EP2402473B1 - Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente - Google Patents

Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente Download PDF

Info

Publication number
EP2402473B1
EP2402473B1 EP11171088.5A EP11171088A EP2402473B1 EP 2402473 B1 EP2402473 B1 EP 2402473B1 EP 11171088 A EP11171088 A EP 11171088A EP 2402473 B1 EP2402473 B1 EP 2402473B1
Authority
EP
European Patent Office
Prior art keywords
temperature
component
stage
nickel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11171088.5A
Other languages
English (en)
French (fr)
Other versions
EP2402473A3 (de
EP2402473A2 (de
EP2402473B8 (de
Inventor
Mohamed Youssef Nazmy
Claus Paul Gerdes
Andreas KÜNZLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP2402473A2 publication Critical patent/EP2402473A2/de
Publication of EP2402473A3 publication Critical patent/EP2402473A3/de
Publication of EP2402473B1 publication Critical patent/EP2402473B1/de
Application granted granted Critical
Publication of EP2402473B8 publication Critical patent/EP2402473B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Definitions

  • the invention relates to the field of materials technology. It relates to a method for producing a single-crystal component consisting of a nickel-base superalloy or directionally solidified component having comparatively large dimensions. With the aid of the method according to the invention, particularly good properties, in particular very good fatigue strength, are achieved with low-cycle stress on the component.
  • Single-crystal components made of nickel-based superalloys have, among other things, a very good material strength at high stress temperatures, but also good corrosion and oxidation resistance as well as good creep resistance. Due to these properties, when using such materials z. As in gas turbines, the inlet temperature of the gas turbine can be increased, whereby the efficiency of the gas turbine plant increases.
  • the first type to which the present invention relates may be completely solution annealed so that the entire ⁇ 'phase is in solution.
  • This is the case for example for the known alloy CMSX4 with the following chemical composition (in% by weight): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni or the alloy PWA 1484 with the following chemical composition (in% by weight): 5 Cr, 10 Co, 6 W, 2 Mo, 3 Re, 8.7 Ta, 5.6 Al, 0.1 Hf and the known alloy MC2, which unlike the abovementioned alloys, it is not alloyed with rhenium and has the following chemical composition (in% by weight): 5 Co, 8 Cr, 2 Mo, 8 W, 5 Al, 1.5 Ti, 6 Ta, balance Ni.
  • a typical standard heat treatment for CMSX4, for example, is the following: solution annealing at 1320 ° C / 2h / shielding gas, fan cooling.
  • the second type of single crystal nickel base superalloys is not fully heat treatable, i.
  • the entire portion of the ⁇ '-phase in a solution annealing goes into solution, but only a certain part.
  • This is the case, for example, with the known superalloy CMSX186 having the following chemical composition (in% by weight): 0.07 C, 6 Cr, 9 Co, 0.5 Mo, 8 W, 3 Ta, 3 Re, 5.7 Al, 0.7 Ti, 1.4 Hf, 0.015 B, 0.005 Zr, balance Ni and the alloy CMSX486 with the following chemical composition (in% by weight): 0.07 C, 0.015 B, 5.7 Al, 9.3 Co, 5 Cr, 1.2 Hf, 0.7 Mo, 3 Re, 4.5 Ta, 0.7 Ti, 8.6 W, 0.005 Zr, balance Ni.
  • the nickel-based superalloys of the second type are usually subjected to a two-stage heat treatment (aging process at lower temperatures), as at higher temperatures, as typically used in the alloys of the first type for solution annealing are already reached, the melting point start temperature, and thus the alloy begins to melt undesirable.
  • the creep resistance of the first type of nickel-base superalloys is usually higher than that of the second type, provided that the alloys belong to the same generation. This is mainly due to the fact that the dissolved ⁇ 'is the main source of recoverable strength.
  • Nickel-based superalloys for single-crystal components such as. B. off US 4,643,782 . EP 0 208 645 .
  • US 5,270,123 and US 7,115,175 B2 contain alloying, eg, Re, W, Mo, Co, Cr, as well as ⁇ '-phase-forming elements, for example Al, Ta, and Ti.
  • the content of high-melting alloying elements (W, Mo, Re) in the basic matrix ( austenitic ⁇ phase) increases continuously with the increase of the stress temperature of the alloy.
  • W, Mo, Re high-melting alloying elements
  • the alloys disclosed in the above references have a high creep strength, a comparatively good LCF (low cycle fatigue fatigue) and HCF (high cycle life fatigue) properties, and a high oxidation resistance.
  • the alloy CMSX-4 US 4,643,782 when used experimentally in a gas turbine at a temperature above 1000 ° C a strong coarsening of the y 'phase, which is associated with an increase in the creeping speed of the alloy adversely.
  • a similar effect leading to the flocculation of the ⁇ '-phase also results from the solidification of nickel-based superalloys due to dendritic segregation. Especially in superalloys with a high proportion of slowly diffusing elements, such. As rhenium, the segregations of these elements can not be completely eliminated within an acceptable homogenization time. Since the ⁇ '-phase, which precipitates during cooling, has a smaller lattice constant than the ⁇ -matrix and the ⁇ / ⁇ '-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a change in the ⁇ 'microstructure in that the initially cubic form of ⁇ ' changes into a stretched form of ⁇ '. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
  • the process immediately following the casting step is carried out after a two-stage slow heating of the cast object at a final HIP temperature in the range of 1174 ° C (2145 ° F) to 1440 ° C (2625 ° F), wherein the hold time is 3.5 to 4.5 hours and the pressure is in the range of 89.6 MPa (13 ksi) to 113 MPa (16.5 ksi), that is, comparatively low.
  • the aim of the invention is to avoid the mentioned disadvantages of the prior art.
  • the invention is based on the object to provide a suitable method for the production, including heat treatment, of comparatively large single-crystal components or components with directionally solidified structure of known nickel-based superalloys, with which a microstructure can be adjusted that not for raft formation ⁇ '-phase and therefore leads to improved mechanical properties, in particular an improved fatigue life at low load cycles (LCF) of the components.
  • the method according to the invention it is possible to produce large single-crystal components or components with directionally solidified microstructure of known nickel-base superalloys, which on the one hand are free of pores and on the other hand have a microstructure in which the flocculation of the ⁇ 'phase is avoided. Therefore, the components thus produced have improved mechanical properties, in particular improved low cycle fatigue life (LCF) fatigue strength.
  • the method has the advantage that it is relatively easy to implement.
  • step A) it is advantageous if the determination of the dendrite arm spacing ( ⁇ ) according to step A) takes place by metallographic means. This is relatively easy to implement and, for example, can already be carried out prior to the method on the basis of corresponding samples,
  • the quenching rate (v1) from solution annealing temperature (T 1 ) to room temperature is greater than 70 ° C./min, because then extremely fine uniformly distributed ⁇ '-particles are obtained in the ⁇ -matrix.
  • the nickel-base superalloys CMSX4 known from the prior art with the following chemical composition (in% by weight) were used: 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, balance Ni.
  • the component such as a gas turbine bucket
  • the component was poured into its mold.
  • dendritic segregations arise due to the composition, in particular the comparatively high Re content.
  • Rhenium is a very slowly diffusing element, so these segregations can not be completely eliminated in the subsequent solution annealing process within an acceptable homogenization time. Since the ⁇ '-phase, which precipitates during cooling, has a smaller lattice constant than the ⁇ -matrix and the ⁇ / ⁇ '-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a degradation in the ⁇ '-microstructure, in that the initially cubic form of ⁇ 'changes into a stretched form of ⁇ '. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
  • mechanical properties eg. B. fatigue strength at low load cycles.
  • the dendrite arm spacing ⁇ is therefore first determined in different, for example, the critical regions of the cast component. This can z. B. done by metallographic way, where appropriate, this distance is already determined prior to the process on the basis of corresponding pre-cast samples.
  • the slowest diffusion element in the composition of the respective nickel base superalloy is identified to determine the diffusion coefficient D.
  • this element is rhenium, as already explained above.
  • this element is Mo.
  • the required time t is calculated at which the component at solution annealing temperature T 1 , which is lower on the one hand than the starting melt temperature T mi , and on the other hand high enough to in the necessary heat treatment window must be held so that the microsegregation of this slowest diffusion element is reduced to ⁇ 5%.
  • Fig. 1 is the time-temperature diagram of the subsequent to the casting process treatment method for producing the single crystal component from the above superalloy shown schematically.
  • the solution annealing (process step D)) of the cast component in the present embodiment thus comprises heating the component to the above solution annealing temperature T 1 of 1290-1310 ° C, holding at this temperature with the time t calculated above (4-6 h) and a rapid quenching from the solution annealing temperature T 1 to room temperature at a rate v1 ⁇ 50 ° C / min, in order to obtain very fine uniformly distributed ⁇ 'particles in the ⁇ matrix after quenching (Scheme Fig. 2a ).
  • the quenching rate is greater than 70 ° C / min, because then a microstructure is obtained with extremely fine uniformly distributed ⁇ '-particles in the ⁇ -matrix.
  • a two-stage precipitation treatment for precipitating the ⁇ '-phase is carried out at lower temperatures T 2 and T 3 in comparison to T 1 (method step E)), wherein in the first stage of the precipitation treatment a HIP method with one pressure p greater than 160 MPa and a cooling rate v2 ⁇ 50 ° C / min is applied.
  • the final temperature of the HIP process in the present embodiment is 1150 ° C, the holding time 4-6 h.
  • the applied final pressure during the HIP process is relatively high, it is greater than the internal stresses caused by the inhomogeneities in the microstructure.
  • this method step advantageously closes any micropores present in the microstructure and, on the other hand, eliminates stresses which are caused by the rapid cooling of the solution annealing temperature T 1 to room temperature or by any residual inhomogeneities in the microstructure. This prevents directional flocculation of the ⁇ 'phase by the formation of the aforementioned cubic ⁇ ' particles in the ⁇ matrix.
  • the microstructure present after the HIP-treatment step consists of fine uniformly distributed cubic ⁇ '-particles in the ⁇ matrix and is schematically in orientation Fig. 2b shown.
  • the first stage of process step E ie the HIP process, as in Fig. 3c is shown to perform.
  • the isostatic discharge pressure p is here in turn applied abruptly at the beginning of the warm-up phase, and kept constant over the entire warm-up phase, the holding phase at T 2 and in addition over the entire cooling phase. Only then, when the component has assumed room temperature, the isostatic pressure load is abruptly removed.
  • the single-crystal component / directionally solidified component is heated to a temperature T 3 of 870 ° C., held at this temperature T 3 for 16-20 h and then cooled to room temperature at a cooling rate v3 of approx. 50 ° C./minute ,
  • the end structure according to the present invention formed after this last treatment step is schematically for the ⁇ 001> orientation in FIG Fig. 2c shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft ein Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente oder gerichtet erstarrten Komponente mit vergleichsweise grossen Abmessungen. Mit Hilfe des erfindungsgemässen Verfahrens werden besonders gute Eigenschaften, insbesondere sehr gute Ermüdungsfestigkeit bei niederzyklischer Beanspruchung der Komponente erreicht.
  • Stand der Technik
  • Einkristallkomponenten aus Nickel-Basis-Superlegierungen weisen bei hohen Beanspruchungstemperaturen u. a. eine sehr gute Materialfestigkeit, aber auch gute Korrosions- und Oxidationsbeständigkeit sowie eine gute Kriechfestigkeit auf. Aufgrund dieser Eigenschaften kann beim Einsatz derartiger Werkstoffe z. B. in Gasturbinen, die Einlasstemperatur der Gasturbinen erhöht werden, wodurch die Effizienz der Gasturbinenanlage steigt.
  • Vereinfacht gesagt gibt es zwei Typen von Einkristall-Nickel-Basis-Superlegierungen.
  • Der erste Typ, auf den sich die vorliegende Erfindung bezieht, kann vollständig lösungsgeglüht werden, so dass sich die gesamte γ'-Phase in Lösung befindet. Dies ist beispielsweise der Fall bei der bekannten Legierung CMSX4 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni oder der Legierung PWA 1484 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5 Cr, 10 Co, 6 W, 2 Mo, 3 Re, 8.7 Ta, 5.6 Al, 0.1 Hf sowie der bekannten Legierung MC2, welche im Gegensatz zu den vorher genannten Legierungen nicht mit Rhenium legiert ist und folgende chemische Zusammensetzung (Angaben in Gew.- %) aufweist: 5 Co, 8 Cr, 2 Mo, 8 W, 5 Al, 1.5 Ti, 6 Ta, Rest Ni.
  • Eine typische Standardwärmebehandlung für CMSX4 ist beispielsweise die folgende: Lösungsglühen bei 1320 °C/2h/Schutzgas, Schnellkühlung mit Ventilator.
  • Der zweite Typ von Einkristall-Nickel-Basis-Superlegierungen ist nicht vollständig wärmebehandelbar, d.h. hier geht nicht der gesamte Anteil der γ'-Phase bei einem Lösungsglühen in Lösung, sondern nur ein bestimmter Teil. Dies ist beispielsweise der Fall bei der bekannten Superlegierung CMSX186 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 0.07 C, 6 Cr, 9 Co, 0.5 Mo, 8 W, 3 Ta, 3 Re, 5.7 Al, 0.7 Ti, 1.4 Hf, 0.015 B, 0.005 Zr, Rest Ni und der Legierung CMSX486 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 0.07 C, 0.015 B, 5.7 Al, 9.3 Co, 5 Cr, 1.2 Hf, 0.7 Mo, 3 Re, 4.5 Ta, 0.7 Ti, 8.6 W, 0.005 Zr, Rest Ni.
  • Die Nickel-Basis-Superlegierungen des zweiten Typs werden meist einer zweifstufigen Wärmebehandlung (Alterungsprozess bei niedrigeren Temperaturen) ausgesetzt, da bei höheren Temperaturen, wie sie bei den Legierungen des ersten Typs zum Lösungsglühen typischerweise verwendet werden, bereits die Schmelzpunkt-Starttemperatur erreicht wird, und die Legierung somit unerwünscht zu schmelzen beginnt.
  • Eine typische zweistufige Wärmebehandlung der Legierung CMSX186 ist beispielsweise die folgende:
    1. 1. Stufe: 1080 °C/4h/Gebläse
    2. 2. Stufe: 870 °C/20h/Gebläse.
  • Die Kriechfestigkeit des ersten Typs der Nickel-Basis-Superlegierungen ist normalerweise höher als die des zweiten Typs, vorausgesetzt, dass die Legierungen der gleichen Generation angehören. Dies ist vor allem in der Tatsache begründet, dass das gelöste γ' die Hauptquelle für die erzielbare Festigkeit ist.
  • Nickel-Basis-Superlegierungen für Einkristall-Komponenten, wie sie z. B. aus US 4,643,782 , EP 0 208 645 , US 5,270,123 und US 7,115,175 B2 bekannt sind, enthalten mischkristallverfestigende Legierungselemente, beispielsweise Re, W, Mo, Co, Cr, sowie γ'-Phasen bildende Elemente, beispielsweise Al, Ta, und Ti. Der Gehalt an hochschmelzenden Legierungselementen (W, Mo, Re) in der Grundmatrix (austenitische γ-Phase) nimmt kontinuierlich zu mit der Zunahme der Beanspruchungstemperatur der Legierung. So enthalten z. B. übliche Nickel-Basis-Superlegierungen für Einkristalle 6-8 % W, bis zu 6 % Re und bis zu 2 % Mo (Angaben in Gew.- %). Weiterhin sind oftmals geringe Anteile an C, B, Hf und Zr vorhanden. Die in den oben genannten Druckschriften offenbarten Legierungen weisen eine hohe Kriechfestigkeit, eine vergleichsweise gute LCF (Ermüdung bei niedriger Lastspielzahl)- und HCF (Ermüdung bei hoher Lastspielzahl)-Eigenschaften sowie einen hohen Oxidationswiderstand auf.
  • Diese bekannten Legierungen wurden für Flugzeugturbinen entwickelt und deshalb optimiert auf den Kurz- und Mittelzeiteinsatz, d.h. die Beanspruchungsdauer wird auf bis zu 20 000 Stunden ausgelegt. Im Gegensatz dazu müssen industrielle Gasturbinen-Komponenten auf eine Beanspruchungsdauer von bis zu 75 000 Stunden oder auch mehr ausgelegt werden.
  • Nach einer Beanspruchungsdauer von 300 Stunden zeigt z. B. die Legierung CMSX-4 aus US 4,643,782 beim versuchsweisen Einsatz in einer Gasturbine bei einer Temperatur oberhalb von 1000 °C eine starke Vergröberung der y'-Phase, die nachteilig mit einer Erhöhung der Kriechgeschwindigkeit der Legierung einhergeht.
  • Es ist bekannter Stand der Technik, derartige Superlegierungen nach dem Giessprozess einer Wärmebehandlung zu unterziehen, bei der in einem ersten Lösungsglühschritt die während des Giessprozesses ungleichmässig ausgeschiedene γ'-Phase im Gefüge ganz oder teilweise aufgelöst wird. In US 4 328 045 wird zudem vorgeschlagen, diesen Homogenisierungs- und Lösungsglühschritt bei einer gerichtet erstarrten Nickel-Basis-Legierung mit einem Gefüge, welches hauptsächlich aus γ'-Partikeln in einer γ-Matrix besteht und Dendriten mit einem geringen Refraktionsmetall-Gehalt sowie interdendritische Bereiche mit einem hohen Refraktionsmetall-Gehalt aufweist, bei einer solchen Temperatur und Zeit durchzuführen, dass das Gefüge im Hinblick auf den Refraktionsmetall-Gehalt homogenisiert wird und anschliessend so schnell abgekühlt wird, dass die erneute Ausscheidung der γ'-Phase unterdrückt wird und ein Gefüge entsteht, welches mit Refraktionselementen übersättigt ist. In einem zweiten Wärmebehandlungsschritt wird die γ'-Phase wieder kontrolliert ausgeschieden. Um optimale Eigenschaften zu erzielen, wird diese Ausscheidungswärmebehandlung derart durchgeführt, dass möglichst feine gleichmässig verteilte Teilchen der γ'-Phase in der γ-Phase (= Matrix) entstehen.
  • Es wurde allerdings festgestellt, dass es bei Einwirkung einer mechanischen Belastung unter langzeitiger Hochtemperaturbeanspruchung (Kriechbeanspruchung) oder nach einer plastischen Deformation des Materials bei Raumtemperatur, an die sich eine Wärmebehandlung (Hochtemperatur-Glühen) des Materials anschliesst, im Gefüge derartiger Legierungen nachteilig zu einer gerichteten Vergröberung der y'-Teilchen, der sogenannten Flossbildung (Englisch: rafting) kommt. Bei hohen γ'-Gehalten (d.h. bei einem γ'-Volumenanteil von mindestens 50%) führt dies zur Invertierung der Mikrostruktur, d.h. γ' wird zur durchgehenden Phase, in der die frühere γ-Matrix eingebettet ist.
  • Da die intermetallische γ'-Phase zur Umgebungsversprödung (Englisch: environmental embrittlement) neigt, führt dies nachfolgend unter bestimmten Beanspruchungsbedingungen zu einem massiven Abfall der mechanischen Eigenschaften - vor allem der Streckgrenze - bei Raumtemperatur (25°C) im Vergleich zu Proben, die keiner vorgängigen derartigen Kriechbeanspruchung unterzogen wurden. Diese Verschlechterung der Streckgrenze wird mit dem Begriff "Degradierung" der Eigenschaften beschrieben (siehe Pessah-Simonetti, P. Caron and T. Khan: Effect of long-term prior aging on tensil behaviour of high-performance single crystal superalloy, Journal de Physique IV, Colloque C7, Volume 3, November 1993).
  • Ein ähnlicher, zur Flossbildung der γ'-Phase führender Effekt ergibt sich auch beim Erstarren von Nickel-Basis-Superlegierungen auf Grund von dendritischen Segregationen. Besonders in Superlegierungen mit einem hohen Anteil an langsam diffundierenden Elementen, wie z. B. Rhenium, können die Segregationen dieser Elemente nicht vollständig innerhalb einer akzeptablen Homogenisierungszeit beseitigt werden. Da die γ'-Phase, die sich während der Abkühlung ausscheidet, eine kleinere Gitterkonstante als die γ-Matrix hat und der γ/γ'-Gitterversatz in den Dendriten aber grösser ist als in den interdendritischen Gebieten, kommt es zur Ausbildung von inneren Spannungen während der Wärmebehandlung, insbesondere während des Abkühlens. Dies führt zu einer Veränderung in der γ'-Mikrostruktur, indem sich die zunächst kubische Form von γ` in eine gestreckte Form von γ' verändert. Dies geht einher mit der Verschlechterung von mechanischen Eigenschaften, z. B. der Ermüdungsfestigkeit bei niedriger Lastspielzahl.
  • Ein weiteres Problem vieler bekannter Nickel-Basis-Superlegierungen, beispielsweise der aus US 5,435,861 bekannten Legierungen, besteht darin, dass die Giessbarkeit bei grossen Komponenten, z. B. bei Gasturbinenschaufeln mit einer Länge von mehr als 80 mm, zu wünschen übrig lässt.
  • Das Glessen einer perfekten, relativ grossen gerichtet erstarrten Einkristall-Komponente aus einer Nickel-Basis-Superlegierung ist extrem schwierig. Die meisten dieser Komponenten weisen Fehler auf, z. B. Kleinwinkelkorngrenzen, "Frecklen", d. h. Fehlstellen bedingt durch eine Kette von gleichgerichteten Körnern mit einem hohem Gehalt an Eutektikum, äquiaxiale Streugrenzen, Mikroporositäten u. a. Diese Fehler schwächen die Komponenten bei hohen Temperaturen, so dass die gewünschte Lebensdauer bzw. die Betriebstemperatur der Turbine nicht erreicht werden.
  • Da aber eine perfekt gegossene Einkristall-Komponente extrem teuer ist, tendiert die Industrie dazu, so viele Defekte wie möglich zuzulassen ohne dass die Lebensdauer oder die Betriebstemperatur beeinträchtigt werden.
  • Eine andere Möglichkeit wird in US 7,115,175 B2 vorgeschlagen: Nach dem Giessen der Einkristallkomponente werden die vorhandenen Mikroporositäten, die beim Giessen entstanden sind, geschlossen und Inseln eutektischer γ/γ'-Phase in der Matrix werden teilweise gelöst, indem dafür ein HIP-Verfahren (Heissisostatisches Pressen, Englisch: hot isostatic pressing) angewendet wird, danach wird ein Lösungsglühen zur vollständigen Lösung der eutektischen γ/γ'-Phase und zur Ausscheidung gleichmäsig verteilter grosser "octet shaped" genannte γ'-Partikel vorgenommen und anschliessend eine Ausscheidungswärmebehandlung, um zweite und gleichmässig verteilte feine quaderförmige γ'-Partikel zu erhalten. Damit soll die Festigkeit der Superlegierung erhöht werden.
  • Gemäss dem im Dokument US 7,115,175 B2 beschriebenen Prozesses wird das sich unmittelbar an den Schritt des Giessens anschliessenden HIP-Verfahren nach einem zweistufigen langsamen Erwärmen des gegossenen Objektes bei einer HIP-Endtemperatur im Bereich von 1174 °C (2145 °F) bis 1440 °C (2625 °F) durchgeführt, wobei die Haltezeit 3,5 bis 4,5 Stunden beträgt und der Druck im Bereich von 89,6 MPa (13 ksi) bis 113 MPa (16.5 ksi) liegt, also vergleichsweise niedrig ist.
  • Letzteres trifft auch für das im Dokument von Chang, J. C. et al.: "Development of Microstructure and Mechanical Properties of a Ni-Base Single-Crystal Superalloy by Hot-Isostatic Pressing", Journal of Materials Engineering and Performance, ASM International; Materials Park, OH, Bd. 12, Nr. 4, 2003, Seiten 420-425 offenbarte HIP-Verfahren zu, welches im Anschluss an eine Lösungsglühbehandlung bei der Superlegierung CMSX-4 bei einem Druck von 100 MPa und bei einer Temperatur von 1288 °C durchgeführt wird.
  • Mit diesen bekannten Verfahren werden somit Einkristallkomponenten aus Nickel-Basis-Superlegierungen hergestellt, welche einerseits vorteilhaft porenfrei sind und keine eutektischen γ/γ'-Phasen aufweisen und welche andererseits eine γ'-Morphologie mit einer bimodalen γ'-Verteilung aufweisen.
  • Im Dokument US 5 820 700 wird eine Nickel-Basis-Superlegierung mit stengelförmiger oder mit gleichachsiger Kornstruktur beschrieben, die einen verbesserten Widerstand gegenüber Wasserstoffversprödung und Ermüdung aufweist. Durch stufenweises Aufheizen und ein Lösungsglühen bei ca. 50 °F oberhalb der γ'-Solvus-Temperatur werden schriftzeichenähnliche Karbide und Inseln aus γ/γ'-Eutektikum aufgelöst. Anschliessend erfolgt eine HIP-Behandlung zur Beseitigung von Porositäten, gefolgt von zwei Wärmebehandlungsschritten jeweils mit Luftabkühlung.
  • Eine positive Beeinflussung des Gefüges im Hinblick auf die oben beschriebene unerwünschte Flossbildung ist mit den in diesen Dokumenten offenbarten Verfahren nicht möglich.
  • Darstellung der Erfindung
  • Ziel der Erfindung ist es, die genannten Nachteile des Standes der Technik zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, ein geeignetes Verfahren zur Herstellung, inklusive Wärmebehandlung, von vergleichsweise grossen Einkristallkomponenten bzw. Komponenten mit gerichtet erstarrtem Gefüge aus bekannten Nickel-Basis-Superlegierungen zu schaffen, mit welchem ein Gefüge eingestellt werden kann, dass nicht zur Flossbildung der γ'-Phase neigt und daher zu verbesserten mechanischen Eigenschaften, insbesondere einer verbesserte Ermüdungsfestigkeit bei niedriger Lastspielzahl (LCF) der Komponenten führt.
  • Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Verfahren gemäss Obergriff des Anspruches 1 folgende Schritte nach dem gemäss üblichem Stand der Technik erfolgten Giessen der Komponente durchgeführt werden:
    1. A) Bestimmung des Dendritenarmabstandes (λ) in verschiedenen Bereichen der gegossenen Komponente,
    2. B) Identifizierung des langsamsten Diffusionselementes in der Zusammensetzung der jeweiligen Nickel Basis-Superlegierung zur Ermittlung des Diffusionskoeffizienten (D),
    3. C) Kalkulation der erforderlichen Zeit (t), die notwendig ist, um die Segregation dieses langsamsten Diffusionselementes auf ≤ 5% zu reduzieren bei einer Lösungsglühtemperatur (T1), welche einerseits niedriger als die Startschmelztemperatur (Tmi) ist, andererseits aber hoch genug ist, um im notwendigen Wärmebehandlungsfenster zu liegen,
    4. D) Lösungsglühen der gegossenen Komponente, umfassend ein Erwärmen der Komponente auf die Lösungsglühtemperatur (T1), ein Halten bei dieser Temperatur mit der im Schritt C) kalkulierten Zeit (t) und ein Abschrecken von der Lösungsglühtemperatur (T1) auf Raumtemperatur (RT) mit einer Geschwindigkeit (v1) ≥ 50 °C/min,
    5. E) Durchführung der zweistufigen Ausscheidungsbehandlung zur Ausscheidung der γ'-Phase bei jeweils niedrigeren Temperaturen (T2) und (T3) im Anschluss an den Schritt D), wobei in der ersten Stufe der Ausscheidungsbehandlung ein HIP-Verfahren mit einem Druck (p) grösser 160 MPa bei der Haltetemperatur (T2) und einer anschliessenden Abkühlung auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v2) ≥ 50 °C/min durchgeführt wird, und in der nachfolgenden zweiten Stufe der Ausscheidungsbehandlung eine Wärmebehandlung der Komponente bei einer Haltetemperatur (T3) und anschliessender Abkühlung auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v3) von 10 bis 50 °C/min durch geführt wird.
  • Mit dem erfindungsgemässen Verfahren ist es möglich, grosse Einkristallkomponenten bzw. Komponenten mit gerichtet erstarrtem Gefüge aus bekannten Nickel-Basis-Superlegierungen herzustellen, welche einerseits porenfrei sind und die anderseits eine Mikrostruktur aufweisen, bei der die Flossbildung der γ'-Phase vermieden wird. Daher weisen die so hergestellten Komponenten verbesserte mechanischen Eigenschaften, insbesondere eine verbessert Ermüdungsfestigkeit bei niedriger Lastspielzahl (LCF) auf. Das Verfahren hat den Vorteil, dass es relativ einfach umsetzbar ist.
  • Es ist vorteilhaft, wenn die Bestimmung des Dendritenarmabstandes (λ) gemäss Schritt A) auf metallographischem Wege erfolgt. Dies ist relativ einfach zu realisieren und kann beispielsweise bereits im Vorfeld des Verfahrens anhand von entsprechenden Proben erfolgen,
  • Weiterhin ist es von Vorteil, wenn die Abschreckgeschwindigkeit (v1) von Lösungsglühtemperatur (T1) auf Raumtemperatur grösser als 70 °C/min ist, weil dann extrem feine gleichmässig verteilte γ'-Partikel in der γ-Matrix erhalten werden.
  • Schliesslich ist es vorteilhaft, wenn das erfindungsgemässe Verfahren zur Herstellung einer Komponente aus einer Nickel-Basis-Superlegierung mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni bei folgenden Behandlungsparametern durchgeführt wird:
    • Lösungsglühen bei 1290-1310°C/4-6h/Schnellabkühlung mit v1≥50 °C/min
    • HIP-Prozess (isostatischer Druck> 160 MPa) mit Erwärmen und Glühen bei 1150 °C/4-8h/Schnellabkühlung mit v2 ≥ 50 °C/min
    • Glühen bei 870 °C/16-20h/Abkühlung mit v3 im Bereich von 10-20 °C/min umfasst.
    Kurze Beschreibung der Zeichnungen
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen schematisch:
  • Fig. 1
    das Zeit-Temperatur-Diagramm des sich an den Giessprozess anschliessenden Behandlungsverfahren zur Herstellung einer Einkristallkomponente
    Fig. 2a-2c
    die jeweiligen zu Fig. 1 zugehörenden Gefüge zu Orientierung) und
    Fig.3a-3c
    die Zeit-Temperatur- bzw. Druck-Temperatur-Diagramme für den HIP-Prozess in drei möglichen Varianten.
    Wege zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Zeichnungen näher erläutert.
  • Zur Herstellung einer grossen Einkristallkomponente/gerichtet erstarrten Komponente wurde die aus dem Stand der Technik bekannten Nickel-Basis-Superlegierungen CMSX4 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %) verwendet: 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni.
  • Zunächst wurde die Komponente, beispielsweise eine Gastubinenschaufel, in ihre Form gegossen. Beim Erstarren dieser gegossenen Legierung entstehen aufgrund der Zusammensetzung, insbesondere des vergleichsweise hohen Re-Anteils, dendritischen Segregationen.
  • Rhenium ist ein sehr langsam diffundierendes Element ist, daher können diese Segregationen beim nachfolgenden Lösungsgluhprozess nicht vollständig innerhalb einer akzeptablen Homogenisierungszeit beseitigt werden. Da die γ'-Phase, die sich während der Abkühlung ausscheidet, eine kleinere Gitterkonstante als die γ-Matrix hat und der γ/γ'-Gitterversatz in den Dendriten aber grösser ist als in den interdendritischen Gebieten, kommt es zur Ausbildung von inneren Spannungen während der Wärmebehandlung, insbesondere während des Abkühlens. Dies führt zu einer Degradation in der γ'-Mikrostruktur, indem sich die zunächst kubische Form von γ' in eine gestreckte Form von γ' verändert. Dies geht einher mit der Verschlechterung von mechanischen Eigenschaften, z. B. der Ermüdungsfestigkeit bei niedriger Lastspielzahl.
  • Um dies zu vermeiden wird daher zunächst der Dendritenarmabstandes λ in verschiedenen, beispielsweise den kritischen Bereichen der gegossenen Komponente ermittelt. Das kann z. B. auf metallographischem Wege erfolgen, wobei gegebenenfalls bereits im Vorfeld des Verfahrens dieser Abstand anhand von entsprechenden vorab gegossenen Proben ermittelt wird.
  • Weiterhin wird das langsamste Diffusionselement in der Zusammensetzung der jeweiligen Nickel-Basis-Superlegierung identifiziert zur Ermittlung des Diffusionskoeffizienten D. Im vorliegenden Falle ist dieses Element, wie bereits oben dargelegt, Rhenium. Im Falle der im Abschnitt "Stand der Technik" oben beschriebenen Nickel-Basis-Superlegierung MC2 ist dieses Element Mo.
  • Aus den nun bekannten Daten, d.h. aus D und λ, wird die erforderliche Zeit t kalkuliert, bei welcher die Komponente bei Lösungsglühtemperatur T1, welche einerseits niedriger ist als die Startschmelztemperatur Tmi, und andererseits aber hoch genug ist, um im notwendigen Wärmebehandlungsfenster zu liegen, gehalten werden muss, damit die Mikrosegregation dieses langsamsten Diffusionselementes auf ≤ 5% reduziert wird.
  • Diese kalkulierte Zeit t beträgt im vorliegenden Ausführungsbeispiel 4-6 h bei einer Lösungsglühtemperatur T1 von 1290-1310 °C. Man kann sie ermitteln nach folgender Formel: t = λ 2 lnδ / 4 π 2 D
    Figure imgb0001
    • mit λ = Dendritenarmabstand
    • D = Diffusionskoeffizient (von Rh in Ni für das vorliegende Beispiel)
    • δ = Amplitude der Mikrosegregation (hier: 0.05 für eine
    • Restsegregation von 5 %
  • In Fig. 1 ist das Zeit-Temperatur-Diagramm des sich an den Giessprozess anschliessenden Behandlungsverfahren zur Herstellung der Einkristallkomponente aus der o.g. Superlegierung schematisch dargestellt.
  • Das Lösungsglühen (Verfahrensschritt D)) der gegossenen Komponente umfasst im vorliegenden Ausführungsbeispiel somit ein Erwärmen der Komponente auf die o. g. Lösungsglühtemperatur T1 von 1290-1310 °C, ein Halten bei dieser Temperatur mit der oben kalkulierten Zeit t (4-6 h) und ein schnelles Abschrecken von der Lösungsglühtemperatur T1 auf Raumtemperatur mit einer Geschwindigkeit v1 ≥ 50 °C/min, um nach dem Abschrecken sehr feine gleichmässig verteilte γ'-Partikel in der γ-Matrix zu erhalten (schematische Darstellung des Gefüges siehe Fig. 2a). Bevorzugt ist die Abschreckgeschwindigkeit grösser 70 °C/min, weil dann ein Gefüge mit extrem feinen gleichmässig verteilten γ'-Partikeln in der γ-Matrix erhalten wird.
  • Erfindungsgemäss wird nach dem Lösungsglühen eine zweistufigen Ausscheidungsbehandlung zur Ausscheidung der γ'-Phase bei im Vergleich zu T1 jeweils niedrigeren Temperaturen T2 und T3 durchgeführt (Verfahrensschritt E)), wobei in der ersten Stufe der Ausscheidungsbehandlung ein HIP-Verfahren mit einem Druck p grösser 160 MPa und einer Abkühlgeschwindigkeit v2 ≥ 50 °C/min angewendet wird. Die Endtemperatur des HIP-Verfahrens beträgt im vorliegenden Ausführungsbeispiel 1150 °C, die Haltezeit 4-6 h. Der aufgebrachte Enddruck während des HIP-Prozesses ist relativ hoch, er ist grösser als die durch die Inhomogenitäten im Gefüge hervorgerufenen inneren Spannungen. Durch diesen Verfahrensschritt werden vorteilhaft einerseits eventuell vorhandene Mikroporen im Gefüge geschlossen und andererseits Spannungen beseitigt, welche durch die rapide Abkühlung von Lösungsglühtemperatur T1 auf Raumtemperatur bzw. durch eventuell vorhanden Restinhomogenitäten im Gefüge hervorgerufen werden. Dadurch wird eine gerichtete Flossbildung der γ'-Phase verhindert, indem sich die bereits erwähnten kubischen γ'-Partikeln in der γ-Matrix bilden. Das nach dem HIP-Behandlungsschritt vorliegende Gefüge besteht aus feinen gleichmässig verteilten kubischen γ'-Partikeln in der γ-Matrix und ist schematisch in zu Orientierung in Fig. 2b dargestellt.
  • Die Realisierung der ersten Stufe des Verfahrensschrittes E) ist in mehreren Varianten möglich. Entsprechende Zeit-Temperatur- bzw. Druck-Temperatur-Diagramme für den HIP-Prozess sind schematisch in den Fig. 3 a) bis 3 c) dargestellt.
  • Bei der ersten, in Fig. 3a dargestellten Variante, verlaufen die Temperatur und der Druck in Abhängigkeit von der Zeit nahezu identisch, d.h. während der Aufwärmphase steigen sowohl der auf die Komponente wirkende isostatische Druck p als auch die Temperatur T linear mit der Zeit an, bis die Temperatur T2 und der isostatische Druck p > 160 MPa, also der isostatische Enddruck, erreicht sind. Nach dem Halten bei diesen Parametern über einen bestimmten Zeitraum erfolgt wiederum bei beiden Parametern eine lineare Abnahme der Werte in Abhängigkeit von der Zeit.
  • Im Vergleich zu Fig. 3a wird bei der in Fig. 3b dargestellten Variante dagegen phasenverschoben sofort bei Beginn der ersten Stufe des Verfahrensschrittes E) der isostatische Enddruck schlagartig aufgebracht, und auch während der Aufwärmphase konstant gehalten. Alle anderen Parameter sind hier analog zu Fig. 3a.
  • Schliesslich ist es in einer weitern Variante auch möglich, die erste Stufe des Verfahrensschrittes E), d.h. den HIP-Prozess, so wie er in Fig. 3c dargestellt ist, durchzuführen. Der isostatische Enddruck p wird hier wiederum sofort schlagartig bei Beginn der Aufwärmphase aufgebracht, und über die gesamte Aufwärmphase, die Haltephase bei T2 und zusätzlich auch über die gesamte Abkühlphase konstant gehalten. Erst dann, wenn die Komponente Raumtemperatur angenommen hat, wird die isostatische Druckbelastung schlagartig weggenommen.
  • Mit allen drei Varianten wird vorteilhafte eine Flossbildung im Gefüge verhindert.
  • Abschliessend wird als letzter Schritt des Verfahrens eine weitere Stufe der Ausscheidungswärmebehandlung der Komponente durchgeführt. Gemäss vorliegendem Ausführungsbeispiel wird dabei die Einkristallkomponente/gerichtet erstarrte Komponente auf eine Temperatur T3 von 870 °C erwärmt, bei dieser Temperatur T3 16-20 h lang gehalten und danach mit einer Abkühlgeschwindigkeit v3 von ca. 50 °C/min auf Raumtemperatur abgekühlt.
  • Das nach diesem letzten Behandlungsschritt gebildete End-Gefüge gemäss vorliegender Erfindung ist schematisch für die <001> Orientierung in Fig. 2c dargestellt.
  • Mit dem erfindungsgemässen Verfahren werden vor allem chemische Inhomogenitäten zwischen dendritischen und interdendritschen Bereichen im Gefüge beseitigt, dadurch die Tendenz zur lokalen Flossbildung der γ'-Phase reduziert bzw. verhindert (im vorliegenden Ausführungsbeispiel konnte in den Kühlkanälen der Gasturbinenschaufel die Flossbildung der γ'-Phase verhindert werden) und somit die Eigenschaften der Komponenten, insbesondere die Ermüdungseigenschaften bei niedrigen Lastspielzahlen, verbessert.

Claims (4)

  1. Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente oder gerichtet erstarrten Komponente, wobei die Komponente zunächst in bekannter Art und Weise unter Ausbildung eines Dendriten aufweisenden Gefüges in Form gegossen und nachfolgend ein Lösungsglühen zur Homogenisierung des Gussgefüges der Komponente sowie eine zweistufige Ausscheidungswärmebehandlung durchgeführt wird, gekennzeichnet durch folgende Schritte:
    A) Bestimmung des Dendritenarmabstandes (λ) in verschiedenen Bereichen der gegossenen Komponente,
    B) Identifizierung des langsamsten Diffusionselementes in der Zusammensetzung der jeweiligen Nickel-Basis-Superlegierung zur Ermittlung des Diffusionskoeffizienten (D),
    C) Kalkulation der erforderlichen Zeit (t), die notwendig ist, um die Segregation dieses langsamsten Diffusionselementes auf ≤ 5% zu reduzieren bei einer Lösungsglühtemperatur (T1), welche einerseits niedriger als die Startschmelztemperatur (Tmi) ist, andererseits aber hoch genug ist, um im notwendigen Wärmebehandlungsfenster zu liegen,
    D) Lösungsglühen der gegossenen Komponente, umfassend ein Erwärmen der Komponente auf die Lösungsglühtemperatur (T1), ein Halten bei dieser Temperatur (T1) mit der im Schritt C) kalkulierten Zeit (t) und ein Abschrecken von der Temperatur (T1) auf Raumtemperatur (RT) mit einer Geschwindigkeit (v1) ≥ 50 °C/min,
    E) Durchführung der zweistufigen Ausscheidungsbehandlung zur Ausscheidung der y'-Phase bei jeweils niedrigeren Temperaturen (T2) und (T3) im Anschluss an den Schritt D), wobei in der ersten Stufe der Ausscheidungsbehandlung ein HIP-Verfahren mit einem isostatischen Druck (p) grösser 160 MPa bei der Haltetemperatur (T2) und einer anschliessenden Abkühlung von der Temperatur (T2) auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v2) ≥ 50 °C/min durchgeführt wird, und in der nachfolgenden zweiten Stufe der Ausscheidungsbehandlung eine Wärmebehandlung der Komponente bei einer Haltetemperatur (T3) und einer anschliessenden Abkühlung von der Temperatur (T3) auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v3) von 10 bis 50 °C/min durch geführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung des Dendritenarmabstandes(λ) gemäss Schritt A) auf metallographischen Wege erfolgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abschreckgeschwindigkeit (v1) gemäss Schritt D) > 70 °C/min ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei einer Nickel-Basis-Superlegierung mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni der Schritt des Lösungsglühens bei folgenden Parametern 1290-1310 °C/4-6h/Schnellabkühlung mit v1 ≥ 50 °C/min durchgeführt wird, der Schritt der ersten Stufe der γ'-Ausscheidungsbehandlung einen HIP-Prozess mit einem isostatischen Druck (p) > 160 MPa bei einer Haltetemperatur (T2) von 1150 °C und einer Haltezeit von 4-8h umfasst und eine Schnellabkühlung mit (v2) ≥ 50 °C/min erfolgt und die zweite Stufe der γ'-Ausscheidungsbehandlung ein Erwärmen und Halten bei 870 °C/16-20h/sowie eine Abkühlung mit eine Geschwindigkeit (v3) von 10-50 °C/min umfasst.
EP11171088.5A 2010-06-30 2011-06-22 Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente Not-in-force EP2402473B8 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01058/10A CH703386A1 (de) 2010-06-30 2010-06-30 Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente.

Publications (4)

Publication Number Publication Date
EP2402473A2 EP2402473A2 (de) 2012-01-04
EP2402473A3 EP2402473A3 (de) 2013-10-30
EP2402473B1 true EP2402473B1 (de) 2017-04-26
EP2402473B8 EP2402473B8 (de) 2017-07-26

Family

ID=42938589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11171088.5A Not-in-force EP2402473B8 (de) 2010-06-30 2011-06-22 Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente

Country Status (4)

Country Link
US (1) US8435362B2 (de)
EP (1) EP2402473B8 (de)
JP (1) JP5787643B2 (de)
CH (1) CH703386A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167513A1 (en) 2012-05-07 2013-11-14 Alstom Technology Ltd Method for manufacturing of components made of single crystal (sx) or directionally solidified (ds) superalloys
DE102013008396B4 (de) 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Verfahren und Vorrichtung zum Umschmelzen und/oder Umschmelzlegieren metallischer Werkstoffe, insbesondere von Nitinol
JP6528926B2 (ja) 2014-05-21 2019-06-12 株式会社Ihi 原子力施設の回転機器
CN105689719A (zh) * 2016-02-17 2016-06-22 西南交通大学 一种合金液滴沉积的冷却速率计算方法
DE102016202837A1 (de) * 2016-02-24 2017-08-24 MTU Aero Engines AG Wärmebehandlungsverfahren für Bauteile aus Nickelbasis-Superlegierungen
US20200080183A1 (en) * 2016-12-15 2020-03-12 General Electric Company Treatment processes for superalloy articles and related articles
CN110760770B (zh) * 2019-10-30 2020-10-23 西安交通大学 单晶镍基高温合金冷变形后的热处理方法
FR3121453B1 (fr) * 2021-04-02 2023-04-07 Safran Superalliage a base de nickel, aube monocristalline et turbomachine
CN113930697B (zh) * 2021-09-23 2022-09-27 鞍钢集团北京研究院有限公司 一种750-850℃级变形高温合金的热处理方法
CN114038522A (zh) * 2021-11-18 2022-02-11 成都先进金属材料产业技术研究院股份有限公司 Gh5188合金均匀化热处理工艺的确定方法
CN114737081B (zh) * 2022-04-06 2023-03-24 暨南大学 一种具有分层微观结构的Ni-Al-Ti基高温合金及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328045A (en) * 1978-12-26 1982-05-04 United Technologies Corporation Heat treated single crystal articles and process
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US4719080A (en) 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
IL80227A (en) * 1985-11-01 1990-01-18 United Technologies Corp High strength single crystal superalloys
US5435861A (en) 1992-02-05 1995-07-25 Office National D'etudes Et De Recherches Aerospatiales Nickel-based monocrystalline superalloy with improved oxidation resistance and method of production
US5270123A (en) * 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5820700A (en) * 1993-06-10 1998-10-13 United Technologies Corporation Nickel base superalloy columnar grain and equiaxed materials with improved performance in hydrogen and air
US5695821A (en) * 1995-09-14 1997-12-09 General Electric Company Method for making a coated Ni base superalloy article of improved microstructural stability
JP3184882B2 (ja) * 1997-10-31 2001-07-09 科学技術庁金属材料技術研究所長 Ni基単結晶合金とその製造方法
US20030041930A1 (en) 2001-08-30 2003-03-06 Deluca Daniel P. Modified advanced high strength single crystal superalloy composition
EP1398393A1 (de) * 2002-09-16 2004-03-17 ALSTOM (Switzerland) Ltd Verfahren zur Wiederherstellung von Eigenschaften
JP4885530B2 (ja) * 2005-12-09 2012-02-29 株式会社日立製作所 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
JP4719583B2 (ja) * 2006-02-08 2011-07-06 株式会社日立製作所 強度、耐食性及び耐酸化特性に優れた一方向凝固用ニッケル基超合金及び一方向凝固ニッケル基超合金の製造方法
ES2444407T3 (es) * 2006-09-07 2014-02-24 Alstom Technology Ltd Procedimiento para el tratamiento térmico de súper-aleaciones a base de níquel

Also Published As

Publication number Publication date
JP5787643B2 (ja) 2015-09-30
CH703386A1 (de) 2011-12-30
US20120000577A1 (en) 2012-01-05
US8435362B2 (en) 2013-05-07
EP2402473A3 (de) 2013-10-30
JP2012012705A (ja) 2012-01-19
EP2402473A2 (de) 2012-01-04
EP2402473B8 (de) 2017-07-26

Similar Documents

Publication Publication Date Title
EP2402473B1 (de) Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente
DE3023576C2 (de)
DE4440229C2 (de) Verfahren zum Herstellen von gegen Rißbildung widerstandsfähigen hochfesten Superlegierungsgegenständen
DE102013002483B4 (de) Nickel-Kobalt-Legierung
DE2749080A1 (de) Einkristallsuperlegierungsgegenstand auf nickelbasis und verfahren zu seiner herstellung
DE19624055A1 (de) Nickel-Basis-Superlegierung
DE2223114B2 (de) Wärmebehandlungsverfahren für eine Legierung auf Nickel-Eisen-Basis
DE3234083A1 (de) Waermebehandelter einkristall-gegenstand aus einer superlegierung auf nickelbasis
EP1900839B1 (de) Verfahren zur Wärmebehandlung von Nickel-Basis-Superlegierungen
EP2851445B1 (de) Kriechfeste TiAl - Legierung
DE112013003971T5 (de) Nickelbasierte einkristalline Superlegierung
EP2905350A1 (de) Hochtemperatur TiAl-Legierung
EP1359231B1 (de) Nickel-Basis-Superlegierung
EP1420075B1 (de) Nickel-Basis-Superlegierung
EP3091095B1 (de) Rheniumfreie nickelbasis-superlegierung mit niedriger dichte
EP1451382A1 (de) Verfahren zur entwicklung einer nickel-basis-superlegierung
EP2354261B1 (de) Nickel-Basis Superlegierung mit verbessertem Degradationsverhalten
DE2649529A1 (de) Umformbare legierung auf kobalt- nickel-chrom-basis und verfahren zu seiner herstellung
DE19617093C2 (de) Wärmebehandlungsverfahren für Werkstoffkörper aus Nickel-Basis-Superlegierungen
EP2451986B2 (de) Nickel-basis-superlegierung
DE3731598C1 (de) Verfahren zur Waermebehandlung von Nickel-Gusslegierungen
DE69934158T2 (de) Verfahren und Herstellung einer gerichtet erstarrten Gusslegierung auf Nickelbasis
DE102004029833A1 (de) Nickelbasis-Superlegierung und Einkristall-Gussstücke
DE102012222745A1 (de) Einkristalline Turbinenschaufel aus Titanaluminid
DE60035052T2 (de) Superlegierung auf Nickelbasis für Einkristallturbinenschaufeln von industriellen Turbinen mit hoher Beständigkeit gegen Heisskorrosion

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 19/05 20060101ALI20130924BHEP

Ipc: C22F 1/10 20060101AFI20130924BHEP

Ipc: C30B 33/02 20060101ALI20130924BHEP

17P Request for examination filed

Effective date: 20131206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUENZLER, ANDREAS

Inventor name: GERDES, CLAUS PAUL

Inventor name: NAZMY, MOHAMED YOUSSEF

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 887955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012099

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 7

Ref country code: GB

Payment date: 20170620

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170426

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

26N No opposition filed

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 887955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011012099

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426