EP2416919A1 - Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung - Google Patents

Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung

Info

Publication number
EP2416919A1
EP2416919A1 EP10712709A EP10712709A EP2416919A1 EP 2416919 A1 EP2416919 A1 EP 2416919A1 EP 10712709 A EP10712709 A EP 10712709A EP 10712709 A EP10712709 A EP 10712709A EP 2416919 A1 EP2416919 A1 EP 2416919A1
Authority
EP
European Patent Office
Prior art keywords
resistance
welding
quality
time
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10712709A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jürgen HÄUFGLÖCKNER
Michael Ripper
Denis Court
Klaus Ehrhardt
Norbert Kramer
Micha Bertsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Mercedes Benz Group AG
Original Assignee
Robert Bosch GmbH
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Daimler AG filed Critical Robert Bosch GmbH
Publication of EP2416919A1 publication Critical patent/EP2416919A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/255Monitoring devices using digital means the measured parameter being a force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/256Monitoring devices using digital means the measured parameter being the inter-electrode electrical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/257Monitoring devices using digital means the measured parameter being an electrical current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/258Monitoring devices using digital means the measured parameter being a voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the present invention relates to a method for monitoring and / or regulating a quality of welding spots of a resistance welding gun according to claim 1 and to a control device for monitoring and / or regulating a quality of welding spots of a resistance welding gun according to claim 10.
  • Modern manufacturing equipment for example for motor vehicles, use automated welding for joining metallic components, in particular sheets.
  • a continuous weld seam is not produced, but individual weld points are attached to the metallic components to be welded by means of resistance welding pliers.
  • Conventional manufacturing facilities only allow a poor quality control of the welds produced, since the welding guns are acted upon only with a predefined welding current. When the contacts of the welding gun wear off, the current transfer between the welding gun is no longer optimal, so that a too low current flow or a too short welding time lead to the manufactured resistance welding points not having required strength.
  • the object of the present invention to provide a method and a controller for monitoring and / or controlling a quality of welding spot welds of a resistance welding gun in order to classify, regulate and document the quality of a manufactured resistance welding point.
  • the present invention provides a method for monitoring a quality of weld points of a resistance welding gun, the method comprising the steps of:
  • Measuring and storing measured values when carrying out resistance point welding at different locations of a workpiece the measured values being a voltage, a current, a resistance, a welding time, an energy, a force on welding contacts and / or a power during the production of a
  • the reference measurement value representing a corresponding voltage, a current, a resistance, a welding time, an energy, a force on welding contacts and / or a power in the production of a corresponding resistance reference welding point
  • the present invention provides a control apparatus adapted to perform steps of the above method.
  • the present invention is based on the finding that an improvement in the quality of a resistance spot weld to be produced can be achieved by measuring certain physical variables during the application of the resistance spot welds and comparing them with reference variables. Lying the measured quantities outside a tolerance range of, for example, 70% above or below the reference value, such a deviation is registered and stored the deviation. If such a deviation then occurs again from the reference value in a subsequent resistance spot welding or its measured value, this deviation is in turn registered and stored. The subsequent measurement is again compared and stored in an analogous manner with the reference value. If, during the storage, it is determined that there are a certain number of (successive) measured values which are all outside the tolerance range around the reference value, the warning message is output.
  • Such an approach for checking and / or regulating the quality of a resistance spot welding offers the advantage that it can be detected very quickly and accurately by the automatic detection whether the corresponding resistance point welding corresponds to a predetermined quality criterion (which is represented by the reference measurement value). If this is not the case, a warning spot weld can be manually reworked by the issued warning message in order to achieve the required quality criterion.
  • a predetermined quality criterion which is represented by the reference measurement value.
  • the proposed approach offers the possibility in principle of storing the measured value recorded for each workpiece for each resistance spot weld, thus enabling complete quality control of the resistance spot weld.
  • a user of the proposed approach is easily able to prove, in the event of a claim for damages, that no defect was present in a workpiece welded in his factory.
  • the method may further comprise a step of assessing the quality of a resistance spot weld, wherein for the evaluation of the quality, a time resistance course in the resistance spot welding is compared with a time resistance curve in a resistance reference point welding and the quality of the resistance welding point the basis of an evaluation, whether the time resistance course of the resistance spot welding outside a tolerance range to the temporal resistance course in the saureferenzpunksch spaung or whether a derivative of the time resistance of the resistance point welding at a predefined time outside a tolerance zone to a derivative at the predefined time in the temporal Resistance characteristic of the resistance reference point welding is.
  • the method may further output a warning message if, in the step of judging the quality of the resistance spot welding, a predetermined number of consecutively executed resistance welding points have a temporal resistance profile which is at least one time outside the tolerance range the time resistance course of resistance reference spot welding at the appropriate time.
  • a warning message can be issued in particular if the Danger of wear and tear is also clearly visible through the chronological sequence of the resistance welding with the resistance welding gun.
  • the steps of the method may be performed for each resistance weld point performed by the resistance welding gun.
  • Such an embodiment of the present invention offers the advantage that continuous quality monitoring of each welding point is possible, which is carried out by the corresponding resistance welding gun. This allows a particularly detailed documentation of the quality of the welding points that are applied to a workpiece.
  • the method further comprises a step of resistance spot welding, wherein the resistance spot welding, the resistance welding current strength and / or the resistance welding voltage to the resistance welding gun is changed compared to a previously performed resistance spot welding, such that the measured value for one in the Again, the step of resistance spot welding is within the tolerance range of the reference measurement value.
  • a wear of the resistance welding gun can be compensated by increasing the welding current or the welding time, so that the quality or strength of the produced welding point can be improved.
  • a counter can be reset to count successive measured values which lie outside the tolerance range around the reference value.
  • the measured values of each resistance spot weld for each workpiece can furthermore be stored in a central memory. This facilitates the argument in the case of a complaint of a defective workpiece, since in such an embodiment of the invention, the quality of each spot weld can be exactly documented and called from the central memory or computer.
  • a step of carrying out a reference measurement is also provided, wherein the corresponding reference value is recorded and stored for the subsequent comparison with the measured values.
  • the method may further comprise a step of swapping the resistance welding gun, wherein the step of performing a reference measurement is performed after the step of swapping the resistance clamp.
  • a low resistance spot welding current is applied to the resistance welding gun, followed by a high resistance spot welding current.
  • a low resistance spot welding current is applied to the resistance welding gun, followed by a high resistance spot welding current.
  • Fig. 1 is an illustration of a schematic structure of a resistance welding gun for a workpiece to be welded
  • FIG. 2 shows an exemplary representation of the assessment of a quality of a manufactured resistance welding point by comparison of measured values with a reference measured value
  • FIG. 3 shows an exemplary representation of a judgment of a measured value using a temporal resistance profile in the case of a reference point weld
  • Figure 4 is a schematic representation of a time course when the resistance welding gun with a current when an adhesive material is applied between the workpieces to be welded.
  • Fig. 5 is a flowchart of an embodiment of the present invention as
  • welding robots are often used in modern manufacturing equipment, which can attach a variety of welds to workpieces in a short time using welding tongs.
  • Such a welding tongs 100 is shown by way of example in FIG. 1, wherein, in particular, the welding contacts 110 on the welding tongs tip are decisive for a particularly good quality of the spot weld. Namely, when an electric current is supplied to the contacting terminals 120a and 120b of the welding gun 100, this electric current flows via the contact tips 110 of the welding gun 100 into the workpieces 130a and 130b to be connected (which are metal sheets, for example), so that the high current flow these workpieces melt locally and thereby connect in the form of a welding point 140.
  • a current, a voltage, a resistance, a welding time, an energy and / or a power in the production of a resistance welding point with the welding gun is added.
  • the quality of the weld spot in the reference measurement is optimal and can be used as a benchmark for further measurements on performed welds.
  • a welding point for the reference measurement may be set at a certain current of 10 kA so as to be of good quality. This current of 10 kA then forms a reference value 200, as shown for example in Fig. 2.
  • a tolerance range 210 can be placed around this reference value 200, which includes, for example, a deviation of ⁇ 30% from this reference value 200, so that a welding point which has been manufactured with a current value in this tolerance range can also be regarded as a weld point with good quality can.
  • this reference value 200 and the tolerance range 210 the welding points applied in the work process to the workpieces are now assessed at different times t in the measurements.
  • welding points 100 are produced by welding tongs whose measured values 220 are, for example, within the tolerance range 210 around the reference value 200, then a sufficiently good quality of these welding points 220 can be assumed, so that no further control or Reworking is required at these welds. If, however, the welding contacts 110 of the welding tongs 100 are used up, it is no longer possible to transmit sufficient current into the workpieces 130 due to the smaller contact surface, so that the measured values 230 for such welding points lie outside the tolerance range 210 in a region 240. However, a single measured value 230 in the region 240 outside the tolerance range 210 can also occur due to a singular disturbance when setting the welding spot, so that in this case there is no process inconvenience.
  • a sequence of consecutive measurements 230 longer than a predetermined number for example, 3 to 5
  • a systematic degradation of the quality of welds is detected, resulting in an output of the warning message 250.
  • the quality of welding points of a resistance welding gun 100 can be easily monitored so that, if necessary, the welding contacts 110 can be exchanged in good time or the welding gun 100 can be exchanged.
  • the measured values 220 and 230 can also be stored for each welding point, so that a complete automatic documentation of the welding spots applied by the welding gun 100 is possible.
  • an assessment of the quality of a spot weld can also be made by evaluating the time course of resistance during the welding of the spot weld respectively.
  • the resistance profile is recorded during the welding of the reference welding point, as shown for example in FIG. 3 by the line 300.
  • a tolerance range 310 around this reference resistance profile 300 can be taken into account, so that the quality of a welding point can be recognized as sufficient if, during the welding process for a weld point to be assessed, the measured time resistance profile 315 does not lie outside this tolerance range 310 when producing the corresponding welding point .
  • a derivative 320 of the reference measured value 300 can also be compared with a derivative 325 of a temporal resistance profile 315 of the weld point to be evaluated, wherein the weld point can be assessed as qualitatively sufficient if the derivative has a slope which is within a gradient range, which is reproduced, for example, by the increase characteristics 330 and 340 shown in FIG.
  • a current intensity or a welding time may be increased if measured values 230 that lie outside the tolerance range 210 occur.
  • a process stability factor can be determined that expresses the process stability of the spot welding process to what extent the weld indicated by the measurement matches the reference weld.
  • a process stability value of 100% means full match of the process with the reference welding process, thus signaling a stable welding process.
  • a process stability of 70% indicates that the welding process has changed by 30% compared to the reference weld.
  • a change may result, for. B. by wear, which can then be detected by the process factor.
  • there was a disturbance which had to compensate the U / I controller to improve the quality of welding. Disturbances, if they occur once, are characterized by a one-off deviation from the 100% line, z. B. splashes or edge welding. Continuously increasing deviations indicate wear, mostly from the electrode caps of the welding gun.
  • the value of the process stability factor is a unit-free variable calculated and standardized by the welding controller firmware. It describes the stability of a welding process for a spot weld.
  • High values represent very stable and secure processes. In processes with such values, there is no or only very little control intervention. In this case, the current resistance curve is almost congruent with the reference resistance curve of each welded point.
  • Low values represent very unstable and unsafe processes. In processes with such values, a high control action (large welding time or current changes) can take place. These can ensure a good spot weld, even in unfavorable conditions.
  • the calculation of the PSF value is based on an algorithm that is stored in the firmware • the controller.
  • Input variables for the calculation of this value are measured and calculated electrical parameters such as current, voltage, resistance, phase angle, power, energy input, but also characteristic quantities that describe the course of the currently measured resistance curve (minima, maxima, slopes).
  • the monitoring parameter current time indicates a higher value.
  • the process quality results from the exact analysis of the resistance profile of a weld, as shown for example in FIG.
  • striking corner points and trends of the curve are used.
  • the resistance profile is divided into several sections.
  • the most prominent points of the resistance curve are the initial and final resistance, as well as the local maximum and minimum. Gradients and tendencies are derived between these points, which allow a statement about the welding quality.
  • the results of the UIP calculation of the individual sections are included in the UIP with varying degrees of weighting, depending on which section is concerned. Since the dynamics of the resistance curve is weak in some welding tasks, a comparison with the corresponding sections of the reference track is additionally produced and included in the calculation. More difficult to interpret is the quality statement in manual tongs when different materials and sheet thicknesses are processed with a program.
  • a process quality factor (also called a UIP value) can be a unit-free variable calculated and standardized by the controller firmware. It describes the "theoretically calculated" quality of a welding point, regardless of whether this quality was achieved without or with a compensating control intervention.
  • High UIP values predetermine spot welds with a sufficient and good lens diameter on the basis of the calculation which corresponds at least to the point diameter originally taught.
  • Low UIP values (where the minimum value is 0) predicts an insufficient dot diameter or even an unattached weld point (even in the case of a control action).
  • the calculation of the UIP value is based on an algorithm that is stored in the firmware of the controller. Input variables for the calculation of this value are measured and calculated electrical parameters such as current, voltage, resistance, phase angle, power, energy input, but also characteristic quantities that the course of the currently measured resistance curve (minima, maxima, slopes) and thus the quality of Describe welding.
  • the actual values from the reference weld are taken over as reference for the monitoring.
  • An image of the limits within which the monitored variable moves results from the displayed course of a monitored variable.
  • the tolerances are best placed around the reference value so that most of the welds are in the "good range", so outliers are outside the tolerance bands, making sure that normal manufacturing variations are not outside the tolerance limits (eg. due to low electrode wear, milling)
  • the programmed tolerances are displayed as lines and clearly show how the tolerance bands would affect.
  • the monitoring for this size can be activated. In addition, it must be checked that the monitoring is also switched on for this program and "General."
  • the tolerances are best programmed on a user interface in the following order: 1. Permissible tolerance band above,
  • a quality factor can be determined by determining a comparison of the resistances in the current weld with the reference weld.
  • the presented function thus enables systematic error detection, which ensures a high standard of quality and production.
  • a permanent process spot welding quality can be ensured in a series production, which significantly improves the production conditions.
  • the count of the measured values which have occurred can be set outside a permissible tolerance range such that this counter is reset for each workpiece to be welded, so that a component-related quality warning message can be output.
  • a production program-related warning message output can be made to determine a long-term wear of the welding gun.
  • the proposed approach makes it possible to ensure a monitoring function for a complete shell of the quality of bodies.
  • conditional and absolute warning limits are determined and set, the violation of which leads to a warning message at the plant or to a plant stop: - Conditional warning limit:
  • conditional warning limits are set in such a way that the violation of such does not actually indicate a bad welding spot, but does indicate a deteriorating process or the danger of a deteriorating point quality.
  • the process monitoring can be set so that only a multiple (freely parameterizable) violation of conditional warning limits leads to a plant stop.
  • This counter can also automatically be reset to "zero” depending on a certain number of "good welds” for this program.
  • conditional and absolute warning limits as well as the determination of the Q stop or system stop logic is free and can be carried out according to the specifications for the quality control loops of the customer's production lines.
  • Adhesive thus acts as an insulator between the sheets.
  • the welding current flows at the beginning of the weld via shunts and lacks the production of the actual welding point.
  • the time until the adhesive is displaced by the heat generation, that is, the welding current flows through the actual welding point can be very different. This ensures no consistent welding quality.
  • the normal welding process uses the parameterized welding current, which is generally between 7kA and 12kA, the high heat buildup quickly displaces the adhesive. This happens partly explosively. Since the forceps can not follow this change so quickly, the process response is often very violent, spattering and burning points occur.
  • the aim of the function presented here should be to "gently" displace the adhesive, and then, if there is a defined sheet-metal contact, to begin with the actual welding process, the regulator should optimally "withstand the break-through time of the adhesive adapt.
  • the welding gun should be charged with a low current.
  • a current of about half of the actual welding current so about 4 - 5kA.
  • the length of the first phase should be determined so that the adhesive can be displaced.
  • the parameterization of the second phase 410 should be designed as would be necessary for the weld jobs without adhesive. In it, the actual welding should take place. In this way, furthermore, the quality of the welding points can be increased if an adhesive material connects the components to be joined before welding.
  • the present invention also includes a method 500 for monitoring and / or controlling a weld spot quality of a resistance welding gun, as illustrated in FIG. 5, wherein the method 500 includes a first step of measuring 510 and storing Measurements in performing resistance spot welds at different locations of a workpiece, wherein the measured values represent a voltage, a current, a resistance, a welding time, an energy and / or a power in the production of a resistance welding point. Furthermore, the method comprises a step of comparing 520 the measurement values with a reference measurement value, the reference measurement value representing a corresponding voltage, current, resistance, welding time, energy, and / or power in producing a corresponding resistance weld point. Finally, the method 500 includes a step of outputting 530 a warning message when it is determined in the step of comparing 520 that a predetermined number of successive measured values is outside a predefined tolerance distance from the reference value.
  • the invention presented above enables a consistent quality assurance concept for resistance spot welding, which is made possible by regulation, monitoring and evaluation of spot welds.
  • the proposed approach is integrated into an overall concept with integrated control and monitoring concept with integrated process monitoring and quality assessment.
  • a process for an efficient production process with simultaneous protection of the spot welding quality is ensured.
  • Tolerance range around the reference measurement value 220 Measurement values within the tolerance range 210 around the reference measurement value 200

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Resistance Welding (AREA)
EP10712709A 2009-04-07 2010-03-26 Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung Withdrawn EP2416919A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016798A DE102009016798A1 (de) 2009-04-07 2009-04-07 Verfahren und Steuergerät zum Überwachen einer Qualität von Schweißpunkten einer Widerstandsschweißzange
PCT/EP2010/001904 WO2010115524A1 (de) 2009-04-07 2010-03-26 Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung

Publications (1)

Publication Number Publication Date
EP2416919A1 true EP2416919A1 (de) 2012-02-15

Family

ID=42238637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10712709A Withdrawn EP2416919A1 (de) 2009-04-07 2010-03-26 Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung

Country Status (9)

Country Link
US (1) US20120118861A1 (ko)
EP (1) EP2416919A1 (ko)
KR (1) KR20120071413A (ko)
CN (1) CN102458752A (ko)
BR (1) BRPI1015289A2 (ko)
DE (1) DE102009016798A1 (ko)
MX (1) MX2011010619A (ko)
RU (1) RU2011144607A (ko)
WO (1) WO2010115524A1 (ko)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122511A1 (de) * 2011-12-29 2013-07-04 Robert Bosch Gmbh Frequenzganganalyse
DE202012101057U1 (de) * 2012-03-23 2013-06-24 DALEX Schweißmaschinen GmbH & Co. KG Widerstandsschweißtransformator
DE102012010716A1 (de) * 2012-05-30 2013-12-05 Robert Bosch Gmbh Ermitteln einer Qualität einerAluminiumschweißung
CN103658956A (zh) * 2012-09-26 2014-03-26 中国石油大学(华东) 伺服焊枪电阻点焊的焊点质量在线判别方法
KR101481242B1 (ko) * 2012-12-27 2015-01-09 현대자동차주식회사 스폿용접 품질 검사 방법
DE102012025200A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Schweißverfahren zum Verschweißen von Aluminium
JP5841626B2 (ja) * 2013-03-13 2016-01-13 本田技研工業株式会社 片面抵抗溶接方法
CN103212775B (zh) * 2013-04-09 2015-05-27 武汉理工大学 一种焊接机械手电极头自动补偿系统
DE102013217584A1 (de) * 2013-08-27 2015-03-05 Robert Bosch Gmbh Erkennen von Schweißspritzern durch Elektrodenkraftüberwachung
US9314878B2 (en) * 2013-09-12 2016-04-19 Ford Global Technologies, Llc Non-destructive aluminum weld quality estimator
DE102013221273A1 (de) 2013-10-21 2015-04-23 Robert Bosch Gmbh Verfahren zum Überwachen und Regeln einer Qualität von Schweißpunkten
DE102013226571A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Verfahren zur iterativen Erzeugung einer Referenzkurve
DE102014210699A1 (de) * 2014-06-05 2015-12-17 Robert Bosch Gmbh Schweisssteuerung und verfahren zum überwachen einer reinigung eines schweisswerkzeugs sowie eine vorrichtung zum führen eines schweisswerkzeugs
CN105345245B (zh) * 2014-08-04 2017-09-29 合肥国声电子通信有限责任公司 一种手工中频焊接控制柜
DE102014224592A1 (de) * 2014-12-02 2016-06-02 Robert Bosch Gmbh Schweissvorrichtung und schweissverfahren zum schweissen von werkstücken
JP6224648B2 (ja) * 2015-04-28 2017-11-01 ファナック株式会社 スポット溶接の品質診断システム
DE102015211313A1 (de) * 2015-06-19 2016-12-22 Robert Bosch Gmbh Werkzeugsystem mit einer Überlagerung von Prozesskurven von mindestens einer Montageanlage und ein Verfahren für ein Werkzeugsystem einer Montageanlage
DE102015215190A1 (de) * 2015-08-10 2017-02-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Durchführen eines Schweißprozesses
KR101694188B1 (ko) * 2015-09-04 2017-01-09 현대삼호중공업(주) 용접 전류 편차 보정시스템 및 그 방법
US10661373B2 (en) * 2015-09-14 2020-05-26 Illinois Tool Works Inc. Systems and methods for providing weld quality confidence
US11027352B2 (en) 2015-09-14 2021-06-08 Illinois Tool Works Inc. Systems and methods for analyzing weld signatures using pulse forensic features
DE102015221588A1 (de) * 2015-11-04 2017-05-04 Robert Bosch Gmbh Schweisssteuerung für Schweissvorrichtung und Schweissverfahren für Fertigungsanlage
WO2017165998A1 (zh) * 2016-03-26 2017-10-05 广州微点焊设备有限公司 三轴联动自动焊接设备
CN205733405U (zh) * 2016-03-26 2016-11-30 广州微点焊设备有限公司 热压电阻焊显微焊接点焊机
KR101798110B1 (ko) * 2016-04-12 2017-11-15 한전원자력연료 주식회사 핵연료봉 저항용접 품질 모니터링 방법
DE102016207594A1 (de) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Verfahren zum Bestimmen eines Zangenwiderstands einer Schweißzange zum Widerstandsschweißen
CN105750754B (zh) * 2016-05-06 2018-01-16 广州市精源电子设备有限公司 电阻点焊质量影响因素辨识方法与系统
DE102017220233A1 (de) * 2017-10-27 2019-05-02 Robert Bosch Gmbh Schweisssteuerung für eine schweissanlage, schweissanlage und schweissverfahren zur regelung einer qualität einer herstellung einer schweissverbindung
CN107671406B (zh) * 2017-11-01 2019-09-24 上海交通大学 直流电阻点焊多模式反馈控制方法
CN108188560B (zh) * 2017-12-12 2020-06-09 广州亨龙智能装备股份有限公司 基于Linux系统的手持式电阻焊焊接质量监控系统
DE102018217670A1 (de) * 2018-10-16 2020-04-16 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer Widerstandschweißvorrichtung
CN109317799A (zh) * 2018-11-21 2019-02-12 广州市精源电子设备有限公司 点焊电源输出调节方法、装置、系统和存储介质
US11373262B2 (en) 2019-03-25 2022-06-28 Illinois Tool Works Inc. Systems and methods for providing part quality confidence
FR3095976B1 (fr) * 2019-05-17 2022-01-21 Psa Automobiles Sa Dispositif d’analyse automatisée de points de soudure réalisés par un appareil de soudage par résistance en courant alternatif
US11768483B2 (en) 2019-05-22 2023-09-26 Illinois Tool Works Inc. Distributed weld monitoring system with job tracking
CN111975170A (zh) * 2019-05-22 2020-11-24 伊利诺斯工具制品有限公司 具有作业跟踪的分布式焊接监视系统
CN110227878B (zh) * 2019-06-27 2021-02-26 天津七所高科技有限公司 一种电阻焊设备检测螺母错位或丢失的方法
US11400537B2 (en) 2019-09-12 2022-08-02 Illinois Tool Works Inc. System and methods for labeling weld monitoring time periods using machine learning techniques
DE102019215887A1 (de) * 2019-10-16 2021-04-22 Robert Bosch Gmbh Verfahren zum Widerstandsschweißen von Werkstücken
JP7311393B2 (ja) * 2019-10-29 2023-07-19 ファナック株式会社 スポット溶接システム
CN110953993A (zh) * 2019-11-14 2020-04-03 国网山西省电力公司大同供电公司 一种用于输电线路弧垂和限距的检测装置和方法
DE102019134555A1 (de) * 2019-12-16 2021-06-17 Audi Ag System zum Überwachen eines Schweißprozesses
JP7363550B2 (ja) * 2020-02-10 2023-10-18 マツダ株式会社 抵抗溶接用電極のドレス良否判定方法及びその装置
DE102020204521B4 (de) * 2020-04-08 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum dynamischen Setzen von Reglergrenzwerten für eine Schweißsteuerung und Schweißsteuerung
CN111390366A (zh) * 2020-04-15 2020-07-10 深圳市欧帝克科技有限公司 一种电阻焊电极温度补偿方法
CN111673256B (zh) * 2020-05-06 2022-02-15 浙江吉利汽车研究院有限公司 电阻点焊焊钳电极磨损状态监测方法及监测装置
AT524244A1 (de) * 2020-09-17 2022-04-15 Evg Entwicklungs U Verwertungs Ges M B H Schweißvorrichtung
CN112775528B (zh) * 2020-12-22 2022-09-27 上海电力大学 一种自动评估电阻点焊钳刚性的方法
DE102021104540B4 (de) * 2021-02-25 2024-02-29 Audi Aktiengesellschaft Schweißsystem und Verfahren zum Betreiben des Schweißsystems
FR3123240B1 (fr) * 2021-05-25 2024-01-12 Safran Aircraft Engines Traitement de signaux de soudage resistance par point
CN113505657B (zh) * 2021-06-18 2022-05-03 东风汽车集团股份有限公司 一种焊点质量检测方法及装置
CN113441827B (zh) * 2021-07-19 2022-12-02 吉利汽车集团有限公司 一种电阻点焊工艺参数自动生成方法及其系统
CN113977056B (zh) * 2021-10-27 2022-12-27 重庆理工大学 一种基于二次电流脉冲的电阻点焊焊点质量检测方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346561C3 (de) * 1973-09-15 1979-05-10 Industrie-Werke Karlsruhe Augsburg Ag, 7500 Karlsruhe Verfahren zum Regeln elektrischer Widers tandsschweiBvorgänge
JPS57202988A (en) * 1981-06-10 1982-12-13 Nippon Abionikusu Kk Accommodation controlling device for resistance welding
JPH0825024B2 (ja) 1986-09-26 1996-03-13 株式会社ダイヘン 自動溶接装置
DE3711771A1 (de) * 1987-04-08 1988-10-27 Sts Systemtechnik Und Software Verfahren und einrichtung fuer die prozessreglung beim punktschweissen
JPS63313670A (ja) * 1987-06-16 1988-12-21 Sumikin Yosetsu Kogyo Kk 溶接監視装置
JPS642784A (en) 1987-06-24 1989-01-06 Dengensha Mfg Co Ltd Welding current monitoring method
US5196668A (en) * 1988-11-17 1993-03-23 Honda Giken Kogyo Kabushiki Kaisha DC resistance welding apparatus
US4973813A (en) 1989-09-25 1990-11-27 Shirley Mitchell System for monitoring weld parameters
JP2854999B2 (ja) * 1991-06-14 1999-02-10 本田技研工業株式会社 スポット溶接機用のロボットコントローラ
DE4332807C2 (de) 1992-10-20 2002-07-18 Schlattl Werner Bavaria Tech Opto-elektrischer Sensor
DE4330914A1 (de) * 1993-09-11 1995-03-23 Bosch Gmbh Robert Verfahren zum Widerstandsschweißen
US5978751A (en) 1997-02-25 1999-11-02 International Business Machines Corporation Variegated manufacturing process test method and apparatus
JP3221356B2 (ja) * 1997-05-14 2001-10-22 松下電器産業株式会社 抵抗溶接部の品質評価方法および装置
DE29715999U1 (de) * 1997-09-06 1998-02-26 Msc Mes Sensor Und Computertec Meßsystem zur Prozeßüberwachung und Qualitätssicherung beim Widerstandsschweißen
DE19814249A1 (de) * 1998-03-31 1999-10-07 Matuschek Mestechnik Gmbh Widerstandsschweißvorrichtung
DE19915121C2 (de) * 1999-04-01 2001-10-11 Erdogan Karakas Verfahren und Vorrichtung zum Widerstandsschweißen
US6441342B1 (en) * 2000-11-20 2002-08-27 Lincoln Global, Inc. Monitor for electric arc welder
DE10136992A1 (de) 2001-07-23 2003-02-06 Emhart Llc Newark Verfahren zum Kurzzeit-Lichtbogenschweißen sowie Kurzzeit-Lichtbogenschweißsystem
CN2850798Y (zh) * 2005-08-24 2006-12-27 沈阳工业大学 一种电阻点焊质量控制装置
CN100525982C (zh) * 2005-08-24 2009-08-12 沈阳工业大学 电阻点焊质量控制装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010115524A1 *

Also Published As

Publication number Publication date
US20120118861A1 (en) 2012-05-17
MX2011010619A (es) 2012-04-30
CN102458752A (zh) 2012-05-16
WO2010115524A1 (de) 2010-10-14
DE102009016798A1 (de) 2010-10-14
KR20120071413A (ko) 2012-07-02
RU2011144607A (ru) 2014-04-20
BRPI1015289A2 (pt) 2016-04-19

Similar Documents

Publication Publication Date Title
EP2416919A1 (de) Verfahren und steuergerät zum überwachen einer qualität von schweisspunkten einer widerstandsschweisszange mit ausgeben einer warnungsmeldung
DE102013221273A1 (de) Verfahren zum Überwachen und Regeln einer Qualität von Schweißpunkten
DE3902308C1 (ko)
EP1412125B1 (de) Verfahren zum kurzzeit-lichtbogenschweissen sowie kurzzeit-lichtbogenschweisssystem, um hochfrequente störungen zu erkennen
DE202011000875U1 (de) Kontrolleinrichtung
DE102008028385B4 (de) Mess- und Steuerverfahren zum Widerstandsschweißen
EP3539713B1 (de) Verfahren und vorrichtung zum qualitätsauswerten beim widerstandsschweissen sowie computerprogrammprodukt und steuerungseinrichtung
DE102012010716A1 (de) Ermitteln einer Qualität einerAluminiumschweißung
DE102014210699A1 (de) Schweisssteuerung und verfahren zum überwachen einer reinigung eines schweisswerkzeugs sowie eine vorrichtung zum führen eines schweisswerkzeugs
DE102013113449A1 (de) Widerstandsschweissen mit minimiertem Schweissaustrieb
DE102018105893B4 (de) Verfahren und Vorrichtung zum Qualitätsauswerten beim Widerstandsschweißen sowie Computerprogrammprodukt, Steuerungseinrichtung und Verwendung
EP3138652B1 (de) Elektrisches schweissverfahren
EP0715556B1 (de) Verfahren und vorrichtung zur bestimmung einer temperatur an einer punktschweissverbindung sowie deren anwendung zur beurteilung der qualität der punktschweissverbindung
DE10334478B4 (de) Verfahren und Vorrichtung zum Widerstandsschweißen
DE102008038332A1 (de) Verfahren und Vorrichtung zur Regelung eines Schweißprozesses
DE102017220233A1 (de) Schweisssteuerung für eine schweissanlage, schweissanlage und schweissverfahren zur regelung einer qualität einer herstellung einer schweissverbindung
DE102015215190A1 (de) Verfahren und Vorrichtung zum Durchführen eines Schweißprozesses
DE102007017962B4 (de) Überwachung eines Widerstandsschweißvorgangs
DE4403644C2 (de) Verfahren zum Ein- und Nachstellen eines Widerstandsschweißgerätes
DE102013217583A1 (de) Bewerten eines Widerstandsschweißvorgangs durch Elektrodenkraftüberwachung
EP3124160B1 (de) Adaptives verfahren zum fräsen von elektroden von punktschweissvorrichtungen
EP4135924B1 (de) Verfahren und vorrichtung zur qualitätsbeurteilung eines bearbeitungsprozesses
EP0950938B1 (de) Verfahren und Vorrichtung zur Qualitätsüberwachung
DE10221023A1 (de) Verfahren und Anordnung zur Qualitätssicherung bei Schweißprozessen sowie ein entsprechendes Computerprogrammprodukt und ein entsprechendes computerlesbares Speichermedium
EP3808492A1 (de) Verfahren zum überprüfen der qualität bei einem widerstandsschweissen von werkstücken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERTSCH, MICHA

Inventor name: HAEUFGLOECKNER, JUERGEN

Inventor name: EHRHARDT, KLAUS

Inventor name: RIPPER, MICHAEL

Inventor name: COURT, DENIS

Inventor name: KRAMER, NORBERT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141001