JPS61186271A - Method of joining ceramic and metal - Google Patents

Method of joining ceramic and metal

Info

Publication number
JPS61186271A
JPS61186271A JP2437885A JP2437885A JPS61186271A JP S61186271 A JPS61186271 A JP S61186271A JP 2437885 A JP2437885 A JP 2437885A JP 2437885 A JP2437885 A JP 2437885A JP S61186271 A JPS61186271 A JP S61186271A
Authority
JP
Japan
Prior art keywords
metal
brazing
ceramics
filler metal
brazing filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2437885A
Other languages
Japanese (ja)
Inventor
池澤 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2437885A priority Critical patent/JPS61186271A/en
Publication of JPS61186271A publication Critical patent/JPS61186271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミックスと金属との接合方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of joining ceramics and metals.

従来の技術 セラミックス特に非酸化物系のセラミックスは機械構造
用部材としての活用が期待されている。構造部材として
使用する場合の課題の1つは金属との接合方法である。
BACKGROUND OF THE INVENTION Ceramics, particularly non-oxide ceramics, are expected to be used as mechanical structural members. One of the issues when using it as a structural member is how to bond it to metal.

一般に非酸化物系のセラミックス例えば窒化けい素や炭
化けい素はぬれ性が悪く、これら全長〈ぬらずろう材の
探索が1つのカギであり、これまでに有効なろう材とし
ては活性化金属ろうが開発されている。
In general, non-oxide ceramics, such as silicon nitride and silicon carbide, have poor wettability, and one of the keys is to find a brazing filler metal that has a full length. is being developed.

この活性化金属ろうは金、銀、銅、ニッケルなどの貴金
属にマンガン、チタン、ジルコニウムなどの活性化金属
を添加したもので、活性金属はろう材の融点を下げる作
用のほかに、セラミックス基質と反応し、ぬれ性を改善
する効果を持っている。セラミックスと金属と全接合す
るうえでもう1つのカギは、熱応力の低減でるる。
This activated metal brazing material is made by adding activated metals such as manganese, titanium, and zirconium to noble metals such as gold, silver, copper, and nickel.The activated metals have the effect of lowering the melting point of the brazing material, and also act as a ceramic substrate. It has the effect of improving wettability. Another key to fully bonding ceramics and metals is reducing thermal stress.

セラミックスは金属より熱膨張係数が小さいために、ろ
う材が凝固してから室温まで冷却される間に内部応力を
生じ、この内部応力が原因となって冷却中に接合物が破
壊することも希れではない。このような熱応力の低減手
段としては、熱膨張率の小さな金属を用いる方法が一般
的に用いられる。
Because ceramics have a smaller coefficient of thermal expansion than metals, internal stress is generated while the filler metal solidifies and is cooled to room temperature, and this internal stress rarely causes the joint to break during cooling. It's not that. As a means for reducing such thermal stress, a method using a metal having a small coefficient of thermal expansion is generally used.

発明が解決しようとする問題点 前記のごとく、セラミックスと金属との接合には多くの
方法が提唱されているがまだ開発途上の技術であり、問
題点が多い。
Problems to be Solved by the Invention As mentioned above, many methods have been proposed for joining ceramics and metals, but these are still technologies under development and have many problems.

ろう材に添加した活性金属によってろう材とセラミック
スとのぬれ性を改善する場合、活性金属はセラミックス
基質と反応して脆化層を形成するという問題がある。例
えば窒化けい素全Cu、−Mn−Tiろうを用いてろう
付けするとun、 Ti、 Siの富化した脆化層が形
成される。
When improving the wettability between the brazing material and ceramics by adding an active metal to the brazing material, there is a problem in that the active metal reacts with the ceramic matrix to form a brittle layer. For example, when soldering is performed using a silicon nitride all-Cu, -Mn-Ti solder, an embrittled layer enriched with un, Ti, and Si is formed.

まだ活性金属は、酸素との親和力が犬きく、ろう付け雰
囲気として高い真空度を用いないと活性金属が酸化し、
ぬれ性が著しく低下すると■う問題がある。例えばTi
  を5 wt%含むCu −Mn−Tiろうでは、真
空度として少くともl OTorrは必要である。した
がってもし他の手段によってぬれ性が向上するならば活
性金属と1−1てその添加量を減らlたり活性度の低い
元素で代用することが望ましい。
Active metals still have a strong affinity for oxygen, and unless a high degree of vacuum is used as a brazing atmosphere, active metals will oxidize.
■ There is a problem when the wettability decreases significantly. For example, Ti
For a Cu-Mn-Ti solder containing 5 wt% of , a degree of vacuum of at least 1 OTorr is required. Therefore, if the wettability is to be improved by other means, it is desirable to reduce the amount of the active metal added or to substitute an element with a lower activity.

一方、熱膨張率の小さい金属を採用することによって熱
応力全低減しようとする方法も問題点が多い。低熱膨張
率の金属と1−ては、タングステン、モリブデン、ジル
コニウム、タンタル、チタンなどが用いられている。こ
れらの線膨張率は鋼の/2〜1/3と小さいがまだ窒化
けい素通 や炭化けい累より大きく、熱応力を完全にゼロにするの
は困難である。熱膨張率の特に小さなタングステンやモ
リブデンは弾性率が銅の1.5〜2倍あり、これはむし
ろ熱応力を大きくする作用をする。更にこれらは高融点
金属であり、再結晶による応力緩和が期待できない点も
不利である。また、酸化しやすかったり、ろう材との界
面に脆弱な金属間化合物を形成するという問題もある。
On the other hand, a method that attempts to reduce the total thermal stress by using a metal with a small coefficient of thermal expansion also has many problems. Examples of metals with a low coefficient of thermal expansion include tungsten, molybdenum, zirconium, tantalum, and titanium. The coefficient of linear expansion of these materials is 1/2 to 1/3 that of steel, but it is still larger than that of silicon nitride or silicon carbide, and it is difficult to completely reduce thermal stress to zero. Tungsten and molybdenum, which have a particularly small coefficient of thermal expansion, have an elastic modulus 1.5 to 2 times that of copper, and this has the effect of increasing thermal stress. Furthermore, since these are high melting point metals, stress relaxation by recrystallization cannot be expected, which is a disadvantage. Further, there are problems in that it is easily oxidized and forms a fragile intermetallic compound at the interface with the brazing material.

本発明は上記の事情に鑑みなされたものであって、その
目的とするところはセラミックスと金属との間に大きな
接合強度が得られしかもろう材として活性度の低い成分
元素で十分なぬれ性が確保でき接合作業における真空度
の要求をよりゆるやかにするセラミックスと合金の接合
方法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to obtain high bonding strength between ceramics and metal, and to provide sufficient wettability as a brazing material using component elements with low activity. It is an object of the present invention to provide a method for joining ceramics and alloys that can be secured and that requires less vacuum in the joining work.

問題点を解決するための手段及び作用 本発明においては、セラミックスと金属とをろう材を介
在させ外力によって接合面を圧着しながら、真空中又は
不活性雰囲気中で加熱し、ろう材の液相生成温度に到達
すると、接合面からろう材の融液の一部が強制的に排出
され、セラミックス表面とろう材の界面が清浄化され、
ろう材とセラミックスとのぬれ性が向上する。
Means and Action for Solving the Problems In the present invention, ceramics and metal are heated in a vacuum or in an inert atmosphere while their joint surfaces are pressed together by an external force with a brazing filler metal interposed, and the liquid phase of the brazing filler metal is heated in a vacuum or in an inert atmosphere. When the formation temperature is reached, a portion of the melted filler metal is forcibly discharged from the joint surface, cleaning the interface between the ceramic surface and the filler metal.
The wettability between the brazing filler metal and ceramics is improved.

この結果、無加圧法ではぬれ性不足によって使用できな
かった活性金属の少ないろう材が使用でき、ろう材の酸
化、脆化層の形成を抑制することができる。また、無加
圧法でしばしばみられるろう材中の気泡の形成を完全に
防止でき、応力集中を無くすことができる。
As a result, it is possible to use a brazing filler metal with a small amount of active metal, which could not be used in the non-pressure method due to insufficient wettability, and it is possible to suppress oxidation of the brazing filler metal and the formation of a brittle layer. Furthermore, the formation of bubbles in the brazing filler metal, which is often observed in non-pressure methods, can be completely prevented, and stress concentration can be eliminated.

甘だ本発明においては、セラミックスと接合すべき金属
としてその融点Tmがろう材の液相生成温度TL  と
絶対温度表示で0.8Tm≦TL<Tmの関係を満足す
るものを選定I7、かつTLにおいて前記金属が塑性変
形するのに足るだけの圧着力を付加する必要がおる。
In the present invention, we select a metal whose melting point Tm satisfies the relationship 0.8Tm≦TL<Tm in terms of absolute temperature with the liquid phase formation temperature TL of the brazing filler metal as the metal to be bonded to the ceramic. It is necessary to apply sufficient pressure to plastically deform the metal.

このようにろう材の融点に比較的近い金属を用いること
によって、ろう材が凝固したのちの冷却過程でも十分に
再結晶を起こし、熱応力全緩和することができる。金属
の融点が尚い場合には、変形が薄いろう材層だけで進行
し、ろう材層自体が冷却過程で破壊することがある1、
またろう材層内での破壊は起らなくても、大きな熱応力
が内在し、小さな外力で破壊する。本発明法はこのよう
な問題を解決することができる。
By using a metal that has a melting point relatively close to that of the brazing filler metal in this way, recrystallization can occur sufficiently during the cooling process after the brazing filler metal has solidified, and thermal stress can be completely relaxed. If the melting point of the metal is still low, deformation will proceed only in the thin brazing material layer, and the brazing material layer itself may be destroyed during the cooling process1.
Furthermore, even if no breakage occurs within the brazing filler metal layer, large thermal stress is present and a small external force causes breakage. The method of the present invention can solve these problems.

圧着力を金属の塑性変形する程大きくする必要性は十分
に理解されていないが、外力によって金属を塑性変形さ
せることによって再結晶の駆動力を与えるのが一因と推
定される。後述する実施例からも明らかなように、接合
強度には大きな圧着力依存性が認められ、金属が塑性変
形する以上の圧着力を与えたとき、大きな接合強度が得
られる。
Although the necessity of increasing the pressing force to the extent that it causes plastic deformation of the metal is not fully understood, it is presumed that one reason is to provide a driving force for recrystallization by plastically deforming the metal by an external force. As is clear from the examples described later, the bonding strength is highly dependent on the bonding force, and when a bonding force greater than that which causes plastic deformation of the metal is applied, a large bonding strength is obtained.

実施例 以下、本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

窒化けい素焼給体と金属とを、ろう材を介在させ第1図
の如く積層した。(イ)は窒化けい素、(ロ)は金属、
(ハ)はろう材である。窒化けい累および金属の寸法は
、l 2m+nX l oax 3trrmであシ、接
合部はlOwxXlommである。ろう材の寸法はlo
mmXlOmで厚さ0.1 −0.3rraの圧延板で
ある。第1図のような試験片(組立物)をその相互位置
がずれないような治具に装着し、黒鉛製のダイの中に配
置し、黒鉛パンチを介して加圧し圧着させた。次に、黒
鉛製ダイの中を4〜6 x l OTorrの真空にし
て、ダイの外部に設けたヒータにより20 C/miル
の速度で加熱17た。圧着用の黒鉛パンチの変位全0.
O1w以上の精度で差動トランスによって検出できるよ
うにしておき、ろう材(ハ)が溶融してその一部が接合
部から排出されるのが観測されたら直ちに加熱を中止し
圧着力を加えたまま冷却し、室温近ぼり捷で冷却したの
ち、除荷し試験片を取出した。同ろう材(ハ)の液相生
成温度はおよそ870〜900℃である。また比較例の
無加圧の場合には、温度をろう材(ハ)の液相生成温度
より50℃高い温度に到達した時点で加熱を中止し冷却
させた。無加圧の場合の圧着力は、試験片の自重のみで
ある。冷却速度は600℃附近で約5℃/minである
。取出した試験片の状態は第2図のようなもので(イ)
は窒化けい素、(ロ)は金属、Hはろう材、に)は排出
されたろう材および塑性変形によってはみ出た金属部分
である。はみ出た金属部分を機械加工によって除去した
のち、第3図のような方法でせん断試験を行なった。ク
ロスヘッド速度は0.5朝7771L fL である。
A silicon nitride heating element and metal were laminated with a brazing filler metal interposed therebetween as shown in FIG. (a) is silicon nitride, (b) is metal,
(c) is a brazing material. The dimensions of the nitride silica and metal are 12m+nX1oax 3trrm, and the joints are 1OwxXlomm. The dimensions of the filler metal are lo
It is a rolled plate with a thickness of 0.1-0.3 rra in mmXlOm. The test piece (assembly) as shown in FIG. 1 was mounted on a jig so that its mutual positions would not deviate, placed in a graphite die, and pressurized and crimped through a graphite punch. Next, the inside of the graphite die was evacuated to 4 to 6 x l O Torr and heated 17 at a rate of 20 C/mil using a heater provided outside the die. Total displacement of graphite punch for crimping is 0.
It was designed to be detected by a differential transformer with an accuracy of O1w or higher, and when it was observed that the brazing filler metal (c) was melting and a part of it was expelled from the joint, heating was immediately stopped and pressing force was applied. After cooling to near room temperature and cooling with a shaker, the load was unloaded and the test piece was taken out. The liquid phase formation temperature of the brazing filler metal (c) is approximately 870 to 900°C. Further, in the case of no pressure application in the comparative example, heating was stopped and cooling was performed when the temperature reached a temperature 50° C. higher than the liquid phase formation temperature of the brazing material (c). The crimp force in the case of no pressure is only the weight of the test piece. The cooling rate is about 5°C/min at around 600°C. The condition of the test piece taken out is as shown in Figure 2 (a).
is silicon nitride, (b) is a metal, H is a brazing filler metal, and (b) is a discharged brazing filler metal and a metal portion protruded by plastic deformation. After removing the protruding metal portion by machining, a shear test was conducted as shown in Figure 3. The crosshead speed is 7771L fL at 0.5am.

試験結果の一例を表に示す。An example of the test results is shown in the table.

比較例と対比すれば本発明法の効果は明らかである。金
属として鋼(SS、41 )k用いた場合には圧着面圧
100¥iでは若干の中性変形が認められた。しかしな
がら、その融点は、ろう材の液相生成温度のおよそ1.
5倍と太きいために熱応力の緩和が十分でなく、試験片
を炉からを出した時点で窒化けい素内部で破壊していた
。金属にモリブデンを用いた場合には、その熱膨張係数
が鋼の約’/3ということによって熱応力を下げること
が期待され、事実無加圧でも接合が可能であった。しか
しながら、その融点はろう材の液相生成温度のおよ−f
:3倍と著しく太きなために、再結晶による熱応力の緩
和が起らず接合強度も小さい。また強制的に圧着しても
このレベルの面圧では見かけ上申性変形は認められず、
再結晶も起らないこともあって接合強度の加圧による改
善効果も小さい。またモリブデンでは窒化けい素からろ
う材に溶は込んだと考えられるけい素がモリブデンの所
まで拡散したために、モリブデン表面にも脆弱なけい化
物全形成することが見出された。
The effect of the method of the present invention is clear when compared with the comparative example. When steel (SS, 41)k was used as the metal, some neutral deformation was observed at a crimp surface pressure of 100 yen. However, its melting point is approximately 1.5 degrees higher than the liquid phase formation temperature of the brazing filler metal.
Because it was 5 times thicker, the thermal stress was not sufficiently relaxed, and the silicon nitride broke inside the test piece when it was taken out of the furnace. When molybdenum is used as the metal, it is expected to reduce thermal stress because its coefficient of thermal expansion is approximately 1/3 that of steel, and in fact, joining was possible even without pressure. However, its melting point is -f, which is the liquid phase formation temperature of the brazing filler metal.
: Because it is extremely thick (3 times as large), thermal stress relaxation due to recrystallization does not occur and the bonding strength is low. In addition, even if the pressure is forcibly crimped, no apparent deformation is observed at this level of surface pressure.
Since recrystallization does not occur, the effect of improving bonding strength by applying pressure is small. In addition, in the case of molybdenum, it was found that silicon, which is thought to have melted into the brazing filler metal from silicon nitride, diffused to the molybdenum, resulting in the formation of brittle silicides on the molybdenum surface.

金属として銅を用いた場合その融点はろう材の液相生湛
度の約1.15と低く、ろう材が凝固したのちの冷却中
でも熱応力を緩和することが期待される。事実比較例A
4.5に示したように鋼よりも大きな熱膨張係数を持っ
ているにもかかわらず低強度ながら接合強度が得られた
When copper is used as the metal, its melting point is as low as about 1.15, which is the liquid phase permeability of the brazing material, and it is expected to alleviate thermal stress even during cooling after the brazing material has solidified. Fact comparison example A
As shown in 4.5, although it has a larger coefficient of thermal expansion than steel, it was possible to obtain a bonding strength with low strength.

したがって、ろう材の液相生成温度に近い融点を持つ金
属を用いるという本発明法の一構成要件の重要性はこの
比較例からも明らかである。
Therefore, the importance of using a metal having a melting point close to the liquid phase formation temperature of the brazing filler metal, which is a component of the method of the present invention, is clear from this comparative example.

しかし単にこの要件だけでは、従来からあるモリブデン
などを用いた接合よりも劣った結果しか得られない。
However, simply meeting this requirement alone will result in inferior results compared to conventional bonding using molybdenum or the like.

これに対してj6.1〜3に示した本発明法の効果は顕
著であり、金属とし、てろう材の液相生成温度に近い融
点を持つ銅を用いかつ接合温度において銅が塑性変形す
るだけの圧着面圧全負荷することによって接合強度が著
しく改善される、また無加圧ではぬれ性が不足していた
Cu−Mnろうもより活性なTi  f添加することな
く良好なぬれ性を示しより活性で酸化しゃすいTi f
含まないことによって、真空度の要求がゆるやかになる
と共に、Cu −1’iより成ると推定されるろう材中
の析出物も生成せず結果としてより大きな接合強度が得
られた。
On the other hand, the effects of the method of the present invention shown in j6.1 to 3 are remarkable; copper is used as a metal and has a melting point close to the liquid phase formation temperature of the brazing material, and the copper deforms plastically at the joining temperature. The bonding strength was significantly improved by applying the full crimping surface pressure, and the Cu-Mn solder, which had insufficient wettability when no pressure was applied, showed good wettability without the addition of the more active TiF. More active and less oxidizing Ti f
By not including Cu-1'i, the requirement for the degree of vacuum was relaxed, and no precipitates were formed in the brazing filler metal, which is presumed to be composed of Cu-1'i, resulting in greater bonding strength.

発明の効果 本発明の効果の第1はセラミックスと金属との間に大き
な接合強度が得られることである。
Effects of the Invention The first effect of the invention is that a large bonding strength can be obtained between ceramic and metal.

ま・た第2の効果は、ろう材として活性度の低い成分元
素で十分なぬれ性が確保でき、接合作業における真空度
の要求をよりゆるやかにすることである1、これらは工
業上きわめて大きな効果である1、 なお本発明法の実施に当っては、必ずしも実施例のみに
限定されるものではない。実施例はあく捷でも一例を示
したものであって、その骨子は、ろう材の液相生成温度
に近い融点を持つ金属を選定することおよびろう材の液
相生成温度即ちろう付け温度近ぼりにおいて前記金属が
塑性変形するのに十分な圧着力を強制的に付与すること
の2つの新規な方法を組合せることにある。
The second effect is that sufficient wettability can be secured with component elements with low activity as a brazing material, and the vacuum level required in bonding work can be made more relaxed.1 These are extremely important factors in industry. Effect 1. Note that the implementation of the method of the present invention is not necessarily limited to the examples. The example is just an example, and the gist is to select a metal with a melting point close to the liquid phase formation temperature of the brazing filler metal, and to select a metal with a melting point close to the liquid phase formation temperature of the brazing filler metal, that is, close to the brazing temperature. The purpose of this invention is to combine two novel methods of forcibly applying sufficient pressure to plastically deform the metal.

従ってセラミックスとしては窒化けい素に限定されず、
炭化けい素であってもまた他のセラミックスであっても
艮い。金属としては銅に限定されるものではなく、銅合
金でも他の金属でも良い。但しその融点Tm  はろう
材の液相生成温度TL に近<0.BT匍≦TL<Tm
の範囲内にあることが望ましい。しかし0.8rrLが
Tf f超えたからと言って全く効果が無いわけではな
い。
Therefore, ceramics are not limited to silicon nitride,
It doesn't matter if it's silicon carbide or other ceramics. The metal is not limited to copper, and may be a copper alloy or other metal. However, the melting point Tm is close to the liquid phase formation temperature TL of the brazing filler metal <0. BT匍≦TL<Tm
It is desirable that it be within the range of . However, just because 0.8rrL exceeds Tf f does not mean that there is no effect at all.

一般に再結晶は0.4〜0.5Tm以上なら起こると言
われておυ、0.5T工〈TLならば効果が期待される
。ろう材はセラミックスの種類に応じて決定されるもの
で公知のものを用いてもよい。圧着力は使用する金属の
種類とろう付け温度におけるその流動応力によって決定
され、特定することは困難であるが、少くとも金属に塑
性変形を与える水準まで加圧する必要がある。
It is generally said that recrystallization occurs above 0.4 to 0.5 Tm, and an effect is expected at 0.5 T m<TL. The brazing filler metal is determined depending on the type of ceramic, and any known brazing filler metal may be used. The pressure bonding force is determined by the type of metal used and its flow stress at the brazing temperature, and is difficult to specify, but it is necessary to apply pressure to at least a level that gives plastic deformation to the metal.

また単に圧着力ばかりでなく、接合面相互にすべりを重
しようさせることも行って良い。更にまた、圧着力は接
合の全工程に渡って一定である必要はなく、例えば加熱
初期は低圧力であって、ろう材の液相生成温度近はうで
圧力を増しても良い。また、ろう材が凝固したのちの冷
却工程で更に圧力を増して金属に更に塑性変形を与えて
も良い。但し、この場合、塑性変形によって生じた内部
応力が拡散によって十分緩和されるだけの温度領域で行
う必要がある。
Moreover, it is also possible to apply not only the pressure force but also the mutual sliding of the joint surfaces. Furthermore, the pressure bonding force does not need to be constant throughout the entire bonding process; for example, the pressure may be low at the initial stage of heating, and the pressure may be increased as the temperature approaches the liquid phase formation temperature of the brazing material. Further, the pressure may be further increased in the cooling step after the brazing filler metal has solidified to further give plastic deformation to the metal. However, in this case, it is necessary to carry out the process in a temperature range where the internal stress caused by plastic deformation is sufficiently relaxed by diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施例におけるセラミックスと
金属の積層状態全示した斜視図、第2図は本発明方法に
より接合されたセラミックスと金属の状態を示した斜視
図、第3図はせん断試験の説明図である。
FIG. 1 is a perspective view showing the entire laminated state of ceramics and metal in an embodiment of the method of the present invention, FIG. 2 is a perspective view showing the state of ceramics and metal bonded by the method of the present invention, and FIG. FIG. 3 is an explanatory diagram of a shear test.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックスと金属との間にろう材を介在させ、
ろう材の液相生成温度以上に加熱してセラミックスと金
属を接合する方法において、前記金属の融点T_mと前
記ろう材の液相生成温度T_Lとが絶対温度で示して0
.8T_m≦T_L<T_mの範囲内にあり、かつろう
付け工程におけるT_L直上の温度領域で前記金属が塑
性変形するだけの圧着力を付加するようにしたことを特
徴とするセラミックスと金属の接合方法。
(1) Interposing a brazing material between ceramics and metal,
In a method of joining ceramics and metal by heating above the liquid phase formation temperature of the brazing metal, the melting point T_m of the metal and the liquid phase formation temperature T_L of the brazing metal are expressed in absolute temperature 0.
.. A method for joining ceramics and metal, characterized in that a pressure is applied that is within the range of 8T_m≦T_L<T_m and is sufficient to plastically deform the metal in a temperature range immediately above T_L in a brazing process.
(2)前記セラミックスおよび金属がそれぞれ窒化けい
素および銅合金であり、ろう材が銅−マンガン合金また
は銅−マンガン−チタン合金である特許請求の範囲の記
載(1)のセラミックスと金属の接合方法。
(2) The method for joining ceramics and metal according to claim 1, wherein the ceramic and the metal are silicon nitride and a copper alloy, respectively, and the brazing material is a copper-manganese alloy or a copper-manganese-titanium alloy. .
(3)圧着力が60%以上である特許請求の範囲の記載
(2)のセラミックスと金属の接合方法。
(3) The method for joining ceramics and metal according to claim (2), wherein the pressure bonding force is 60% or more.
JP2437885A 1985-02-13 1985-02-13 Method of joining ceramic and metal Pending JPS61186271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2437885A JPS61186271A (en) 1985-02-13 1985-02-13 Method of joining ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2437885A JPS61186271A (en) 1985-02-13 1985-02-13 Method of joining ceramic and metal

Publications (1)

Publication Number Publication Date
JPS61186271A true JPS61186271A (en) 1986-08-19

Family

ID=12136522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2437885A Pending JPS61186271A (en) 1985-02-13 1985-02-13 Method of joining ceramic and metal

Country Status (1)

Country Link
JP (1) JPS61186271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183667A (en) * 1989-12-12 1991-08-09 Komatsu Ltd Joined body of boride ceramics and metal structural member, and joining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183667A (en) * 1989-12-12 1991-08-09 Komatsu Ltd Joined body of boride ceramics and metal structural member, and joining method

Similar Documents

Publication Publication Date Title
JPH0217509B2 (en)
JP2528718B2 (en) How to join ceramics and metal
US3795041A (en) Process for the production of metal-ceramic bond
US4598025A (en) Ductile composite interlayer for joining by brazing
EP0301492B1 (en) Method for bonding cubic boron nitride sintered compact
US4980243A (en) Direct bonding of ceramic parts by a silver alloy solder
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS61186271A (en) Method of joining ceramic and metal
JP3095187B2 (en) Brazing filler metal for metal / ceramics
JPH10194860A (en) Brazing filler metal
JPH06126472A (en) Pressure joining method
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPH0431800B2 (en)
JPS61215272A (en) Method of bonding ceramic member and metal member
JP3232896B2 (en) Brazing method between members
JPH0632869B2 (en) Brazing method for ceramics and metal
JPS59174581A (en) Method of bonding aluminum to alumina
JP2557400B2 (en) Bonding method for cubic boron nitride sintered body
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon
JP3352823B2 (en) Joining method between silicon carbide ceramics and silicon
JPS6351994B2 (en)
JPH0460947B2 (en)
JP2655332B2 (en) Aluminum alloy for ceramic joining
JPS6077181A (en) Ceramic-metal bonded body
JPS6317267A (en) Solder material for joining ceramics each other or ceramic and metal