JPH03183667A - Joined body of boride ceramics and metal structural member, and joining method - Google Patents

Joined body of boride ceramics and metal structural member, and joining method

Info

Publication number
JPH03183667A
JPH03183667A JP32068489A JP32068489A JPH03183667A JP H03183667 A JPH03183667 A JP H03183667A JP 32068489 A JP32068489 A JP 32068489A JP 32068489 A JP32068489 A JP 32068489A JP H03183667 A JPH03183667 A JP H03183667A
Authority
JP
Japan
Prior art keywords
ceramic phase
sintered body
ceramic
atomic ratio
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32068489A
Other languages
Japanese (ja)
Other versions
JP2627090B2 (en
Inventor
Goji Kajiura
豪二 梶浦
Shuichi Takeda
修一 武田
Hideki Shibashi
柴芝 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1320684A priority Critical patent/JP2627090B2/en
Publication of JPH03183667A publication Critical patent/JPH03183667A/en
Application granted granted Critical
Publication of JP2627090B2 publication Critical patent/JP2627090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To join a sintered body to a structural member with enough joint strength and joint durability by stacking a boron-composite ceramic sintered body and a metal structural member through a brazing material, heating them to a temp. over the melting point of the brazing material. CONSTITUTION:(A) A ceramic sintered body comprising M<1>/B (M<1> is Ni, Cr, V, Nb, Ta, Mo, W, Mn) ceramic phase with 1/1 atomic ratio, one or more kinds of diborates of IV group such as TiB2, ZrB2 and HfB2, and/or (Cr,Ni)3B4 ceramics and (B) a metal structural member are superposed through (C) a brazing material comprising Cu-Mn, Cu-Mn-Ni, Cu-Mn-Co, Cu-Mn-Co-Ni, Cu-Ni, or Ni-Mn and heated in vacuum or an inert atmosphere to a temp. higher than the melting point of the brazing material to melt the brazing material between the ceramic sintered body and metal structural member. Then the body is cooled to join the sintered body and the structural member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硼化物セラミックスと金属系構造部材との接
合体及び接合方法に関し、さらに詳しくは、複合化され
た各相の化学量論組成が特定の原子比に十分1i17御
された強度、耐蝕性、導電性、硬度、耐酸化性等に優れ
た硼素系複合セラミックス焼結体と金属系構造部材とを
特定のろう材を用いて接合する方法及びそれによって得
られる接合体に関する。本発明に係る接合体は、その一
部を構成する上記硼素系複合セラミックス焼結体の優れ
た特性を活用して、耐摩耗部材、各種工具、ダイス類に
適用できる他、特にガラス成形用金型に最適に用いるこ
とができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bonded body and a bonding method of boride ceramics and metal structural members, and more specifically, to the stoichiometric composition of each composite phase. A boron-based composite ceramic sintered body with excellent strength, corrosion resistance, conductivity, hardness, oxidation resistance, etc., whose atomic ratio is sufficiently controlled to a specific atomic ratio of 1i17, and a metal structural member are bonded using a specific brazing filler metal. The present invention relates to a method and a zygote obtained thereby. The bonded body according to the present invention can be applied to wear-resistant parts, various tools, dies, etc. by utilizing the excellent properties of the boron-based composite ceramic sintered body that constitutes a part thereof, and can be applied particularly to glass molding metals. It can be optimally used for molds.

〔従来の技術〕[Conventional technology]

従来、ガラス成形用金型としては、鋳鉄、耐摩耗鋼、N
i基超超硬合金どが用いられている。
Conventionally, molds for glass molding have been made of cast iron, wear-resistant steel, N
I-base cemented carbide is used.

一般にガラスの軟化点は800℃以上であり、成形時の
ガラス表面の急冷を防ぐために金型も高温に加熱する必
要がある。しかしながら、上記のような従来の金型材料
の加熱上限温度は低く、Ni基超超硬合金用いた金型に
おいても、金型の加熱温度は約600℃が上限である。
Generally, the softening point of glass is 800° C. or higher, and the mold also needs to be heated to a high temperature to prevent the glass surface from rapidly cooling during molding. However, the upper limit heating temperature of conventional mold materials as described above is low, and even in molds using Ni-based cemented carbide, the upper limit heating temperature of the mold is approximately 600°C.

この近辺以上の温度に金型が加熱されると、型表面が酸
化されて粗面となり、I&終底成形加工必要になる。そ
こで、金型を450〜500℃程度に加熱しておき、軟
化点以上の温度に加熱溶融されたガラスを加圧成形する
に当って、金型が600℃を越えないうちに短時間に成
形を終了し、離型する手法が採用されている。しかしな
がら、溶融ガラスが充分に冷えるまで加圧成形される方
法に比べて、どうしても成形品の精度が劣るという問題
がある。一方、鋳鉄や耐摩耗鋼の金型の場合、上記Ni
基超超硬合金金型を用いた場合に比べてさらに精度が劣
るため、まずラフに成形した後、仕上げ加工を施すこと
が一般に行なわれている。
If the mold is heated to a temperature above this range, the mold surface will be oxidized and become rough, necessitating I and final molding. Therefore, the mold is heated to about 450 to 500°C, and when press-molding the glass that has been heated and melted to a temperature above the softening point, the molding is performed in a short period of time before the mold temperature exceeds 600°C. A method is adopted in which the process is finished and the mold is released. However, compared to a method in which molten glass is pressure-formed until it is sufficiently cooled, there is a problem that the precision of the molded product is inevitably inferior. On the other hand, in the case of molds made of cast iron or wear-resistant steel, the Ni
Since the precision is even worse than when using a base cemented carbide mold, it is generally performed to first perform rough molding and then perform finishing processing.

上記のような材料に比べてさらに優れた耐熱性、耐酸化
性、高温耐久性、硬度等を有する可能性のある材料とし
ては、硼素系複合セラミックス焼結体が知られている。
A boron-based composite ceramic sintered body is known as a material that may have better heat resistance, oxidation resistance, high-temperature durability, hardness, etc. than the above-mentioned materials.

しかしながら硼素系複合セラミックス焼結体に関しては
、開発例はいまだ少く、特許、論文等で焼結体配合組成
と、得られた微細組織及びそれら焼結体の緒特性につい
て種々提案、報告されているにすぎないのが現状である
。すなわち、現状の知見では、出発原料の性状、焼結プ
ロセス条件等に含まれる不可避諸因子により、配合焼結
組成は一定でも、得られる複合セラミックス焼結体を構
成する各相の組成、構造等がミクロ的にかなりバラつい
たり、目的とする相構成の複合セラミックスが得られな
かったり、複合セラミックス焼結体特性の再現性、信頼
性は一般に低い。
However, there are still few development examples of boron-based composite ceramic sintered bodies, and various proposals and reports have been made in patents, papers, etc. regarding the composition of the sintered bodies, the obtained microstructures, and the properties of these sintered bodies. The current situation is that it is no more than that. In other words, according to current knowledge, due to unavoidable factors included in the properties of the starting materials, sintering process conditions, etc., even if the blended sintered composition is constant, the composition, structure, etc. of each phase constituting the resulting composite ceramic sintered body may vary. In general, the reproducibility and reliability of the characteristics of sintered composite ceramics are low.

例えば、本発明に関連した従来技術としては、唯一、二
硼化チタン系複合焼結体について特公昭5B−4337
8号公報及び「粉体および粉末冶金」第27巻、第4号
、P31〜38.1980年が存在するが、これらの刊
行物に示されているように、TiB2−Ni−B系の複
合焼結体では、その相構成がTiB2 +NiB (N
i/B原子比1/1)2相となるような焼結体は未だ得
られていない。
For example, as a prior art related to the present invention, there is only one example of the Japanese Patent Publication No. 5B-4337 regarding titanium diboride-based composite sintered bodies.
8 Publication and "Powder and Powder Metallurgy" Vol. 27, No. 4, P31-38.1980, but as shown in these publications, TiB2-Ni-B system composite In the sintered body, the phase composition is TiB2 + NiB (N
A sintered body having two phases (i/B atomic ratio 1/1) has not yet been obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本出願人は先に、従来技術では未だ達成されていない、
硼素系複合セラミックス焼結体中のセラミックス相の化
学量論組成を特定の原子比に十分制御した高性能で信頼
性の高い新しい硼素系複合セラミックス焼結体を開発し
、既に特許出願している。しかしながら、この硼素系複
合セラミックス焼結体は、その製法上の特徴(高圧合成
、テルミット反応合成)から、生産コストは従来のセラ
ミックスに比較して高いという難点がある。このような
部材の経済的な利用方法としては、硼化物セラミックス
の特性が必要な部位にのみ用い、構造用材料(母材)と
接合して利用することが考えられる。
The applicant has previously stated that the prior art has not yet achieved
We have developed a new high-performance, highly reliable boron-based composite ceramic sintered body in which the stoichiometric composition of the ceramic phase in the boron-based composite ceramic sintered body is well controlled to a specific atomic ratio, and have already applied for a patent. . However, this boron-based composite ceramic sintered body has a disadvantage in that the production cost is higher than that of conventional ceramics due to its manufacturing method characteristics (high-pressure synthesis, thermite reaction synthesis). An economical way to use such a member is to use it only in areas where the properties of boride ceramics are required, and to bond it to a structural material (base material).

特にガラス成形用金型においては、上記のような優れた
特性を有する硼化物セラミックスを金型表面に利用する
ことにより、ガラス成形品の生産性向上、精度向上が達
成できる。しかしながら、硼化物セラミックス単体で金
型を製作することは、経済的には非常なコスト高となり
、技術的にも困難である。そこで、金型キャビティ面の
みを上記硼素系複合セラミックス焼結体で構成し、これ
を他の構造用材料に接合して金型を形成することが有利
になる。
Particularly in glass molding molds, by using boride ceramics having the above-mentioned excellent properties on the mold surface, it is possible to improve the productivity and precision of glass molded products. However, manufacturing a mold using only boride ceramics is economically very expensive and technically difficult. Therefore, it is advantageous to construct only the mold cavity surface from the boron-based composite ceramic sintered body and to form the mold by joining this to other structural materials.

しかしながら、上記硼素系複合セラミックス焼結体を構
造用材料(母材)に接合する場合、その接合材料及び接
合方法が問題となる。一般に用いられるろう材によって
ろう付けした場合、ろう材の加熱溶融後の冷却の際に熱
応力が発生し、セラミックス/母材境界面にクラック、
剥離等を生ずるという問題がある。
However, when bonding the boron-based composite ceramic sintered body to a structural material (base material), the bonding material and bonding method pose problems. When brazing with a commonly used brazing filler metal, thermal stress occurs when the brazing filler metal is heated and melted and then cooled down, causing cracks and cracks at the ceramic/base metal interface.
There is a problem that peeling occurs.

従って、本発明の目的は、上記のようなセラミックス/
母材境界面におけるクラック、剥離等の問題もなく、充
分な接合強度及び接合耐久性をもって硼素系複合セラミ
ックス焼結体を金属系構造部材に接合する方法を堤(K
することにある。
Therefore, the object of the present invention is to
Tsutsumi (K.
It's about doing.

さらに本発明の目的は、強度、硬度、耐熱性、耐酸化性
、耐蝕性等に優れた硼素系複合セラミックス焼結体と金
属系構造部材とが充分な接合強度及び耐久性をもって接
合された接合体、特に金型キャビティ面が硼素系複合セ
ラミックス焼結体によって構成されているガラス成型用
金型を提供することにある。
Furthermore, it is an object of the present invention to bond a boron-based composite ceramic sintered body having excellent strength, hardness, heat resistance, oxidation resistance, corrosion resistance, etc. and a metal structural member with sufficient bonding strength and durability. The object of the present invention is to provide a glass molding mold in which the body, particularly the mold cavity surface, is made of a boron-based composite ceramic sintered body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、前記目的を遠戚するため、(A)少な
くとも1種以上のMl /B (但し、MlはNi、C
r、V、Nb、Ta、Mo、W及びMnからなる群から
選ばれた少なくとも1種以上である)原子比が1/1の
MI Bセラミックス相と、TiB2.ZrB2及びH
fB2からなる群から選ばれた少なくともI Pi以上
の■族二硼化物セラミックス(目及び/又は(Cr。
According to the present invention, in order to achieve the above object, (A) at least one type of Ml/B (where Ml is Ni, C
a MIB ceramic phase with an atomic ratio of 1/1, which is at least one selected from the group consisting of TiB2. ZrB2 and H
Group II diboride ceramics selected from the group consisting of fB2 and/or (Cr.

Ni)3Baセラミックス相とから構成されてなる硼素
系複合セラミックス焼結体と、(B)金属系構造部材と
を、 (C)Cu−Mn系、Cu −M n −N i系、C
u−M n −Co系、Cu−Mn−Co−Ni系、C
u−Ni系又はNi−Mn系ろう材により接合してなる
ことを特徴とする接合体が提供される。
Ni) a boron-based composite ceramic sintered body composed of a 3Ba ceramic phase; (B) a metal-based structural member;
u-Mn-Co system, Cu-Mn-Co-Ni system, C
A bonded body is provided that is bonded using a u-Ni or Ni-Mn brazing filler metal.

特に本発明によれば、前記硼素系複合セラミックス焼結
体によって金型キャビティ面が構成されたガラス成形用
金型が提供される。
Particularly, according to the present invention, there is provided a glass molding mold in which a mold cavity surface is formed of the boron-based composite ceramic sintered body.

さらに本発明によれば、上記硼素系複合セラミックス焼
結体(A)と金属系構造部材(B)とを上記ろう材(C
)を介して重ね、これを真空もしくは不活性雰囲気中で
ろう材の融点以上に加熱して硼素系複合セラミックス焼
結体と金属系構造部材との間にろう材の融液を生ぜしめ
、次いで冷却することを特徴とする硼素系複合セラミッ
クス焼結体と金属系構造部材の接合方法が提供される。
Further, according to the present invention, the boron-based composite ceramic sintered body (A) and the metal-based structural member (B) are combined with the brazing material (C).
) and then heated in a vacuum or an inert atmosphere above the melting point of the brazing material to create a melt of the brazing material between the boron-based composite ceramic sintered body and the metal structural member, and then A method for joining a boron-based composite ceramic sintered body and a metal-based structural member is provided, which is characterized by cooling.

〔発明の作用及び態様〕[Operation and mode of the invention]

上記硼素系複合セラミックス焼結体と金属系構造部材と
を接合するためのろう材としては、高温(特にガラスの
軟化点約800℃付近)で溶融しないこと、及びある程
度の剪断強度を保持していることが必要となる。本発明
者らは、このような特性を有するろう材について探究し
た結果、下記表−1に示すように、前記Cu−Mn系、
Cu−Mn−Ni系、Cu −M n −C0系、Cu
−Mn−Co−Ni系、Cu−Ni系及びNi−Mn系
が使用できることを見い出した。両部材を上記ろう材の
加熱溶融により接合した場合、冷却時に熱応力が発生す
るが、これは上記ろう材の塑性変形により吸収される。
The brazing material used to join the boron-based composite ceramic sintered body and the metal structural member must not melt at high temperatures (particularly around the softening point of glass, about 800°C), and must maintain a certain degree of shear strength. It is necessary to be present. The present inventors investigated brazing materials having such characteristics, and as a result, as shown in Table 1 below, the Cu-Mn-based brazing materials,
Cu-Mn-Ni system, Cu-Mn-C0 system, Cu
It has been found that -Mn-Co-Ni system, Cu-Ni system and Ni-Mn system can be used. When both members are joined by heating and melting the brazing filler metal, thermal stress is generated during cooling, but this is absorbed by plastic deformation of the brazing filler metal.

その結果、セラミックス/母材境界面にクラック、剥離
等が生ずることがない。従って、接合強度及び接合耐久
性に優れた接合体を簡単に製造できる。
As a result, cracks, peeling, etc. do not occur at the ceramic/base material interface. Therefore, a joined body with excellent joint strength and joint durability can be easily produced.

本発明に係る接合体は、硼素系複合セラミ・ソクス焼結
体が金属系構造部材に接合されたものであるため、コス
トが低減されると共に、上記硼素系複合セラミックス焼
結体の優れた特性も併せ具有しており、各種分野におい
て好適に用いることができる。
Since the bonded body according to the present invention is a boron-based composite ceramic sintered body bonded to a metal structural member, the cost is reduced and the boron-based composite ceramic sintered body has excellent properties. It also has the following properties and can be suitably used in various fields.

本発明に使用できる各種ろう材の幾つかの例の組成及び
物性を表−1に示す。
Table 1 shows the composition and physical properties of some examples of various brazing materials that can be used in the present invention.

ろう材としては、例えば切削工具などでは銀ろうや苦銅
ろうを用いるのが一般的である。しかし、本発明に係る
接合体を例えばガラス成形用金型として用いた場合、高
温に加熱され、かつ冷却時に応力を発生するために、こ
れらの−般的ろう材では耐熱性等の点で不十分である。
As the brazing material, for example, in cutting tools, silver solder or bitter copper solder is generally used. However, when the bonded body according to the present invention is used, for example, as a mold for molding glass, it is heated to a high temperature and generates stress when cooled, so these general brazing fillers have disadvantages in terms of heat resistance, etc. It is enough.

本発明に係るろう材もCuを基本としたろう材であるが
、純Cuでは鋼の結晶粒界を侵食すると共にせん断強度
が小さいという問題がある。
The brazing material according to the present invention is also a brazing material based on Cu, but pure Cu has problems in that it erodes the grain boundaries of steel and has low shear strength.

Ni及びMnはこのような鋼の粒界侵食を肋止し、さら
にMnはろう材と鋼の界面に固溶体相を形威し、ろう材
と鋼の「ぬれ性」を改善する効果のあることがわかった
Ni and Mn prevent such grain boundary erosion of steel, and Mn also forms a solid solution phase at the interface between the brazing metal and steel, which has the effect of improving the "wettability" of the brazing metal and steel. I understand.

また、Coはろう材の硬さを増加させると共に、セラミ
ックス焼結体との「ぬれ性」を改善することがわかった
It has also been found that Co increases the hardness of the brazing filler metal and improves its "wettability" with the ceramic sintered body.

また、Siはろう材の硬さを1曽加させる効果が大きく
、銅合金系のろう材の硬さに対するSi添加量の影響を
示す第5図から明らかなように、Si1重量%添加1:
 ヨl’) HV 25〜35 kg/−増加すること
がわかった。
Furthermore, Si has a large effect of increasing the hardness of the brazing filler metal by 1, and as is clear from FIG.
It was found that HV increased by 25-35 kg/-.

一方、本発明で用いるろう材としては、耐熱性の観点か
らろう材の液相生成温度が950℃以上であることが望
ましく、また1150℃を越えると鋼の結晶粒が粗大化
し、母材強度を下げるので1150℃以下が望ましい。
On the other hand, from the viewpoint of heat resistance, it is desirable for the brazing filler metal used in the present invention to have a liquid phase formation temperature of 950°C or higher, and if the temperature exceeds 1150°C, the crystal grains of the steel will become coarse and the base metal strength will increase. It is desirable that the temperature be 1150°C or lower.

Mh、Stは液相生成温度を下げ、Ni、Coは上昇さ
せるので、ろう材の液相生成温度を950〜1150℃
の範囲にするためには、これら合金元素の組合せ及びそ
の組成範囲には限界がある。
Since Mh and St lower the liquid phase formation temperature, and Ni and Co raise it, the liquid phase formation temperature of the brazing filler metal should be set at 950 to 1150°C.
In order to achieve this range, there are limits to the combinations of these alloying elements and their composition ranges.

また、ろう材の硬さはCoff1とSi量、特にSi量
に強く依存するが、継手のせん断強度とと硬さの間には
直線関係はみられないことがわかった。すなわち、継手
のせん断強度は、第6図に示すように、硬さHV150
までは硬さと共に増加するが、これ以上では低下し、特
に硬さHV200以上では脆性的な破壊状態となる。
It was also found that although the hardness of the brazing filler metal strongly depends on Coff1 and the amount of Si, especially the amount of Si, there is no linear relationship between the shear strength of the joint and the hardness. That is, the shear strength of the joint is, as shown in Figure 6, hardness HV150.
The hardness increases with hardness up to HV200, but it decreases above this, and in particular, when the hardness is HV200 or more, it becomes a brittle fracture state.

したがって、Co11特にSi量にはせん断強度の点で
上限がある。
Therefore, there is an upper limit to the amount of Co11, especially Si, in terms of shear strength.

なお、第6図は、第7図に示すせん断強度測定法に従っ
て測定した超硬合金と鋼のろう接合強度とろう材の硬度
の関係を示すものであるが、超硬合金に代えて硼素系複
合セラミックス焼結体を用いた場合も同様と考えられる
。上記せん断強度M1定法を模式的に示す第7図におい
て、Pは荷重、11は超硬合金、12は上記超硬合金の
両側部にろう付けされた鋼、13は受は台を示す。
Furthermore, Fig. 6 shows the relationship between the brazing joint strength of cemented carbide and steel and the hardness of the brazing filler metal measured according to the shear strength measurement method shown in Fig. 7. It is thought that the same holds true when a composite ceramic sintered body is used. In FIG. 7, which schematically shows the shear strength M1 formula, P is a load, 11 is a cemented carbide, 12 is steel brazed to both sides of the cemented carbide, and 13 is a stand.

本発明に最適なろう材の組成範囲は、このような合金元
素の特徴を踏まえて総合的に決定されたものて、Cu−
Ni−3i系では2〜10%Ni、好ましくは5〜10
%Ni、1〜8%Si;Cu−Mn−Ni系では10〜
25%Mn、5〜10%Ni、0〜3%Si、またはC
u−Mn−Ni−Co系では15〜30%M n 。
The optimum composition range of the brazing filler metal for the present invention has been comprehensively determined based on the characteristics of the alloying elements.
For Ni-3i system, 2 to 10% Ni, preferably 5 to 10%
%Ni, 1-8%Si; 10-8% for Cu-Mn-Ni system
25% Mn, 5-10% Ni, 0-3% Si, or C
In the u-Mn-Ni-Co system, M n is 15 to 30%.

5〜10%Ni、5〜10%Co、0〜1.5%Siが
適当である。また、ろう材の硬さはビッカース硬さ約7
5〜200 kg/+ma、より好ましくは100〜2
00kg/nuaの範囲が好ましい。
5-10% Ni, 5-10% Co, and 0-1.5% Si are suitable. In addition, the hardness of the brazing metal is about 7 Vickers hardness.
5-200 kg/+ma, more preferably 100-2
A range of 00 kg/nua is preferred.

また、表−1に示するう材の中でも、銅合金系、特に硬
さvs剪断強度の関係(第6図参照)から、Cu  (
66) −Mn  (24) −N i (10)、C
u (63)−Mn (22)−Co (5)−Ni 
 (10) 、Cu (86)−Mn (10)−Co
(4)が好適であり、特にCu (63)−Mn (2
2)−Co (5)−Ni (10)が最適である。こ
れに対して、Niベースのろう材は「ぬれ性jは良いが
、接合体を繰り返し加熱・冷却した時にクラックが発生
する恐れがあるので、ガラス成形用部材としては銅合金
系に比べて劣る。
Among the carving materials shown in Table 1, copper alloys, especially Cu (
66) -Mn (24) -N i (10), C
u (63)-Mn (22)-Co (5)-Ni
(10), Cu(86)-Mn(10)-Co
(4) is preferred, especially Cu (63)-Mn (2
2)-Co(5)-Ni(10) is optimal. On the other hand, Ni-based brazing filler metals have good wettability, but are inferior to copper alloys when used as glass forming materials because they may cause cracks when the joined body is repeatedly heated and cooled. .

第1図に本発明に係る接合体の基本構成を示す。図中、
1は硼素系複合セラミックス焼結体、2はろう材、3は
金属系構造部材である。金属系構造部材3の上にろう材
2を介してセラミックス焼結体1を積層し、これを真空
もしくは不活性雰囲気中でろう材の融点以上に加熱して
硼素系複合セラミックス焼結体と鋼との間にろう材の融
液を形成し、次いて冷却してろう材を凝固させる通常の
ろう付けを行なう。これによって、耐熱性と強度を備え
たろう付は継手が得られる。第2図はガラス成形用金型
に本発明を適用した例を示す。金型キャビティ面4は硼
素系複合セラミックス焼結体1aにより構成されている
。なお、母材としては各種金属系構造材料を用いること
ができるが、ガラス成形用金型においては超硬合金、ハ
イス、ダイス鋼等の金属系構造材料を好適に用いること
ができる。
FIG. 1 shows the basic configuration of a joined body according to the present invention. In the figure,
1 is a boron-based composite ceramic sintered body, 2 is a brazing material, and 3 is a metal-based structural member. Ceramic sintered body 1 is laminated on metal structural member 3 via brazing filler metal 2, and this is heated above the melting point of the brazing filler metal in a vacuum or an inert atmosphere to form a boron-based composite ceramic sintered body and steel. Normal brazing is performed by forming a melt of the brazing filler metal between the two and then cooling the filler metal to solidify the filler metal. This results in a brazed joint with heat resistance and strength. FIG. 2 shows an example in which the present invention is applied to a mold for molding glass. The mold cavity surface 4 is composed of a boron-based composite ceramic sintered body 1a. Note that various metal-based structural materials can be used as the base material, and metal-based structural materials such as cemented carbide, high speed steel, and die steel can be suitably used in the glass molding mold.

第2図に示すように、セラミックス焼結体1aが構造部
材3al:11%合された金型においては、加熱時にセ
ラミックス焼結体の金型面が動かないように保持できれ
ば充分であって、ろう付けによる接合強度はそれ程問題
とならない。しかしながら、接合強度が問題となる場合
には、第3図及び第4図に示すようにろう付は接合に加
えて機械的結合要素を付加することができる。
As shown in FIG. 2, in a mold in which the ceramic sintered body 1a is combined with the structural member 3al at 11%, it is sufficient to hold the mold surface of the ceramic sintered body so that it does not move during heating. The joint strength by brazing is not so much of a problem. However, if bond strength is a concern, brazing can add a mechanical coupling element in addition to bonding, as shown in FIGS. 3 and 4.

第3図は構造部材3bの上面にあり満5を設け、セラミ
ックス焼結体1bの下面にあり6を設けて、該あり6を
ろう材2bを介してあり溝5に嵌挿した例であり、一方
、第4図はビス7を用い、ビス止めした例である。
FIG. 3 shows an example in which a dovetail 5 is provided on the upper surface of the structural member 3b, a dovetail 6 is provided on the lower surface of the ceramic sintered body 1b, and the dovetail 6 is inserted into the dovetail groove 5 through the brazing material 2b. On the other hand, FIG. 4 shows an example in which screws 7 are used to fasten the parts.

本発明で用いる硼素系複合セラミックス焼結体は、複合
焼結体の一つの相を構成しているMl /Bセラミック
ス相、具体的にはN i / BN i 十、Mm /
B (Ml : Cr、 Va 〜■a族元素) 、C
r/B、Ni+Cr/B、Ni+Cr+Mm / B 
(、Mm : V a 〜■a族元素)のセラミックス
相の原子比が171に十分制御されていることを特徴と
し、Niが他の金属で置換されているかどうかに拘らず
、このようにMl/Bセラミックス相の原子比が1/1
に十分制御されたことによって、得られた焼結体の緻密
度や各相の組成の均−性等が著しく向上し、その結果、
靭性、強度等の各種特性に優れたものとなる。
The boron-based composite ceramic sintered body used in the present invention has an Ml/B ceramic phase constituting one phase of the composite sintered body, specifically, N i /BN i +, Mm /
B (Ml: Cr, Va ~■a group element), C
r/B, Ni+Cr/B, Ni+Cr+Mm/B
The atomic ratio of the ceramic phase of (, Mm: Va to ■a group elements) is well controlled to 171, and regardless of whether Ni is replaced with other metals, Ml /B ceramic phase atomic ratio is 1/1
By fully controlling the
It has excellent properties such as toughness and strength.

より具体的に述べると、本発明の硼素系複合セラミック
ス焼結体は、焼結体組成が、■族二硼化物TiB2.Z
rB2.HfB2の中の少くとも1種以上とMl /B
 (好ましくはNi/B)原子比を1/1に制御したM
l B (好ましくはNiB)とのセラミックス混合相
からなる焼結体、並びにCr / B原子比を1/1に
制御したCrB相、(Cr、Ni)3 B4相及びNi
 + C;、 r / B原子比を1/1に制御した(
Ni。
More specifically, the boron-based composite ceramic sintered body of the present invention has a sintered body composition of group Ⅰ diboride TiB2. Z
rB2. At least one type of HfB2 and Ml/B
(preferably Ni/B) M with an atomic ratio controlled to 1/1
A sintered body consisting of a ceramic mixed phase with lB (preferably NiB), a CrB phase with a Cr/B atomic ratio controlled to 1/1, a (Cr, Ni)3B4 phase, and a Ni
+ C;, the r/B atomic ratio was controlled to 1/1 (
Ni.

Cr)B相のセラミックス混合相から成る焼結体を話本
とし、これら焼結体にNi十Ml/B原子比1/1のセ
ラミックス相(、Mm  :V、Nb、Ta、Cr、M
o、W、Mn)をさらに添加し、化学量論組成化合物を
適切に組み合わせた硼素系複合セラミックス焼結体を要
旨としている。
A sintered body consisting of a mixed phase of ceramics (Cr)B phase is used as an example, and a ceramic phase (Mm: V, Nb, Ta, Cr, M
The gist is a boron-based composite ceramic sintered body in which stoichiometric composition compounds are further added and stoichiometric composition compounds are further added.

本発明に用いる■族二硼化物セラミックスは、焼結体残
部を構成するN i/B、Cr/B、Ni+Mm/B相
の原子比を1/1に十分制御し、得られた焼結体の緻密
度、靭性等を向上させるために、純度が高いこと、粒子
径も小さいことがkfましい。
The group Ⅰ diboride ceramic used in the present invention is produced by sufficiently controlling the atomic ratio of the Ni/B, Cr/B, and Ni+Mm/B phases constituting the remainder of the sintered body to 1/1. In order to improve the density, toughness, etc. of kf, it is desirable that the purity is high and the particle size is small.

Cr / B原子比1/1セラミックス相、(Cr、N
i)3B4柑は、焼結体として在住してればよいので、
出発原料としては、どのような形態のものを使用しても
よい。
Cr/B atomic ratio 1/1 ceramic phase, (Cr, N
i) 3B4kan only needs to live as a sintered body, so
Any form of starting material may be used.

原料混合物は、通常上記微粉体をそれぞれ2種以上均一
に混合することによって調整する。
The raw material mixture is usually prepared by uniformly mixing two or more of the above-mentioned fine powders.

本発明の焼結体は、これら混合物を1600℃以上にて
焼成作成する。焼結法としては、各種手法(真空、不活
性、還元性雰囲気焼結法)が採用できるが、相構成の安
定性、再現性等を考慮すると、固体圧下での加圧焼結が
好ましい。
The sintered body of the present invention is produced by firing these mixtures at 1600°C or higher. As the sintering method, various methods (vacuum, inert, reducing atmosphere sintering methods) can be employed, but pressure sintering under solid pressure is preferable in consideration of stability, reproducibility, etc. of phase structure.

本発明の焼結体における相組成の割合は、たとえばTi
B2−NiB系複合セラミックス焼結体においては、3
〜50vo1%のN i / B原子比1/1のNiB
相が■族二硼化物と配合されている。
The phase composition ratio in the sintered body of the present invention is, for example, Ti
In the B2-NiB composite ceramic sintered body, 3
~50vo1% NiB with a Ni/B atomic ratio of 1/1
The phase is blended with a group II diboride.

複合セラミックス焼結体T i B 2  N i B
系を例にとって説明する。本複合系焼結体では、Ti8
2粒子をN i / B原子比1/1のセラミック相中
に均一に分布させると、熱伝導度、強度等についてその
体積比に応じてNiB側からT i B 2側まで再現
性の極めて良好な焼結体が得られる。すなわち、特にT
iB2側ではNi4B3相、Ni3B相のランダムかつ
不可避的な出現は抑えられ、熱伝導度、強度等焼結体特
性値の信頼性は向上する。本複合セラミックス焼結体の
緻密化のためには、NiB相は少くとも3Vo 1%以
上必要である。NiB柑が3Vol%以下では、TiB
2粒子はNiB相で十分結合できなくなり、T i B
 2粒子同志の接触部が多数認められるようになる。通
′盾、このTiB2−TiB2接触部には気穴が集りや
すいため、この接触部に多数の気穴が生じることになる
。また、この気穴を低減するため焼結温度を上げると、
特にTiB2−TiB2接触部てTiB2粒子の異常粒
成長が発生することになる。上記微細構造における欠陥
、不均一性は焼結体の強度、熱伝導度等特性の信頼性を
著しく低下させることになる。一方、N i B )[
1の増加は本焼結体の緻密化のためには好ましいが、N
iB相の体積が50Vo 1%を越えると焼結体硬度、
熱伝導度等の特性へのTiB2セラミックス複合化の効
果は著しく低下することになるので、NiB相量は50
Vo 1%までにしておく必要がある。
Composite ceramic sintered body T i B 2 N i B
This will be explained using a system as an example. In this composite sintered body, Ti8
When 2 particles are uniformly distributed in a ceramic phase with a Ni/B atomic ratio of 1/1, the reproducibility of thermal conductivity, strength, etc. from the NiB side to the TiB2 side is extremely good depending on the volume ratio. A sintered body is obtained. That is, especially T
On the iB2 side, the random and unavoidable appearance of Ni4B3 phase and Ni3B phase is suppressed, and the reliability of sintered body characteristic values such as thermal conductivity and strength is improved. In order to make the present composite ceramic sintered body dense, the NiB phase must contain at least 1% or more of 3Vo. When NiB is less than 3 Vol%, TiB
The two particles cannot be bonded together sufficiently in the NiB phase, and T i B
Many contact areas between the two particles become visible. As a general rule, pores tend to gather in this TiB2-TiB2 contact area, resulting in a large number of pores in this contact area. In addition, if the sintering temperature is increased to reduce these pores,
In particular, abnormal grain growth of TiB2 particles occurs at the TiB2-TiB2 contact area. Defects and non-uniformity in the above-mentioned microstructure significantly reduce reliability of properties such as strength and thermal conductivity of the sintered body. On the other hand, N i B ) [
An increase of 1 is preferable for densification of the sintered body, but an increase in N
When the volume of iB phase exceeds 50Vo 1%, the hardness of the sintered body decreases.
Since the effect of TiB2 ceramic composite on properties such as thermal conductivity will be significantly reduced, the amount of NiB phase should be 50
Vo should be kept below 1%.

〔実 施 例〕 以下、実施例を示して本発明について具体的に説明する
[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.

実施例1 硼素系複合セラミックス焼結体の作成。Example 1 Creation of boron-based composite ceramic sintered body.

平均粒径1μmのTiB2粉末と平均粒径5μmのNi
B粉末を体積比で4/1に配合し、加えて、ヘキサン溶
媒中でプラスティックポット、ボールを用いて80間混
合した。得られた粉末は、真空中で十分加熱乾燥し、焼
結用原料とした。本粉末をφ30 x 5 ’、’ n
++*にCIP (冷間静水圧)成型後、ベルト式高圧
焼結装置内に装入して、10,000気圧下1700℃
で10分加熱して焼結体を得た。
TiB2 powder with an average particle size of 1 μm and Ni powder with an average particle size of 5 μm
Powder B was blended at a volume ratio of 4/1 and mixed for 80 minutes using a plastic pot and ball in a hexane solvent. The obtained powder was sufficiently heated and dried in a vacuum to be used as a raw material for sintering. This powder is φ30 x 5','n
After CIP (cold isostatic pressure) molding to ++*, it is charged into a belt-type high-pressure sintering device and heated at 1700°C under 10,000 atmospheres.
A sintered body was obtained by heating for 10 minutes.

接合体の作成: 上記方法で焼結したTiB2  (80)−NiB (
20)複合硼化物セラミックス(カッコ内はVol%を
示す)の表面をダイアモンド砥石で研削し、φ25X5
mi’の平板に仕上げた。
Creation of joined body: TiB2 (80)-NiB (
20) Grind the surface of the composite boride ceramics (Vol% is shown in parentheses) with a diamond grindstone,
Finished with a flat plate of mi'.

一方、これを貼り付ける構造体としては、高速度鋼を第
2図に示すように加工し、この上端面に組成Cu (6
3)−Mn (22)−C。
On the other hand, as a structure to which this is attached, high-speed steel is processed as shown in Fig. 2, and the upper end surface of the structure is made of Cu (6
3)-Mn(22)-C.

(5) −Ni  (10)(カッコ内はwt%)、厚
さ0.3mmのシート状ろう材をセットした。
(5) -Ni (10) (wt% in parentheses) and a sheet-like brazing filler metal with a thickness of 0.3 mm were set.

この上に上記硼化物セラミックス板を静置し、真空(1
0−’Torr)中1100℃で10分加熱し、炉内冷
却を行なった。その結果、セラミックス/鋼の境界面に
おけるクラックや剥離等が生ずることなく、良好な接合
体が得られたこの接合体は、接合された硼化物セラミッ
クスの耐ガラス焼付性、耐高温酸化性等の特性を活用し
、高温で用いるガラス成形用型として利用できる。
The above-mentioned boride ceramic plate was placed on top of this, and a vacuum (1
The mixture was heated at 1100° C. for 10 minutes in 0-' Torr) and cooled in the furnace. As a result, a good bonded body was obtained without any cracks or peeling at the ceramic/steel interface.This bonded body has excellent glass baking resistance, high temperature oxidation resistance, etc. of the bonded boride ceramics. Taking advantage of its properties, it can be used as a mold for glass molding at high temperatures.

なお、本発明で用いる硼素系複合セラミックス焼結体の
合成及び特性については特願平1−175735号明細
書に記載されているが、その幾つかの合成例について以
下に示す(上記特許明細書の記載内容は本明細書中に側
照加入する)。
The synthesis and characteristics of the boron-based composite ceramic sintered body used in the present invention are described in the specification of Japanese Patent Application No. 1-175735, and some synthesis examples thereof are shown below (the above-mentioned patent specification (The contents of this document are incorporated herein by reference).

合成例1 平均粒径3μmのZrB2粉末と平均粒径5μmのNi
B粉末を体積比で4/1に配合し、実施例1と同様に処
理して、ベルト式高圧焼結装置にて10,000気圧下
1800℃で10分加熱して焼結体を得た。得られた焼
結体特性は、相対密度98%以上、微小硬度1650 
kg/−1熱伝導度55 W / m K、曲げ強度9
00MPaであった。X線回折によりその相構成はZr
B2−NiB二相複合セラミックスであることが確認で
きた。前記特性の再現性については実施例1と同様に良
好な結果を得た。
Synthesis Example 1 ZrB2 powder with an average particle size of 3 μm and Ni with an average particle size of 5 μm
Powder B was mixed at a volume ratio of 4/1, treated in the same manner as in Example 1, and heated at 1800°C for 10 minutes under 10,000 atm using a belt-type high-pressure sintering device to obtain a sintered body. . The characteristics of the obtained sintered body are a relative density of 98% or more and a microhardness of 1650.
kg/-1 thermal conductivity 55 W/m K, bending strength 9
It was 00 MPa. According to X-ray diffraction, its phase composition is Zr.
It was confirmed that it was a B2-NiB two-phase composite ceramic. Regarding the reproducibility of the characteristics, similar to Example 1, good results were obtained.

合成例2 平均粒径2μmのCrB粉末60Vo 1%と、残部と
して平均粒径2μmのNi粉、0.5μmの硼素粉(原
子比1/1で添加)を配合し、混合後、焼結用原料とし
た。本粉末をφ30×5’mmにCIP戊型底型ベルト
式高圧焼結装置にて10,000気圧下1600℃で5
分加熱して焼結体を得た。粉末X線回折より、本焼結体
はCrB、(Cr、Ni)3 B4.(Ni。
Synthesis Example 2 1% of CrB powder 60Vo with an average particle size of 2 μm and the balance of Ni powder with an average particle size of 2 μm and boron powder of 0.5 μm (added at an atomic ratio of 1/1) were mixed, and after mixing, 1% of CrB powder 60Vo was used for sintering. Used as raw material. This powder was sintered into a size of φ30 x 5'mm at 1600°C under 10,000 atmospheres using a CIP hollow-bottom belt type high-pressure sintering machine.
A sintered body was obtained by heating for 1 minute. According to powder X-ray diffraction, this sintered body contains CrB, (Cr, Ni)3 B4. (Ni.

Cr)B相より構成され、EPMAによる(Ni、Cr
)B相中のN i / Cr原子比は9/1であり、(
Ni、Cr)B相の体積比は25Vol%であることが
明らかとなった。
(Cr)B phase, and is composed of (Ni, Cr) phase by EPMA.
) The N i /Cr atomic ratio in phase B is 9/1, and (
It became clear that the volume ratio of Ni, Cr) B phase was 25 Vol%.

CrB粉末、Ni粉末、B粉末の混合比を任意を変更し
てN i +Cr / B原子比1/1の(Ni、Cr
)B相体積10Vo 1%以下の焼結体を製造したとこ
ろ、焼結体の靭性は著しく劣化した。本合成例の焼結体
の破壊靭性値は6MNm−”2であるが、(Ni、Cr
)B相体積が10Vol%以下となると2 M N m
−”’に低下した。
By arbitrarily changing the mixing ratio of CrB powder, Ni powder, and B powder, (Ni, Cr
) When a sintered body having a B phase volume of 10 Vo 1% or less was produced, the toughness of the sintered body was significantly deteriorated. The fracture toughness value of the sintered body of this synthesis example is 6MNm-”2, but (Ni, Cr
) When the B phase volume is 10 Vol% or less, 2 M N m
−”’ decreased.

一方、N i / Cr原子比がほぼ9/1の(Ni、
Cr)B相体積が80Vo 1%以上では、CrB相を
含む焼結体は得られず、同様な靭性値の低下に加えて高
温硬さも著しく低下する。
On the other hand, (Ni,
If the Cr)B phase volume is 80Vo 1% or more, a sintered body containing the CrB phase cannot be obtained, and in addition to a similar decrease in toughness value, high temperature hardness also decreases significantly.

従って、良好な靭性値と硬さを維持するには、(Ni、
Cr)B相体積比は10〜80Vol%とする必要があ
る。
Therefore, to maintain good toughness values and hardness, (Ni,
Cr) B phase volume ratio needs to be 10 to 80 Vol%.

合成例3 合成例2に示したCrB粉末、Ni粉末、B粉末の体積
混合比を一定とし、これらの混合粉の体積比を20V0
1%としてTiB2粉末と配合して焼結原料粉を作成し
、合成例2と同一条件の下で焼結処理をほどこした。
Synthesis Example 3 The volume mixing ratio of the CrB powder, Ni powder, and B powder shown in Synthesis Example 2 was kept constant, and the volume ratio of these mixed powders was 20V0.
A sintering raw material powder was prepared by blending it with TiB2 powder at a concentration of 1%, and sintering was performed under the same conditions as in Synthesis Example 2.

得られた焼結体の相構戊はTiB2.CrB。The phase structure of the obtained sintered body was TiB2. CrB.

(Ni、Cr)B、(Cr、Ni)3 B4の各相より
なり、その特性は、相対密度99%以上、破壊靭性値は
7 M N m−””であり、800℃大気中の加熱に
おいても極めて良好な耐酸化性を示した。
It is composed of the following phases: (Ni, Cr)B, (Cr, Ni)3B4, and its characteristics include a relative density of 99% or more, a fracture toughness value of 7 M N m-'', and a resistance to heating at 800℃ in the air. It also showed extremely good oxidation resistance.

CrB、  (Ni、Cr)B、  (Cr、Ni)3
B4の少くとも2種以上から構成されるセラミックス相
の体積比が3Vo 1%以下では、TiB2−NiB系
複合セラミックスにおいて記述したと同様の理由で、そ
の微細構造に気穴、異常粒成長等の不均一性が発生し、
焼結体特性の信頼性は著しく低下する。一方、50Vo
 1%を越えると焼結体硬度、熱伝導度等の特性へのT
iB2セラミックス複合効果は著しく低下することにな
るので、CrB、(Ni、Cr)B、(Cr、Ni)3
 B4の少くとも2種以上から構成されるセラミックス
相の体積は50Vol%までにしておく必要がある。
CrB, (Ni, Cr)B, (Cr, Ni)3
When the volume ratio of the ceramic phase composed of at least two or more types of B4 is 3Vo 1% or less, pores, abnormal grain growth, etc. occur in the microstructure for the same reason as described for TiB2-NiB composite ceramics. Heterogeneity occurs;
The reliability of the sintered body properties is significantly reduced. On the other hand, 50Vo
If it exceeds 1%, the properties such as sintered body hardness and thermal conductivity will be affected.
Since the iB2 ceramic composite effect will be significantly reduced, CrB, (Ni, Cr)B, (Cr, Ni)3
The volume of the ceramic phase composed of at least two types of B4 needs to be 50 Vol% or less.

同様な焼結テストにおいて、ZrB2/HfB2粉体積
比1/2の割合で配合した二硼化物セラミックス70V
o 1%と前記CrB粉、Ni粉、B粉末の混合体積3
QVo 1%を配合混合し、10,000気圧下、18
00℃で5分加熱して焼結体をKた。j7られた焼結体
の11100°C大気中の耐酸化特性は、T i B 
2系の約2倍の特性を得た。(ここで耐酸化特性とは、
800℃1時間加熱における酸化i平置の程度が少く、
さらに長時間加熱においても塘加率は極めて少いことを
もって”fil定するものである。)合成例4 平均粒径1μmのTa粉、平均粒径0,5μmのW粉、
及び平均粒径0.5μmの硼素粉をTaB、WB化学量
論組成でそれぞれ3Vo 1%、l QVo 1%の割
合で合成例2に示した焼結原料粉に配合、均一に混合し
、焼結用原料とした。本粉末をφ30X5mm’にCI
P成型後、ベルト式高圧焼結装置にて10,000気圧
下1600℃で10分加熱して焼結体を得た。粉末X線
回折及び焼結体のEPMA分析結果より、本焼結体中に
はCrB、(Cr、Ni)3 B4゜(Ni、Cr)B
相の他にNi+Cr+Ta+W/B原子比1/1の(N
i、Cr、Ta、W)B相が50Vo 1%含まれてい
ることが明らかとなった。本焼結体の特性としては、合
成例2に示す破壊靭性値5 M N m−”’は維持さ
れたまま、微小硬さの増加(1200kg / oua
 −1600kg/−)が確認され、耐酸化性に加えて
耐熱性も向上した。合成例2にも示したが、(Ni、C
r、M)B相(M:Ta、W)の体積率が1OVol%
以下では破壊靭性値の著しい低下が起こること、また8
0Vo 1%以上ではCrB相が消失することから耐酸
化性も低下する。従って、良好な破壊靭性値、耐酸化性
、耐熱性を得るためには、(Ni、Cr、、Mm )B
相(、Mm :V、Nb、Ta、Mo、W、Mn)体積
率は10〜80VO1%の範囲にあることが必要である
In a similar sintering test, diboride ceramic 70V mixed at a ZrB2/HfB2 powder volume ratio of 1/2 was tested.
o Mixed volume 3 of 1% and the CrB powder, Ni powder, and B powder
Mix 1% of QVo and heat under 10,000 atmospheres at 18
The sintered body was heated at 00°C for 5 minutes. The oxidation resistance of the sintered body at 11100°C in the atmosphere is T i B
Approximately twice the characteristics of the 2nd system were obtained. (Here, what is oxidation resistance?
The degree of oxidation i flattening during heating at 800°C for 1 hour is small,
Furthermore, even when heated for a long time, the filtration rate is extremely small, which determines "fil".)Synthesis Example 4 Ta powder with an average particle size of 1 μm, W powder with an average particle size of 0.5 μm,
Boron powder with an average particle size of 0.5 μm was added to the sintering raw material powder shown in Synthesis Example 2 at a TaB and WB stoichiometric composition of 3Vo 1% and 1QVo 1%, mixed uniformly, and sintered. It was used as a raw material for condensation. CI this powder to φ30X5mm'
After P-molding, it was heated for 10 minutes at 1600° C. under 10,000 atmospheres using a belt-type high-pressure sintering device to obtain a sintered body. From the results of powder X-ray diffraction and EPMA analysis of the sintered body, it was found that CrB, (Cr, Ni)3B4゜(Ni,Cr)B was present in this sintered body.
In addition to the phase, (N
It became clear that the B phase (i, Cr, Ta, W) contained 1% of 50Vo. The characteristics of this sintered body include an increase in microhardness (1200 kg/oua) while maintaining the fracture toughness value of 5 M N m-'' shown in Synthesis Example 2.
-1600 kg/-), and the heat resistance was improved in addition to the oxidation resistance. As shown in Synthesis Example 2, (Ni, C
r, M) The volume fraction of B phase (M: Ta, W) is 1OVol%
A significant decrease in fracture toughness value occurs below 8.
If 0Vo is 1% or more, the CrB phase disappears, resulting in a decrease in oxidation resistance. Therefore, in order to obtain good fracture toughness, oxidation resistance, and heat resistance, (Ni, Cr,, Mm)B
The volume fraction of the phase (Mm: V, Nb, Ta, Mo, W, Mn) needs to be in the range of 10 to 80 VO1%.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の方法によれば、硼素系?U 合
セラミックス焼結体と金属系構造部材とを高強度のろう
材を用いて接合するため、その境界面におけるクラック
や剥離などを生ずることなく、接合強度及び接合耐久性
に優れた接合体が比較的安価に得られる。
As described above, according to the method of the present invention, boron-based U Since the composite ceramic sintered body and the metal structural member are bonded using a high-strength brazing filler metal, a bonded body with excellent bonding strength and bonding durability is created without cracking or peeling at the interface. Obtained relatively cheaply.

また、本発明の接合体は、接合された硼素系腹合セラミ
ックス焼結体が強度、硬度、耐熱性(品温映度)、耐酸
化性、耐蝕性等に優れるため、この優れた特性をt古川
してガラス・成形用金型、耐摩耗部材、各種工具、ダイ
ス類などの広範な用途に適用することができる。特に本
発明の接合体をガラス成形用金型として利用した場合、
接合された硼素系複合セラミックス焼結体の耐ガラス焼
付性、耐高温酸化性等の特性が有効に活用され、溶融ガ
ラスを成形後そのまま型内に保持して冷却できるため、
成形精度に優れ、従って従来のような後加工が不要とな
るため生産性にも優れるなどの利点が得られる。
In addition, the bonded body of the present invention has excellent properties such as strength, hardness, heat resistance (temperature resistance), oxidation resistance, and corrosion resistance of the bonded boron-based ceramic sintered body. Furukawa's products can be applied to a wide range of applications, including glass and molds, wear-resistant parts, various tools, and dies. In particular, when the bonded body of the present invention is used as a glass molding mold,
The properties of the bonded boron-based composite ceramic sintered body, such as glass seizure resistance and high temperature oxidation resistance, are effectively utilized, and the molten glass can be held in the mold as it is and cooled after forming.
It has excellent molding accuracy, and therefore has advantages such as excellent productivity because it eliminates the need for post-processing as in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の接合体の基本構成を示す概略構成図、
第2図は本発明をガラス成形用金型に適用した例を示す
断面図、第3図及び第4図は本発明の接合体の他の構成
例を示す断面図、第5図は銅合金系のろう材硬さとSi
添加量の関係を示すグラフ、第6図は超硬合金と鋼のろ
う接合強度(せん断破壊強度)とろう材の硬さの関係を
示すグラフ、第7図はせん断強度測定法の概略構成図で
ある。 1、la、lb、lcは硼素系複合セラミックス焼結体
、2,2a、2b、2cはろう材、3.3a、3b、3
cは金属系構造部材。 第 3 図 h t−〜    ^ !Aコ  仕 図 Si添加装(wtX) 第 図 ろう材の硬さ二目(kg/mm2)
FIG. 1 is a schematic configuration diagram showing the basic configuration of the joined body of the present invention;
FIG. 2 is a cross-sectional view showing an example in which the present invention is applied to a mold for molding glass, FIGS. 3 and 4 are cross-sectional views showing other structural examples of the joined body of the present invention, and FIG. 5 is a copper alloy. System brazing filler metal hardness and Si
A graph showing the relationship between the addition amount. Figure 6 is a graph showing the relationship between the brazing strength (shear fracture strength) of cemented carbide and steel and the hardness of the brazing filler metal. Figure 7 is a schematic diagram of the shear strength measurement method. It is. 1, la, lb, lc are boron-based composite ceramic sintered bodies, 2, 2a, 2b, 2c are brazing materials, 3.3a, 3b, 3
c is a metal structural member. Figure 3 ht-~ ^! A Co. Si addition (wtX) Fig. 2 Hardness of brazing filler metal (kg/mm2)

Claims (14)

【特許請求の範囲】[Claims] (1)(A)少なくとも1種以上のM^l/B(但し、
M^lはNi、Cr、V、Nb、Ta、Mo、Wおよび
Mnからなる群から選ばれた少なくとも1種以上である
)原子比が1/1のM^lBセラミックス相と、TiB
_2、ZrB_2及びHfB_2からなる群から選ばれ
た少なくとも1種以上のIV族二硼化物セラミックス相及
び/又は(Cr、Ni)_3B_4セラミックス相とか
ら構成されてなる硼素系複合セラミックス焼結体と、(
B)金属系構造部材とを、 (C)Cu−Mn系、Cu−Mn−Ni系、Cu−Mn
−Co系、Cu−Mn−Co−Ni系、Cu−Ni系又
はNi−Mn系ろう材により接合してなることを特徴と
する接合体。
(1) (A) At least one type of M^l/B (however,
M^l is at least one selected from the group consisting of Ni, Cr, V, Nb, Ta, Mo, W, and Mn) M^lB ceramic phase with an atomic ratio of 1/1, and TiB
A boron-based composite ceramic sintered body composed of at least one group IV diboride ceramic phase and/or (Cr, Ni)_3B_4 ceramic phase selected from the group consisting of _2, ZrB_2, and HfB_2; (
B) Metallic structural members, (C) Cu-Mn system, Cu-Mn-Ni system, Cu-Mn system
- A joined body characterized by being joined by a Co-based, Cu-Mn-Co-Ni-based, Cu-Ni-based, or Ni-Mn-based brazing material.
(2)前記硼素系複合セラミックス焼結体によって金型
キャビティ面が構成されたガラス成形用金型である請求
項1に記載の接合体。
(2) The joined body according to claim 1, which is a glass molding mold in which a mold cavity surface is formed of the boron-based composite ceramic sintered body.
(3)前記ろう材が、15〜30重量%Mn、5〜10
重量%Ni、5〜10重量%Co、0〜1.5重量%S
i、残部Cuの組成を有するCu−Mn−Ni−Co系
ろう材である請求項1又は2に記載の接合体。
(3) The brazing filler metal contains 15 to 30% by weight Mn and 5 to 10% by weight.
wt% Ni, 5-10 wt% Co, 0-1.5 wt% S
The bonded body according to claim 1 or 2, which is a Cu-Mn-Ni-Co brazing filler metal having a composition of i and the balance being Cu.
(4)前記ろう材が、10〜25重量%Mn、5〜10
重量%Ni、0〜3重量%Si、残部Cuの組成を有す
るCu−Mn−Ni系ろう材である請求項1又は2に記
載の接合体。
(4) The brazing filler metal contains 10 to 25% by weight Mn, 5 to 10
The joined body according to claim 1 or 2, which is a Cu-Mn-Ni brazing filler metal having a composition of %Ni by weight, 0 to 3% by weight Si, and the balance Cu.
(5)前記ろう材が86重量%Cu、10重量%Mn、
4重量%Coの組成を有するCu−Mn−Co系ろう材
である請求項1又は2に記載の接合体。
(5) the brazing filler metal is 86% by weight Cu and 10% by weight Mn;
The joined body according to claim 1 or 2, which is a Cu-Mn-Co brazing filler metal having a composition of 4% by weight Co.
(6)前記ろう材が、2〜10重量%Ni、0〜8重量
Si、残部Cuの組成を有するCu−Ni系ろう材であ
る請求項1又は2に記載の接合体。
(6) The joined body according to claim 1 or 2, wherein the brazing filler metal is a Cu-Ni brazing filler metal having a composition of 2 to 10% by weight Ni, 0 to 8% by weight Si, and the balance Cu.
(7)前記硼素系複合セラミックス焼結体が、TiB_
2、ZrB_2及びHfB_2からなる群から選ばれた
少なくとも1種以上のIV族二硼化物セラミックス相と、
M^l/B(但し、M^lはNi、Cr、V、Nb、T
a、Mo、W及びMnからなる群から選ばれた少なくと
も1種以上である)原子比が1/1のM^lBセラミッ
クス相から構成され、上記M^lBセラミックス相を3
〜50Vol%含むものである請求項1乃至6のいずれ
かに記載の接合体。
(7) The boron-based composite ceramic sintered body is TiB_
2. at least one group IV diboride ceramic phase selected from the group consisting of ZrB_2 and HfB_2;
M^l/B (However, M^l is Ni, Cr, V, Nb, T
a, Mo, W, and Mn) with an atomic ratio of 1/1, and the M^lB ceramic phase is
The zygote according to any one of claims 1 to 6, which contains ~50 Vol%.
(8)前記M^lBセラミックス相が、Ni/B原子比
が1/1のNiBセラミックス相である請求項7に記載
の接合体。
(8) The joined body according to claim 7, wherein the M^lB ceramic phase is a NiB ceramic phase with a Ni/B atomic ratio of 1/1.
(9)前記M^lBセラミックス相が、Ni+M^m/
B(但し、M^mはV、Nb、Ta、Cr、Mo、W及
びMnからなる群から選ばれた少なくとも1種以上であ
る)原子比が1/1の(Ni、M^m)Bセラミックス
相である請求項7に記載の接合体。
(9) The M^lB ceramic phase is Ni+M^m/
B (where M^m is at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, W and Mn) (Ni, M^m)B with an atomic ratio of 1/1 The joined body according to claim 7, which is a ceramic phase.
(10)前記硼素系複合セラミックス焼結体が、さらに
、Cr/B原子比が1/1のCrBセラミックス相、N
i+Cr/B原子比が1/1の(Ni、Cr)Bセラミ
ックス相及び(Cr、Ni)_3B_4セラミックス相
から選ばれた少なくとも2種のセラミックス相を含む請
求項9に記載の接合体。
(10) The boron-based composite ceramic sintered body further includes a CrB ceramic phase with a Cr/B atomic ratio of 1/1, a N
The joined body according to claim 9, comprising at least two types of ceramic phases selected from a (Ni, Cr)B ceramic phase and a (Cr, Ni)_3B_4 ceramic phase with an i+Cr/B atomic ratio of 1/1.
(11)前記硼素系複合セラミックス焼結体が、Cr/
B原子比が1/1のCrBセラミックス相、Ni+Cr
/B原子比が1/1の(Ni、Cr)Bセラミックス相
及び(Cr、Ni)_3B_4セラミックス相から構成
され、上記(Ni、Cr)Bセラミックス相を10〜8
0Vol%含むものである請求項1乃至6のいずれかに
記載の接合体。
(11) The boron-based composite ceramic sintered body has Cr/
CrB ceramic phase with B atomic ratio of 1/1, Ni+Cr
It is composed of a (Ni, Cr)B ceramic phase and a (Cr, Ni)_3B_4 ceramic phase with a /B atomic ratio of 1/1, and the (Ni, Cr)B ceramic phase is
The conjugate according to any one of claims 1 to 6, which contains 0 Vol%.
(12)前記硼素系複合セラミックス焼結体が、Cr/
B原子比が1/1のCrBセラミックス相、Ni+Cr
/B原子比が1/1の(Ni、Cr)Bセラミックス相
及び(Cr、Ni)_3B_4セラミックス相から選ば
れた少なくとも2種のセラミックス相を3〜50Vol
%含み、セラミックス相残部がTiB_2、ZrB_2
及びHfB_2からなる群から選ばれた少なくとも1種
以上のIV族二硼化物セラミックス相から構成されるもの
である請求項1乃至6のいずれかに記載の接合体。
(12) The boron-based composite ceramic sintered body has Cr/
CrB ceramic phase with B atomic ratio of 1/1, Ni+Cr
3 to 50 Vol of at least two types of ceramic phases selected from a (Ni, Cr)B ceramic phase and a (Cr, Ni)_3B_4 ceramic phase with a /B atomic ratio of 1/1.
%, the remainder of the ceramic phase is TiB_2, ZrB_2
The joined body according to any one of claims 1 to 6, which is composed of at least one group IV diboride ceramic phase selected from the group consisting of HfB_2 and HfB_2.
(13)前記硼素系複合セラミックス焼結体が、Cr/
B原子比が1/1のCrBセラミックス相、Ni+Cr
/B原子比が1/1の(Ni、Cr)Bセラミックス相
、(Cr、Ni)_3B_4セラミックス相及びNi+
Cr+M^m/B(但し、M^mはV、Nb、Ta、M
o、W及びMnからなる群から選ばれた少なくとも1種
以上である)原子比が1/1の(Ni、Cr、M^m)
Bセラミックス相から構成され、上記(Ni、Cr、M
^m)Bセラミックス相を10〜80Vol%含むもの
である請求項1乃至6のいずれかに記載の接合体。
(13) The boron-based composite ceramic sintered body has Cr/
CrB ceramic phase with B atomic ratio of 1/1, Ni+Cr
(Ni, Cr)B ceramic phase with /B atomic ratio of 1/1, (Cr, Ni)_3B_4 ceramic phase and Ni+
Cr+M^m/B (However, M^m is V, Nb, Ta, M
o, W, and Mn) with an atomic ratio of 1/1 (Ni, Cr, M^m)
It is composed of the B ceramic phase, and the above (Ni, Cr, M
^m) The joined body according to any one of claims 1 to 6, which contains 10 to 80 vol% of the B ceramic phase.
(14)(A)少なくとも1種以上のM^l/B(但し
、M^lはNi、Cr、V、Nb、Ta、Mo、W及び
Mnからなる群から選ばれた少なくとも1種以上である
)原子比が1/1のM^lBセラミックス相と、TiB
_2、ZrB_2及びHfB_2からなる群から選ばれ
た少なくとも1種以上のIV族二硼化物セラミックス相及
び/又は(Cr、Ni)_3B_4セラミックス相とか
ら構成されてなる硼素系複合セラミックス焼結体と、 (B)金属系構造部材とを、 (C)Cu−Mn系、Cu−Mn−Ni系、Cu−Mn
−Co系、Cu−Mn−Co−Ni系、Cu−Ni系又
はNi−Mn系ろう材を介して重ね、これを真空もしく
は不活性雰囲気中でろう材の融点以上に加熱して硼素系
複合セラミックス焼結体と金属系構造部材との間にろう
材の融液を生ぜしめ、次いで冷却することを特徴とする
硼素系複合セラミックス焼結体と金属系構造部材の接合
方法。
(14) (A) At least one kind of M^l/B (However, M^l is at least one kind selected from the group consisting of Ni, Cr, V, Nb, Ta, Mo, W, and Mn. ) M^lB ceramic phase with an atomic ratio of 1/1 and TiB
A boron-based composite ceramic sintered body composed of at least one group IV diboride ceramic phase and/or (Cr, Ni)_3B_4 ceramic phase selected from the group consisting of _2, ZrB_2, and HfB_2; (B) Metallic structural members, (C) Cu-Mn-based, Cu-Mn-Ni-based, Cu-Mn
-Co, Cu-Mn-Co-Ni, Cu-Ni, or Ni-Mn brazing filler metals are layered together and heated above the melting point of the brazing filler metal in a vacuum or inert atmosphere to create a boron-based composite. A method for joining a boron-based composite ceramic sintered body and a metal structural member, characterized by generating a melt of a brazing filler metal between the ceramic sintered body and the metal structural member, and then cooling it.
JP1320684A 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method Expired - Lifetime JP2627090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320684A JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320684A JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Publications (2)

Publication Number Publication Date
JPH03183667A true JPH03183667A (en) 1991-08-09
JP2627090B2 JP2627090B2 (en) 1997-07-02

Family

ID=18124181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320684A Expired - Lifetime JP2627090B2 (en) 1989-12-12 1989-12-12 Bonded body of boride ceramics and metal-based structural member and bonding method

Country Status (1)

Country Link
JP (1) JP2627090B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954551A (en) * 2010-11-02 2011-01-26 山东大学 Brazing filler metal and process for welding molybdenum-copper alloy and Austenitic stainless steel
CN102699573A (en) * 2012-06-21 2012-10-03 哈尔滨工业大学 High temperature brazing filler metal for brazing non-oxide ceramic and composite material as well as preparation method of high temperature brazing filler metal
CN112317992A (en) * 2020-11-04 2021-02-05 湖南盛华源材料科技有限公司 Novel vacuum welding material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128714B (en) * 2014-07-15 2016-04-06 深圳市唯特偶新材料股份有限公司 A kind of soldering high temperature alloy is used without boron solder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
JPS5823348A (en) * 1981-08-05 1983-02-12 Sanyo Electric Co Ltd Mode setting mechanism for video tape recorder
JPS61186271A (en) * 1985-02-13 1986-08-19 株式会社小松製作所 Method of joining ceramic and metal
JPS61209966A (en) * 1985-03-13 1986-09-18 株式会社明電舎 Method of vacuum soldering inorganic insulator to copper material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623246A (en) * 1979-08-02 1981-03-05 Agency Of Ind Science & Technol Metal diboride-base super heat-resistant material containing titanium boride as binder
JPS5823348A (en) * 1981-08-05 1983-02-12 Sanyo Electric Co Ltd Mode setting mechanism for video tape recorder
JPS61186271A (en) * 1985-02-13 1986-08-19 株式会社小松製作所 Method of joining ceramic and metal
JPS61209966A (en) * 1985-03-13 1986-09-18 株式会社明電舎 Method of vacuum soldering inorganic insulator to copper material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954551A (en) * 2010-11-02 2011-01-26 山东大学 Brazing filler metal and process for welding molybdenum-copper alloy and Austenitic stainless steel
CN102699573A (en) * 2012-06-21 2012-10-03 哈尔滨工业大学 High temperature brazing filler metal for brazing non-oxide ceramic and composite material as well as preparation method of high temperature brazing filler metal
CN112317992A (en) * 2020-11-04 2021-02-05 湖南盛华源材料科技有限公司 Novel vacuum welding material and preparation method thereof

Also Published As

Publication number Publication date
JP2627090B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP5872590B2 (en) Heat-resistant alloy and manufacturing method thereof
JP2002302732A (en) Ultrafine grained cubic bn sintered compact
JPH03183667A (en) Joined body of boride ceramics and metal structural member, and joining method
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4480912B2 (en) Cutting blade for semiconductor product processing and manufacturing method thereof
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
JP4177468B2 (en) High hardness hard alloy and its manufacturing method
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP2001187431A (en) Laminated structural material
JPH02270931A (en) Ceramic grains reinforced titanium composite material
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JPH05320814A (en) Composite member and its production
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JP3603318B2 (en) Double boride based sintered alloy
JPH0687655A (en) Tantalum carbide-based sintered compact and its production
JP2893887B2 (en) Composite hard alloy material
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH10310839A (en) Super hard composite member with high toughness, and its production
JP3651284B2 (en) Diamond-containing brazing composite material and method for producing the same
JPS59222556A (en) Wear resistant sintered iron alloy with superior workability and its manufacture