EP2399262B1 - Procédé de décontamination de surfaces contaminées par radioactivité - Google Patents

Procédé de décontamination de surfaces contaminées par radioactivité Download PDF

Info

Publication number
EP2399262B1
EP2399262B1 EP10709987A EP10709987A EP2399262B1 EP 2399262 B1 EP2399262 B1 EP 2399262B1 EP 10709987 A EP10709987 A EP 10709987A EP 10709987 A EP10709987 A EP 10709987A EP 2399262 B1 EP2399262 B1 EP 2399262B1
Authority
EP
European Patent Office
Prior art keywords
treatment solution
treatment
component
solution
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10709987A
Other languages
German (de)
English (en)
Other versions
EP2399262A1 (fr
Inventor
Rainer Gassen
Luis Sempere Belda
Werner Schweighofer
Bertram Zeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42538319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2399262(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of EP2399262A1 publication Critical patent/EP2399262A1/fr
Application granted granted Critical
Publication of EP2399262B1 publication Critical patent/EP2399262B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for the decontamination of radioactively contaminated surfaces of nuclear installations.
  • a nuclear power plant which is hereinafter referred to by way of example
  • the surfaces of components of the coolant system are exposed to up to about 350 ° C hot water as a coolant in power operation, even classified as corrosion-free CrNi steels and Ni alloys in some Extent be oxidized.
  • an oxide layer is formed, which contains oxygen ions and metal ions.
  • metal ions in dissolved form or as a constituent of oxide particles pass from the oxide layer into the cooling water and are transported by it to the reactor pressure vessel in which fuel elements are located. Due to the nuclear reactions taking place in the fuel elements, neutron radiation is generated which converts part of the metal ions into radioactive elements. For example, the nickel of the above-mentioned materials produces radioactive cobalt-58.
  • the nuclear reactions taking place in the nuclear fuel give rise to alpha-emitting transuranic substances such as Am-241, for example, which leak into the coolant as oxides due to leaks of the fuel rods that receive the nuclear fuel.
  • the radioactive elements are distributed by the circulating cooling water in the primary circuit and deposit on the oxide layer of component surfaces, such as on the surfaces of the tubes of the coolant system again or be incorporated into the oxide layer.
  • the radioactive elements With increasing operating time increases the amount of deposited and / or incorporated radioactive nuclides and, accordingly, the radioactive radiation in the environment of the systems and components of the primary circuit. If you want to reduce this, such as in the case of decommissioning of a nuclear power plant, essentially all the contaminated oxide layer must be removed by means of a decontamination measure.
  • the removal of the oxide layer on component surfaces is carried out, for example, by bringing the component surfaces into contact with a treatment solution containing an organic acid, in the case of a coolant system this being done by filling it with said solution.
  • the organic acid is one which forms water-soluble complex compounds with the metal ions present in the oxide layer.
  • the alloy that makes up a component contains chromium.
  • an oxide layer present on the component contains hardly soluble chromium-III oxides.
  • the surfaces are treated with a strong oxidizing agent such as potassium permanganate or permanganic acid prior to the said acid treatment.
  • the spent cleaning solution containing the components of the oxide layer in dissolved form is either evaporated to a residual amount or passed through ion exchangers. In the latter case, the constituents of the oxide layer present in ionic form are retained by the ion exchanger and thus removed from the cleaning solution.
  • the ion exchange material loaded with the partially radioactive ionic constituents and the residual amount of the cleaning solution remaining on evaporation are respectively supplied in suitable form to an intermediate or final storage.
  • Such a routine such as in the course of maintenance work on the coolant system performed decontamination treatment essentially only gamma radiation emitting nuclides such as Cr-51 and Co-60 are recorded.
  • These nuclides are to a large extent, for example incorporated in an oxide layer of a component, in the form of their oxides, which are relatively easily dissolved by the active substances of conventional decontamination solutions, for example of complexing acids.
  • the oxides of the transuranic elements, such as the Am-241 already mentioned above, are less soluble than the oxides formed from the metals and their radioactive nuclides.
  • oxide particles that are not visible to the naked eye therefore, in comparison with the original oxide layer of the components, enriched with alpha emitters.
  • the particles in question only adhere loosely to the component surface, so that they can be wiped off, for example, in the course of a wipe test with a cloth.
  • the components of the coolant system to be supplied to a recycling or at least can be handled without complex protective measures.
  • the in question adhering to the component surfaces particles can easily peel off and get into the human body via the respiratory tract, which can only be prevented by very complex respiratory protection measures.
  • the measured at a component Radioactivity with regard to gamma and beta radiation as well as with regard to alpha radiation must therefore remain below specified limits, so that the components are no longer subject to the restrictions of radiation protection.
  • a practical problem accompanying any surface decontamination is the further treatment or disposal of the spent decontamination solution containing the radioactive constituents of the detached oxide layer.
  • a feasible way is to pass a spent decontamination solution through an ion exchanger to remove charged components contained therein.
  • the object underlying the invention is to liberate a surface of radioactive particles with the aid of an active component present in aqueous solution, in such a way that the particles are easily removable from the solution.
  • the surfactants mentioned on the one hand in particular metal oxide particles with high efficiency, especially from metallic surfaces can replace and that the particles together with the surfactant an anion exchanger or a mixed-bed ion exchanger, a combination of anion and cation exchanger adhere. If, as is to be striven for, a solution is used which, apart from at least one surfactant, contains no further chemical substances, a particularly simple disposal is ensured after the decontamination has been carried out, since there is no decomposition of the further substances, for example with the aid of UV light, or their removal with the aid of an ion exchanger, which would require an additional amount to be disposed of ion-immersion resin, is required. Further advantageous embodiments are given in the dependent claims.
  • the sample material used for the following examples or experiments comes from dismantled components of the primary coolant circuit of a German pressurized water reactor. These are cut coupons made of niobium-stabilized stainless steel, material number 1.4551, which have an oxide layer on their surface, which contains radioactive elements, as usual for components of the coolant system of nuclear power plants. The coupons were pretreated using a standard decontamination procedure.
  • the samples were processed on a laboratory scale in borosilicate glasses with a capacity of between 500 ml and 2 l. Samples were suspended in the treatment solution in borosilicate glass hanger, stainless steel 1.4551, stainless steel ANSI 316, or PTFE. The heating to the test temperature was carried out by means of electric heating plates. The temperature was adjusted with contact thermometers and kept constant. The mixing of the solution was carried out by using magnetic or mechanical stirrers.
  • the measurement of alpha radiation requires a relatively high effort. In contrast, the determination of the gamma activity is much simpler and faster, and even more precise.
  • the gamma-ray-based activity of the americium isotope 241 was therefore recorded as an indicator of the behavior of alpha-emitting actinides or transurans.
  • Table 1 compares by way of example the development of the activity of Am-241 determined by gamma radiation detectors on one of the described samples with the activity of the isotopes Pu-240, Cm-242 and Am-241 detected with alpha radiation detectors in the untreated state (No. 1) Decontamination with conventional decontamination methods (No. 2) and with a decontamination method in which an active component according to the invention according to this invention was used in various concentrations (Nos. 3, 4, 5). For a comparison To facilitate the removal of activity, in addition to the measured values obtained in Bq / cm 2 , the percentage values relative to the starting quantity are also shown.
  • the minimum temperature for the effectiveness of the active ingredient component or a surfactant thereof from the group consisting of sulfonic acid, phosphonic acid and carboxylic acid is inter alia dependent on the structure (eg length) of the non-polar part of the surfactant and is due to the so-called "Krafft temperature". Below this temperature, the interactions between non-polar parts can not be overcome; the active substance remains in solution as an aggregate. In the case of use octadecylphosphonic acid as active ingredient is the minimum temperature for an effective effect eg 75 ° C. The upper limit is usually dependent on process parameters. For example, it is not desirable for the treatment solution to boil. A common application temperature of decontamination treatments under atmospheric pressure is therefore for example 80-95 ° C or 90-95 ° C.
  • the effectiveness of the proposed surfactants also depends on the nature of their polar portion.
  • the various proposed drug components are comparable (they have a non-polar part through which they interact with each other, and a polar part through which the molecules of the drug are mutually localized and through which the interaction of the drug with polar, charged or ionized particles or surfaces is made possible)
  • there are differences in the chemical properties between different functional groups which are responsible for a different effect also in the area of the decontamination in question here. These differences can be seen by comparing a selection of drug components that have different polar functional groups but identical non-polar parts.
  • the effectiveness of the active component is determined not only by its polar, but also by its non-polar part, in particular by its length or chain length.
  • the size or length of the non-polar parts influences the interactions between the surfactant molecules due to van der Waals forces, whereas larger non-polar parts produce greater interaction forces with comparable structure.
  • this has the consequence that more molecules can be accommodated in the second layer of the bilayer which is not in contact with the surface. This increases The charge density in this layer, which leads to higher interactions with water and higher Coulomb repulsion forces. The mobilization of the activity is thereby favored.
  • the inventive method is preferably for the decontamination of components of the coolant system of a nuclear power plant (see attached Fig. 1 ) used.
  • a more or less thick oxide layer builds up on the surfaces of such components, which, as already mentioned, is radioactively contaminated.
  • the oxide layer is removed as completely as possible.
  • the component surfaces are then treated with a solution containing at least one anionic surfactant from the group of sulfonic acids, phosphonic acids, carboxylic acids and their salts. It is particularly noteworthy that, apart from the surfactant, no further chemical additives are required, ie it is preferably carried out with an aqueous solution containing exclusively at least one surfactant from said group.
  • the second treatment stage is carried out at a temperature above room temperature, that is above about 25 ° C temperature, but operating below 100 ° C, in order to reduce evaporation and thus a loss of water. Preference is given to operating at temperatures of more than 50 ° C, with the best results being achieved at temperatures of more than 80 ° C.
  • the pH of the treatment solution in the second treatment stage is in principle variable. Thus, it is conceivable to accept the pH which results from the surfactant present in the solution. If the surfactant is an acid, it will have a pH in the acidic range to adjust. The best results, especially when using a Phosphonklaivates as a surfactant are achieved in a pH range of 3 to 9.
  • the concentration of the active component, ie a surfactant of the type in question in the second treatment solution is 0.1 g / l to 10 g / l. Below 0.1 g / l, a reduction in the alpha contamination of the component surface does not take place to a significant extent. Above 10 g / l, an increase in the decontamination factor is barely to be observed, so that concentrations in excess of the stated value are virtually ineffective. A very good compromise between the amount of surfactant used and the decontamination efficiency is achieved at surfactant concentrations up to 3 g / l.
  • the first treatment solution is largely freed from the substances contained in it, ie a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
  • a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
  • the treatment solution is irradiated with UV light, whereby the acid is decomposed into carbon dioxide and water.
  • the in the spent decontamination solution contained metal ions are removed by passing the solution through an ion exchanger.
  • Fig. 1 is shown schematically the coolant system of a boiling water reactor. It comprises, in addition to the pressure vessel 1, in which at least in operation a plurality of fuel elements 2 are present, a conduit system 3, which is connected via nozzles 4.5 to the pressure vessel 1, and various internals such as capacitors, the internals in their entirety through the box 6 in Fig. 1 are symbolized.
  • a treatment solution which contains, for example, a complex-forming organic acid.
  • such an decontamination step is preceded by an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
  • an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
  • the entire cooling system is filled, otherwise only parts, for example only a portion of the power system, can be treated.
  • the resulting treatment solution is dosed with a surfactant, preferably phosphonic acid or phosphonic acid salt, and the second treatment stage is carried out ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Detergent Compositions (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Claims (21)

  1. Procédé de décontamination chimique d'une surface présentant une contamination radioactive et appartenant à une pièce structurale métallique d'une installation nucléaire, consistant à
    - détacher de la surface appartenant à la pièce structurale, dans une première étape de traitement, une couche d'oxyde s'étant formée sur ladite pièce structurale par corrosion du matériau de la pièce structurale, au moyen d'une première solution aqueuse de traitement contenant un acide organique de décontamination, et
    - traiter ensuite, dans une deuxième étape de traitement, ladite surface au moins partiellement libérée de ladite couche d'oxyde, au moyen d'une deuxième solution aqueuse de traitement contenant un composant actif destiné à enlever des particules qui adhèrent à la surface, ledit composant actif étant constitué d'au moins un agent tensioactif anionique appartenant au groupe des acides sulfoniques, des acides phosphoreux, des acides carboxyliques et de leurs sels, ladite deuxième solution de traitement étant passée à travers un échangeur d'ions au plus tard à l'issue de la deuxième étape de traitement.
  2. Procédé selon la revendication 1,
    caractérisée en ce que
    l'on utilise des agents tensioactifs qui possèdent un reste organique renfermant 12 à 22 atomes de carbone.
  3. Procédé selon la revendication 2,
    caractérisé par
    l'utilisation d'agents tensioactifs qui comportent un reste organique renfermant 14 à 18 atomes de carbone.
  4. Procédé selon l'une des revendications 1 à 3,
    caractérisé en ce que
    la deuxième étape de traitement est réalisée à une température supérieure ou égale à 25 °C et inférieure à 100 °C.
  5. Procédé selon la revendication 4,
    caractérisé par
    une température de traitement supérieure à 50 °C.
  6. Procédé selon la revendication 4,
    caractérisé par
    une température de traitement supérieure à 80 °C.
  7. Procédé selon l'une des revendications 4 à 6,
    caractérisé par
    une température de traitement inférieure ou égale à 95 °C.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le pH de la deuxième solution de traitement est maintenu, pendant la deuxième étape de traitement, tel qu'il résulte de la présence d'au moins un agent tensioactif.
  9. Procédé selon l'une des revendications 1 à 8,
    caractérisé en ce que
    l'on modifie le pH résultant de la présence d'au moins un agent tensioactif dans la deuxième solution de traitement.
  10. Procédé selon la revendication 9,
    caractérisé en ce que
    l'on augmente le pH.
  11. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'on ajuste le pH de la deuxième solution de traitement à une valeur comprise entre 3 et 9.
  12. Procédé selon la revendication 11,
    caractérisé par
    un pH de la deuxième solution de traitement compris entre 6 et 8.
  13. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la concentration dudit composant actif contenu dans la deuxième solution de traitement est comprise entre 0,1 g/l et 10 g/l.
  14. Procédé selon la revendication 13,
    caractérisé par
    une concentration comprise entre 0,1 g/l et 3 g/l.
  15. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que,
    outre l'au moins un agent tensioactif et le cas échéant un agent à réaction alcaline ou un agent acidifiant, l'on n'ajoute pas d'autres substances chimiques à la deuxième solution de traitement.
  16. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'on obtient la deuxième solution de traitement à partir de la première de solution traitement en éliminant au moins un ou plusieurs acide(s) de décontamination contenu(s) dans la première solution de traitement lequel/lesquels servai(en)t à détacher la couche d'oxyde présente sur une surface d'une pièce structurale.
  17. Procédé selon la revendication 16,
    caractérisé en ce que
    l'on expose la première solution de traitement à une lumière ultraviolette afin de provoquer la décomposition d'un acide de décontamination en dioxyde de carbone et eau.
  18. Procédé selon les revendications 16 ou 17,
    caractérisé en ce que
    l'on fait passer la première solution de traitement à travers au moins un échangeur d'ions afin d'éliminer les ions métalliques qu'elle contient.
  19. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la première ou la deuxième solution de traitement se trouve dans un récipient et une pièce structurale à traiter est immergée dans la solution concernée.
  20. Procédé selon l'une des revendications 1 à 19,
    caractérisé en ce que
    la surface de la pièce structurale à traiter correspond à la surface intérieure d'une cuve et/ou d'un système de tuyauterie, ladite cuve ou ledit système de tuyauterie étant rempli avec la première ou la deuxième solution de traitement.
  21. Procédé selon la revendication 20,
    caractérisé en ce que
    son domaine d'utilisation est le système de refroidissement d'une centrale nucléaire.
EP10709987A 2009-02-18 2010-02-17 Procédé de décontamination de surfaces contaminées par radioactivité Active EP2399262B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009009441 2009-02-18
DE102009002681A DE102009002681A1 (de) 2009-02-18 2009-04-28 Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen
PCT/EP2010/051957 WO2010094692A1 (fr) 2009-02-18 2010-02-17 Procédé de décontamination de surfaces contaminées par radioactivité

Publications (2)

Publication Number Publication Date
EP2399262A1 EP2399262A1 (fr) 2011-12-28
EP2399262B1 true EP2399262B1 (fr) 2012-11-21

Family

ID=42538319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709987A Active EP2399262B1 (fr) 2009-02-18 2010-02-17 Procédé de décontamination de surfaces contaminées par radioactivité

Country Status (10)

Country Link
US (1) US8353990B2 (fr)
EP (1) EP2399262B1 (fr)
JP (1) JP5584706B2 (fr)
KR (1) KR101295017B1 (fr)
CN (1) CN102209992B (fr)
CA (1) CA2749642C (fr)
DE (1) DE102009002681A1 (fr)
ES (1) ES2397256T3 (fr)
TW (1) TWI595506B (fr)
WO (1) WO2010094692A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1402751B1 (it) * 2010-11-12 2013-09-18 Ecir Eco Iniziativa E Realizzazioni S R L Metodo per il condizionamento di scorie derivate da smaltimento di impianti nucleari
CN103489495B (zh) * 2012-06-14 2016-10-05 中国辐射防护研究院 一种用于控制放射性气溶胶的固定剂及制备方法
DE102013100933B3 (de) * 2013-01-30 2014-03-27 Areva Gmbh Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors
DE102013102331B3 (de) 2013-03-08 2014-07-03 Horst-Otto Bertholdt Verfahren zum Abbau einer Oxidschicht
EP3033751B1 (fr) * 2013-08-14 2019-10-23 Framatome GmbH Procédé pour la réduction de la contamination radioactive d'une surface d'une composante utilisée dans un reacteur nucléair
DE102013108802A1 (de) * 2013-08-14 2015-02-19 Areva Gmbh Verfahren zur Verringerung der radioaktiven Kontamination eines wasserführenden Kreislaufs eines Kernkraftwerks
RU2016133851A (ru) * 2014-01-22 2018-02-26 ФУЖЕРЕ, Жан-Мишель Способ оптимизации выхода процесса электроснабжения тяжелых металлов из водного раствора с высокой концентрацией солей и устройство для его осуществления
CN105895172A (zh) * 2014-12-26 2016-08-24 姚明勤 压水堆非能动安全的快速有效设计措施
JP6796587B2 (ja) 2015-02-05 2020-12-09 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング 原子炉の冷却システムで金属表面を除染する方法
TWI594265B (zh) * 2015-05-13 2017-08-01 森元信吉 輻射污染水的處理方法及原子爐設備的密封處理方法
KR101639651B1 (ko) 2015-06-05 2016-08-12 주식회사 큐리텍 고정식 드럼형 방사능 자동 제염 장치
KR20180080284A (ko) * 2015-11-03 2018-07-11 프라마톰 게엠베하 중수 냉각 및 감속 원자로의 금속면을 제염하는 방법
EP3494090B1 (fr) 2016-08-04 2021-08-18 Dominion Engineering, Inc. Suppression du dépôt de radionucléides sur des composants de centrale nucléaire
KR102061287B1 (ko) * 2018-04-17 2019-12-31 한국수력원자력 주식회사 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 및 제염 시스템및 방법
JP7337442B2 (ja) * 2019-02-19 2023-09-04 株式会社ディスコ 加工液の循環システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793221A (en) * 1972-09-13 1974-02-19 Basf Wyandotte Corp Thickened acid cleaner
AU493149B2 (en) * 1973-09-20 1978-05-17 Basf Wyandotte Corporation Method of cleaning vehicles witha thickened acid composition
DE3339048A1 (de) * 1983-10-27 1985-05-09 Nea Nuclear Engineering Fuer A Verfahren zur dekontamination von feststoffkoerpern, sowie vorrichtung und ultraschallquelle zur durchfuehrung des verfahrens
US4729855A (en) * 1985-11-29 1988-03-08 Westinghouse Electric Corp. Method of decontaminating radioactive metal surfaces
US5037482A (en) * 1990-02-16 1991-08-06 Macdermid, Incorporated Composition and method for improving adhesion of coatings to copper surfaces
JPH05148670A (ja) * 1991-11-26 1993-06-15 Saga Pref Gov 金属の腐食抑制剤
GB9422539D0 (en) * 1994-11-04 1995-01-04 British Nuclear Fuels Plc Decontamination processes
DE9420866U1 (de) * 1994-12-29 1995-03-09 Bundesrep Deutschland Dekontaminationslösung zur Entstrahlung von radioaktiv kontaminierten Oberflächen
US5752206A (en) * 1996-04-04 1998-05-12 Frink; Neal A. In-situ decontamination and recovery of metal from process equipment
US5814204A (en) * 1996-10-11 1998-09-29 Corpex Technologies, Inc. Electrolytic decontamination processes
JP3003684B1 (ja) * 1998-09-07 2000-01-31 日本電気株式会社 基板洗浄方法および基板洗浄液
DE19851852A1 (de) * 1998-11-10 2000-05-11 Siemens Ag Verfahren zur Dekontamination einer Oberfläche eines Bauteiles
CA2300698C (fr) * 1999-02-19 2003-10-07 J. Garfield Purdon Formulation de decontamination a large spectre et methode d'utilisation
JP4516176B2 (ja) * 1999-04-20 2010-08-04 関東化学株式会社 電子材料用基板洗浄液
US6652661B2 (en) * 2001-10-12 2003-11-25 Bobolink, Inc. Radioactive decontamination and translocation method
US20050187130A1 (en) * 2004-02-23 2005-08-25 Brooker Alan T. Granular laundry detergent composition comprising an anionic detersive surfactant, and low levels of, or no, zeolite builders and phosphate builders
DE102004047572A1 (de) 2004-09-27 2006-04-06 Alfred Kärcher Gmbh & Co. Kg Flüssigkonzentrat-Set
CN101199026B (zh) * 2005-11-29 2012-02-22 阿利发Np有限公司 对核技术设施的部件或系统的含氧化层表面去污的方法
DE102007038947A1 (de) * 2007-08-17 2009-02-26 Areva Np Gmbh Verfahren zur Dekontamination von mit Alphastrahlern kontaminierten Oberflächen von Nuklearanlagen
DE102007052206A1 (de) * 2007-10-30 2009-05-07 Henkel Ag & Co. Kgaa Bleichmittelhaltiges Wasch- oder Reinigungsmittel in Flüssiger Form

Also Published As

Publication number Publication date
ES2397256T3 (es) 2013-03-05
CA2749642A1 (fr) 2010-08-26
TWI595506B (zh) 2017-08-11
WO2010094692A1 (fr) 2010-08-26
CA2749642C (fr) 2015-04-07
TW201037730A (en) 2010-10-16
US8353990B2 (en) 2013-01-15
CN102209992A (zh) 2011-10-05
KR101295017B1 (ko) 2013-08-09
KR20110118726A (ko) 2011-10-31
JP2012518165A (ja) 2012-08-09
US20110303238A1 (en) 2011-12-15
DE102009002681A1 (de) 2010-09-09
JP5584706B2 (ja) 2014-09-03
EP2399262A1 (fr) 2011-12-28
CN102209992B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
EP2399262B1 (fr) Procédé de décontamination de surfaces contaminées par radioactivité
EP2417606B1 (fr) Procédé de décontamination de surfaces
DE3013551A1 (de) Dekontamination von kernreaktoren
DE2714245A1 (de) Dekontaminationsverfahren
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
EP0313843B1 (fr) Procédé pour décontaminer des surfaces
DE102010028457A1 (de) Verfahren zur Oberflächen-Dekontamination
DE2004600A1 (de) Verfahren zur Reinigung radioaktiver Metalloberflächen
DE19818772C2 (de) Verfahren zum Abbau der Radioaktivität eines Metallteiles
EP2188814B1 (fr) Procédé de décontamination de surfaces d'installations nucléaires contaminées par des rayons alpha
EP2787509A1 (fr) Procédé de décomposition d'une couche d'oxyde
DE3143440A1 (de) Verfahren zur dekontamination von radioaktiv kontaminierten oberflaechen metallischer werkstoffe
EP0170796B1 (fr) Procédé pour séparer de grandes quantités d'uranium à partir de faibles quantités de produits de fission radio-actifs présents dans des solutions aqueuses basiques contenant du carbonate
DE3428878C2 (fr)
EP1141445A1 (fr) Procede de decontamination d'une surface d'un element
EP3607562B1 (fr) Dosage de zinc pour la decontamination des réacteurs à eau légère
EP1084078B1 (fr) Procede d'elimination d'ions nitrate contenus dans une solution
CH691479A5 (de) Oberflächenbehandlung von Stahl.
DE2328283A1 (de) Verfahren zum bestimmen des anteils gebrochener teilchen von umhuelltem spaltmaterial in kompaktkoerpern von kernreaktoren
DE2511112B2 (de) Verfahren zum Dekontaminieren von Oberflächen metallischer Werkstoffe
DD237095A3 (de) Verfahren zur dekontamination von ausruestungen nuklearer dampferzeugungsanlagen
DE1059360B (de) Verfahren zur Verminderung der Radioaktivitaet von Wasser oder anderen Fluessigkeiten durch Behandlung mit Kationen-austauschern
DE4310749A1 (en) Electrochemical decontamination of metal component using strongly alkaline electrolyte liq. - used to remove radioactive oxide layers from PWR and BWR components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001703

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2397256

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130305

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AREVA GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

26N No opposition filed

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001703

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010001703

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20131112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100217

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 585453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180221

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010001703

Country of ref document: DE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, 91052 ERLANGEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: AREVA NP GMBH

Effective date: 20190107

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190107

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AREVA NP GMBH

Effective date: 20190111

Ref country code: NL

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190111

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FRAMATOME GMBH

Effective date: 20190516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001703

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20210118

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210218

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230220

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240129

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240306

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 15

Ref country code: CH

Payment date: 20240301

Year of fee payment: 15