EP1751320B1 - Wearing part consisting of a diamantiferous composite - Google Patents

Wearing part consisting of a diamantiferous composite Download PDF

Info

Publication number
EP1751320B1
EP1751320B1 EP05743117A EP05743117A EP1751320B1 EP 1751320 B1 EP1751320 B1 EP 1751320B1 EP 05743117 A EP05743117 A EP 05743117A EP 05743117 A EP05743117 A EP 05743117A EP 1751320 B1 EP1751320 B1 EP 1751320B1
Authority
EP
European Patent Office
Prior art keywords
wearing part
part according
alloy
diamond
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05743117A
Other languages
German (de)
French (fr)
Other versions
EP1751320A1 (en
Inventor
Rolf KÖSTERS
Arndt c/o Ceratizit Schweiz AG LÜDTKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceratizit Austria GmbH
Original Assignee
Ceratizit Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceratizit Austria GmbH filed Critical Ceratizit Austria GmbH
Publication of EP1751320A1 publication Critical patent/EP1751320A1/en
Application granted granted Critical
Publication of EP1751320B1 publication Critical patent/EP1751320B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a wear part made of a diamond-containing composite material and a method for its production.
  • a wearing part is understood to mean a component which is subject to a high level of wear stress.
  • materials such as hardened steels, high-speed steels, stellites, hard metals and hard materials.
  • diamond-containing composites or composite materials are becoming increasingly interesting.
  • the diamond composite thus produced has a very low fracture toughness and poor machinability.
  • the US 4,902,652 describes a method for producing a sintered diamond material.
  • an element from the group of transition metals of groups 4a, 5a and 6a, boron and silicon is deposited by means of physical coating processes.
  • the coated diamond grains are bonded together by a solid phase sintering process.
  • the disadvantage is that the resulting product has a high porosity, low fracture toughness and poor machinability.
  • the US 5,045,972 describes a composite material in which in addition to Diamantkörnem having a size of 1 to 50 microns, a metallic matrix is present, which consists of aluminum, magnesium, copper, silver or their alloys.
  • a metallic matrix which consists of aluminum, magnesium, copper, silver or their alloys.
  • the disadvantage here is that the metallic matrix is only inadequately connected to the diamond grains, so that thereby the mechanical integrity is given insufficiently.
  • the use of finer diamond powder, for example, with a grain size ⁇ 3 microns, as is known from US 5,008,737 does not improve the diamond / metal adhesion.
  • the US 5,783,316 describes a process in which diamond grains coated with W, Zr, Re, Cr or titanium, the coated grains are compacted in succession and the porous body is infiltrated with, for example, with Cu, Ag or Cu-Ag melts.
  • the high coating costs and insufficient wear resistance limit the field of use of composite materials produced in this way.
  • the JP 2003 095743 A describes a diamond-containing composite material containing as matrix metal Ti, Si, Zr, Mo, W, Ta, Nb or Cr. To the matrix metal, Fe, Co, Ni, Cu or Al may be added to the melting point lower. However, such a composite material is only laborious to edit.
  • Object of the present invention is therefore to provide a wear part of a diamond-containing composite material, which has a high wear resistance and can be produced relatively inexpensively by a sufficient shaping workability.
  • a wearing part according to claim 1 Due to the proportion of diamond, the carbide phase and the hard metallic or intermetallic alloy, the consumable part according to the invention has excellent wear resistance.
  • a metallic alloy is a single- or multi-phase material, which may contain not only metallic structural constituents but also intermetallic, semi-metallic or ceramic structural components to understand.
  • An intermetallic alloy is understood as meaning a material that consists predominantly of intermetallic phase.
  • Suitable carbide-forming elements are Si, B, Sc, Y and lanthanides. Also mixed carbides consisting of two or more of the aforementioned elements lead to a good bond between the diamond grains and the metallic / intermetallic alloy.
  • the carbide phase is preferably formed from a reaction of the carbide-forming element with diamond. In order to achieve a good connection, a thickness of this carbide phase in the nanometer range or a degree of coverage of> 60 percent is sufficient. The degree of coverage here means the proportion of the diamond grain surface which is enveloped by the carbide phase. According to these premises, this corresponds to a volume content of the carbide phase of> 0.001%. If an upper limit of 12 vol.% Exceeded, the fracture toughness drops below a critical value and a cost-effective processing is no longer given.
  • the carbide-forming element or elements are also present in the metallic / intermetallic alloy in dissolved or precipitated form and cause, alone or together with other alloying elements, a solidification of the metallic / intermetallic alloy.
  • a minimum hardness of the metallic / intermetallic alloy at room temperature of> 250 HV, preferably> 400 HV, must be set.
  • the choice of the carbide-forming element depends on the matrix metal of the metallic / intermetallic alloy, the lierstellRIS and the geometry of the wearing part.
  • Strong carbide formers such as Ti, Zr, Hf, Cr, Mo, V and W form near the surface thick carbide layers during the infiltration process, which locally leads to an impoverishment of the carbide-forming element, or the infiltration process is hindered. These elements are therefore preferred for the production of smaller wear parts. Larger wear parts can advantageously be produced using Si, B, Y and La as carbide-forming elements. These elements are comparatively weak carbide formers. The forming carbide layers are therefore comparatively thin. Experiments with Si have shown that Si-C enrichments on the diamond grain surface in the range of a few atomic layers are already sufficient for a sufficient binding of the metallic alloy to the diamond grains.
  • the matrix metal for the metallic alloy is Cu.
  • the carbide-forming elements and optionally further alloying elements are dissolved in or embedded in the metallic alloy, for example in the form of precipitates or intermetallic phase components.
  • the alloy composition is to be chosen so that the liquidus temperature ⁇ 1400 ° C and the solidus temperature is preferably ⁇ 1200 ° C. This allows a correspondingly low processing temperature, for example, infiltration or hot pressing. This makes it possible, according to the Pressure / Temperature Phase diagram for graphite / diamond to be processed at comparatively low gas pressures of ⁇ 1 kbar, preferably ⁇ 50 bar. Compared to conventional polycrystalline diamond (PCD), this means significantly reduced production costs.
  • PCD polycrystalline diamond
  • the usual strength-increasing mechanisms in particular solid solution and precipitation hardening, can be used.
  • Particularly suitable are curable Cu alloys, and here again preferably alloys with the addition of Si and further to mention Cr and / or Zr, their liquidus or solidus temperature by adding Si and / or B to the values given in claim 1 is lowered.
  • Particularly advantageous contents of carbide phase and metallic / intermetallic alloy are 0.1 to 10 vol.% Or 10 to 30 vol.%.
  • diamond powders can be processed in a wide range of grain sizes. In addition to natural diamonds can also be processed cheaper synthetic diamonds. Even with the usual coated diamond varieties good processing results were achieved. It follows that the most cost-effective variety can be used.
  • a particularly advantageous wear resistance can be achieved when using diamond powder having a particle size of 20 to 200 microns. By using diamond powder with bimodal distributed grain size, with a first distribution maximum at 7 to 60 microns and a second distribution maximum at 80 to 260 microns, it is possible to achieve high diamond packing densities and thus volume contents.
  • Wear parts can be found in a wide variety of applications. First excellent results were achieved with water jet nozzles, drill bit inserts, saw teeth and drill bits. Due to its excellent thermal conductivity, the material according to the invention is particularly suitable for applications in which the wear stress is associated with heat generation. By way of example, only brake discs for aircraft, rail vehicles, automobiles and motorcycles are cited here.
  • a precursor or precursor is prepared, which may contain a binder in addition to diamond powder.
  • binders which pyrolyze to a high degree under the influence of temperature.
  • advantageous Binder contents are 1 to 20 wt.%.
  • Diamond powders and binders are mixed in conventional mixers or mills. Thereafter, the shaping takes place, which can be done by pouring into a mold or pressure-assisted, for example by pressing or metal powder injection molding.
  • the precursor is heated to a temperature at which the binder at least partially pyrolyzed.
  • the pyrolysis of the binder can also take place during the heating during the infiltration process.
  • the infiltration process can be pressureless or pressure assisted. The latter can be done in a sintering-hip plant or by squeeze casting.
  • the liquidus temperature of the respective infiltrate alloy is not higher than 1400 ° C., advantageously not higher than 1200 ° C., since otherwise too high a proportion of diamond decomposes.
  • Particularly suitable for infiltration is an infiltrate with a eutectic composition.
  • Synthetic diamond powder with a mean grain size of 90 microns was pressed by means of die pressing at a pressure of 200 MPa to a plate of dimension 35 mm x 35 mm x 5 mm.
  • the pore content of the plate was about 20 vol.%.
  • this plate was covered with a piece of the infiltrate alloy, which was already melted in an upstream process and whose liquidus and solidus temperature was determined by thermal analysis.
  • the compositions of the infiltrate alloys are shown in Table 1.
  • the porous diamond body and the infiltrate alloy were first heated under vacuum in a sintering-hip plant to a temperature of 70 ° C. above the liquidus temperature of the respective infiltrate alloy.

Abstract

The invention relates to a wearing part consisting of a diamantiferous composite material and to a method for producing the same. The wearing part consists of a diamantiferous composite material comprising 40 to 90 % by volume of diamond grains, 0.001 to 12 % by volume of a carbide phase, constituted by one or more elements from the group including Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, Sc, Y, lanthanides and 7 to 49 % by volume of a metallic or intermetallic alloy having a liquidus temperature < 1400 °C. The metallic or intermetallic alloy contains the carbide-forming element(s) in dissolved or precipitated form and has a roughness at room temperature > 250 HV.

Description

Die Erfindung betrifft ein Verschleißteil aus einem diamanthaltigen Verbundwerkstoff und ein Verfahren zu dessen Herstellung.The invention relates to a wear part made of a diamond-containing composite material and a method for its production.

Unter einem Verschleißteil versteht man ein Bauteile, das einer hohen verschleißenden Beanspruchung unterliegt. In Abhängigkeit von der Beanspruchung kommt eine Vielfalt von Werkstoffen zum Einsatz, wie gehärtete Stähle, Schnellarbeitstähle, Stellite, Hartmetalle und Hartstoffe. Mit den steigenden Anforderungen an die Verschleißbeständigkeit finden diamanthaltige Verbundwerkstoffe oder Werkstoffverbunde vermehrt Interesse.A wearing part is understood to mean a component which is subject to a high level of wear stress. Depending on the load, a variety of materials are used, such as hardened steels, high-speed steels, stellites, hard metals and hard materials. With the increasing demands on wear resistance, diamond-containing composites or composite materials are becoming increasingly interesting.

So beschreibt die US 4,124,401 einen polykristallinen Diamantwerkstoff, bei dem die einzelnen Diamantkörner durch Siliziumkarbid und ein Metallkarbid oder Metallsilizid zusammengehalten werden. Werkstoffe gemäß der US 4,124,401 sind zwar sehr hart, jedoch nur sehr aufwendig formgebend zu bearbeiten.
In der EP 0 116 403 wird ein diamanthaltiger Verbundwerkstoff offenbart, der aus 80 bis 90 Vol.% Diamant und 10 bis 20 Vol.% Ni und Si haltige Phase besteht, wobei Ni als Ni oder Ni-Silizid und Si als Si, SiC oder Ni-Silizid vorliegt. Zwischen den Diamantkörnern liegen keine weiteren Phasenbestandteile vor. Um eine ausreichende Bindung zwischen den einzelnen Diamantkörnern zu erreichen, sind Sintertemperaturen > 1400°C erforderlich. Da Diamant bei Normaldruckbedingungen bei diesen Temperaturen nicht mehr stabil ist, sind gemäß dem Druck-Temperatur Diagramm entsprechend hohe Drücke erforderlich, um ein Zersetzen des Diamants zu vermeiden. Die dazu erforderlichen Anlagen sind teuer. Zudem weist der so hergestellte Diamantverbundwerkstoff eine sehr geringe Bruchzähigkeit und schlechte Bearbeitbarkeit auf.
That's how it describes US 4,124,401 a polycrystalline diamond material in which the individual diamond grains are held together by silicon carbide and a metal carbide or metal silicide. Materials according to the US 4,124,401 Although very hard, but only very laboriously shaping to edit.
In the EP 0 116 403 discloses a diamond-containing composite consisting of 80 to 90% by volume of diamond and 10 to 20% by volume of Ni and Si-containing phase, Ni being present as Ni or Ni silicide and Si as Si, SiC or Ni silicide. There are no other phase components between the diamond grains. In order to achieve a sufficient bond between the individual diamond grains, sintering temperatures> 1400 ° C are required. Since diamond is no longer stable under normal pressure conditions at these temperatures, according to the pressure-temperature diagram correspondingly high pressures are required to avoid decomposition of the diamond. The required equipment is expensive. In addition, the diamond composite thus produced has a very low fracture toughness and poor machinability.

In der WO 99/12866 ist ein Verfahren zur Herstellung eines Diamant-Siliziumkarbid-Verbundwerkstoffes beschrieben. Die Herstellung erfolgt durch Infiltration eines Diamantskelettes mit Silizium oder einer Siliziumlegierung. Aufgrund des hohen Schmelzpunktes von Silizium und der dadurch bedingten hohen Infiltrationstemperatur wird Diamant in hohem Maße in Grafit bzw. in weiterer Folge in Siliziumkarbid umgewandelt. Auf Grund der hohen Sprödigkeit ist die mechanische Bearbeitbarkeit dieses Werkstoffes höchst problematisch und aufwendig.In the WO 99/12866 A method for producing a diamond-silicon carbide composite is described. The production takes place by infiltration of a diamond skeleton with silicon or a Silicon alloy. Due to the high melting point of silicon and the resulting high infiltration temperature diamond is converted to a high degree in graphite or subsequently in silicon carbide. Due to the high brittleness, the mechanical workability of this material is highly problematic and expensive.

Die US 4,902,652 beschreibt ein Verfahren zur Herstellung eines gesinterten Diamantwerkstoffes. Auf Diamantpulver wird dabei mittels physikalischer Beschichtungsverfahren ein Element aus der Gruppe der Übergangsmetalle der Gruppen 4a, 5a und 6a, Bor und Silizium abgeschieden. Anschließend werden die beschichteten Diamantkörner mittels eines Festphasensinterprozesses miteinander verbunden. Nachteilig ist, dass das entstehende Produkt eine hohe Porosität, eine geringe Bruchzähigkeit und schlechte Bearbeitbarkeit aufweist.The US 4,902,652 describes a method for producing a sintered diamond material. On diamond powder, an element from the group of transition metals of groups 4a, 5a and 6a, boron and silicon is deposited by means of physical coating processes. Subsequently, the coated diamond grains are bonded together by a solid phase sintering process. The disadvantage is that the resulting product has a high porosity, low fracture toughness and poor machinability.

Die US 5,045,972 beschreibt einen Verbundwerkstoff, in dem neben Diamantkörnem mit einer Größe von 1 bis 50 µm eine metallische Matrix vorliegt, die aus Aluminium, Magnesium, Kupfer, Silber oder deren Legierungen besteht. Nachteilig dabei ist, dass die metallische Matrix nur mangelhaft an die Diamantkörner angebunden ist, so dass dadurch die mechanische Integrität in nicht ausreichendem Maße gegeben ist. Auch die Verwendung von feinerem Diamantpulver, beispielsweise mit einer Korngröße < 3 µm, wie dies aus der US 5,008,737 hervorgeht, verbessert die Diamant / Metall Haftung nicht.The US 5,045,972 describes a composite material in which in addition to Diamantkörnem having a size of 1 to 50 microns, a metallic matrix is present, which consists of aluminum, magnesium, copper, silver or their alloys. The disadvantage here is that the metallic matrix is only inadequately connected to the diamond grains, so that thereby the mechanical integrity is given insufficiently. Also, the use of finer diamond powder, for example, with a grain size <3 microns, as is known from US 5,008,737 does not improve the diamond / metal adhesion.

Die US 5,783,316 beschreibt ein Verfahren, bei dem Diamantkörner mit W, Zr, Re, Cr oder Titan beschichtet, die beschichteten Körner in weiter Folge kompaktiert werden und der poröse Körper z.B. mit Cu, Ag oder Cu-Ag Schmelzen infiltriert wird. Die hohen Beschichtungskosten und nicht ausreichende Verschleißbeständigkeit begrenzen das Einsatzgebiet derartig hergestellter Verbundwerkstoffe.The US 5,783,316 describes a process in which diamond grains coated with W, Zr, Re, Cr or titanium, the coated grains are compacted in succession and the porous body is infiltrated with, for example, with Cu, Ag or Cu-Ag melts. The high coating costs and insufficient wear resistance limit the field of use of composite materials produced in this way.

Die JP 2003 095743 A beschreibt einen diamanthaltigen Verbundwerkstoff, der als Matrixmetall Ti, Si, Zr, Mo, W, Ta, Nb oder Cr enthält. Zum Matrixmetall kann Fe, Co, Ni, Cu oder Al zugesetzt werden, um den Schmelzpunkt abzusenken. Ein derartiger Verbundwerkstoff ist jedoch nur aufwändig zu bearbeiten.The JP 2003 095743 A describes a diamond-containing composite material containing as matrix metal Ti, Si, Zr, Mo, W, Ta, Nb or Cr. To the matrix metal, Fe, Co, Ni, Cu or Al may be added to the melting point lower. However, such a composite material is only laborious to edit.

Johnson W. B. et al (Journal of Materials Research, New York, Bd. 8, Nr. 5, Mai 1993, Seiten 1169-1173 ) beschreiben einen diamanthaltigen Verbundwerkstoff, der mit SiC beschichtete Diamantkörner und eine Matrix aus Al-1 5Si-5Mg aufweist. Die 40 bis 50 µm dicke Beschichtung der Diamantpartikel mit SiC vermeidet die Bildung einer Al4C3 Phase, die gegenüber Luftfeuchtigkeit nicht stabil ist. Die SiC Beschichtung wird durch einen aufwändigen CVI (chemical vapour infiltration) Prozess hergestellt. Johnson WB et al (Journal of Materials Research, New York, Vol. 8, No. 5, May 1993, pages 1169-1173 ) describe a diamond-containing composite comprising SiC coated diamond grains and a matrix of Al-15Si-5Mg. The 40 to 50 μm thick coating of the diamond particles with SiC avoids the formation of an Al 4 C 3 phase, which is not stable to atmospheric moisture. The SiC coating is produced by a complex CVI (chemical vapor infiltration) process.

Aufgabe der vorliegenden Erfindung ist somit, ein Verschleißteil aus einem diamanthaltigen Verbundwerkstoff bereitzustellen, das eine hohe Verschleißbeständigkeit aufweist und sich durch eine ausreichende formgebende Bearbeitbarkeit vergleichsweise kostengünstig herstellern lässt.Object of the present invention is therefore to provide a wear part of a diamond-containing composite material, which has a high wear resistance and can be produced relatively inexpensively by a sufficient shaping workability.

Gelöst wird diese Aufgabe durch ein Verschleißteil gemäß Anspruch 1.
Durch den Diamantanteil, die karbidische Phase und die harte metallische oder intermetallische Legierung weist das erfindungsgemäße Verschleißteil eine ausgezeichnete Verschleißbeständigkeit auf. Unter einer metallischen Legierung ist ein ein- oder mehrphasigen Werkstoff, der neben metallischen Gefügebestandteilen auch intermetallische, halbmetallische oder keramische Gefügebestandteile enthalten kann, zu verstehen. Unter einer intermetallischen Legierung versteht man einen Werkstoff, der überwiegend aus intermetallischer Phase besteht.
Sowohl die Bruchzähigkeit des diamanthaltigen Verbundwerkstoffes, als auch die daraus resultierenden technologischen Eigenschaften, wie beispielsweise die mechanische Bearbeitbarkeit, sind auf Grund der duktilen, metallischen oder intermetallischen Phasenbestandteile in einem ausreichenden Maße gegeben. Bruchzähigkeitssteigernd wirkt sich die hohe Haftfestigkeit zwischen den Diamantkörnern und der metallischen / intermetallischen Legierung durch die sich dazwischen bildende karbidische Phase aus. Als karbidbildende Elemente sind Si, B, Sc, Y und Lanthanide geeignet. Auch Mischkarbide, bestehend aus zwei oder mehreren der zuvor erwähnten Elemente, führen zu einer guten Anbindung zwischen den Diamantkörner und der metallischen /intermetallischen Legierung. Die karbidische Phase entsteht dabei bevorzugt aus einer Umsetzung des karbidbildenden Elementes mit Diamant. Um eine gute Anbindung zu erzielen, reicht bereits eine Dicke dieser karbidischen Phase im Nanometerbereich, bzw. ein Bedeckungsgrad von > 60 Prozent aus. Unter Bedeckungsgrad ist dabei der Anteil der Diamantkornoberfläche zu verstehen, der von der karbidischen Phase umhüllt ist. Entsprechend dieser Prämissen entspricht dies einem Volumengehalt der karbidischen Phase von > 0,001 %. Wird eine Obergrenze von 12 Vol.% überschritten, so sinkt die Bruchzähigkeit unter einen kritischen Wert und eine kostengünstige Bearbeitung ist nicht mehr gegeben.
This object is achieved by a wearing part according to claim 1.
Due to the proportion of diamond, the carbide phase and the hard metallic or intermetallic alloy, the consumable part according to the invention has excellent wear resistance. Under a metallic alloy is a single- or multi-phase material, which may contain not only metallic structural constituents but also intermetallic, semi-metallic or ceramic structural components to understand. An intermetallic alloy is understood as meaning a material that consists predominantly of intermetallic phase.
Both the fracture toughness of the diamond-containing composite, as well as the resulting technological properties, such as mechanical machinability, are given due to the ductile, metallic or intermetallic phase components to a sufficient extent. Increasing fracture toughness has high adhesive strength between the diamond grains and the metallic / intermetallic alloy due to the carbide phase formed therebetween. Suitable carbide-forming elements are Si, B, Sc, Y and lanthanides. Also mixed carbides consisting of two or more of the aforementioned elements lead to a good bond between the diamond grains and the metallic / intermetallic alloy. The carbide phase is preferably formed from a reaction of the carbide-forming element with diamond. In order to achieve a good connection, a thickness of this carbide phase in the nanometer range or a degree of coverage of> 60 percent is sufficient. The degree of coverage here means the proportion of the diamond grain surface which is enveloped by the carbide phase. According to these premises, this corresponds to a volume content of the carbide phase of> 0.001%. If an upper limit of 12 vol.% Exceeded, the fracture toughness drops below a critical value and a cost-effective processing is no longer given.

Das oder die karbidbildenden Elemente liegen auch in der metallischen /intermetallischen Legierung in gelöster oder ausgeschiedener Form vor und bewirken alleine oder zusammen mit weiteren Legierungselementen eine Verfestigung der metallischen / intermetallischen Legierung. Um eine ausreichende Verschleißfestigkeit des diamandhaltigen Verbundwerkstoffes zu erzielen, ist eine Mindesthärte der metallischen / intermetallischen Legierung bei Raumtemperatur von > 250 HV, bevorzugt > 400 HV, einzustellen. Die Auswahl des karbidbildenden Elements hängt vorn Matrixmetall der metallischen / intermetallischen Legierung, dem lierstellprozess und der Geometrie des Verschleißteils ab. Starke Karbidbildner, wie beispielsweise Ti, Zr, Hf, Cr, Mo, V und W bilden beim Infiltrationsprozess oberflächennah dicke Karbidschichten aus, wodurch es lokal zu einer Verarmung des karbidbildenden Elements kommt, bzw. der Infiltrationsprozess behindert wird. Diese Elemente eignen sich daher bevorzugt für die Herstellung kleinerer Verschleißteile. Größere Verschleißteile lassen sich vorteilhafterweise unter Verwendung von Si, B, Y und La als karbidbildende Elemente herstellern. Diese Elemente sind vergleichsweise schwache Karbidbildner. Die sich ausbildenden Karbidschichten sind daher vergleichsweise dünn. Versuche mit Si haben gezeigt, dass für eine hinreichende Anbindung der metallischen Legierung an die Diamantkörner bereits Si-C Anreicherungen an der Diamantkornoberfläche im Bereich einiger Atomlagen ausreichen.The carbide-forming element or elements are also present in the metallic / intermetallic alloy in dissolved or precipitated form and cause, alone or together with other alloying elements, a solidification of the metallic / intermetallic alloy. In order to achieve sufficient wear resistance of the diamond-containing composite material, a minimum hardness of the metallic / intermetallic alloy at room temperature of> 250 HV, preferably> 400 HV, must be set. The choice of the carbide-forming element depends on the matrix metal of the metallic / intermetallic alloy, the lierstellprozess and the geometry of the wearing part. Strong carbide formers, such as Ti, Zr, Hf, Cr, Mo, V and W form near the surface thick carbide layers during the infiltration process, which locally leads to an impoverishment of the carbide-forming element, or the infiltration process is hindered. These elements are therefore preferred for the production of smaller wear parts. Larger wear parts can advantageously be produced using Si, B, Y and La as carbide-forming elements. These elements are comparatively weak carbide formers. The forming carbide layers are therefore comparatively thin. Experiments with Si have shown that Si-C enrichments on the diamond grain surface in the range of a few atomic layers are already sufficient for a sufficient binding of the metallic alloy to the diamond grains.

Das Matrixmetalle für die metallische Legierung ist Cu. Die karbidbildenden Elemente und optional weitere Legierungselemente sind in der metallischen Legierung gelöst oder in diese zum Beispiel in Form von Ausscheidungen oder intermetallischen Phasenbestandteilen eingelagert. Die Legierungszusammensetzung ist dabei so zu wählen, dass die Liquidustemperatur < 1400°C und die Solidustemperatur bevorzugt < 1200°C beträgt. Dies ermöglicht eine entsprechend niedrige Verarbeitungstemperatur, beispielsweise Infiltrations- oder Heißpresstemperatur. Damit ist es möglich, entsprechend dem
Druck / Temperatur Phasendiagramm für Grafit / Diamant eine Verarbeitung bei vergleichsweise niedrigen Gasdrücken von < 1 kbar, bevorzugt < 50 bar durchzuführen. Im Vergleich zu üblichem polykristallinem Diamanten (PCD) bedeutet dies deutlich verringerte Herstellkosten.
Um eine Raumtemperaturhärte von > 250 HV, bevorzugt > 400 HV einzustellen, kann auf die üblichen festigkeitssteigernden Mechanismen, im besonderen Mischkristall- und Ausscheidungshärtung, zurückgegriffen werden. Als besonders geeignet sind dabei aushärtbare Cu-Legierungen, und hier wieder bevorzugt Legierungen mit Zusatz von Si und weiters Cr und/oder Zr zu nennen, deren Liquidus- bzw. Solidustemperatur durch Zugabe von Si und / oder B auf die in Anspruch 1 angegebenen Werte erniedrigt wird.
The matrix metal for the metallic alloy is Cu. The carbide-forming elements and optionally further alloying elements are dissolved in or embedded in the metallic alloy, for example in the form of precipitates or intermetallic phase components. The alloy composition is to be chosen so that the liquidus temperature <1400 ° C and the solidus temperature is preferably <1200 ° C. This allows a correspondingly low processing temperature, for example, infiltration or hot pressing. This makes it possible, according to the
Pressure / Temperature Phase diagram for graphite / diamond to be processed at comparatively low gas pressures of <1 kbar, preferably <50 bar. Compared to conventional polycrystalline diamond (PCD), this means significantly reduced production costs.
In order to set a room temperature hardness of> 250 HV, preferably> 400 HV, the usual strength-increasing mechanisms, in particular solid solution and precipitation hardening, can be used. Particularly suitable are curable Cu alloys, and here again preferably alloys with the addition of Si and further to mention Cr and / or Zr, their liquidus or solidus temperature by adding Si and / or B to the values given in claim 1 is lowered.

Bereits bei Diamantgehalten von 40 Vol.% kann eine ausgezeichnete Verschleißbeständigkeit erzielt werden. Die obere Grenze des Diamantgehaltes von 90 Vol.% stellt eine Barriere für eine kostengünstige Herstellung dar. Zudem wäre bei höheren Diamantgehalten eine hinreichende Bruchzähigkeit des Diamantverbundwerkstoffes nicht mehr gewährleistet. Durch Variation des Diamant-, Karbid- und Metallphasengehaltes ist es möglich, in Hinblick auf Verschleißbeständigkeit, Bearbeitungseigenschaften und Kosten maßgeschneiderte Verschleißteile für unterschiedlichste Anforderungen herzustellen.
Weitere Gefügebestanteile verschlechtern die Eigenschaften nicht in einem unzulässigen Ausmaß, solange deren Gehalt 5 Vol.% nicht übersteigt. Zudem können solche Gefügebestanteile, wie beispielsweise geringe Anteile an amorphen Kohlenstoff, teilweise herstelltechnisch nur mit relativ großem Aufwand vollständig vermieden werden.
Besonders vorteilhafte Gehalte an karbidischer Phase und metallischer /intermetallischer Legierung liegen bei 0,1 bis 10 Vol.% bzw. bei 10 bis 30 Vol.%. Versuche haben gezeigt, dass Diamantpulver in einem breiten Korngrößenspektrum verarbeitet werden können. Neben Naturdiamanten lassen sich auch preisgünstigere synthetische Diamanten verarbeiten. Auch mit den gängigen beschichteten Diamantsorten wurden gute Verarbeitungsergebnisse erzielt. Daraus ergibt sich, dass auf die jeweils kostengünstigste Sorte zurückgegriffen werden kann. Eine besonders vorteilhafte Verschleißbeständigkeit kann bei Verwendung von Diamantpulver mit einer Korngröße von 20 bis 200 µm erreicht werden.
Durch Verwendung von Diamantpulver mit bimodal verteilter Korngröße, mit einem ersten Verteilungsmaximum bei 7 bis 60 µm und einem zweiten Verteilungsmaximum bei 80 bis 260 µm, ist es möglich, hohe Diamantpackungsdichten und damit Volumengehalte zu erzielen.
Even at diamond contents of 40% by volume, excellent wear resistance can be achieved. The upper limit of the diamond content of 90 vol.% Represents a barrier for a cost-effective production. In addition, at higher diamond contents a sufficient fracture toughness of the diamond composite material would no longer be guaranteed. By varying the diamond, carbide and metal phase content, it is possible to produce tailored wear parts for a wide variety of requirements in terms of wear resistance, machining properties and costs.
Further structural test contents do not impair the properties to an unacceptable extent as long as their content does not exceed 5% by volume. In addition, such structural solids, such as low levels of amorphous carbon, partially manufacturing technology can be completely avoided only with relatively great effort.
Particularly advantageous contents of carbide phase and metallic / intermetallic alloy are 0.1 to 10 vol.% Or 10 to 30 vol.%. Experiments have shown that diamond powders can be processed in a wide range of grain sizes. In addition to natural diamonds can also be processed cheaper synthetic diamonds. Even with the usual coated diamond varieties good processing results were achieved. It follows that the most cost-effective variety can be used. A particularly advantageous wear resistance can be achieved when using diamond powder having a particle size of 20 to 200 microns.
By using diamond powder with bimodal distributed grain size, with a first distribution maximum at 7 to 60 microns and a second distribution maximum at 80 to 260 microns, it is possible to achieve high diamond packing densities and thus volume contents.

Verschleißteile sind in den unterschiedlichsten Anwendungsbereichen zu finden. Erste ausgezeichnete Resultate konnten bei Wasserstrahldüsen, Bohrkroneneinsätzen, Sägezähnen und Bohrerspitzen erzielt werden. Der erfindungsgemäße Werkstoff ist auf Grund seiner ausgezeichneten Wärmeleitfähigkeit besonders auch für Anwendungen geeignet, bei denen die Verschleißbeanspruchung mit Wärmeentwicklung verbunden ist. Exemplarisch seien hier nur Bremsscheiben für Flugzeuge, Schienenfahrzeuge, Automobile und Motorräder angeführt.Wear parts can be found in a wide variety of applications. First excellent results were achieved with water jet nozzles, drill bit inserts, saw teeth and drill bits. Due to its excellent thermal conductivity, the material according to the invention is particularly suitable for applications in which the wear stress is associated with heat generation. By way of example, only brake discs for aircraft, rail vehicles, automobiles and motorcycles are cited here.

Für die Herstellung können unterschiedlichste Verfahren eingesetzt werde. So ist es möglich, mit einem karbidbildenden Element beschichte Diamantpulver mit Metallpulver unter Temperatur und Druck zu verdichten. Dies kann beispielsweise in Heißpressen oder heißisostatischen Pressen erfolgen. Als besonders vorteilhaft hat sich das Infiltrieren gezeigt. Dabei wird ein Precursor oder Zwischenstoff hergestellt, der neben Diamantpulver auch einen Binder enthalten kann. Besonders vorteilhaft sind dabei Binder, die unter Temperatureinwirkung zu einem hohen Anteil pyrolisieren. Vorteilhafte Bindergehalte liegen bei 1 bis 20 Gew.%. Diamantpulver und Binder werden in üblichen Mischern oder Mühlen vermengt. Danach erfolgt die Formgebung, wobei diese durch Schüttung in eine Form oder druckunterstützt, beispielsweise durch Pressen oder Metallpulverspritzguss, erfolgen kann. In weiterer Folge wird der Zwischenstoff auf eine Temperatur erhitzt, bei der der Binder zumindest teilweise pyrolisiert. Die Pyrolyse des Binders kann jedoch auch während des Aufheizens beim Infiltrationsprozess erfolgen. Der Infiltrationsprozess kann drucklos oder druckunterstützt erfolgen. Letzteres kann in einer Sinter-Hip-Anlage oder mittels Squeeze-Casting erfolgen. Für die Wahl der Zusammensetzung ist zu berücksichtigen, dass die Liquidustemperatur der jeweiligen Infiltratlegierung (Legierung, die in den porösen Körper infiltriert) nicht höher als 1400°C, vorteilhafterweise nicht höher als 1200°C liegt, da sich ansonsten zu hohe Diamantanteile zersetzen. Besonders gut für das Infiltrieren eignet sich ein Infiltrat mit einer eutektischen Zusammensetzung.For the production of various methods can be used. Thus, it is possible to densify diamond powder coated with a carbide-forming element with metal powder under temperature and pressure. This can be done for example in hot pressing or hot isostatic pressing. The infiltration has proven to be particularly advantageous. In this case, a precursor or precursor is prepared, which may contain a binder in addition to diamond powder. Particularly advantageous are binders which pyrolyze to a high degree under the influence of temperature. advantageous Binder contents are 1 to 20 wt.%. Diamond powders and binders are mixed in conventional mixers or mills. Thereafter, the shaping takes place, which can be done by pouring into a mold or pressure-assisted, for example by pressing or metal powder injection molding. Subsequently, the precursor is heated to a temperature at which the binder at least partially pyrolyzed. However, the pyrolysis of the binder can also take place during the heating during the infiltration process. The infiltration process can be pressureless or pressure assisted. The latter can be done in a sintering-hip plant or by squeeze casting. For the choice of the composition, it should be noted that the liquidus temperature of the respective infiltrate alloy (alloy which infiltrates into the porous body) is not higher than 1400 ° C., advantageously not higher than 1200 ° C., since otherwise too high a proportion of diamond decomposes. Particularly suitable for infiltration is an infiltrate with a eutectic composition.

Im Folgenden wird die Erfindung durch Herstellbeispiele näher erläutert.In the following the invention will be explained in more detail by manufacturing examples.

Beispiel 1example 1

Synthetisches Diamantpulver mit einer mittleren Korngröße von 90 µm wurde mittels Matrizenpressen bei einem Druck von 200 MPa zu einer Platte der Dimension 35 mm x 35 mm x 5 mm gepresst. Der Porenanteil der Platte betrug ca. 20 Vol.%.
In weiterer Folge wurde diese Platte mit einem Stück der Infiltratlegierung bedeckt, die bereits in einem vorgelagerten Prozess erschmolzen und deren Liquidus- und Solidustemperatur mittels thermischer Analyse bestimmt wurde. Die Zusammensetzungen der Infiltratlegierungen sind in Tabelle 1 wiedergegeben. Der poröse Diamantkörper und die Infiltratlegierung wurden in einer Sinter-Hip-Anlage zunächst unter Vakuum auf eine Temperatur von 70°C über der Liquidustemperatur der jeweiligen Infiltratlegierung erhitzt. Nach einer Haltezeit von 10 Min. wurde ein Argon-Gasdruck von 40 bar eingestellt. Nach einer weiteren Haltezeit von 5 Min. wurde die Probe durch Abschalten der Heizung und unter Ar-Gasflutung auf Raumtemperatur abgekühlt und einer weiteren einstündigen Wärmebehandlung bei 200°C unter der jeweiligen Nonvarianz-Temperatur unterzogen. Bei allen untersuchten Varianten kam es zu einer Ausbildung einer karbidischen, die Diamantkörner umhüllenden Phase. Die erfindungsgemäßen Diamant-Verbundwerkstoffe wurden einer Sandstrahlprüfung unterzogen und mit Hartmetall mit einem Co-Gehalt von 2 Gew%. verglichen. Die Abtragraten bezogen auf das Vergleichshartmetall sind in Tabelle 1 wiedergegeben. Tabelle 1 Zusammensetzung der Infiltratlegierung
(Angaben in Gew.%)
Relative
Abtragrate
Erfindungsgemäße Werkstoffe Cu 10%Ni 10%Si 0,5 Cu 2%Zr 10%Si 0,6 Cu 3%Cr 10%Si 0,6 WC2%Co 1
Synthetic diamond powder with a mean grain size of 90 microns was pressed by means of die pressing at a pressure of 200 MPa to a plate of dimension 35 mm x 35 mm x 5 mm. The pore content of the plate was about 20 vol.%.
Subsequently, this plate was covered with a piece of the infiltrate alloy, which was already melted in an upstream process and whose liquidus and solidus temperature was determined by thermal analysis. The compositions of the infiltrate alloys are shown in Table 1. The porous diamond body and the infiltrate alloy were first heated under vacuum in a sintering-hip plant to a temperature of 70 ° C. above the liquidus temperature of the respective infiltrate alloy. After a holding time of 10 min., An argon gas pressure of 40 bar was set. After a further hold time of 5 min., The sample was cooled by switching off the heating and under Ar gas flooding to room temperature and another one-hour heat treatment at 200 ° C below the respective Subjected to non-variance temperature. In all variants studied, a carbide phase enveloping the diamond grains was formed. The diamond composite materials according to the invention were subjected to a sandblast test and with hard metal with a Co content of 2% by weight. compared. The removal rates based on the comparison hard metal are reproduced in Table 1. Table 1 Composition of the infiltrate alloy
(In% by weight)
relative
cut rate
Inventive materials Cu 10% Ni 10% Si 0.5 Cu 2% Zr 10% Si 0.6 Cu 3% Cr 10% Si 0.6 WC2% Co 1

Claims (20)

  1. Wearing part produced from a diamond-containing composite material consisting of 40 % to 90 % by volume of diamond grains; 0.001 % to 12 % by volume of carbidic phase, formed from one or more elements of the group comprising Si, B, Sc, Y, lanthanides; 7 % to 49 % by volume of a metallic or intermetallic alloy with a liquidus temperature of < 1400 °C; the metallic or intermetallic alloy containing more than 50 % by weight Cu and the carbide-forming element or elements in dissolved or precipitated form and exhibiting a hardness at room temperature of > 250 HV; and also 0 % to 5 % by volume of further structural constituents.
  2. Wearing part according to Claim 1, characterised in that at least 60 % of the surface of the diamond grains is covered by the carbidic phase.
  3. Wearing part according to Claim 1 or 2, characterised in that the metallic or intermetallic alloy exhibits a solidus temperature of < 1200 °C.
  4. Wearing part according to one of the preceding claims, characterised in that the volume ratio of the metallic or intermetallic alloy to the carbidic phase is greater than 4.
  5. Wearing part according to one of the preceding claims, characterised in that the carbidic phase is formed from Si.
  6. Wearing part according to one of the preceding claims, characterised in that the carbidic phase is formed at least partly by conversion with the carbon of the diamond.
  7. Wearing part according to one of the preceding claims, characterised in that the metallic alloy is an age-hardenable Al alloy that contains Zr, Cr and/or Si.
  8. Wearing part according to one of the preceding claims, characterised in that the metallic or intermetallic alloy exhibits a hardness of > 400 HV.
  9. Wearing part according to one of the preceding claims, characterised in that the metallic or intermetallic alloy exhibits a liquidus temperature of < 1200 °C.
  10. Wearing part according to one of the preceding claims, characterised in that the mean diamond-grain size amounts to 20 µm to 200 µm.
  11. Wearing part according to one of the preceding claims, characterised in that the diamond-grain size is bimodally distributed, with a first distribution maximum at 7 µm to 60 µm and with a second distribution maximum at 80 µm to 260 µm.
  12. Wearing part according to one of the preceding claims, characterised in that the composite material contains 60 % to 80 % by volume of diamond grains, 1 % to 10 % by volume of a carbidic phase and 10 % to 30 % by volume of a metallic alloy.
  13. Wearing part according to one of the preceding claims for use as a nozzle or mixing tube for abrasive water-jet cutting units.
  14. Wearing part according to one of Claims 1 to 12 for use as a drill-bit insert or drill point for drilling tools.
  15. Wearing part according to one of Claims 1 to 12 for use as a brake disc.
  16. Wearing part according to one of Claims 1 to 12 for use as a grinding disc.
  17. Wearing part according to one of Claims 1 to 12 for use as a sawtooth.
  18. Method for producing a wearing part according to one of the preceding claims, characterised in that the method comprises at least the following process steps:
    - pressureless or pressure-assisted shaping of an intermediate material that contains diamond grains with a mean grain size from 20 µm to 200 µm and, optionally, a metallic phase and/or binders, the diamond proportion relative to the total volume of the intermediate material after the shaping step amounting to 40 % to 90 %;
    - pressureless or pressure-assisted heating of the intermediate material and of an infiltrate alloy with a Cu content of > 50 % by weight and at least one alloy element from the group comprising Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, Sc, Y, lanthanides to a temperature above the liquidus temperature of the infiltrate alloy but below 1450 °C, whereby an infiltration of the intermediate material by the infiltrate alloy occurs and at least 97 % of the pore spaces of the intermediate material are filled.
  19. Method for producing a wearing part according to one of Claims 1 to 17, characterised in that the method comprises at least the following process steps:
    - mixing or grinding an intermediate material that consists at least of diamond grains with a mean grain size from 20 µm to 200 µm and an infiltrate alloy with a Cu content of > 50 % by weight and at least one alloy element from the group comprising Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, Sc, Y, lanthanides;
    - filling a die of a hot press with the intermediate material, heating to a temperature T, where 500 °C < T 1200 °C, and hot pressing of the intermediate material.
  20. Method according to Claim 18 or 19, characterised in that the infiltrate alloy exhibits a eutectic or near-eutectic composition.
EP05743117A 2004-06-01 2005-05-30 Wearing part consisting of a diamantiferous composite Not-in-force EP1751320B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0038604U AT7492U1 (en) 2004-06-01 2004-06-01 WEAR PART OF A DIAMOND-CONTAINING COMPOSITE
PCT/AT2005/000184 WO2005118901A1 (en) 2004-06-01 2005-05-30 Wearing part consisting of a diamantiferous composite

Publications (2)

Publication Number Publication Date
EP1751320A1 EP1751320A1 (en) 2007-02-14
EP1751320B1 true EP1751320B1 (en) 2010-01-27

Family

ID=34140140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05743117A Not-in-force EP1751320B1 (en) 2004-06-01 2005-05-30 Wearing part consisting of a diamantiferous composite

Country Status (10)

Country Link
US (1) US7879129B2 (en)
EP (1) EP1751320B1 (en)
JP (1) JP2008502794A (en)
KR (1) KR20070026550A (en)
CN (1) CN1961090B (en)
AT (2) AT7492U1 (en)
DE (1) DE502005008950D1 (en)
IL (1) IL179677A (en)
WO (1) WO2005118901A1 (en)
ZA (1) ZA200609866B (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488537B2 (en) 2004-09-01 2009-02-10 Radtke Robert P Ceramic impregnated superabrasives
EP2439298A3 (en) * 2006-11-21 2014-02-26 Element Six Abrasives S.A. Method of making a material containing diamond and an intermetallic compound (boron)
CA2674999A1 (en) * 2007-02-05 2008-08-14 Element Six (Production) (Pty) Ltd Polycrystalline diamond (pcd) materials
DE102007024170A1 (en) * 2007-05-24 2008-11-27 Andreas Stihl Ag & Co. Kg Hand-held implement and method for making a braking device of a hand-held implement
JP2010537926A (en) * 2007-08-31 2010-12-09 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond composite
SE532992C2 (en) * 2007-11-08 2010-06-08 Alfa Laval Corp Ab Process for making a diamond composite, green body, diamond composite and use of the diamond composite
JP5453315B2 (en) * 2008-01-22 2014-03-26 サンーゴバン アブレイシブズ,インコーポレイティド Circular saw blade with offset galette
KR101632727B1 (en) * 2008-07-17 2016-06-23 덴카 주식회사 Aluminum-diamond composite and method for producing the same
ES2937436T3 (en) 2008-08-08 2023-03-28 Saint Gobain Abrasives Inc abrasive items
GB0816837D0 (en) * 2008-09-15 2008-10-22 Element Six Holding Gmbh A Hard-Metal
GB0816836D0 (en) 2008-09-15 2008-10-22 Element Six Holding Gmbh Steel wear part with hard facing
US9139893B2 (en) * 2008-12-22 2015-09-22 Baker Hughes Incorporated Methods of forming bodies for earth boring drilling tools comprising molding and sintering techniques
US9097067B2 (en) * 2009-02-12 2015-08-04 Saint-Gobain Abrasives, Inc. Abrasive tip for abrasive tool and method for forming and replacing thereof
US8393939B2 (en) * 2009-03-31 2013-03-12 Saint-Gobain Abrasives, Inc. Dust collection for an abrasive tool
US8763617B2 (en) * 2009-06-24 2014-07-01 Saint-Gobain Abrasives, Inc. Material removal systems and methods utilizing foam
US8505654B2 (en) * 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond
ES2654569T3 (en) 2009-12-31 2018-02-14 Saint-Gobain Abrasives, Inc. Abrasive article incorporating an infiltrated abrasive segment
EP3199300B1 (en) 2010-07-12 2020-04-22 Saint-Gobain Abrasives, Inc. Abrasive article for shaping of industrial materials
US8651203B2 (en) * 2011-02-17 2014-02-18 Baker Hughes Incorporated Polycrystalline compacts including metallic alloy compositions in interstitial spaces between grains of hard material, cutting elements and earth-boring tools including such polycrystalline compacts, and related methods
US9868099B2 (en) 2011-04-21 2018-01-16 Baker Hughes Incorporated Methods for forming polycrystalline materials including providing material with superabrasive grains prior to HPHT processing
US20130098691A1 (en) * 2011-10-25 2013-04-25 Longyear Tm, Inc. High-strength, high-hardness binders and drilling tools formed using the same
CN103821456A (en) * 2014-02-28 2014-05-28 郑州神利达钻采设备有限公司 Filling-type sintered diamond drill bit and manufacturing method thereof
CN105014554B (en) * 2015-05-25 2017-08-15 江苏锋泰工具有限公司 The preparation method of efficient and light weight diamond-impregnated wheel
CN104875131A (en) * 2015-05-28 2015-09-02 江苏耐尔特钻石有限公司 Diamond millstone
WO2017011415A1 (en) * 2015-07-16 2017-01-19 Schlumberger Technology Corporation Infiltrated cutting tools and related methods
CN105312556B (en) * 2015-11-27 2016-08-24 泉州天智合金材料科技有限公司 A kind of diamond tool is with ultra-fine high-flexural strength alloy powder
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
CN106041089B (en) * 2016-06-29 2018-05-22 沈阳昌普超硬精密工具有限公司 The unrestrained manufacturing method for oozing burning Ti-Al-Cu-Sn-Ni micropore skives
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
CN108119138A (en) * 2017-11-17 2018-06-05 湖州南浔昊骏金属制品厂 A kind of wear-resisting coal cutting pick
CN111742073B (en) * 2018-02-21 2022-08-02 住友电气工业株式会社 Composite material and method for producing composite material
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
CN109777352B (en) * 2019-02-25 2020-06-30 清华大学 Super-wear-resistant two-dimensional composite material and preparation method thereof
KR20220152386A (en) * 2020-03-24 2022-11-15 스미토모덴키고교가부시키가이샤 Composites and heat dissipation members
CN111451501B (en) * 2020-04-03 2021-12-21 季华实验室 Preparation method for laser additive manufacturing of tungsten part based on eutectic reaction
CN112483030B (en) * 2020-10-23 2022-09-13 重庆宏工工程机械股份有限公司 Coring drill cylinder convenient to cool
US20240035341A1 (en) * 2022-07-26 2024-02-01 Baker Hughes Oilfield Operations Llc Cutting elements including binder materials having modulated morphologies, earth-boring tools including such cutting elements, and related methods of making and using same
CN115283671B (en) * 2022-08-11 2023-09-29 中科粉研(河南)超硬材料有限公司 CuNiSn alloy-titanized diamond grinding tool composite material and preparation method and application thereof
CN115896526A (en) * 2022-11-25 2023-04-04 国网山东省电力公司电力科学研究院 Sectional control dealloying method for regulating morphology of nano porous gold, nano porous gold and application

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496682A (en) * 1964-05-05 1970-02-24 Eutectic Welding Alloys Composition for producing cutting and/or wearing surfaces
GB1343427A (en) * 1970-05-04 1974-01-10 Atomic Energy Authority Uk Bonding solid carbonaceous materials to metal bodies ornamental and decorative articles
US4024675A (en) * 1974-05-14 1977-05-24 Jury Vladimirovich Naidich Method of producing aggregated abrasive grains
US4124401A (en) * 1977-10-21 1978-11-07 General Electric Company Polycrystalline diamond body
CA1193870A (en) * 1980-08-14 1985-09-24 Peter N. Tomlinson Abrasive product
US4534773A (en) 1983-01-10 1985-08-13 Cornelius Phaal Abrasive product and method for manufacturing
US4664705A (en) * 1985-07-30 1987-05-12 Sii Megadiamond, Inc. Infiltrated thermally stable polycrystalline diamond
JPH066769B2 (en) 1987-07-10 1994-01-26 工業技術院長 Diamond sintered body and its manufacturing method
US5008737A (en) * 1988-10-11 1991-04-16 Amoco Corporation Diamond composite heat sink for use with semiconductor devices
US5096465A (en) * 1989-12-13 1992-03-17 Norton Company Diamond metal composite cutter and method for making same
US5045972A (en) * 1990-08-27 1991-09-03 The Standard Oil Company High thermal conductivity metal matrix composite
DE4033214A1 (en) * 1990-10-19 1992-04-23 Hilti Ag CUTTING AND DRILLING ELEMENTS
SE9004123D0 (en) * 1990-12-21 1990-12-21 Sandvik Ab DIAMOND IMPREGNERATED HARD MATERIAL
KR100250396B1 (en) * 1993-06-30 2000-04-01 앤더슨 데릭 제이. Method of construction of evacuated glazing
US6264882B1 (en) * 1994-05-20 2001-07-24 The Regents Of The University Of California Process for fabricating composite material having high thermal conductivity
JP3309897B2 (en) * 1995-11-15 2002-07-29 住友電気工業株式会社 Ultra-hard composite member and method of manufacturing the same
JP3617232B2 (en) * 1997-02-06 2005-02-02 住友電気工業株式会社 Semiconductor heat sink, method of manufacturing the same, and semiconductor package using the same
CN1125793C (en) * 1997-09-05 2003-10-29 费伦顿有限公司 Method of mfg. diamond-silicon carbide-silicon composite and composite produced by this method
US6447852B1 (en) * 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
IL141725A (en) * 1998-09-28 2005-11-20 Frenton Ltd Isle Of Man Method of manufacturing a diamond composite and a composite produced by same
US6709747B1 (en) * 1998-09-28 2004-03-23 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
US6482248B1 (en) * 2000-11-28 2002-11-19 Magnum Research, Inc. Aluminum composite for gun barrels
JP2003095743A (en) * 2001-09-21 2003-04-03 Ishizuka Kenkyusho:Kk Diamond sintered compact and method of manufacturing the same
US7261752B2 (en) * 2002-09-24 2007-08-28 Chien-Min Sung Molten braze-coated superabrasive particles and associated methods
SE0301117L (en) * 2003-04-14 2004-10-15 Skeleton Technologies Ag Method of making a diamond composite

Also Published As

Publication number Publication date
US20070092727A1 (en) 2007-04-26
US7879129B2 (en) 2011-02-01
KR20070026550A (en) 2007-03-08
IL179677A (en) 2012-03-29
CN1961090A (en) 2007-05-09
ZA200609866B (en) 2009-05-27
EP1751320A1 (en) 2007-02-14
CN1961090B (en) 2010-12-08
AT7492U1 (en) 2005-04-25
ATE456683T1 (en) 2010-02-15
JP2008502794A (en) 2008-01-31
DE502005008950D1 (en) 2010-03-18
IL179677A0 (en) 2007-05-15
WO2005118901A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1751320B1 (en) Wearing part consisting of a diamantiferous composite
EP1741137B1 (en) Heat sink made from a diamond/copper composite material containing boron
DE3012199C2 (en) Boron nitride sintered body having a matrix of MC? X?, MN? X? and / or M (CN)? x? and Al and its uses
EP1601630B1 (en) Heat sink having a high thermal conductivity
DE112010002588B4 (en) Erosion-resistant underground drill bits with infiltrated metal matrix bodies
EP2337874B1 (en) Metal powder containing molybdenum for producing hard metals based on tungstene carbide
EP2527480B1 (en) NiFe binder with universal application
DE4447130A1 (en) Production of an aluminum-containing ceramic molded body
DE112011102668T5 (en) Carbide compositions with a cobalt-silicon alloy binder
KR102217787B1 (en) Carbide with toughness-increasing structure
EP1685081B1 (en) Method for producing a composite part and metal/ceramic part
DE102016115784A1 (en) Carbide with a cobalt-molybdenum alloy as a binder
DE2060605C3 (en) Powder metallurgy produced by sintering, precipitation hardenable, corrosion and high temperature resistant nickel-chromium alloy
DE102004002714B3 (en) To produce sintered components, of light metal alloys, the powder is compressed into a green compact to be give a low temperature sintering followed by further compression and high temperature sintering
WO2004043875A2 (en) Ceramic-metal or metal-ceramic composite
DE102004020404A1 (en) Support plate for sputtering targets
DE4024518A1 (en) THERMALLY STABLE BORNITRIDE PRESSELS AND METHOD FOR THE PRODUCTION THEREOF
DE19924174B4 (en) Composite material
DE3103351C2 (en)
AT12389U1 (en) COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
DE102013206497A1 (en) Cutting body and method for producing such
WO1991005025A1 (en) Coated hard material particles, process for their manufacture, and use in the manufacture of stock removal tools
JP2814632B2 (en) Composite hard alloy material
CN113174522A (en) Ti (C, N) -based metal ceramic with titanium-containing nickel-cobalt as binder phase and preparation method thereof
DE4440544C2 (en) Sintered hard material molded body and process for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUEDTKE, ARNDTC/O CERATIZIT SCHWEIZ AG

Inventor name: KOESTERS, ROLF

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080702

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 502005008950

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: CERATIZIT AUSTRIA -G. M.B.H.

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120523

Year of fee payment: 8

Ref country code: DE

Payment date: 20120523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120601

Year of fee payment: 8

Ref country code: SE

Payment date: 20120522

Year of fee payment: 8

Ref country code: GB

Payment date: 20120522

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120511

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 456683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008950

Country of ref document: DE

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531