JPS59118852A - Composite high speed steel of sintered hard alloy and its production - Google Patents

Composite high speed steel of sintered hard alloy and its production

Info

Publication number
JPS59118852A
JPS59118852A JP22789882A JP22789882A JPS59118852A JP S59118852 A JPS59118852 A JP S59118852A JP 22789882 A JP22789882 A JP 22789882A JP 22789882 A JP22789882 A JP 22789882A JP S59118852 A JPS59118852 A JP S59118852A
Authority
JP
Japan
Prior art keywords
sintering
powder
weight
hard
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22789882A
Other languages
Japanese (ja)
Inventor
Tatsuro Kuratomi
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22789882A priority Critical patent/JPS59118852A/en
Publication of JPS59118852A publication Critical patent/JPS59118852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a composite high speed steel of a sintered hard alloy having high hardness by mixing high speed steel powder and hard alloy powder of carbide, etc. at a specific ratio, adding further Co contg. or Ni contg. heat resistant alloy powder at a specific ratio and sintering the powder. CONSTITUTION:A powder mixture composed of 50-80wt% high speed steel powder, 30-10% hard alloy powder of hard carbide such as Cr3C2, hard nitride such as TiN, hard boride such as ZrB2, hard silicide such as CrSi2, 20-10% powder of Co contg. heat resistant alloy contg. 50-80% Co which assumes a molten state as a sintering temp. of 1,200-1,300 deg.C, or Ni contg. heat resistant alloy contg. 50-90% Ni is used as a raw material for sintering, and is sintered by sintered molding such as sintering after press molding under a sintering condition of 1,200-1,300 deg.C sintering temp. and 0.8-10.0ton/cm<2> sintering pressure. The heat resistant alloy is thus penetrated in the gaps between the porous sintered bodies consisting of the high speed steel particles and hard alloy particles by which the gaps are closed and the composite high speed steel of the sintered hard alloy constituted by binding these particles to bond is obtd.

Description

【発明の詳細な説明】 本発明は、高速度鋼粉末を焼結して生成する焼結高速度
鋼の性能を強化する手段として、高速度鋼粉末に、硬質
珪化物粉末丑たは硬質珪化物粉末捷たは硬質硼化物粉末
または硬質珪化物粉末である硬質合金粉末を加えた混合
粉末に。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a means for enhancing the performance of sintered high-speed steel produced by sintering high-speed steel powder. Mixed powder with added hard alloy powder, which is hard boride powder or hard silicide powder.

史に、其の混合粉末の焼結を促進する焼結助材とする1
、 200℃乃至1,600℃の範囲内の焼結用温度の
もとて溶融状態を生成するコバルトを50重量%乃至8
0重量%含有しているコバルト基1到熱合金の粉末また
はニッケルを50重ilt、 %乃至90重批%含有し
ているニッケル基耐熱合金の粉末またはコバルトとニッ
ケルとを合゛ わせで50重量%乃至85重量%含有し
ている:Iバルト−ニノケル基劃側合金の粉末を、添加
した混合粉末を焼結用原料として使用して製造したり3
’t’、結硬質合金複合高速度鋼、およびその焼結用原
料を使用して焼結硬質合金複合高速度鋼を製造する方法
に関するものである。
Historically, it has been used as a sintering aid to promote the sintering of the mixed powder.
, 50% to 8% by weight of cobalt which forms a molten state at sintering temperatures in the range of 200°C to 1,600°C.
Powder of cobalt-based heat-resistant alloy containing 0% by weight or powder of nickel-based heat-resistant alloy containing 50% to 90% by weight of nickel, or 50% by weight of cobalt and nickel combined % to 85% by weight: manufactured by using the powder of I Baltic-Ninokel base alloy as the raw material for sintering.
't' relates to a sintered hard alloy composite high speed steel and a method for producing a sintered hard alloy composite high speed steel using the raw material for sintering.

本発明の焼結硬質合金複合高速度鋼を製造するに際して
、高速度鋼粉末に加える硬質合金粉末には、炭化クロム
・炭化モリブデン・炭化タングステン・炭化バナジウム
・炭化ニオブ・炭化タンタル−炭化チタン・炭化ジルコ
ニウム・炭化ハフニウムのうちより選択した硬質炭化物
合金である硬質合金の粉末、または、窒化チタン・窒化
ジルコニウム・窒化ハフニウム・窒化珪素のうちよシ選
択した硬質窒化物合金である硬質合金の粉末、または、
二面化チタン・二面化ジルコニウム・二面化ハフニウム
のうちより選択した硬質硼化物合金である硬質合金の粉
末。
When producing the sintered hard alloy composite high speed steel of the present invention, the hard alloy powder added to the high speed steel powder includes chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide - titanium carbide, carbide. Powder of a hard alloy that is a hard carbide alloy selected from among zirconium and hafnium carbide, or powder of a hard alloy that is a hard nitride alloy selected from among titanium nitride, zirconium nitride, hafnium nitride, and silicon nitride, or ,
Powder of a hard alloy that is a hard boride alloy selected from titanium dihedral, zirconium dihedral, and hafnium dihedral.

または、1珪化クロム・1珪化モリブデンのうちより選
択した硬質珪化物合金である硬質合金の粉末を使用する
ものである。
Alternatively, powder of a hard alloy selected from among chromium silicide and molybdenum silicide is used.

以上に説明した高速度鋼粉末に硬質合金粉末を加えた混
合粉末に更に添加する焼結助拐には。
The sintering aid is further added to the above-described mixed powder of high-speed steel powder and hard alloy powder.

焼結用温度として使用する1、200℃乃至1,300
℃の上限温度である1、 300℃以下の融点を有する
コバルト基劇熱合金の粉末またはニッケル基耐熱合金の
粉末またはコバルト−ニッケル基耐熱合金の粉末を使用
するものである。
1,200℃ to 1,300℃ used as sintering temperature
A powder of a cobalt-based heat-resistant alloy, a powder of a nickel-based heat-resistant alloy, or a powder of a cobalt-nickel-based heat-resistant alloy having a melting point of 1,300°C or less, which is the upper limit temperature of 1.3°C, is used.

本発明の焼結硬質合金複合高速度鋼を製造する場合に焼
結用原料を焼結する温度を1.200℃乃至1.300
℃の範囲内に限定して、焼結作業中に高速度鋼の粒成長
粗大化を抑制し、同時に焼結用原料を1.200℃乃至
1.500℃の範囲内の温度下に曝らして焼結作業を行
う工程において、焼結助材であるコバルト基耐熱合金の
粉末またはニッケル基耐熱合金の粉末またはコバルト−
ニッケル基耐熱合金の粉末が溶融状態を生成して、高速
度粒子の多数個および硬質合金粒子の多数個の混合集合
体における個々の粒子に液a焼結するようにしたことを
特徴とするものである。
When producing the sintered hard alloy composite high speed steel of the present invention, the temperature at which the raw material for sintering is sintered is set at 1.200°C to 1.300°C.
℃ to suppress grain growth coarsening of high-speed steel during sintering, and at the same time expose the raw material for sintering to a temperature within the range of 1.200℃ to 1.500℃. In the process of performing sintering work, powder of cobalt-based heat-resistant alloy, powder of nickel-based heat-resistant alloy, or cobalt-based sintering aid is used.
A powder of a nickel-based heat-resistant alloy is characterized in that it generates a molten state and sinters into individual particles in a mixed aggregate of a large number of high-velocity particles and a large number of hard alloy particles. It is.

焼結助(ぢ粉末として使用するコバルト基耐熱合金粉末
にはコバルトを50重量%乃至80重量係含イコしてい
て融点が1.300℃以下である耐熱合金の粉末2例え
ばコバルトが68重量%とり(−1人が26重量%とタ
ングステンが5重量部と炭素が1重量部との組成割合の
ステライト6等のコバルト基耐熱合金の粉末を使用し、
また焼結助材粉末として使用するニッケル基耐熱合金粉
末にはニッケルを50重量%乃至90重量%含有してい
る融点が1.500℃以下である耐熱合金の粉末9例え
はニッケルが82重量%とクロムが11重量%と硼素が
2重量部と珪素が25重量%と鉄が2.0重量部と炭素
が05重量%との組成割合のフクダロイー4等のニッケ
ル基耐熱合金の粉末を使用し、また、焼結助材粉末とし
て使用するコバルト−ニッケル基耐熱合金粉末にはコバ
ルトとニッケルとを合わせて50重量%乃至85重量%
含有していて融点が1、300℃以下であるコバルトー
二/ケル基耐熱合金1例えはコバルトが41重量%とニ
ッケルが26重量%とクロムが20重量%と硼素が6重
量部とモリブデンが6重量部と珪素が4重量部との組成
割合のフクダロイI” P −15D等のコバルト−ニ
ッケル基耐熱合金の粉末を使用する。
The cobalt-based heat-resistant alloy powder used as the sintering aid powder contains 50% to 80% by weight of cobalt and has a melting point of 1.300°C or less.2 For example, 68% by weight of cobalt. Tori (-1 person uses powder of cobalt-based heat-resistant alloy such as Stellite 6 with a composition ratio of 26% by weight, 5 parts by weight of tungsten, and 1 part by weight of carbon,
In addition, the nickel-based heat-resistant alloy powder used as the sintering aid powder contains 50% to 90% by weight of nickel and has a melting point of 1.500°C or less. A powder of a nickel-based heat-resistant alloy such as Fukudaloy 4 with a composition ratio of 11% by weight of chromium, 2 parts by weight of boron, 25% by weight of silicon, 2.0 parts by weight of iron, and 0.5% by weight of carbon is used. In addition, the cobalt-nickel based heat-resistant alloy powder used as the sintering aid powder contains 50% to 85% by weight of cobalt and nickel in total.
Cobalt/Kel based heat resistant alloy with a melting point of 1,300°C or below.For example, 41% by weight of cobalt, 26% by weight of nickel, 20% by weight of chromium, 6 parts by weight of boron, and 6 parts by weight of molybdenum. A powder of a cobalt-nickel base heat-resistant alloy such as Fukudaloy I''P-15D is used in a composition ratio of 4 parts by weight to 4 parts by weight of silicon.

以上に説明したように9本発明の焼結硬質合金複合高速
度鋼は、高速度鋼粉末に硬質炭化物粉末または硬質窒化
物粉末または硬質硼化物粉末または硬質珪化物粉末を加
えた混合粉末に、更に、コバルト基耐熱合金粉末または
ニッケル基面1熱合金粉末またはコバルト−ニッケル基
耐熱合金粉末のうちよシ選択したけ熱合金粉末を添加し
た混合粉末を、焼結して生成した焼結組織体である焼結
硬質合金複合高速度鋼であって。
As explained above, the sintered hard alloy composite high-speed steel of the present invention is made by adding a mixed powder of high-speed steel powder, hard carbide powder, hard nitride powder, hard boride powder, or hard silicide powder, Furthermore, a sintered structure produced by sintering a mixed powder to which a heat-resistant alloy powder selected from cobalt-based heat-resistant alloy powder, nickel-based heat-resistant alloy powder, or cobalt-nickel-based heat-resistant alloy powder is added. It is a sintered hard alloy composite high speed steel.

斯様にして製造した焼結硬質合金複合高速度鋼は、高速
度鋼のみを用いて焼結して得られる焼結高速度鋼に比較
して、硬度が著しく高く且つ耐熱性も高い性能を備えた
焼結鋼である。
The sintered hard alloy composite high-speed steel produced in this manner has significantly higher hardness and higher heat resistance than sintered high-speed steel obtained by sintering only high-speed steel. It is made of sintered steel.

次に1本発明の方法によって焼結硬質合金複合高速度鋼
を製造する工程と作用とを説明すると共に製造して得ら
れる本発明の焼結硬質合金複合高速度鋼について説明す
る。
Next, the process and operation of manufacturing a sintered hard alloy composite high speed steel by the method of the present invention will be explained, and the sintered hard alloy composite high speed steel of the present invention obtained by manufacturing will be explained.

本発明の焼結硬質合金複合高速度鋼を製造する作業につ
いてd[、使用する硬質合金の種類別に説明する。
The work of manufacturing the sintered hard alloy composite high-speed steel of the present invention will be explained by type of hard alloy used.

硬質合金粉末として硬質炭化物粉末を使用する場合は、
高速度鋼粉末を50重量%乃至8o重16:%と、炭化
クロム・炭化モリブデン・炭化タングステン・炭化バナ
ジウム・炭化ニオブ・炭化タンタル・炭化チタン・炭化
ジルコニウム・炭化ハフニクムのうちより選択した硬質
炭化物の粉末を40重量%乃至15重量%と1.200
℃乃至1;soO℃の範囲内の温度より選定した焼結用
温度のもとて溶融状態を生成するコバルトを50重量%
乃至80重量%含有しているコバルト基耐熱合金9例え
はステライト−6等のコバルト基耐熱合金の粉末または
ニッケルを50重量%乃至90重量%含有しているニッ
ケル基耐熱合金2例えばフクダロイー4等のニッケル基
耐熱合金の粉末またはコバルトとニッケルとを合わせて
50重量%乃至85重量%含有しているコバルト−ニッ
ケル基耐熱合金1例えばフクダコイFP−150等のコ
バルト−ニッケル基耐熱合金の粉末のうちより選択した
耐熱合金の粉末を10重@チ乃至5M量%との割合範囲
内より選定した割合にて混合した混合粉末を焼結用原料
とし、斯様に調製した焼結用原料を0.8 ton /
 crl乃至10 ton / crlの範囲内の圧力
にて金型加圧成形した成形体を1.200℃乃至1.3
00℃の範囲内の温度にて常圧下または真空中にて液相
焼結を行い、或は、  0.8 ton/crl乃至1
0ton/caの範囲内の圧力にて静水圧加用成形した
成形体を1.200℃乃至1.500℃の範囲内の温度
にて常圧下または真空中にて液相焼結を行い、或は、加
圧加熱室内にて〇8t o n / cTI乃至81.
 o n / aiの範囲内の圧力にて加圧すると同時
に1.200 ℃乃至1.300 ℃の範囲内の温度に
て加熱して加圧加熱焼結を行い。
When using hard carbide powder as hard alloy powder,
50% to 8% by weight of high-speed steel powder and a hard carbide selected from chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnicum carbide. 40% to 15% by weight of powder and 1.200%
50% by weight of cobalt which forms a molten state at a sintering temperature selected from temperatures in the range of 1°C to 1°C.
9 cobalt-based heat-resistant alloys containing 50% to 80% by weight of nickel; 2 powders of cobalt-based heat-resistant alloys such as Stellite-6; 2 nickel-based heat-resistant alloys containing 50% to 90% nickel; such as Fukudaloy 4, etc. Powders of nickel-based heat-resistant alloys or cobalt-nickel-based heat-resistant alloys containing 50% to 85% by weight of cobalt and nickel in total 1 For example, from powders of cobalt-nickel-based heat-resistant alloys such as Fukuda Koi FP-150. The raw material for sintering is a mixed powder obtained by mixing the powder of the selected heat-resistant alloy in a ratio selected from within the ratio range of 10% by mass to 5% by weight, and the raw material for sintering prepared in this way is 0.8% by mass. ton /
A molded body pressure-molded with a mold at a pressure within the range of crl to 10 ton/crl is heated to 1.200°C to 1.3°C.
Liquid phase sintering is carried out at a temperature within the range of 00°C under normal pressure or in vacuum, or 0.8 ton/crl to 1
A molded body formed by isostatic pressing at a pressure within the range of 0 ton/ca is subjected to liquid phase sintering at a temperature within the range of 1.200°C to 1.500°C under normal pressure or in vacuum, or 08 tons/cTI to 81.
Pressure heating sintering is performed by applying pressure within the range of on/ai and simultaneously heating at a temperature within the range of 1.200°C to 1.300°C.

或は、  0.8 ton / crI乃至8 ton
 / crIの範囲内の圧力にて静水圧加圧すると同時
に1,200℃乃至1.500℃の範囲内の温度にて加
熱する熱間静水圧加圧加熱焼結を行って、硬質炭化物粉
末を複合した焼結高速度鋼を生成する。
Or 0.8 ton/crI to 8 ton
Hard carbide powder is produced by hot isostatic pressing at a pressure within the range of /crI and heating at a temperature within the range of 1,200°C to 1,500°C at the same time. Produces composite sintered high speed steel.

硬質合金粉末として硬質窒化物粉末を使用する場合は、
高速度鋼粉末を50重量%乃至80重帽乃と、窒化チタ
ン・窒化ジルコニウム・窒化ハフニウノ・・窒化珪素の
うちより選択した硬質窒化物の粉末を30重量%乃至1
0重量%と。
When using hard nitride powder as hard alloy powder,
50% to 80% by weight of high-speed steel powder and 30% to 1% by weight of hard nitride powder selected from titanium nitride, zirconium nitride, nitride, and silicon nitride.
0% by weight.

1、200℃乃至1,300℃の範囲内の温度よシ選定
した焼結用温度のもとて溶融状態を生成するコバルトを
50重量%乃至80重量%含有しでいるステライト−6
等のコバルト基耐熱合金の粉末またはニッケルを5o重
量係乃至9o重量係含有しているフクダロイー4等のニ
ッケル基耐熱合金の粉末またはコバルトとニッケルと 
   ゛を合わせて50重量%乃至85重量係含有して
いるフクダロイ−15[1等のコバルト−ニッケル基耐
熱合金の粉末を20:fflt%乃至1o重椴係との割
合範囲内より選定した割合にて混合した混合粉末を焼結
用原料とし、其の焼結用原料を前記の硬質炭化物粉末を
使用する場合の焼結方法と同様の方法にて液相焼結を行
って硬質窒化物粉末を複合した焼結高速度鋼を生成する
1. Stellite-6 containing 50% to 80% by weight of cobalt which forms a molten state at a selected sintering temperature within the range of 200°C to 1,300°C.
Cobalt-based heat-resistant alloy powder such as Fukudaloy 4 containing 50 to 90 weight percent nickel powder, or cobalt and nickel powder.
Powder of a cobalt-nickel based heat-resistant alloy such as Fukudaloy-15 [1 grade] containing a total of 50% by weight to 85% by weight in a proportion selected from within the ratio range of 20% to 10% by weight. The mixed powder is used as a raw material for sintering, and the raw material for sintering is subjected to liquid phase sintering in the same manner as the sintering method when using the hard carbide powder described above to obtain a hard nitride powder. Produces composite sintered high speed steel.

硬質合金粉末として硬質硼化物粉末を使用する場合は、
高速度鋼粉末を50重量%乃至8o重量係と、二面化チ
タン・二面化ジルコニウム・二面化ハノニウムのうちよ
り選択した硬質硼化物の粉末を30重量%乃至1o重量
%と1,200℃乃至1,310℃の範囲内の温度より
選定した焼結用温度のもとて溶融状態を生成するコバル
トを50重量%乃至80重量係含有しているステライト
−6等のコバルト基耐熱合金の粉末まゾζ幻、二−ノケ
ルを5o重量係乃至9o重量係含有しているフクダロイ
ー4等のニッケル基耐熱合金の粉末寸たd:コバルトと
ニッケルとヲ合わせて50重T、?i%乃至85重量多
含有しているフクダ「lイエ5P−150等のコバルト
−ニッケル基耐熱合金の粉末のうちより選択した耐熱合
金の粉末を20重量%乃至10重量%との割合範囲内よ
り選定した割合にて混合した混合粉末を焼結用原料とし
、其の焼結用原料を前記の硬質炭化物粉末を使用した場
合の焼結方法と同様の方法にて液相焼結を行って、硬質
硼化物粉末を複合した焼結高速度鋼を生成する。
When using hard boride powder as hard alloy powder,
50% to 80% by weight of high-speed steel powder, 30% to 1% by weight of hard boride powder selected from among titanium dihedral, zirconium difaced, and hanonium difaced, and 1,200% by weight A cobalt-based heat-resistant alloy such as Stellite-6 containing 50% to 80% by weight of cobalt which forms a molten state at a sintering temperature selected from the range of 1,310°C to 1,310°C. Powder size of a nickel-based heat-resistant alloy such as Fukudaloy 4 containing 50 to 90 weight percent of Ni-Nokel is 50 weight T in total with cobalt and nickel. The powder of a heat-resistant alloy selected from among the powders of cobalt-nickel-based heat-resistant alloys such as Fukuda's 5P-150 containing 85% to 85% by weight of heat-resistant alloy powder is within the proportion range of 20% to 10% by weight. A mixed powder mixed in a selected ratio is used as a raw material for sintering, and the raw material for sintering is subjected to liquid phase sintering in the same manner as the sintering method when using the hard carbide powder, Produces sintered high-speed steel composited with hard boride powder.

硬質合金粉末として硬質珪化物粉末を使用する揚台−1
.高速度鋼粉末を50重量%乃至8o重:1;Jと、二
珪化クロム・二珪化モリブデンのうちより選択した硬質
珪化物の粉末を60重量%乃至10重抵係と、1,20
0’C乃至1,310’Cの範囲内の温度より選定した
焼1結用温度のもとで溶融状態を生成するコバルトを5
0重吋係乃至80重量係含有しているステライト−6等
のコバルト基耐熱合金の粉末またーはニッケルを50重
量%乃至90重量係含有しているフクダロイー4等のニ
ッケル基耐熱合金の粉末またはコバルトとニッケルとを
合わせて50 重量% 乃至85重量係含有しているノ
クダロイFP −150等のコバルト−ニッケル基耐熱
合金の粉末を20重量%乃至10重量%との割合範囲内
よシ選定した割合にて混合した混合粉末を焼結用原料と
し、其の焼結用原料を前記の硬質炭化物粉末を使用した
場合の焼結方法と同様の方法にて液相焼結を行って、硬
質珪化物粉末を複合した焼結高速度鋼を生成する。
Lifting platform using hard silicide powder as hard alloy powder-1
.. 50% by weight of high-speed steel powder to 80% by weight: 1;
Cobalt that forms a molten state at a sintering temperature selected from the range of 0'C to 1,310'C is
A powder of a cobalt-based heat-resistant alloy such as Stellite-6 containing 0 to 80% by weight, or a powder of a nickel-based heat-resistant alloy such as Fukudaloy 4 containing 50 to 90% by weight of nickel; The proportion of cobalt-nickel based heat-resistant alloy powder such as Nokdaloy FP-150 containing 50% to 85% by weight of cobalt and nickel in total is selected within the range of 20% to 10% by weight. The mixed powder mixed in step 1 is used as a raw material for sintering, and the raw material for sintering is subjected to liquid phase sintering in the same manner as the sintering method when using the hard carbide powder described above to obtain a hard silicide. Produces sintered high-speed steel composited with powder.

以−ヒに説明した製造作業によってKOられる焼結硬質
炭化物複合高速度鋼または焼結硬質窒化物複合高速度鋼
または焼結硬質硼化物複合高速度鋼または焼結硬質珪化
物複合高速度鋼d:、高速度鋼粒子の多数個と硬質炭化
物粒子の多数個とまたは、高速度鋼粒子の多数個と硬質
窒化物粒子の多数個と、または、高速度鋼粒子の多数個
と硬質硼化物核子の多数個と9寸たは、高速度鋼粒子の
多数個と硬質珪化物粒子の多数個との混合粉末が焼結し
ている多孔質の複合焼結体における個々の粒子の間の間
隙に、コバルト基面jβJ1合金寸たはニッケル基面]
熱合金またはコバルi・−ニッケル基耐熱合金より成る
海綿状構造の合金組織が充塞していて、其の海綿状構造
の合金組織が1個々の高速度鋼粒子と個々の硬質合金粒
子とに結合して焼結複合組織を構成している焼結硬質合
金複合高速度鋼である。
Sintered hard carbide composite high speed steel or sintered hard nitride composite high speed steel or sintered hard boride composite high speed steel or sintered hard silicide composite high speed steel d that is KOed by the manufacturing operations described below. : a large number of high speed steel particles and a large number of hard carbide particles, or a large number of high speed steel particles and a large number of hard nitride particles, or a large number of high speed steel particles and a large number of hard boride nucleons. In the gaps between individual particles in a porous composite sintered body in which a mixed powder of a large number of high-speed steel particles and a large number of hard silicide particles is sintered. , cobalt-based jβJ1 alloy size or nickel-based surface]
The alloy structure is filled with a spongy structure consisting of a thermal alloy or a Kobal i-nickel based heat-resistant alloy, and the spongy structure of the alloy structure is bonded to one individual high-speed steel particle and one individual hard alloy particle. It is a sintered hard alloy composite high speed steel that has a sintered composite structure.

次に2不発IJ」の方法によって焼結硬質合金複合高速
度鋼を製造する作業と製造して得られる本発明の焼結硬
質合金複合高速度鋼について説明する。
Next, the process for producing a sintered hard alloy composite high speed steel by the method of "2 Unexploded IJ" and the sintered hard alloy composite high speed steel of the present invention obtained by manufacturing will be explained.

実施例 1 か1ε結用原相には、三菱製鋼杆製造のクロムが4重沿
飴とタングステンが6屯量係とモリブデンが5屯量係と
バナジウムが2重量係と珪素が08重量%と炭素が11
重量%と鉄が81.1屯量係との組成割合を成している
高速度鋼の粉末を80重量%と炭化タングステン粉末を
10重量%と、福田金属箔粉社製造のコバルトか70重
量%とニッケルが2重量係とクロムが19重量%とタン
グステンが5屯量係と硼素が25重量%と珪素が1.5
屯量係との組成割合のコバルト基耐熱合金であるフクダ
ロイー160の粉末を10重量%との割合にて混合した
混合粉末を使用した。斯様に調製した焼結用原料を冷間
静水圧プレスにて8 t o n / alの圧力を用
いて成形体を生成した。其の成形体を真空中にて1,2
30℃に加熱して液相焼結を行い、続いて真空中にて冷
却して固相の焼結体を生成した。其の得られた焼結体は
、高速度鋼粒子の多数個と炭化タングステン粒子の多数
個とが混合して焼結した多孔質の焼結体における個々の
粒子の間の間隙に、コバルト基耐熱合金であるフクダロ
イー160より成る海綿状構造の合金組織が充塞してい
て、其の海綿状構造の合金組織が個々の高速度鋼粒子お
よび個々の炭化タングステン粒子に結合して焼結複合組
織体を構成している焼結炭化タンクステン複合高速度鋼
よ構成る焼結硬質合金複合高速度鋼であった。
Example 1 The base material for bonding 1ε contains 4 layers of chromium, 6 weight percent of tungsten, 5 weight percent of molybdenum, 2 weight percent of vanadium, and 0.8 weight percent of silicon manufactured by Mitsubishi Steel Rod Manufacturing. carbon is 11
80% by weight of high-speed steel powder, 10% by weight of tungsten carbide powder, and 70% by weight of cobalt manufactured by Fukuda Metal Foil and Powder Co., Ltd., with a composition ratio of 81.1% by weight and iron. %, nickel is 2% by weight, chromium is 19% by weight, tungsten is 5% by weight, boron is 25% by weight, and silicon is 1.5%.
A mixed powder was used in which powder of Fukudaloy 160, which is a cobalt-based heat-resistant alloy, was mixed in a composition ratio of 10% by weight with respect to the weight ratio. The raw material for sintering thus prepared was subjected to a cold isostatic press at a pressure of 8 tons/al to produce a molded body. The molded body is heated in vacuum for 1 or 2 hours.
Liquid phase sintering was performed by heating to 30° C., followed by cooling in vacuum to produce a solid phase sintered body. The obtained sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of tungsten carbide particles are mixed and sintered, and a cobalt group is added to the gaps between the individual particles. It is filled with a spongy alloy structure made of Fukudaloy 160, a heat-resistant alloy, and the spongy alloy structure is bonded to individual high-speed steel particles and individual tungsten carbide particles to form a sintered composite structure. It consists of sintered carbide tank stainless steel composite high speed steel and sintered hard alloy composite high speed steel.

実施例 2 焼結用原料には、実施例1にて使用した高速度t(i句
粉末と同じ粉末を75屯量係と、炭化タンタル粉末を1
4重量%と、実施例1にて使用し/杜コバルト基面]熱
合金粉末と同じ粉末であるフタダロイー160の粉末を
11重量%との割合にて混合した混合粉末を使用し7た
。斯様に調製し7’iJαIJ、結用jハ)制を用いて
焼結体を製造し9作業は実施例1の場合と同様にして行
った。其の得ら71.た焼結体は、高速度鋼粒子の多数
個と炭化タンタル粒子の多数個とが混合して焼結した多
孔質の焼結体における個々の粒子の間の間隙にコバルト
基面j熱合金であるノクダロイー160より成るガJJ
綿状構造の合金組織が充塞していてJしの?1lli綿
状構造の合金組織が個々の高速度鋼粒子および個々の炭
化タンタル粒子に結合して焼結複合組織体を構成してい
る焼結炭化タンクル複合高速度鋼よ構成る焼結硬質合金
複合高速度鋼であった。
Example 2 The raw materials for sintering were 75 tons of the same powder as the high-speed t (i-phrase powder) used in Example 1, and 1 ton of tantalum carbide powder.
A mixed powder was used in which 4% by weight and 11% by weight of Futadaloy 160 powder, which is the same powder as the thermal alloy powder used in Example 1, were mixed. A sintered body prepared in this way was produced using the 7'iJαIJ, sintering method, and the 9 operations were carried out in the same manner as in Example 1. 71. The sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of tantalum carbide particles are mixed and sintered, and a cobalt-based thermal alloy is injected into the gaps between the individual particles. A GaJJ consisting of 160 Nokdaroi
Is it filled with a cotton-like alloy structure? A sintered hard alloy composite consisting of a sintered carbide tanker composite high speed steel in which an alloy structure with a cotton-like structure is bonded to individual high speed steel particles and individual tantalum carbide particles to form a sintered composite structure. It was high speed steel.

実施例 3 焼結用原料には、実施例1にて使用した高速度鋼粉末と
同じ粉末を70重量%と、二珪化モリブデン粉末を17
重量%と、福田金属箔粉ネ1製造のニッケルが73重量
%とコノ(ルトが1屯量係とクロムが14重量%と鉄が
4重量係と炭素が05重量%と硼素が6屯量係と珪素が
45重量%との組成割合のニッケル基耐熱合金であるフ
クダロイー乙の粉末を16重量%との割合にて混合した
混合粉末を使用した。斯様に調製した焼結用原料を9機
械プレスにより金型にて10 ton / ctrrの
圧力を用いて成形体を生成し/ξ。
Example 3 The raw materials for sintering included 70% by weight of the same powder as the high-speed steel powder used in Example 1 and 17% by weight of molybdenum disilicide powder.
73% by weight of Fukuda metal foil powder, 1% by weight of nickel, 14% by weight of chromium, 4% by weight of iron, 05% by weight of carbon, and 6% by weight of boron. A mixed powder was used in which powder of Fukudaloy Otsu, a nickel-based heat-resistant alloy with a composition ratio of 45% by weight and silicon, was mixed at a ratio of 16% by weight.The raw material for sintering prepared in this way was A molded body was produced using a pressure of 10 ton/ctrr in a mold using a mechanical press/ξ.

次いで、其の成形体を真空中にて1.220℃の温度に
て加熱して液相焼結を行い、 Uaいて真空中にて冷却
して固相の焼結体を生成した。得られた焼結体は、高速
度鋼粒子の多数個と二珪化モリブデン粒子の多数個とが
混合して焼結した多孔質の焼結体における個々の粒子の
間の間隙ニッケル基面j熱合金であるフクダロイ−6よ
り成る海綿状構造の合金組織が充塞していて、其の海B
:状構造の合金組織が個々の高速度鋼粒子」・・よび個
々の二珪化モリブデン粒子に結合して焼結複合組織体を
構成している焼結二珪化モリブデン複合高速度鋼より成
る焼結硬質合金複合ii’ii速度鋼であった。
Next, the molded body was heated in vacuum at a temperature of 1.220° C. to perform liquid phase sintering, and then cooled in vacuum under Ua to produce a solid phase sintered body. The obtained sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of molybdenum disilicide particles are mixed and sintered. It is filled with a spongy alloy structure made of the alloy Fukudaloy-6, and its sea B
sintered molybdenum disilicide composite high-speed steel in which the alloy microstructure of the :-like structure is bonded to individual high-speed steel particles and individual molybdenum disilicide particles to form a sintered composite structure. It was a hard alloy composite III'III speed steel.

実施例 4 焼結用原料には、実施例1にて使用した高速度鋼粉末と
同じ粉末を65重量%と、窒化珪素粉末を20重量%と
、実施例1にて使用したコバルト基酬熱合金粉末と同じ
粉末であるフクダロイ−160の粉末を15重量%との
割合にて混合した混合粉末を使用した。
Example 4 The raw materials for sintering included 65% by weight of the same powder as the high-speed steel powder used in Example 1, 20% by weight of silicon nitride powder, and the cobalt-based heat used in Example 1. A mixed powder was used in which Fukudaloy-160 powder, which is the same powder as the alloy powder, was mixed at a ratio of 15% by weight.

斯様に調製した焼結用原料を1機械プレスにより金型に
て10 ton / crlの圧力を用いて成形体を生
成した。次いで、其の成形体を真空中にて1、230℃
の温度にて加熱して液相焼結を行い。
The raw material for sintering thus prepared was molded into a mold using a mechanical press at a pressure of 10 ton/crl to form a molded body. Next, the molded body was heated to 1,230°C in a vacuum.
Liquid phase sintering is performed by heating at a temperature of .

続いて、真空中にて冷却して固相の焼結体を生成した。Subsequently, it was cooled in vacuum to produce a solid-phase sintered body.

得られた焼結体は、高速度鋼粒子の多数個と窒化珪素粒
子の多数個とが混合して焼結した多孔質の焼結体におけ
る個々の粒子の間の間隙に、コバルト基耐熱合金である
フクダロイー160よシ成る海綿状構造の合金組織が充
塞していて、其の海綿状構造の合金組織が個々の高速度
鋼粒子および個々の窒化珪素粒子に結合して焼結複合組
織体を構成している焼結窒化珪素複合高速度鋼より成る
焼結硬質合金複合高速度鋼であった。
The obtained sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of silicon nitride particles are mixed and sintered, and a cobalt-based heat-resistant alloy is placed in the gaps between the individual particles. It is filled with a spongy alloy structure consisting of Fukudaloy 160, which is a carbon fiber alloy, and the spongy alloy structure bonds to individual high-speed steel particles and individual silicon nitride particles to form a sintered composite structure. It was a sintered hard alloy composite high speed steel consisting of a sintered silicon nitride composite high speed steel.

実施例 5゜ 焼結用原料には、実施例1にて使用した高速度鋼粉末と
同じ粉末を60重量%ど、二面化チタン粉末を24重量
%と、実施例6にて使用したニッケル基耐熱合金である
フクダロイー乙の粉末を16重量%との割合にて混合し
た混合粉末を使用した。斯様に調製した焼結用京料を。
Example 5 The raw materials for sintering included 60% by weight of the same powder as the high-speed steel powder used in Example 1, 24% by weight of titanium dihedral powder, and the nickel used in Example 6. A mixed powder containing 16% by weight of powder of Fukudaloy Otsu, which is a basic heat-resistant alloy, was used. Kyoto material for sintering prepared in this way.

機械プレスにより金型にて10 ton / arHの
圧力を用いて成形体を生成した。次いで、其の成形体を
水素ガス雰囲気中にて1.250℃の温度にて加熱して
液相焼結を行い、続いて、水素ガス雰囲気中にて冷却し
て固相の焼結体を生成した。
A molded body was produced by a mechanical press using a pressure of 10 ton/arH in a mold. Next, the molded body is heated at a temperature of 1.250°C in a hydrogen gas atmosphere to perform liquid phase sintering, and then cooled in a hydrogen gas atmosphere to form a solid phase sintered body. generated.

得られた焼結体は、高速度鋼粒子の多数個と二面化ブー
タン粒子の多数個とが混合して焼結した多孔質の焼結体
における個々の粒子の間の間隙に、ニッケル基面」熱合
金であるフクダロイ−6よシ成る海綿状構造の合金組織
が充塞していて其の海綿状構造の合金組織が個々の高速
度鋼粒イおよび個々の二411化チタン粒子に結合して
焼結複合組織体を構成している焼結二rd′J]化チタ
ン複合高速度鋼より成る焼結硬質合金複合高速度鋼であ
った。
The obtained sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of dihedralized butane particles are mixed and sintered, and nickel base is added to the gaps between the individual particles. It is filled with a spongy-structured alloy structure consisting of Fukudaloy-6, which is a thermal alloy, and the spongy-structured alloy structure is bonded to individual high-speed steel grains and individual titanium 2411 grains. This was a sintered hard alloy composite high speed steel made of a sintered titanium composite high speed steel comprising a sintered composite structure.

実施例 6 焼結用原料には、実施例1にて使用した高速度鋼粉末と
同じ粉末を55重量%と、窒化チタン粉末を27重量%
と、実施例4にて使用したコバルト−ニッケル基耐熱合
金であるフクダロイ−150の粉末を18重量%との割
合にて混合した混合粉末を使用した。斯様に調製した焼
結用原料をホットプレスを使用して8 ton / c
rlの圧力を加えると同時に1.220 ℃の温度にて
加熱して液相焼結を行い、続いて、ホットプレスを外部
より冷却して固相の焼結体を生成した。
Example 6 The raw materials for sintering contained 55% by weight of the same powder as the high-speed steel powder used in Example 1 and 27% by weight of titanium nitride powder.
A mixed powder was used in which powder of Fukudaloy-150, which is a cobalt-nickel based heat-resistant alloy used in Example 4, was mixed at a ratio of 18% by weight. The raw material for sintering thus prepared was heated to 8 ton/c using a hot press.
Liquid phase sintering was performed by applying a pressure of rl and simultaneously heating at a temperature of 1.220° C., and then the hot press was cooled from the outside to produce a solid phase sintered body.

得られた焼結体は、高速度鋼粒子の多数個と窒化チタン
粒子の多数個とが混合して焼結した多孔質の焼結体にお
ける個々の粒子の間の間隙にコバルト−ニッケル基耐熱
合金であるフクダロイー150より成る海綿状構造の合
金組織が充塞していて、其の海綿状構造の合金組織が個
々の高速度鋼粒子および個々の窒化チタン粒子に結合し
て焼結複合組織体を構成している焼結窒化チタン複合高
速度鋼より成る焼結硬質合金複合高速度鋼であった。
The obtained sintered body is a porous sintered body in which a large number of high-speed steel particles and a large number of titanium nitride particles are mixed and sintered, and a heat-resistant cobalt-nickel base is added to the gaps between the individual particles. It is filled with a spongy-structured alloy structure made of Fukudaloy 150, which is an alloy, and the spongy-structured alloy structure binds to individual high-speed steel particles and individual titanium nitride particles to form a sintered composite structure. It was composed of sintered titanium nitride composite high speed steel and sintered hard alloy composite high speed steel.

実施例 Z 焼結用原料には、実施例1にて使用した高速度鋼の粉末
と同じ粉末を50重量%と、炭化チタン粉末を60重量
%と、実施例3にて使用したニッケル基耐熱合金である
フクダロイ−6の粉末を20重量%との割合にて混合し
た混合粉末を使用した。斯様に調製した焼結用原料を熱
間静水圧加圧加熱装置を使用して8 ton / cr
lの圧力を用いて静水圧加圧すると同時に1.220℃
のl!i′□度にて加熱して熱間静水圧加圧加熱を行っ
て液相焼結を行い、続いて、熱間静水圧加圧加熱5装置
を外部より冷却して固相の焼結体を生成した。得られた
焼結体は、高速度鋼粒子の多数個と炭化チタン粒子の多
数個とが混合して焼結し/6多孔質の焼結体における個
々の粒子の間の間隙に、ニッケル基面J熱合金であるフ
クダロイー6より成る海綿状構造の合金組織が充塞して
いて、其のjσ綿状構造の合金組織が個々の高速度鋼粒
子おJ:び個々の炭化チタン粒子に結合して焼結複合組
織体を構成している焼結炭化チタン複合高速度鋼より成
る焼結硬質合金複合高速度鋼であった。
Example Z The raw materials for sintering include 50% by weight of the same powder as the high-speed steel powder used in Example 1, 60% by weight of titanium carbide powder, and the nickel-based heat-resistant powder used in Example 3. A mixed powder obtained by mixing powder of Fukudaloy-6, which is an alloy, at a ratio of 20% by weight was used. The raw material for sintering thus prepared was heated to 8 ton/cr using a hot isostatic pressure heating device.
1.220℃ at the same time as hydrostatic pressurization using a pressure of 1.220℃
No l! Liquid phase sintering is performed by heating at i'□ degrees and hot isostatic pressing, followed by cooling the hot isostatic pressing and heating device 5 from the outside to form a solid phase sintered body. was generated. The obtained sintered body is made by mixing and sintering a large number of high-speed steel particles and a large number of titanium carbide particles/6.Nickel base is added to the gaps between the individual particles in the porous sintered body. It is filled with a spongy alloy structure consisting of Fukudaloy 6, which is a J-plane thermal alloy, and the jσ spongy structure is bonded to individual high-speed steel particles and individual titanium carbide particles. This was a sintered hard alloy composite high-speed steel consisting of a sintered titanium carbide composite high-speed steel that constituted a sintered composite structure.

以上に説明した実施例にて製造した焼結硬質合金複合高
速度鋼は、焼結の丑までHV870乃至HV940の硬
度を示し、其の焼結して得られた焼結硬質合金複合高速
度鋼を570℃の温度にて焼戻しだ場合はHV930乃
至HVj、 02 Qを示した。実施例にて使用した高
速度鋼粉末のみを焼結した焼結高速度鋼は、焼結のま捷
でHV680を示し、其の焼結体を570℃の温度にて
焼戻した場合はHV790を示した。
The sintered hard alloy composite high-speed steel produced in the examples described above exhibits a hardness of HV870 to HV940 up to the point of sintering, and the sintered hard alloy composite high-speed steel obtained by sintering it When it was tempered at a temperature of 570°C, it showed HV930 to HVj, 02Q. The sintered high-speed steel obtained by sintering only the high-speed steel powder used in the examples showed an HV of 680 in the sintering stage, and an HV of 790 when the sintered body was tempered at a temperature of 570°C. Indicated.

Claims (5)

【特許請求の範囲】[Claims] (1)高速度鋼粉末を50重量%乃至80重量%と、炭
化クロム・炭化モリブデン・炭化タングステン・炭化バ
ナジウム・炭化ニオブ・炭化タンタル・炭化チタン・炭
化ジルコニウム・炭化ハフニウムのうちより選択した硬
質炭化物の粉末および窒化チタン・窒化ジルコニウム・
窒化ハフニウム・窒化珪素のうぢよシ選択した硬質窒化
物の粉末および1硼化チタン・1硼化ジルコニウム・1
硼化ハフニウムのうちより選択した硬質硼化物の粉末お
よび1珪化クロム・1珪化モリブデンのうちより選択し
た硬質珪化物の粉末のうちより選択した硬質合金粉末を
60重量%乃至10重量%と1,200℃乃至1,3D
D’Cの範囲内よジ選定した焼結用温度とのもとて溶融
状態を生成するコバルトを50重量%乃至80重量%含
有しているコバルト基側熱合金またはニッケルを50重
量%乃至90重量%含有しているニッケル基耐熱合金ま
たはコバルトとニッケルとを合わせて50重量%乃至8
5重量%含有しているコバルト−ニッケル基耐熱合金の
うちよシ選択した耐熱合金の粉末を20重量%乃至10
重量%との割合範囲内より選定した割合にて混合した混
合粉末を焼結用原料とし。 その焼結用原料を焼結する作業において使用する焼結用
温度には1,200℃乃至1.300℃の温度を使用し
、焼結用圧力には0.8ton/ cr&乃至10.0
 j−On / c21の圧力を使用し、焼結方式は、
焼結用原料を金型加圧成形した成形体を常圧下または真
空中にて焼結を行い。 或は焼結用原料を静水圧加圧成形した成形体を常圧下ま
たは真空中にて焼結を行い、或は焼結用原料を加圧加熱
室内にて加圧すると同時に加熱して焼結を行い、或は焼
結用原料を静水圧加圧加熱室内にて静水圧加圧加熱して
焼結を行い、斯くの如くして焼結作業を行って高速度鋼
粒子の多数個と硬質合金粒子の多数個とか混合している
集合体が焼結した多孔質の焼結体における個々の粒子の
間の間隙にコバルト基耐熱合金ま/ζはニッケル基酬熱
合金丑たはコバルト−ニッケル基耐熱合金より成るdσ
綿状構造の合金組織が個々の高速度鋼粒子および個々の
硬質合金粒子を結合して構成している焼結複合組織体で
あることを特徴とする焼結硬質合金複合高速度鋼。
(1) 50% to 80% by weight of high-speed steel powder and a hard carbide selected from chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnium carbide. powder and titanium nitride, zirconium nitride,
Selected hard nitride powders such as hafnium nitride and silicon nitride, as well as titanium boride, zirconium boride, and
60% to 10% by weight of a hard boride powder selected from hafnium boride and a hard silicide powder selected from monochromium silicide and monomolybdenum silicide; 200℃~1.3D
A cobalt-based thermal alloy containing 50% to 80% by weight of cobalt or 50% to 90% by weight of nickel that produces a molten state under the selected sintering temperature within the range of D'C. Nickel-based heat-resistant alloy containing 50% to 8% by weight of cobalt and nickel combined
Among the cobalt-nickel base heat-resistant alloys containing 5% by weight, 20% by weight to 10% by weight of selected heat-resistant alloy powders are added.
A mixed powder mixed in a ratio selected from within the range of weight% is used as the raw material for sintering. The sintering temperature used in the work of sintering the sintering raw material is 1,200℃ to 1,300℃, and the sintering pressure is 0.8ton/cr& to 10.0℃.
Using j-On/C21 pressure, the sintering method is
The sintering raw material is pressed into a molded body and sintered under normal pressure or in a vacuum. Alternatively, the raw material for sintering is hydrostatically pressed and sintered under normal pressure or in a vacuum, or the raw material for sintering is pressurized and heated at the same time in a pressure heating chamber for sintering. Alternatively, the raw material for sintering is sintered by isostatic pressure heating in a hydrostatic pressure heating chamber, and the sintering operation is performed in this way to form a large number of high-speed steel particles and hard particles. A cobalt-based heat-resistant alloy, ζ is a nickel-based heat-resistant alloy, or a cobalt-nickel heat-resistant alloy is filled in the gaps between individual particles in a porous sintered body in which a large number of alloy particles or a mixed aggregate is sintered. dσ made of base heat-resistant alloy
A sintered hard alloy composite high speed steel characterized in that it is a sintered composite structure in which a cotton-like alloy structure is formed by bonding individual high speed steel particles and individual hard alloy particles.
(2)高速度鋼粉末を50重量%乃至80重量%と、炭
化クロム・炭化モリブデン・炭化タングステン・炭化バ
ナジウム・炭化ニオブ・炭化タンタル・炭化チタン・炭
化ジルコニウム・炭化ハフニウムのうちより選択した硬
質炭化物である硬質合金の粉末を60重量%乃至10重
量%と、1,200℃乃至1.300 ℃の範囲内より
選定した焼結用温度のもとで浴融状態を生成するコバル
トを50重量%乃至80重量%含有しているコバルト基
耐熱合金或はニッケルを50重量%乃至90重量%含有
しているニッケル基耐熱合金、或はコバルトとニッケル
とを合わせて50重量%乃至85重量%含有しているコ
バルト−ニッケル基耐熱合金のうちより選択した而・j
熱合金の粉末を20重量%乃至10重量%との割合範囲
内より選定した割合にて混合した混合粉末を焼結用原料
とし、其の焼結用原料を0.81on/ crri乃至
10 ton / crlの圧力を用いて金型加圧成形
した成形体を常圧丁丑たは真空中にて1、200℃乃至
1.300℃の温度を用いて液オ目焼結を行い、或は、
其の焼結用原料を08ton / cd乃至10 to
n / ctlの圧力を用いて静水圧加圧成形した成形
体を常圧下または真空中にて1.200℃乃至1.30
0℃の温度を用いて液相焼結を行い、或は、其の焼結用
原料を加圧加熱室内にて0.8 ton / crl乃
至8 ton/ Cnlの圧力を用いて加圧すると同時
に1,200℃乃至1.300℃の温度を用いて加熱し
て液相焼結を行い、或は、其の焼結用原料を熱間静水圧
加圧加熱装置を用いて0.8 ton / crl乃至
8 ton / clftの圧力を用いて静水圧加圧す
ると同時に1.200℃乃至1,300℃の温度を用い
て加熱してρノ1間静水圧加圧加熱による液相焼結を行
い、これらの何れかの焼結作業を行って、高速度鋼粒子
の多数個と硬質炭化物粒子の多数個上の混合粉末より成
る多孔質の焼結体における個々の粒子の間の間隙に、耐
熱合金より成る海綿状構造の合金組織が充塞して、其の
合金組織が個々の高速度鋼粒子および個々の硬質炭化物
粒子を結合して構成した焼結複合組織体である焼結硬質
合金複合高速度鋼の製造法。
(2) 50% to 80% by weight of high-speed steel powder and a hard carbide selected from chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnium carbide. 60% to 10% by weight of hard alloy powder, and 50% by weight of cobalt, which forms a bath melt state at a sintering temperature selected from within the range of 1,200°C to 1,300°C. A cobalt-based heat-resistant alloy containing 50% to 90% by weight of nickel, or a nickel-based heat-resistant alloy containing 50% to 85% by weight of cobalt and nickel together. selected from cobalt-nickel based heat-resistant alloys.
The raw material for sintering is a mixed powder in which thermal alloy powder is mixed in a ratio selected from 20% by weight to 10% by weight, and the raw material for sintering is 0.81 on/crri to 10 ton/ The molded body is press-molded using a pressure of 1,200° C. to 1,300° C. under normal pressure or in a vacuum, or
The raw material for sintering is 08 tons/cd to 10 to
The molded body isostatically pressed using a pressure of n/ctl and then heated at 1.200°C to 1.30°C under normal pressure or in a vacuum.
Liquid phase sintering is performed using a temperature of 0°C, or the raw material for sintering is simultaneously pressurized using a pressure of 0.8 ton/crl to 8 ton/Cnl in a pressure heating chamber. Liquid phase sintering is performed by heating at a temperature of 1,200°C to 1,300°C, or the raw material for sintering is heated at a temperature of 0.8 ton/h using a hot isostatic pressure heating device. Liquid phase sintering is performed by isostatic pressure heating using a pressure of crl to 8 ton/clft and heating at a temperature of 1.200°C to 1,300°C for a period of ρ. , by performing any of these sintering operations, a heat-resistant material is created in the gaps between the individual particles in a porous sintered body made of a mixed powder of many high-speed steel particles and many hard carbide particles. Sintered hard alloy composite high-speed alloy is a sintered composite structure that is filled with a spongy alloy structure consisting of an alloy, and the alloy structure is composed of individual high-speed steel particles and individual hard carbide particles. Manufacturing method of speed steel.
(3)高速度鋼粉末を50重量%乃至80重量%と、窒
化チタン・窒化ジルコニウム・窒化ハフニウム・窒化珪
素のうちより選択した硬質窒化物である硬質合金の粉末
を60重紙チ乃至10重量%と1.200℃乃至1.3
00℃の範囲内の温度より選定した焼結用温度のもとて
溶融状態を生成するコバルトを50重量%乃至80重量
%含有しているコバルト基耐熱合金またはニッケルを5
0重量%乃至90重量%含有しているニッケル基耐熱合
金丑たはコバルトとニッケルとを合わせて50重量%乃
至85重量%含有しているコバルト−ニッケル基耐熱合
金の粉末を20重量%乃至10重量%との割合範囲内よ
り選定した割合にて混合した混合粉末を焼結用原料とし
、其の焼結用原料を焼結する方法を特許請求の範囲第2
項における焼結方法と同じ方法によって液相焼結を行っ
て、高速度鋼粉末と硬質窒化物粉末とより成る焼結組織
体を生成することを特徴とする焼結硬質合金複合高速度
鋼の製造法。
(3) 50% to 80% by weight of high speed steel powder and 60% to 10% by weight of hard alloy powder, which is a hard nitride selected from titanium nitride, zirconium nitride, hafnium nitride, and silicon nitride. % and 1.200℃ to 1.3
A cobalt-based heat-resistant alloy or nickel containing 50% to 80% by weight of cobalt that forms a molten state at a sintering temperature selected from the range of 0.000C.
A powder of a nickel-based heat-resistant alloy containing 0% to 90% by weight, or a powder of a cobalt-nickel-based heat-resistant alloy containing 50% to 85% by weight of cobalt and nickel combined, 20% to 10% by weight. Claim 2 describes a method of sintering a mixed powder mixed in a ratio selected from within the ratio range of weight % as a raw material for sintering, and sintering the raw material for sintering.
A sintered hard alloy composite high-speed steel characterized in that liquid phase sintering is performed by the same method as the sintering method in Section 3 to produce a sintered structure consisting of high-speed steel powder and hard nitride powder. Manufacturing method.
(4)高速度鋼粉末を50重量%乃至80重量%と、二
面化チタン・二面化ジルコニウム・二面化ハフニクムの
うちよシ選択した硬質硼化物である硬質合金の粉末を4
0重量%乃至15重量%と、1,200℃乃至1.30
0℃の範囲内の温度より選定した焼結用温度のもとで溶
融状態を生成するコバルトを5o重量係乃至80重坩係
含有しているコバルト基耐熱合金丑/(はニッケルを5
0重量%乃至90重11′L係含翁しているニッケル基
耐熱合金またはコハル[・とニッケルとを合わせて50
重t%乃至85重量%含有しているコバルト−ニッケル
基耐熱合金のうちより選択した側熱合金の粉末を20重
量%乃至10重量%との割合範囲内より選定した割合に
て混合した混合粉末を焼結用原料とし、其の焼結用原料
を焼結する方法を特許請求範囲第2項における焼結方法
と同じ方法によって液A目焼結を行って。 硬質硼化物合金粉末と高速度鋼粉末とよシ成る複合焼結
組織体を生成することを特徴とする焼結硬質合金複合高
速度鋼の製造法。
(4) 50% to 80% by weight of high-speed steel powder and powder of a hard alloy, which is a hard boride selected from among titanium dihedral, zirconium dihedral, and hafnicum dihedral.
0% to 15% by weight and 1,200°C to 1.30°C
A cobalt-based heat-resistant alloy containing 50 to 80 gm of cobalt that forms a molten state at a sintering temperature selected from the range of 0°C.
Nickel-based heat-resistant alloy containing 0% to 90% by weight or nickel
A mixed powder obtained by mixing powders of side-heating alloys selected from cobalt-nickel base heat-resistant alloys containing t% to 85% by weight in a ratio selected from within the ratio range of 20% to 10% by weight. is used as a sintering raw material, and liquid A is sintered using the same method as the sintering method in claim 2. A method for producing a sintered hard alloy composite high-speed steel, characterized by producing a composite sintered body consisting of a hard boride alloy powder and a high-speed steel powder.
(5)高速度鋼粉末を50重量%乃至80重量%と、1
珪化クロム・1珪化モリブデンのうちより選択した硬質
珪化物である硬質合金の粉末を60重量%乃至20重量
%と、1,200℃乃至i、 300℃の範囲内の温度
より選定した焼結用温度のもとて溶融状態を生成するコ
バルトを50重量%乃至80重量%含有しているコバル
ト基耐熱合金捷たはニッケルを50重量%乃至90重量
%含有しているニッケル基耐熱合金またはコバルトとニ
ッケルとを合わせて50重量%乃至85重量%含有して
いるコバルト−ニッケル基耐熱合金のうぢより選択した
耐熱合金の粉末を10重量%乃至5重量係との割合範囲
内より選定した割合にて混合した混合粉末を焼結用原料
とし、其の焼結用原料を焼結する方法を特許請求範囲第
2項における焼結方法と同じ方法によりて液オ目焼結を
行って、高速度鋼粉末と硬質珪化物合金粉末とよシ成る
複合焼結組織体を生成することを特徴とする焼結硬質合
金複合高速度鋼の製造法。
(5) 50% to 80% by weight of high speed steel powder and 1
For sintering, powder of a hard alloy, which is a hard silicide selected from chromium silicide and molybdenum silicide, is used at a temperature of 60% to 20% by weight and a temperature within the range of 1,200°C to 300°C. A cobalt-based heat-resistant alloy containing 50% to 80% by weight of cobalt, which forms a molten state under temperature, or a nickel-based heat-resistant alloy containing 50% to 90% by weight of nickel, or cobalt. Powder of a heat-resistant alloy selected from a cobalt-nickel base heat-resistant alloy containing 50% to 85% by weight in total with nickel in a proportion selected from within the ratio range of 10% to 5% by weight. The mixed powder mixed with the sintering material is used as a raw material for sintering, and the sintering raw material is sintered using the same method as the sintering method in claim 2 to perform high-speed sintering. A method for producing a sintered hard alloy composite high-speed steel, characterized by producing a composite sintered structure consisting of steel powder and hard silicide alloy powder.
JP22789882A 1982-12-27 1982-12-27 Composite high speed steel of sintered hard alloy and its production Pending JPS59118852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22789882A JPS59118852A (en) 1982-12-27 1982-12-27 Composite high speed steel of sintered hard alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22789882A JPS59118852A (en) 1982-12-27 1982-12-27 Composite high speed steel of sintered hard alloy and its production

Publications (1)

Publication Number Publication Date
JPS59118852A true JPS59118852A (en) 1984-07-09

Family

ID=16868033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22789882A Pending JPS59118852A (en) 1982-12-27 1982-12-27 Composite high speed steel of sintered hard alloy and its production

Country Status (1)

Country Link
JP (1) JPS59118852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228677A (en) * 1984-03-12 1985-11-13 ゼネラル・エレクトリツク・カンパニイ Solid particle corrosion-resistant product using titanium carbide
JPS62133025A (en) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd Manufacture of cermet containing nitrogen
JPS62146246A (en) * 1985-12-19 1987-06-30 Tatsuro Kuratomi High speed steel type compound sintered compact and its production
JPS6320434A (en) * 1986-07-11 1988-01-28 Kawasaki Steel Corp Heat resistant alloy for piercing plug
JPH01201439A (en) * 1988-02-05 1989-08-14 Nissan Motor Co Ltd Heat-resistant and wear-resistant iron-based sintered alloy
JPH02213428A (en) * 1988-10-21 1990-08-24 Sandvik Ab Manufacture of cutting tool material
JPH0344450A (en) * 1989-03-16 1991-02-26 Tatsuro Kuratomi Sintered compact of cubic boron nitride reinforced high speed tool steel composite and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228677A (en) * 1984-03-12 1985-11-13 ゼネラル・エレクトリツク・カンパニイ Solid particle corrosion-resistant product using titanium carbide
JPH0247521B2 (en) * 1984-03-12 1990-10-22 Gen Electric
JPS62133025A (en) * 1985-12-04 1987-06-16 Sumitomo Electric Ind Ltd Manufacture of cermet containing nitrogen
JPS62146246A (en) * 1985-12-19 1987-06-30 Tatsuro Kuratomi High speed steel type compound sintered compact and its production
JPS6320434A (en) * 1986-07-11 1988-01-28 Kawasaki Steel Corp Heat resistant alloy for piercing plug
JPH01201439A (en) * 1988-02-05 1989-08-14 Nissan Motor Co Ltd Heat-resistant and wear-resistant iron-based sintered alloy
JPH02213428A (en) * 1988-10-21 1990-08-24 Sandvik Ab Manufacture of cutting tool material
JPH0344450A (en) * 1989-03-16 1991-02-26 Tatsuro Kuratomi Sintered compact of cubic boron nitride reinforced high speed tool steel composite and its production

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
CN1961090B (en) Wearing part consisting of a diamantiferous composite
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
US5482670A (en) Cemented carbide
US20100074788A1 (en) Fully-dense discontinuosly-reinforced titanium matrix composites and method for manufacturing the same
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
CN104946914B (en) A kind of forming method of Metal Substrate functional gradient composite materials
CN110499442B (en) High-strength corrosion-resistant Cr3C2Light metal ceramic alloy and preparation method thereof
CN110218927B (en) High-temperature hard alloy and manufacturing method thereof
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
GB2074609A (en) Metal binder in compaction of metal powders
GB2409467A (en) Method of producing a wear resistant mechanical component
CN111349838B (en) Preparation method of high-entropy alloy composite material
CN102162058B (en) Hard alloy taking nickel-aluminum intermetallic compound Ni3Al as binding phase and preparation method thereof
JPS5820906B2 (en) Carbide heat-resistant material
JPS5857502B2 (en) Sintered material with toughness and wear resistance
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JP3837332B2 (en) In-situ powder metallurgy manufacturing method for wear-resistant composite materials
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
CN108034881A (en) A kind of steel knot TiCN base cemented carbides and application
CN115026290B (en) Preparation method of layered ceramic reinforced particle metal matrix composite
CN117684070A (en) Ni (nickel) 3 Ti/WC composite material and liquid metal infiltration process preparation method thereof
KR0178578B1 (en) Method for manufacturing cementer carbides sintered body
JPS59110756A (en) Heat resistant alloyed composite sintered high speed steel and preparation thereof