接合体に関する。本発明に係る接合体は、その一部を
構成する上記硼素系複合セラミックス焼結体の優れた特
性を活用して、耐摩耗部材、各種工具、ダイス類に適用
できる他、特にガラス成形用金型に最適に用いることが
できる。
Description: TECHNICAL FIELD The present invention relates to a joined body and a joining method of a boride ceramic and a metal-based structural member, and more particularly, to a stoichiometric composition of each composite phase. Joins a boron-based composite ceramics sintered body with excellent strength, corrosion resistance, conductivity, hardness, oxidation resistance, etc., controlled to a specific atomic ratio and a metal-based structural member using a specific brazing material The present invention relates to a method and a conjugate obtained thereby. The joined body according to the present invention can be applied to wear-resistant members, various tools, dies, etc., particularly by utilizing the excellent characteristics of the boron-based composite ceramic sintered body constituting a part thereof. Can be used optimally for molds.

〔従来の技術〕[Conventional technology]

従来、ガラス成形用金型としては、鋳鉄、耐摩耗鋼、
Ni基超硬合金などが用いられている。一般にガラスの軟
化点は800℃以上であり、成形時のガラス表面の急冷を
防ぐために金型も高温に加熱する必要がある。しかしな
がら、上記のような従来の金型材料の加熱上限温度は低
く、Ni基超硬合金を用いた金型においても、金型の加熱
温度は約600℃が上限である。この近辺以上の温度に金
型が加熱されると、型表面が酸化されて粗面となり、最
終成形加工が必要になる。そこで、金型を450〜500℃程
度に加熱しておき、軟化点以上の温度に加熱溶融された
ガラスを加圧成形するに当って、金型が600℃を越えな
いうちに短時間に成形を終了し、離型する手法が採用さ
れている。しかしながら、溶融ガラスが充分に冷えるま
で加圧成形される方法に比べて、どうしても成形品の精
度が劣るという問題がある。一方、鋳鉄や耐摩耗鋼の金
型の場合、上記Ni基超硬合金の金型を用いた場合に比べ
てさらに精度が劣るため、まずラフに成形した後、仕上
げ加工を施すことが一般に行なわれている。
Conventionally, glass molding dies include cast iron, wear-resistant steel,
Ni-based cemented carbide is used. Generally, the softening point of glass is 800 ° C. or higher, and it is necessary to heat the mold to a high temperature in order to prevent rapid cooling of the glass surface during molding. However, the upper limit of the heating temperature of the conventional mold material as described above is low, and even in a mold using a Ni-based cemented carbide, the upper limit of the heating temperature of the mold is about 600 ° C. When the mold is heated to a temperature in the vicinity or above, the mold surface is oxidized to a rough surface, and final molding is required. Therefore, the mold is heated to about 450-500 ° C, and the glass that has been heated and melted to a temperature above the softening point is molded under pressure. And a method of releasing the mold is adopted. However, there is a problem that the precision of the molded product is inferior to the method in which the molten glass is molded under pressure until it is sufficiently cooled. On the other hand, in the case of a mold of cast iron or wear-resistant steel, accuracy is further inferior to the case of using the mold of the above-mentioned Ni-based cemented carbide. Have been.

上記のような材料に比べてさらに優れた耐熱性、耐酸
化性、高温耐久性、硬度等を有する可能性のある材料と
しては、硼素系複合セラミックス焼結体が知られてい
る。しかしながら硼素系複合セラミックス焼結体に関し
ては、開発例はいまだ少く、特許、論文等で焼結体配合
組成と、得られた微細組織及びそれら焼結体の諸特性に
ついて種々提案、報告されているにすぎないのが現状で
ある。すなわち、現状の知見では、出発原料の性状、焼
結プロセス条件等に含まれる不可避諸因子により、配合
焼結組成は一定でも、得られる複合セラミックス焼結体
を構成する各相の組成、構造等がミクロ的にかなりバラ
ついたり、目的とする相構成の複合セラミックスが得ら
れなかったり、複合セラミックス焼結体特性の再現性、
信頼性は一般に低い。
A boron-based composite ceramics sintered body is known as a material that may have better heat resistance, oxidation resistance, high-temperature durability, hardness, and the like than the above materials. However, there have been few development examples of boron-based composite ceramic sintered bodies, and various proposals and reports have been made in patents, papers, etc. on the composition of the sintered body, the obtained microstructure and various properties of the sintered bodies. It is only the present situation. In other words, according to the current knowledge, the composition and structure of each phase constituting the obtained composite ceramic sintered body are obtained even if the compounded sintering composition is constant due to inevitable factors included in the properties of the starting materials, sintering process conditions, etc. Can vary considerably on a microscopic scale, composite ceramics with the desired phase composition cannot be obtained, reproducibility of composite ceramics sintered body characteristics,
Reliability is generally low.

例えば、本発明に関連した従来技術としては、唯一、
二硼化チタン系複合焼結体について特公昭56−43378号
公報及び「粉体および粉末治金」第27巻、第4号、P31
〜38、1980年が存在するが、これらの刊行物に示されて
いるように、TiB2−Ni−B系の複合焼結体では、その相
構成がTiB2+NiB(Ni/B原子比1/1)2相となるような焼
結体は未だ得られていない。
For example, the only prior art related to the present invention is:
Japanese Patent Publication No. Sho 56-43378 and "Powder and Powder Metallurgy", Vol. 27, No. 4, P31
Although there are ~ 38, 1980, as shown in these publications, TiB 2 in -Ni-B based composite sintered body, the phase structure is TiB 2 + NiB (Ni / B atomic ratio of 1 / 1) A sintered body having two phases has not yet been obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本出願人は先に、従来技術では未だ達成されていな
い、硼素系複合セラミックス焼結体中のセラミックス相
の化学量論組成を特定の原子比に十分制御した高性能で
信頼性の高い新しい硼素系複合セラミックス焼結体を開
発し、既に特許出願している。しかしながら、この硼素
系複合セラミックス焼結体は、その製法上の特徴(高圧
合成、テルミット反応合成)から、生産コストは従来の
セラミックスに比較して高いという難点がある。このよ
うな部材の経済的な利用方法としては、硼化物セラミッ
クスの特性が必要な部位にのみ用い、構造用材料(母
材)と接合して利用することが考えられる。
The present applicant has previously developed a new high-performance and high-reliability boron which has not yet been achieved by the prior art and which has sufficiently controlled the stoichiometric composition of the ceramic phase in the boron-based composite ceramic sintered body to a specific atomic ratio. We have developed a sintered ceramic composite and have already applied for a patent. However, this boron-based composite ceramics sintered body has a drawback that its production cost is higher than that of conventional ceramics due to the characteristics in its manufacturing method (high-pressure synthesis, thermit reaction synthesis). As an economical use method of such a member, it is conceivable to use it only in a portion where the properties of the boride ceramics are required and to use it in connection with a structural material (base material).

特にガラス成形用金型においては、上記のような優れ
た特性を有する硼化物セラミックスを金型表面に利用す
ることにより、ガラス成形品の生産性向上、精度向上が
達成できる。しかしながら、硼化物セラミックス単体で
金型を製作することは、経済的には非常なコスト高とな
り、技術的にも困難である。そこで、金型キャビティ面
のみを上記硼素系複合セラミックス焼結体で構成し、こ
れを他の構造用材料に接合して金型を形成することが有
利になる。
In particular, in a glass molding die, the productivity and accuracy of a glass molded product can be improved by using boride ceramics having the above-described excellent properties for the die surface. However, it is economically very expensive to manufacture a mold using only boride ceramics, and it is technically difficult. Therefore, it is advantageous to form only the cavity surface of the mold with the above-mentioned boron-based composite ceramics sintered body and join it to another structural material to form a mold.

しかしながら、上記硼素系複合セラミックス焼結体を
構造用材料(母材)に接合する場合、その接合材料及び
接合方法が問題となる。一般に用いられるろう材によっ
てろう付けした場合、ろう材の加熱溶融後の冷却の際に
熱応力が発生し、セラミックス/母材境界面にクラッ
ク、剥離等を生ずるという問題がある。
However, when the above-mentioned boron-based composite ceramics sintered body is joined to a structural material (base material), the joining material and the joining method become problems. When brazing is performed with a commonly used brazing material, there is a problem in that thermal stress is generated during cooling after heating and melting of the brazing material, and cracks, peeling, and the like occur at the ceramic / base metal interface.

従って、本発明の目的は、上記のようなセラミックス
/母材境界面におけるクラック、剥離等の問題もなく、
充分な接合強度及び接合耐久性をもって硼素系複合セラ
ミックス焼結体を金属系構造部材に接合する方法を提供
することにある。
Accordingly, an object of the present invention is to eliminate the above-described problems such as cracking and peeling at the ceramics / base metal interface,
An object of the present invention is to provide a method for joining a boron-based composite ceramics sintered body to a metal-based structural member with sufficient joining strength and joining durability.

さらに本発明の目的は、強度、硬度、耐熱性、耐酸化
物、耐蝕性等に優れた硼素系複合セラミックス焼結体と
金属系構造部材とが充分な接合強度及び耐久性をもって
接合された接合体、特に金型キャビティ面が硼素系複合
セラミックス焼結体によって構成されているガラス成型
用金型を提供することにある。
Further, an object of the present invention is to provide a bonded body in which a boron-based composite ceramic sintered body having excellent strength, hardness, heat resistance, oxide resistance, corrosion resistance, and the like and a metal-based structural member are bonded with sufficient bonding strength and durability. In particular, it is an object of the present invention to provide a glass molding die in which a die cavity surface is formed of a boron-based composite ceramic sintered body.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、前記目的を達成するため、 (A)少なくとも1種以上のMI/B(但し、MIはNi,Cr,V,
Nb,Ta,Mo,WおよびMnからなる群から選ばれた少なくとも
1種以上である)原子比が1/1のMIBセラミックス相と、
TiB2,ZrB2及びHfB2からなる群から選ばれた少なくとも
1種以上のIV族二硼化物セラミックス相及び/又は(C
r,Ni)3B4セラミックス相とから構成されてなる硼素系
複合セラミックス焼結体と、 (B)金属系構造部材とを、 (C)Cu−Mn系、Cu−Mn−Ni系、Cu−Mn−Co系、Cu−Mn
−Co−Ni系、Cu−Ni系又はNi−Mn系ろう材により接合し
てなることを特徴とする接合体が提供される。
According to the present invention, in order to achieve the above object, (A) at least one or more M I / B (where M I is Ni, Cr, V,
Nb, and Ta, Mo, at least one member selected from the group consisting of W and Mn) atomic ratio is 1/1 M I B ceramic phase,
At least one group IV diboride ceramic phase selected from the group consisting of TiB 2 , ZrB 2 and HfB 2 and / or (C
r, Ni) 3 B 4 ceramic phase and a boron-based composite ceramic sintered body formed consist, (B) a metallic structural member, (C) Cu-Mn-based, Cu-Mn-Ni-based, Cu -Mn-Co system, Cu-Mn
-A joined body characterized by being joined by a Co-Ni-based, Cu-Ni-based or Ni-Mn-based brazing material.

特に本発明によれば、前記硼素系複合セラミックス焼
結体によって金型キャビティ面が構成されたガラス成型
用金型が提供される。
In particular, according to the present invention, there is provided a glass molding die in which a die cavity surface is formed by the boron-based composite ceramics sintered body.

さらに本発明によれば、上記硼素系複合セラミックス
焼結体(A)と金属系構造部材(B)とを上記ろう材
(C)を介して重ね、これを真空もしくは不活性雰囲気
中ろう材の融点以上に加熱して硼素系複合セラミックス
焼結体と金属系構造部材との間にろう材の融液を生ぜし
め、次いで冷却することを特徴とする硼素系複合セラミ
ックス焼結体と金属系構造部材の接合方法が提供され
る。
Further, according to the present invention, the boron-based composite ceramics sintered body (A) and the metal-based structural member (B) are overlapped with each other via the brazing material (C), and the stacked materials are mixed together in a vacuum or in an inert atmosphere. A boron-based composite ceramics sintered body and a metal-based structure, characterized in that a melt of a brazing filler metal is generated between the boron-based composite ceramics sintered body and the metal-based structural member by heating to above the melting point, and then cooled. A method for joining members is provided.

〔発明の作用及び態様〕[Function and Mode of the Invention]

上記硼素系複合セラミックス焼結体と金属系構造部材
とを接合するためのろう材としては、高温(特にガラス
の軟化点約800℃付近)で溶融しないこと、及びある程
度の剪断強度を保持していることが必要となる。本発明
者らは、このような特性を有するろう材について探究し
た結果、下記表−1に示すように、前記Cu−Mn系、Cu−
Mn−Ni系、Cu−Mn−Co系、Cu−Mn−Co−Ni系、Cu−Ni系
及びNi−Mn系が使用できることを見い出した。なお、こ
の研究開発に当たっては、先ずNi、およびCuを基とする
Ni−Mn2元系合金、Cu−Ni2元系合金の硼化物セラミック
との濡れ性評価からスタートし、良好な結果が得られた
ため、これらをベースにさらにロウ材としての特性、す
なわち溶融温度、強度などを改善するために、Cu,Mn,C
o,Si、などを添加した3元系、4元系の合金を評価し、
実施例に示すCu−Mn−Ni−Co系をはじめとするロウ材の
発明に至った。Ni−Mn系および、Cu−Ni系ろう材につい
ては実施例でこそ示していないが、硼化物セラミック接
合用のろう材としての機能を十分に有するものであるこ
とを確認しており、この事実は1部後述の第5図等に示
す。両部材を上記ろう材の加熱溶融により接合した場
合、冷却時に熱応力が発生するが、これは上記ろう材の
組成変形により接合した場合、冷却時に熱応力が発生す
るが、これは上記ろう材の塑性変形により吸収される。
その結果、セラミックス/母材境界面にクラック、剥離
等が生ずることがない。従って、接合強度及び接合耐久
性に優れた接合体を簡単に製造できる。
As a brazing material for joining the boron-based composite ceramics sintered body and the metal-based structural member, the brazing material must not melt at a high temperature (especially, about 800 ° C. of softening point of glass) and maintain a certain degree of shear strength. It is necessary to be. The present inventors have investigated the brazing material having such properties, and as a result, as shown in the following Table 1, the Cu-Mn-based, Cu-
It has been found that Mn-Ni, Cu-Mn-Co, Cu-Mn-Co-Ni, Cu-Ni and Ni-Mn systems can be used. In this research and development, Ni and Cu were first used.
Starting from the evaluation of the wettability of the Ni-Mn binary alloy and the Cu-Ni binary alloy with the boride ceramic, and good results were obtained, the properties as a brazing material based on these, that is, melting temperature, strength Cu, Mn, C
Evaluate ternary and quaternary alloys added with o, Si, etc.
The invention of the brazing material including the Cu-Mn-Ni-Co system shown in the examples has been reached. Ni-Mn-based and Cu-Ni-based brazing materials are not shown in the examples, but it has been confirmed that they have a sufficient function as a brazing material for boride ceramic bonding. Is shown in FIG. When both members are joined by heating and melting the brazing material, thermal stress is generated at the time of cooling. This is because when joining by the composition deformation of the brazing material, thermal stress is generated at the time of cooling. Is absorbed by the plastic deformation of
As a result, cracks, peeling, and the like do not occur on the ceramic / base metal interface. Therefore, a joined body excellent in joining strength and joining durability can be easily manufactured.

本発明に係る接合体は、硼素系複合セラミックス焼結
体が金属系構造部材に接合されたものであるため、コス
トが低減されると共に、上記硼素系複合セラミックス焼
結体の優れた特性も併せ具有しており、各種分野におい
て好適に用いることができる。
Since the bonded body according to the present invention is obtained by bonding the boron-based composite ceramics sintered body to the metal-based structural member, the cost is reduced and the excellent characteristics of the boron-based composite ceramics sintered body are combined. It can be suitably used in various fields.

本発明に使用できる各種ろう材の幾つかの例の組成及
び物性を表−1に示す。
Table 1 shows the composition and physical properties of some examples of various brazing materials that can be used in the present invention.

ろう材としては、例えば切削工具などでは銀ろうや黄
銅ろうを用いるのが一般的である。しかし、本発明に係
る接合体を例えばガラス成形用金型として用いた場合、
高温に加熱され、かつ冷却時に応力を発生するために、
これらの一般的ろう材では耐熱性等の点で不十分であ
る。
As a brazing material, for example, silver brazing or brass brazing is generally used for cutting tools and the like. However, when the bonded body according to the present invention is used as, for example, a glass forming mold,
Because it is heated to high temperature and generates stress when cooling,
These general brazing materials are insufficient in heat resistance and the like.

本発明に係るろう材もCuを基本としたろう材である
が、純Cuでは鋼の結晶粒界を侵食すると共にせん断強度
が小さいという問題がある。Ni及びMnはこのような鋼の
粒界侵食を防止し、さらにMnはろう材と鋼の界面に固溶
体相を形成し、ろう材と鋼の「ぬれ性」を改善する効果
のあることがわかった。
Although the brazing material according to the present invention is also a brazing material based on Cu, pure Cu has a problem that it erodes the grain boundaries of steel and has low shear strength. Ni and Mn prevent the intergranular erosion of such steel, and Mn forms a solid solution phase at the interface between the brazing material and the steel, indicating that it has the effect of improving the "wetability" of the brazing material and the steel. Was.

また、Coはろう材の硬さを増加させると共に、セラミ
ックス焼結体との「ぬれ性」を改善することがわかっ
た。
In addition, it was found that Co increases the hardness of the brazing filler metal and improves the "wettability" with the ceramic sintered body.

また、Siはろう材の硬さを増加させる効果が大きく、
銅合金系のろう材の硬さに対するSi添加量の影響を示す
第5図から明らかなように、Si1重量%添加によりHV25/
35kg/mm2増加することがわかった。
Also, Si has a great effect of increasing the hardness of the brazing material,
FIG. 5 shows the effect of the amount of Si added on the hardness of the copper alloy brazing material.
It was found to increase by 35 kg / mm 2 .

一方、本発明で用いるろう材としては、耐熱性の観点
からろう材の液相生成温度が950℃以上であることが望
ましく、また1150℃を越えると鋼の結晶粒が粗大化し、
母材強度を下げるので1150℃以下が望ましい。
On the other hand, as the brazing filler metal used in the present invention, it is preferable that the liquid phase generation temperature of the brazing filler metal is 950 ° C. or higher from the viewpoint of heat resistance.
1150 ° C or lower is desirable because it lowers the base metal strength.

Mn,Siは液相生成温度を下げ、Ni,Coは上昇させるの
で、ろう材の液相生成温度を950〜1150℃の範囲にする
ためには、これら合金元素の組合せ及びその組成範囲に
は限界がある。
Since Mn and Si lower the liquid phase formation temperature and Ni and Co increase, the combination of these alloy elements and the composition range are required to keep the liquid phase formation temperature of the brazing material in the range of 950 to 1150 ° C. There is a limit.

また、ろう材の硬さはCo量とSi量、特にSi量に強く依
存するが、継手のせん断強度とと硬さの間には直線関係
はみられないことがわかった。すなわち、継手のせん断
強度は、第6図に示すように、硬さHV150までは硬さと
共に増加するが、これ以上では低下し、特に硬さHV200
以上では脆性的な破壊状態となる。したがって、Co量特
にSi量にはせん断強度の点で上限がある。
It was also found that the hardness of the brazing material strongly depends on the amount of Co and the amount of Si, especially on the amount of Si, but there is no linear relationship between the shear strength and the hardness of the joint. That is, as shown in Fig. 6, the shear strength of the joint increases with hardness up to a hardness of HV150, but decreases with a hardness of more than HV150.
Above is a brittle fracture state. Therefore, the amount of Co, especially the amount of Si, has an upper limit in terms of shear strength.

なお、第6図は、第7図に示すせん断強度測定法に従
って測定した超硬合金と鋼のろう接合強度とろう材の硬
度の関係を示すものであるが、超硬合金に代えて硼素系
複合セラミックス焼結体を用いた場合も同様と考えられ
る。上記せん断強度測定法を模式的に示す第7図におい
て、Pは荷重、11は超硬合金、12は上記超硬合金の両側
部にろう付けされた鋼、13は受け台を示す。
FIG. 6 shows the relationship between the brazing joint strength of the cemented carbide and the steel and the hardness of the brazing material measured according to the shear strength measurement method shown in FIG. It is considered that the same applies when a composite ceramics sintered body is used. In FIG. 7 schematically showing the above-mentioned method for measuring the shear strength, P indicates a load, 11 indicates a cemented carbide, 12 indicates steel brazed to both sides of the cemented carbide, and 13 indicates a cradle.

本発明に最適なろう材の組成範囲は、このような合金
元素の特徴を踏まえて総合的に決定されたもので、Cu−
Ni−Si系では2〜10%Ni、好ましくは5〜10%Ni、1〜
8%Si;Cu−Mu−Ni系では10〜25%Mn、5〜10%Ni、0
〜3%Si;またはCu−Mn−Ni−Co系では15〜30%Mn、5
〜10%Ni、5〜10%Co、0〜1.5%Siが適当である。ま
た、ろう材の硬さはビッカース硬さ約75〜200kg/mm2
より好ましくは100〜200kg/mm2の範囲が好ましい。
The optimum composition range of the brazing material for the present invention is comprehensively determined based on the characteristics of such alloy elements.
In Ni-Si system, 2 to 10% Ni, preferably 5 to 10% Ni, 1 to
8% Si; 10-25% Mn, 5-10% Ni, 0% for Cu-Mu-Ni system
33% Si; or 15-30% Mn in Cu-Mn-Ni-Co system, 5
-10% Ni, 5-10% Co, 0-1.5% Si are suitable. In addition, the hardness of the brazing material is Vickers hardness of about 75 to 200 kg / mm 2 ,
More preferably, the range is 100 to 200 kg / mm 2 .

また、表−1に示すろう材の中でも、銅合金系、特に
硬さvs剪断強度の関係(第6図参照)から、Cu(66)−
Mn(24)−Ni(10)、Cu(63)−Mn(22)−Co(5)−
Ni(10)、Cu(86)−Mn(10)−Co(4)が好適であ
り、特にCu(63)−Mn(22)−Co(5)−Ni(10)が最
適である。これに対して、Niベースのろう材は「ぬれ
性」は良いが、接合体を繰り返し加熱・冷却した時にク
ラックが発生する恐れがあるので、ガラス成形用部材と
しては銅合金系に比べて劣る。
Also, among the brazing materials shown in Table 1, Cu (66)-from the relationship of copper alloys, particularly hardness vs. shear strength (see FIG. 6).
Mn (24) -Ni (10), Cu (63) -Mn (22) -Co (5)-
Ni (10) and Cu (86) -Mn (10) -Co (4) are suitable, and particularly, Cu (63) -Mn (22) -Co (5) -Ni (10) is most suitable. Ni-based brazing materials, on the other hand, have good wettability, but are inferior to copper alloys as glass forming members because cracks may occur when the joined body is repeatedly heated and cooled. .

第1図に本発明に係る接合体の基本構成を示す。図
中、1は硼素系複合セラミックス焼結体、2はろう材、
3は金属系構造部材である。金属系構造部材3の上にろ
う材2を介してセラミックス焼結体1を積層し、これを
真空もしくは不活性雰囲気中でろう材の融点以上に加熱
して硼素系複合セラミックス焼結体と鋼との間にろう材
の融液を形成し、次いで冷却してろう材を凝固させる通
常のろう付けを行なう。これによって、耐熱性と強度を
備えたろう付け継手が得られる。第2図はガラス成形用
金型に本発明を適用した例を示す。金型キャビティ面4
は硼素系複合セラミックス焼結体1aにより構成されてい
る。なお、母材としては各種金属系構造材料を用いるこ
とができるが、ガラス成形用金型においては超硬合金、
ハイス、ダイス鋼等の金属系構造材料を好適に用いるこ
とができる。
FIG. 1 shows the basic structure of the joined body according to the present invention. In the figure, 1 is a boron-based composite ceramic sintered body, 2 is a brazing material,
Reference numeral 3 denotes a metal-based structural member. A ceramic sintered body 1 is laminated on a metal-based structural member 3 via a brazing filler metal 2 and heated to a temperature equal to or higher than the melting point of the brazing filler metal in a vacuum or an inert atmosphere to form a boron-based composite ceramic sintered compact and steel. Then, a normal brazing is performed in which a melt of the brazing material is formed and then cooled to solidify the brazing material. Thereby, a brazed joint having heat resistance and strength is obtained. FIG. 2 shows an example in which the present invention is applied to a glass molding die. Mold cavity surface 4
Is composed of a boron-based composite ceramics sintered body 1a. In addition, various metal-based structural materials can be used as a base material, but in a glass forming mold, a cemented carbide,
Metal-based structural materials such as high-speed steel and die steel can be suitably used.

第2図に示すように、セラミックス焼結体1aが構造部
材3aに嵌合された金型においては、加熱時にセラミック
ス焼結体の金型面が動かないように保持できれば充分で
あって、ろう付けによる接合強度はそれ程問題とならな
い。しかしながら、接合強度が問題となる場合には、第
3図及び第4図に示すようにろう付け接合に加えて機械
的結合要素を付加することができる。第3図は構造部材
3bの上面にあり溝5を設け、セラミックス焼結体1bの下
面にあり6を設けて、該あり6をろう材2bを介してあり
溝5に嵌挿した例であり、一方、第4図はビス7を用
い、ビス止めした例である。
As shown in FIG. 2, in a mold in which the ceramic sintered body 1a is fitted to the structural member 3a, it is sufficient if the mold surface of the ceramic sintered body can be held so as not to move during heating. The bonding strength by attachment does not matter so much. However, if joint strength is a concern, a mechanical coupling element can be added in addition to the braze joint as shown in FIGS. Fig. 3 shows structural members
FIG. 4 shows an example in which a groove 5 is provided on the upper surface of 3b, a groove 6 is provided on the lower surface of the ceramic sintered body 1b, and the groove 6 is inserted into the groove 5 through the brazing material 2b. Is an example in which a screw 7 is used and screwed.

本発明で用いる硼素系複合セラミックス焼結体は、複
合焼結体の一つの相を構成しているMI/Bセラミックス
相、具体的にはNi/B,Ni+MII/B(MII:Cr,V a〜VII a族
元素)、Cr/B,Ni+Cr/B,Ni+Cr+MIII/B(MIII:V a〜VI
I a族元素)のセラミックス相の原子比が1/1に十分制御
されていることを特徴とし、Niが他の金属で置換されて
いるかどうかに拘らず、このようにMI/Bセラミックス相
の原子比が1/1に十分制御されたことによって、得られ
た焼結体の緻密度や各相の組成の均一性等が著しく向上
し、その結果、靭性、強度等の各種特性に優れたものと
なる。
The boron-based composite ceramic sintered body used in the present invention is a M I / B ceramic phase constituting one phase of the composite sintered body, specifically, Ni / B, Ni + M II / B (M II : Cr , V a~VII a group element), Cr / B, Ni + Cr / B, Ni + Cr + M III / B (M III: V a~VI
It is characterized in that the atomic ratio of the ceramic phase (Ia group element) is sufficiently controlled to be 1/1, and thus the M I / B ceramic phase can be obtained regardless of whether Ni is replaced by another metal. By controlling the atomic ratio of 1/1 sufficiently, the compactness of the obtained sintered body and the uniformity of the composition of each phase are remarkably improved, and as a result, various properties such as toughness and strength are excellent. It will be.

より具体的に述べると、本発明の硼素系複合セラミッ
クス焼結体は、焼結体組成が、IV族二硼化物TiB2,ZrB2,
HfB2の中の少くとも1種以上とMI/B(好ましくはNi/B)
原子比を1/1に制御したMIB(好ましくはNiB)とのセラ
ミックス混合相からなる焼結体、並びにCr/B原子比を1/
1に制御したCrB相、(Cr,Ni)3B4相及びNi+Cr/B原子比
を1/1に制御した(Ni,Cr)B相のセラミックス混合相か
ら成る焼結体を基体とし、これら焼結体にNi+MII/B原
子比1/1のセラミックス相(MII:V,Nb,Ta,Cr,Mo,W,Mn)
をさらに添加し、化学量論組成化合物を適切に組み合わ
せた硼素系複合セラミックス焼結体を要旨としている。
More specifically, the boron-based composite ceramics sintered body of the present invention has a sintered body composition of a group IV diboride TiB 2 , ZrB 2 ,
M I / B (preferably Ni / B) with at least one of HfB 2
M I B (preferably NiB) sintered body made of ceramic mixed phase having a controlled atomic ratio 1/1, and a Cr / B atomic ratio of 1 /
CrB phase was controlled to 1, and (Cr, Ni) 3 and B 4 phase and Ni + Cr / B atomic ratio controlled to 1/1 (Ni, Cr) base sintered body consisting of B-phase ceramic mixed phase, they Ni + M II / B ceramic phase with atomic ratio 1/1 (M II : V, Nb, Ta, Cr, Mo, W, Mn)
And a boron-based composite ceramics sintered body in which stoichiometric compounds are appropriately combined.

本発明に用いるIV族二硼化物セラミックスは、焼結体
残部を構成するNi/B,Cr/B,Ni+MII/B相の原子比を1/1に
十分制御し、得られた焼結体の緻密度、靭性等を向上さ
せるために、純度が高いこと、粒子径も小さいことが好
ましい。
The group IV diboride ceramic used in the present invention is obtained by sufficiently controlling the atomic ratio of the Ni / B, Cr / B, and Ni + M II / B phases constituting the remainder of the sintered body to 1/1, and In order to improve the compactness, toughness, etc., it is preferable that the purity is high and the particle size is small.

Cr/B原子比1/1セラミックス相、(Cr,Ni)3N4相は、
焼結体として存在してればよいので、出発原料として
は、どのような形態のものを使用してもよい。
Cr / B atomic ratio 1/1 ceramic phase, (Cr, Ni) 3 N 4 phase
As long as it is present as a sintered body, any form may be used as a starting material.

原料混合物は、通常上記微粉体をそれぞれ2種以上均
一に混合することによって調整する。
The raw material mixture is usually adjusted by uniformly mixing two or more of the above fine powders.

本発明の焼結体は、これら混合物を1600℃以上にて焼
成作成する。焼結法としては、各種手法(真空、不活
性、還元性雰囲気焼結法)が採用できるが、相構成の安
定性、再現性等を考慮すると、固体圧下での加圧焼結が
好ましい。
The sintered body of the present invention is prepared by firing these mixtures at 1600 ° C. or higher. As the sintering method, various methods (vacuum, inert, reducing atmosphere sintering method) can be adopted, but pressure sintering under solid pressure is preferable in consideration of the stability and reproducibility of the phase constitution.

本発明の焼結体における相組成の割合は、たとえばTi
B2−NiB系複合セラミックス焼結体においては、3〜50V
ol%のNi/B原子比1/1のNiB相がIV族二硼化物と配合され
ている。
The ratio of the phase composition in the sintered body of the present invention is, for example, Ti
In B 2 -NiB based composite ceramic sintered body, 3~50V
ol% of a NiB phase with a 1/1 Ni / B atomic ratio is blended with a Group IV diboride.

複合セラミックス焼結体TiB2−NiB系を例にとって説
明する。本複合系焼結体では、TiB2粒子をNi/B原子比1/
1のセラミック相中に均一に分布されると、熱伝導度、
強度等についてその体積比に応じてNiB側からTiB2側ま
で再現性の極めて良好な焼結体が得られる。すなわち、
特にTiB2側ではNi4B3相、Ni3B相のランダムかつ不可避
的な出現は抑えられ、熱伝導度、強度等焼結体特性値の
信頼性は向上する。本複合セラミックス焼結体の緻密化
のためには、NiB相は少くとも3Vol%以上必要である。N
iB相が3Vol%以下では、TiB2粒子はNiB相で十分結合で
きなくなり、TiB2粒子同志の接触部が多数認められるよ
うになる。通常、このTiB2−TiB2接触部には気穴が集り
やすいため、この接触部に多数の気穴が生じることにな
る。また、この気穴を低減するため焼結温度を上げる
と、特にTiB2−TiB2接触部でTiB2粒子の異常粒成長が発
生することになる。上記微細構造における欠陥、不均一
性は焼結体の強度、熱伝導度等特性の信頼性を著しく低
下させることになる。一方、NiB相の増加は本焼結体の
緻密化のためには好ましいが、NiB相の体積が50Vol%を
越えると焼結体硬度、熱伝導度等の特性へのTiB2セラミ
ックス複合化の効果は著しく低下することになるので、
NiB相量は50Vol%までにしておく必要がある。
A description will be given by taking a composite ceramic sintered body TiB 2 -NiB system as an example. In the composite sintered body, the TiB 2 particles Ni / B atomic ratio of 1 /
1, evenly distributed in the ceramic phase, thermal conductivity,
With respect to strength and the like, a sintered body having extremely good reproducibility from the NiB side to the TiB 2 side can be obtained according to the volume ratio. That is,
Particularly on the TiB 2 side, the random and inevitable appearance of the Ni 4 B 3 phase and the Ni 3 B phase is suppressed, and the reliability of the sintered body characteristic values such as thermal conductivity and strength is improved. In order to densify the composite ceramic sintered body, the NiB phase must be at least 3 Vol% or more. N
When the iB phase is 3 Vol% or less, the TiB 2 particles cannot be sufficiently bonded by the NiB phase, and many contact portions between the TiB 2 particles are recognized. Normally, pores tend to collect at the TiB 2 -TiB 2 contact portion, so that a large number of pores are generated at the contact portion. In addition, when the sintering temperature is increased to reduce the pores, abnormal grain growth of TiB 2 particles occurs particularly at the TiB 2 -TiB 2 contact portion. Defects and non-uniformity in the above microstructure significantly reduce the reliability of properties such as strength and thermal conductivity of the sintered body. On the other hand, an increase in the NiB phase is preferable for densification of the sintered body, but when the volume of the NiB phase exceeds 50 Vol%, the use of TiB 2 ceramics composites for properties such as hardness and thermal conductivity of the sintered body is increased. The effect will be significantly reduced,
The NiB phase content must be up to 50 Vol%.

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明す
る。
Hereinafter, the present invention will be described specifically with reference to examples.

実施例1 硼素系複合セラミックス焼結体の作成: 平均粒径1μmのTiB2粉末と平均粒径5μmのNiB粉
末を体積比で4/1に配合し、加えて、ヘキサン溶媒中で
プラスチィックポット、ボールを用いて8時間混合し
た。得られた粉末は、真空中で十分加熱乾燥し、焼結用
原料とした。本粉末をφ30×5HmmにCIP(冷間静水圧)
成型後、ベルト式高圧焼結装置内に装入して、10,000気
圧下1700℃で10分加熱して焼結体を得た。
Example 1 Production of boron-based composite ceramics sintered body: TiB 2 powder having an average particle diameter of 1 μm and NiB powder having an average particle diameter of 5 μm were mixed in a volume ratio of 4/1, and then added in a plastic pot in a hexane solvent. Mix for 8 hours using a ball. The obtained powder was sufficiently dried by heating in a vacuum to obtain a raw material for sintering. CIP this powder φ30 × 5 H mm (cold isostatic)
After molding, it was charged into a belt-type high-pressure sintering apparatus, and heated at 1700 ° C. under 10,000 atmospheres for 10 minutes to obtain a sintered body.

接合体の作成: 上記方法で焼結したTiB2(80)−NiB(20)複合硼化
物セラミックス(カッコ内はVol%を示す)の表面をダ
イアモンド砥石で研削し、φ25×5mmtの平板に仕上げ
た。
Preparation of bonded body: The surface of TiB 2 (80) -NiB (20) composite boride ceramics (volume in parentheses indicates Vol%) sintered by the above method is ground with a diamond grindstone to form a flat plate of φ25 × 5 mm t Finished.

一方、これを貼り付ける構造体としては、高速度鋼を
第2図に示すように加工し、この上端面に組成Cu(63)
−Mn(22)−Co(5)−Ni(10)(カッコ内はwt%)、
厚さ0.3mmのシート状ろう材をセットした。この上に上
記硼化物セラミックス板を静置し、真空(10-3Torr)中
1100℃で10分加熱し、炉内冷却を行なった。その結果、
セラミックス/鋼の境界面におけるクラックや剥離等が
生ずることなく、良好な接合体が得られた。
On the other hand, as a structure to which this is to be attached, high-speed steel is processed as shown in Fig. 2 and the upper surface of this structure is composed of Cu (63)
-Mn (22) -Co (5) -Ni (10) (wt% in parentheses),
A sheet-like brazing material having a thickness of 0.3 mm was set. The boride ceramics plate is allowed to stand on this, and is placed in a vacuum (10 -3 Torr).
Heating was performed at 1100 ° C for 10 minutes to cool the furnace. as a result,
A good bonded body was obtained without cracking or peeling off at the ceramic / steel interface.

この接合体は、接合された硼化物セラミックスの耐ガ
ラス焼付性、耐高温酸化性等の特性を活用し、高温で用
いるガラス成型用型として利用できる。
This bonded body can be used as a glass molding die used at a high temperature by utilizing the properties of the bonded boride ceramics such as glass seizure resistance and high temperature oxidation resistance.

なお、本発明で用いる硼素系複合セラミックス焼結体
の合成及び特性については特願平1−175735号明細書に
記載されているが、その幾つかの合成例について以下に
示す(上記特許明細書の記載内容は本明細書中に引照加
入する)。
The synthesis and properties of the boron-based composite ceramic sintered body used in the present invention are described in Japanese Patent Application No. 1-175735, and some examples of the synthesis are shown below (see the above-mentioned patent specification). Are referred to in this specification).

合成例1 平均粒径3μmのZrB2粉末と平均粒径5μmのNiB粉
末を体積比で4/1に配合し、実施例1と同様に処理し
て、ベルト式高圧焼結装置にて10,000気圧下1800℃で10
分加熱して焼結体を得た。得られた焼結体特性は、相対
密度98%以上、微小硬度1650kg/mm2、熱伝導度55W/mK、
曲げ強度900MPaであって、X線回折によりその相構成は
ZrB2−NiB二相複合セラミックスであることが確認でき
た。前記特性の再現性については実施例1と同様に良好
な結果を得た。
Synthesis Example 1 A ZrB 2 powder having an average particle diameter of 3 μm and a NiB powder having an average particle diameter of 5 μm were mixed in a volume ratio of 4/1, treated in the same manner as in Example 1, and subjected to a belt-type high-pressure sintering apparatus at 10,000 atm. 10 at lower 1800 ℃
After heating for a minute, a sintered body was obtained. The characteristics of the obtained sintered body are as follows: relative density of 98% or more, micro hardness of 1650 kg / mm 2 , thermal conductivity of 55 W / mK,
It has a bending strength of 900MPa, and its phase structure is determined by X-ray diffraction.
It was confirmed to be a ZrB 2 -NiB two-phase composite ceramics. As for the reproducibility of the characteristics, good results were obtained as in Example 1.

合成例2 平均粒径2μmのCrB粉末60Vol%と、残部として平均
粒径2μmのNi粉、0.5μmの硼素粉(原子比1/1で添
加)を配合し、混合後、焼結用原料とした。本粉末をφ
30×5HmmにCIP成型後、ベルト式高圧焼結装置にて10,00
0気圧下1600℃で5分加熱して焼結体を得た。粉末X線
回折より、本焼結体はCrB,(Cr,Ni)3B4,(Ni,Cr)B相
より構成され、EPMAによる(Ni,Cr)B相中のNi/Cr原子
比は9/1であり、(Ni,Cr)B相の体積比は25Vol%であ
ることが明らかとなった。
Synthesis Example 2 60% by volume of CrB powder having an average particle size of 2 μm, Ni powder having an average particle size of 2 μm, and boron powder having an average particle size of 0.5 μm (added at an atomic ratio of 1/1) were mixed. did. This powder is φ
After CIP molding to 30 × 5 H mm, 10,000 in belt type high pressure sintering machine
The sintered body was obtained by heating at 1600 ° C. under 0 atm for 5 minutes. According to powder X-ray diffraction, this sintered body is composed of CrB, (Cr, Ni) 3 B 4 , (Ni, Cr) B phase, and the Ni / Cr atomic ratio in (Ni, Cr) B phase by EPMA 9/1, and the volume ratio of the (Ni, Cr) B phase was found to be 25 Vol%.

CrB粉末、Ni粉末、B粉末の混合比を任意を変更してN
i+CR/B原子比1/1の(Ni,Cr)B相体積10Vol%以下の焼
結体を製造したところ、焼結体の靭性は著しく劣化し
た。本合成例の焼結体の破壊靭性値は6MNm−3/2である
が、(Ni,Cr)B相体積が10Vol%以下となると2MNm
−3/2に低下した。
Change the mixing ratio of CrB powder, Ni powder, and B powder
When a sintered body having a (Ni, Cr) B phase volume of 10 Vol% or less with an i + CR / B atomic ratio of 1/1 was produced, the toughness of the sintered body was significantly deteriorated. Fracture toughness of the sintered body of the present Synthesis Example is a 6MNm -3/2, (Ni, Cr) when B phase volume is equal to or less than 10Vol% 2MNm
It dropped to -3/2 .

一方、Ni/Cr原子比がほぼ9/1の(Ni,Cr)B相体積が8
0Vol%以上では、CrB相を含む焼結体は得られず、同様
な靭性値の低下に加えて高温硬さも著しく低下する。従
って、良好な靭性値と硬さを維持するには、(Ni,Cr)
B相体積比は10〜80Vol%とする必要がある。
On the other hand, the volume of the (Ni, Cr) B phase having an atomic ratio of Ni / Cr of approximately 9/1 is 8
If the content is 0 Vol% or more, a sintered body containing a CrB phase cannot be obtained, and the high-temperature hardness is significantly reduced in addition to the similar decrease in toughness. Therefore, to maintain good toughness and hardness, (Ni, Cr)
The phase B volume ratio must be 10 to 80 Vol%.

合成例3 合成例2に示したCrB粉末、Ni粉末、B粉末の体積混
合比を一定とし、これらの混合粉の体積比を20Vol%と
してTiB2粉末と配合して焼結原料粉を作成し、合成例2
と同一条件の下で焼結処理をほどこした。
CrB powder shown in Synthesis Example 3 Synthesis Example 2, and Ni powder, the volume mixing ratio of B powder constant, TiB 2 powder and blended to create a sintering raw material powder at a volume ratio of these mixed powder as a 20 vol% , Synthesis Example 2
Sintering was performed under the same conditions.

得られた焼結体の相構成はTiB2,CrB,(Ni,Cr)B,(C
r,Ni)3B4の各相よりなり、その特性は、相対密度99%
以上、破壊靭性値は7MNm−3/2であり、800℃大気中の加
熱においても極めて良好な耐酸化性を示した。
The phase composition of the obtained sintered body was TiB 2 , CrB, (Ni, Cr) B, (C
r, Ni) 3 made of each phase of the B 4, the characteristics of relative density of 99%
Above, fracture toughness is 7MNm -3/2, showed very good oxidation resistance even at heating 800 ° C. in air.

CrB,(Ni,Cr)B,(Cr,Ni)3B4の少くとも2種以上か
ら構成されるセラミックス相の体積比が3Vol%以下で
は、TiB2−NiB系複合セラミックスにおいて記述したと
同様の理由で、その微細構造に気穴、異常粒成長等の不
均一性が発生し、焼結体特性の信頼性は著しく低下す
る。一方、50Vol%を越えると焼結体硬度、熱伝導度等
の特性へのTiB2セラミックス複合効果は著しく低下する
ことになるので、CrB,(Ni,Cr)B,(Cr,Ni)3B4の少く
とも2種以上から構成されるセラミックス相の体積は50
Vol%までにしておく必要がある。
CrB, similar to (Ni, Cr) B, ( Cr, Ni) 3 at least the volume ratio of formed ceramic phase of two or more B 4 is not more than 3 vol% is described in TiB 2 -NiB Composite Ceramics For this reason, non-uniformity such as pores and abnormal grain growth occurs in the microstructure, and the reliability of the sintered body characteristics is significantly reduced. On the other hand, if it exceeds 50% by volume, the effect of the TiB 2 ceramic composite on the properties such as the hardness of the sintered body and the thermal conductivity is significantly reduced, so that CrB, (Ni, Cr) B, (Cr, Ni) 3 B The volume of the ceramic phase composed of at least two types of 4 is 50
It is necessary to keep up to Vol%.

同様な焼結テストにおいて、ZrB2/HfB2粉体積比1/2の
割合で配合した二硼化物セラミックス70Vol%と前記CrB
粉、Ni粉、B粉末の混合体積30Vol%を配合混合し、10,
000気圧下、1800℃で5分加熱して焼結体を得た。得ら
れた焼結体の800℃大気中の耐酸化特性は、TiB2系の約
2倍の特性を得た。(ここで耐酸化特性とは、800℃1
時間加熱における酸化増量の程度が少く、さらに長時間
加熱においても増加率は極めて少いことをもって判定す
るものである。) 合成例4 平均粒径1μmのTa粉、平均粒系0.5μmのW粉、及
び平均粒系0.5μmの硼素粉をTaB,WB化学量論組成でそ
れぞれ3Vol%、10Vol%の割合で合成例2に示した焼結
原料粉に配合、均一に混合し、焼結用原料とした。本粉
末をφ30×5mmHにCIP成型後、ベルト式高圧焼結装置に
て10,000気圧下1600℃で10分加熱して焼結体を得た。粉
末X線回折及び焼結体のEPMA分析結果より、本焼結体中
にはCrB,(Cr,Ni)3B4,(Ni,Cr)B相の他にNi+Cr+Ta
+W/B原子比1/1の(Ni,Cr,Ta,W)B相が50Vol%含まれ
ていることが明らかとなった。本焼結体の特性として
は、合成例2に示す破壊靭性値6MNm−3/2は維持された
まま、微小硬さの増加(1200kg/mm2→1600kg/mm2)が確
認され、耐酸化性に加えて耐熱性も向上した。合成例2
にも示したが、(Ni,Cr,M)B相(M:Ta,W)の体積率が1
0Vol%以下では破壊靭性値の著しい低下が起こること、
また80Vol%以上ではCrB相が消失することから耐酸化性
も低下する。従って、良好な破壊靭性値、耐酸化性、耐
熱性を得るためには、(Ni,Cr,MIII)B相(MIII:V,Nb,
Ta,Mo,W,Mn)体積率は10〜80Vol%の範囲にあることが
必要である。
In a similar sintering test, 70 vol% of a diboride ceramic compounded at a volume ratio of ZrB 2 / HfB 2 powder of 1/2 and the CrB
Powder, Ni powder, B powder mixed volume 30Vol%, mix
It was heated at 1800 ° C. under 000 atm for 5 minutes to obtain a sintered body. The oxidation resistance of the obtained sintered body in the air at 800 ° C. was about twice that of the TiB 2 system. (Here, the oxidation resistance is 800 ° C1
Judgment is made based on the fact that the degree of increase in oxidation during heating for a long time is small, and the rate of increase during heating for a long time is extremely small. Synthesis Example 4 Ta powder having an average particle diameter of 1 μm, W powder having an average particle diameter of 0.5 μm, and boron powder having an average particle diameter of 0.5 μm were synthesized at a stoichiometric composition of TaB and WB at 3 Vol% and 10 Vol%, respectively. It was blended with the sintering raw material powder shown in No. 2 and uniformly mixed to obtain a sintering raw material. This powder was subjected to CIP molding to φ30 × 5 mm H, and then heated at 1600 ° C. for 10 minutes under 10,000 atmospheres using a belt-type high-pressure sintering apparatus to obtain a sintered body. From the results of powder X-ray diffraction and EPMA analysis of the sintered body, the sintered body contained Ni + Cr + Ta in addition to the CrB, (Cr, Ni) 3 B 4 and (Ni, Cr) B phases.
It became clear that the (Ni, Cr, Ta, W) B phase having an atomic ratio of + W / B 1/1 was contained at 50 Vol%. The characteristics of this sintered body, the fracture toughness value 6MNm -3/2 shown in Synthesis Example 2 while being maintained, an increase in the microhardness (1200kg / mm 2 → 1600kg / mm 2) is confirmed, oxidation In addition to heat resistance, heat resistance also improved. Synthesis Example 2
The volume fraction of (Ni, Cr, M) B phase (M: Ta, W) is 1
At 0 Vol% or less, a significant decrease in fracture toughness occurs.
If the content is 80 Vol% or more, the oxidation resistance is lowered because the CrB phase disappears. Therefore, in order to obtain good fracture toughness, oxidation resistance, and heat resistance, the (Ni, Cr, M III ) B phase (M III : V, Nb,
(Ta, Mo, W, Mn) volume ratio must be in the range of 10 to 80 Vol%.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明の方法によれば、硼素系複合セ
ラミックス焼結体と金属系構造部材とを高強度のろう材
を用いて接合するため、その境界面におけるクラックや
剥離などを生ずることなく、接合強度及び接合耐久性に
優れた接合体が比較的安価に得られる。
As described above, according to the method of the present invention, since a boron-based composite ceramics sintered body and a metal-based structural member are joined using a high-strength brazing material, cracks and peeling at the boundary surface may occur. Thus, a joined body excellent in joining strength and joining durability can be obtained at relatively low cost.

また、本発明の接合体は、接合された硼素系複合セラ
ミックス焼結体が強度、硬度、耐熱性(高温硬度)、耐
酸化性、耐蝕性等に優れるため、この優れた特性を活用
してガラス成形用金型、耐摩耗部材、各種工具、ダイス
類などの広範な用途に適用することができる。特に本発
明の接合体をガラス成形用金型として利用した場合、接
合された硼素系複合セラミックス焼結体の耐ガラス焼付
性、耐高温酸化性等の特性が有効に活用され、溶融ガラ
スを成形後そのまま型内に保持して冷却できるため、成
形精度に優れ、従って従来のような後加工が不要となる
ため生産性にも優れるなどの利点が得られる。
In addition, the bonded body of the present invention utilizes the excellent characteristics because the bonded boron-based composite ceramic sintered body has excellent strength, hardness, heat resistance (high-temperature hardness), oxidation resistance, corrosion resistance, and the like. It can be applied to a wide range of uses such as glass molding dies, wear-resistant members, various tools and dies. In particular, when the bonded body of the present invention is used as a glass forming mold, the properties of the bonded boron-based composite ceramics sintered body, such as anti-seizure resistance and high-temperature oxidation resistance, are effectively utilized to form molten glass. Since it can be cooled while being held in the mold as it is, advantages such as excellent molding accuracy and, therefore, no need for the post-processing as in the prior art, leading to excellent productivity are obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の接合体の基本構成を示す概略構成図、
第2図は本発明をガラス成形用金型に適用した例を示す
断面図、第3図及び第4図は本発明の接合体の他の構成
例を示す断面図、第5図は銅合金系のろう材硬さとSi添
加量の関係を示すグラフ、第6図は超硬合金と鋼のろう
接合強度(せん断破壊強度)とろう材の硬さの関係を示
すグラフ、第7図はせん断強度測定法の概略構成図であ
る。 1,1a,1b,1cは硼素系結合セラミックス焼結体、2,2a,2b,
2cはろう材、3,3a,3b,3cは金属系構造部材。
FIG. 1 is a schematic configuration diagram showing a basic configuration of a joined body of the present invention,
FIG. 2 is a cross-sectional view showing an example in which the present invention is applied to a glass molding die, FIGS. 3 and 4 are cross-sectional views showing other structural examples of the joined body of the present invention, and FIG. 5 is a copper alloy. 6 is a graph showing the relationship between the hardness of the brazing material and the amount of Si added, FIG. 6 is a graph showing the relationship between the brazing strength (shear fracture strength) of the cemented carbide and steel and the hardness of the brazing material, and FIG. FIG. 3 is a schematic configuration diagram of an intensity measuring method. 1,1a, 1b, 1c are boron-based bonded ceramics sintered bodies, 2,2a, 2b,
2c is a brazing material, and 3,3a, 3b, and 3c are metal structural members.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−186271(JP,A) 特開 昭61−209966(JP,A) 特開 昭56−23246(JP,A) 特開 平3−40967(JP,A) 特公 昭58−23348(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-186271 (JP, A) JP-A-61-209966 (JP, A) JP-A-56-23246 (JP, A) 40967 (JP, A) JP 58-23348 (JP, B2)

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)少なくとも1種以上のMI/B(但し、
MIはNi,Cr,V,Nb,Ta,Mo,WおよびMnからなる群から選ばれ
た少なくとも1種以上である)原子比が1/1のMIBセラミ
ックス相と、TiB2,ZrB2及びHfB2からなる群から選ばれ
た少なくとも1種以上のIV族二硼化物セラミックス相及
び/又は(Cr,Ni)3B4セラミックス相とから構成されて
なる硼素系複合セラミックス焼結体と、 (B)金属系構造部材とを、 (C)Cu−Mn系、Cu−Mn−Ni系、Cu−Mn−Co系、Cu−Mn
−Co−Ni系、Cu−Ni系又はNi−Mn系ろう材により接合し
てなることを特徴とする接合体。
(A) at least one kind of M I / B (provided that
M I is at least one or more selected from the group consisting of Ni, Cr, V, Nb, Ta, Mo, W and Mn.) M I B ceramic phase having an atomic ratio of 1/1, TiB 2 , ZrB A boron-based composite ceramics sintered body composed of at least one or more group IV diboride ceramic phase and / or (Cr, Ni) 3 B 4 ceramic phase selected from the group consisting of HfB 2 and HfB 2 (B) a metal-based structural member; (C) Cu-Mn-based, Cu-Mn-Ni-based, Cu-Mn-Co-based, Cu-Mn
-A joined body characterized by being joined by a Co-Ni-based, Cu-Ni-based, or Ni-Mn-based brazing material.
【請求項2】前記硼素系複合セラミックス焼結体によっ
て金型キャビティ面が構成されたガラス成形用金型であ
る請求項1に記載の接合体。
2. The joined body according to claim 1, wherein the joined body is a glass molding mold having a mold cavity surface formed by the boron-based composite ceramics sintered body.
【請求項3】前記ろう材が、15〜30重量%Mn,5〜10重量
%Ni,5〜10重量%Co,0〜1.5重量%Si,残部Cuの組成を有
するCu−Mn−Ni−Co系ろう材である請求項1又は2に記
載の接合体。
3. The brazing material according to claim 1, wherein said brazing material has a composition of 15 to 30% by weight Mn, 5 to 10% by weight Ni, 5 to 10% by weight Co, 0 to 1.5% by weight Si, and the balance Cu. 3. The joined body according to claim 1, which is a Co brazing material.
【請求項4】前記ろう材が、10〜25重量%Mn,5〜10重量
%Ni,0〜3重量%Si,残部Cuの組成を有するCu−Mn−Ni
系ろう材である請求項1又は2に記載の接合体。
4. The brazing material according to claim 1, wherein said brazing material has a composition of 10 to 25% by weight Mn, 5 to 10% by weight Ni, 0 to 3% by weight Si, and the balance Cu.
The joined body according to claim 1 or 2, which is a brazing filler metal.
【請求項5】前記ろう材が86重量%Cu,10重量%Mn,4重
量%Coの組成を有するCu−Mn−Co系ろう材である請求項
1又は2に記載の接合体。
5. The joined body according to claim 1, wherein the brazing material is a Cu-Mn-Co-based brazing material having a composition of 86% by weight Cu, 10% by weight Mn, and 4% by weight Co.
【請求項6】前記ろう材が、2〜10重量%Ni,0〜8重量
Si,残部Cuの組成を有するCu−Ni系ろう材である請求項
1又は2に記載の接合体。
6. The brazing material is 2 to 10% by weight Ni, 0 to 8% by weight.
The joined body according to claim 1, wherein the joined body is a Cu—Ni-based brazing material having a composition of Si and the balance of Cu.
【請求項7】前記硼素系複合セラミックス焼結体が、Ti
B2,ZrB2及びHfB2からなる群から選ばれた少なくとも1
種以上のIV族二硼化物セラミックス相と、M1/B(但し、
M1はNi,Cr,V,Nb,Ta,Mo,W及びMnからなる群から選ばれた
少なくとも1種以上である)原子比が1/1のMIBセラミッ
クス相から構成され、上記MIBセラミックス相を3〜50V
ol%含むものである請求項1乃至6のいずれかに記載の
接合体。
7. The sintered body of a boron-based composite ceramic is made of Ti
At least one selected from the group consisting of B 2 , ZrB 2 and HfB 2
At least one group IV diboride ceramic phase and M 1 / B (however,
M 1 is at least one or more selected from the group consisting of Ni, Cr, V, Nb, Ta, Mo, W and Mn.) The M 1 ceramic phase has an atomic ratio of 1/1. 3 to 50 V for IB ceramic phase
The conjugate according to any one of claims 1 to 6, wherein the conjugate contains ol%.
【請求項8】前記MIBセラミックス相が、Ni/B原子比が1
/1のNiBセラミックス相である請求項7に記載の接合
体。
Wherein said M I B ceramic phase, Ni / B atomic ratio of 1
The joined body according to claim 7, wherein the joined body is a NiB ceramic phase of / 1.
【請求項9】前記MIBセラミックス相が、Ni+MII/B(但
し、MIIはV,Nb,Ta,Cr,Mo,W及びMnからなる群から選ばれ
た少なくとも1種以上である)原子比が1/1の(Ni,
MII)Bセラミックス相である請求項7に記載の接合
体。
Wherein said M I B ceramic phase, Ni + M II / B (where, M II is V, Nb, Ta, Cr, Mo, at least one or more selected from the group consisting of W and Mn) Atomic ratio of 1/1 (Ni,
The joined body according to claim 7, wherein M II ) is a B ceramic phase.
【請求項10】前記硼素系複合セラミックス焼結体が、
さらに、Cr/B原子比が1/1のCrBセラミックス相、Ni+Cr
/B原子比が1/1の(Ni,Cr)Bセラミックス相及び(Cr,N
i)3B4セラミックス相から選ばれた少なくとも2種のセ
ラミックス相を含む請求項9に記載の接合体。
10. The sintered body of a boron-based composite ceramic,
Furthermore, a CrB ceramic phase with a Cr / B atomic ratio of 1/1, Ni + Cr
(Ni, Cr) B ceramic phase with an atomic ratio of 1/1 / B and (Cr, N
i) 3 B 4 assembly according to claim 9 comprising at least two ceramic phases selected from ceramic phase.
【請求項11】前記硼素系複合セラミックス焼結体が、
Cr/B原子比が1/1のCrBセラミックス相、Ni+Cr/B原子比
が1/1の(Ni,Cr)Bセラミックス相及び(Cr,Ni)3B4
ラミックス相から構成され、上記(Ni,Cr)Bセラミッ
クス相を10〜80Vol%含むものである請求項1乃至6の
いずれかに記載の接合体。
11. The sintered body of a boron-based composite ceramic,
Cr / B atomic ratio of 1/1 CrB ceramic phase, Ni + Cr / B atomic ratio is composed of 1/1 of (Ni, Cr) B ceramic phase and (Cr, Ni) 3 B 4 ceramic phase, the (Ni The joined body according to any one of claims 1 to 6, comprising 10 to 80 Vol% of a (Cr) B ceramic phase.
【請求項12】前記硼素系複合セラミックス焼結体が、
Cr/B原子比が1/1のCrBセラミックス相、Ni+Cr/B原子比
が1/1の(Ni,Cr)Bセラミックス相及び(Cr,Ni)3B4
ラミックス相から選ばれた少なくとも2種のセラミック
ス相を3〜50Vol%含み、セラミックス相残部がTiB2,Zr
B2及びHfB2からなる群から選ばれた少なくとも1種以上
のIV族二硼化物セラミックス相から構成されるものであ
る請求項1乃至6のいずれかに記載の接合体。
12. The boron-based composite ceramics sintered body is
Cr / B atomic ratio of 1/1 CrB ceramic phase, Ni + Cr / B atomic ratio of 1/1 of (Ni, Cr) B ceramic phase and (Cr, Ni) 3 B 4 at least two species selected from ceramic phase 3-50Vol% of ceramic phase, TiB 2 , Zr
Assembly according to any one of B 2 and claim 1 to 6 from at least one or more kinds of group IV diboride ceramic phase selected from the group consisting of HfB 2 are those composed.
【請求項13】前記硼素系複合セラミックス焼結体が、
Cr/B原子比が1/1のCrBセラミックス相、Ni+Cr/B原子比
が1/1の(Ni,Cr)Bセラミックス相、(Cr,Ni)3B4セラ
ミックス相及びNi+Cr+MIII/B(但し、MIIIはV,Nb,Ta,
Mo,W及びMnからなる群から選ばれた少なくとも1種以上
である)原子比が1/1の(Ni,Cr,MIII)Bセラミックス
相から構成され、上記(Ni,Cr,MIII)Bセラミックス相
を10〜80Vol%含むものである請求項1乃至6のいずれ
かに記載の接合体。
13. The sintered body of a boron-based composite ceramic,
Cr / B atomic ratio of 1/1 CrB ceramic phase, Ni + Cr / B atomic ratio of 1/1 of (Ni, Cr) B ceramic phase, (Cr, Ni) 3 B 4 ceramic phase and Ni + Cr + M III / B ( where , M III is V, Nb, Ta,
Mo, W and at least one member selected from the group consisting of Mn) atomic ratio 1/1 (Ni, Cr, consists M III) B ceramic phase, the (Ni, Cr, M III) The joined body according to any one of claims 1 to 6, comprising 10 to 80 Vol% of the B ceramic phase.
【請求項14】(A)少なくとも1種以上のMI/B(但
し、MIはNi,Cr,V,Nb,Ta,Mo,W及びMnからなる群から選ば
れた少なくとも1種以上である)原子比が1/1のMIBセラ
ミックス相と、TiB2,ZrB2及びHfB2からなる群から選ば
れた少なくとも1種以上のIV族二硼化物セラミックス相
及び/又は(Cr,Ni)3B4セラミックス相とから構成され
てなる硼素系複合セラミックス焼結体と、 (B)金属系構造部材とを、 (C)Cu−Mn系、Cu−Mn−Ni系、Cu−Mn−Co系、Cu−Mn
−Co−Ni系、Cu−Ni系又はNi−Mn系ろう材を介して重
ね、これを真空もしくは不活性雰囲気中でろう材の融点
以上に加熱して硼素系複合セラミックス焼結体と金属系
構造部材との間にろう材の融液を生ぜしめ、次いで冷却
することを特徴とする硼素系複合セラミックス焼結体と
金属系構造部材の接合方法。
(A) at least one kind of M I / B (where M I is at least one kind selected from the group consisting of Ni, Cr, V, Nb, Ta, Mo, W and Mn) and there) atomic ratio is 1/1 M I B ceramic phase, TiB 2, ZrB 2 and at least one or more of group IV selected from the group consisting of HfB 2 diboride ceramic phase and / or (Cr, Ni ) 3 B 4 and the ceramic phase become consists boron-based composite ceramic sintered body, and (B) a metallic structural member, (C) Cu-Mn-based, Cu-Mn-Ni system, Cu-Mn- Co-based, Cu-Mn
-Co-Ni-based, Cu-Ni-based or Ni-Mn-based brazing filler metal is interposed and heated in a vacuum or inert atmosphere to a temperature equal to or higher than the melting point of the brazing filler metal to form a boron-based composite ceramic sintered body and a metal-based A method for joining a boron-based composite ceramics sintered body and a metal-based structural member, wherein a melt of a brazing filler metal is generated between the structural member and the molten metal, and then cooled.
JP1320684A 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method Expired - Lifetime JP2627090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320684A JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320684A JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Publications (2)

Publication Number Publication Date
JPH03183667A JPH03183667A (en) 1991-08-09
JP2627090B2 true JP2627090B2 (en) 1997-07-02

Family

ID=18124181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320684A Expired - Lifetime JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Country Status (1)

Country Link
JP (1) JP2627090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128714A (en) * 2014-07-15 2014-11-05 深圳市唯特偶新材料股份有限公司 Non-boron brazing filler metal for high temperature alloy brazing and welding technology thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954551B (en) * 2010-11-02 2012-05-23 山东大学 Brazing filler metal and process for welding molybdenum-copper alloy and Austenitic stainless steel
CN102699573B (en) * 2012-06-21 2014-10-15 哈尔滨工业大学 High temperature brazing filler metal for brazing non-oxide ceramic and composite material as well as preparation method of high temperature brazing filler metal
CN112317992A (en) * 2020-11-04 2021-02-05 湖南盛华源材料科技有限公司 Novel vacuum welding material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
JPS5823348A (en) * 1981-08-05 1983-02-12 Sanyo Electric Co Ltd Mode setting mechanism for video tape recorder
JPS61186271A (en) * 1985-02-13 1986-08-19 株式会社小松製作所 Method of joining ceramic and metal
JPS61209966A (en) * 1985-03-13 1986-09-18 株式会社明電舎 Method of vacuum soldering inorganic insulator to copper material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128714A (en) * 2014-07-15 2014-11-05 深圳市唯特偶新材料股份有限公司 Non-boron brazing filler metal for high temperature alloy brazing and welding technology thereof
CN104128714B (en) * 2014-07-15 2016-04-06 深圳市唯特偶新材料股份有限公司 A kind of soldering high temperature alloy is used without boron solder

Also Published As

Publication number Publication date
JPH03183667A (en) 1991-08-09

Similar Documents

Publication Publication Date Title
JP7332295B2 (en) Binder composition of tungsten tetraboride and polishing method thereof
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPH06228676A (en) Combined sintered alloy excellent in corrosion and wear resistance and production thereof
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
JP4177468B2 (en) High hardness hard alloy and its manufacturing method
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JPH10310840A (en) Superhard composite member and its production
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPH05320814A (en) Composite member and its production
JP2001187431A (en) Laminated structural material
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JP2959912B2 (en) Discharge coating composite
JPH10310839A (en) Super hard composite member with high toughness, and its production
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JPH0768600B2 (en) Compound boride sintered body
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JP3603318B2 (en) Double boride based sintered alloy