EP2417606B1 - Procédé de décontamination de surfaces - Google Patents

Procédé de décontamination de surfaces Download PDF

Info

Publication number
EP2417606B1
EP2417606B1 EP10795259A EP10795259A EP2417606B1 EP 2417606 B1 EP2417606 B1 EP 2417606B1 EP 10795259 A EP10795259 A EP 10795259A EP 10795259 A EP10795259 A EP 10795259A EP 2417606 B1 EP2417606 B1 EP 2417606B1
Authority
EP
European Patent Office
Prior art keywords
decontamination
acid
stage
component
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10795259A
Other languages
German (de)
English (en)
Other versions
EP2417606A1 (fr
Inventor
Rainer Gassen
Bertram Zeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of EP2417606A1 publication Critical patent/EP2417606A1/fr
Application granted granted Critical
Publication of EP2417606B1 publication Critical patent/EP2417606B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for surface decontamination of components of the coolant circuit of a pressurized water reactor.
  • the core of the coolant circuit is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged.
  • At the reactor pressure vessel several cooling loops are usually connected, each with a coolant pump and a steam generator.
  • the oxide layers contain depending on the type of a component
  • the alloy used is iron oxide with di- and trivalent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the above-mentioned steels.
  • Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.
  • a decontamination process for chromium-nickel steels which comprises a reduction step, an oxidation step and a decontamination step.
  • a mixture of oxalic acid and formic acid (more than 90%) is used.
  • the oxidizing agent used is ozone, permanganic acid or permanganate.
  • either the entire coolant system or a part separated therefrom by valves is filled with an aqueous cleaning solution or individual components of the system are treated in a separate container containing the cleaning solution.
  • the oxide layer is first treated oxidatively in the case of components containing chromium, for example in the case of a pressurized water reactor (oxidation step), and then the oxide layer is dissolved under acidic conditions in a so-called decontamination step with the aid of an acid, which is referred to below as decontamination or deconic acid.
  • decontamination or deconic acid The metal ions which pass from the oxide layer into the solution can then be removed from the solution by passing it through an ion exchanger.
  • Excess oxidizing agent of the oxidation step is neutralized or reduced in a reduction step by adding a reducing agent.
  • the dissolution of the oxide layer or the dissolution of metal ions in the decontamination step thus takes place in the absence of an oxidizing agent.
  • the reduction of excess Oxidizing agent may be an independent treatment step, wherein the cleaning solution is dosed a reducing agent serving for the purpose of reduction, for example ascorbic acid, citric acid or hydrogen peroxide for the reduction of permanganate ions and manganese dioxide.
  • the reduction of excess oxidant can also take place in the context of the decontamination step, wherein in addition to the reducing agent, a resolution of the oxide layer causing decontamination or acid is used, which is capable of excess oxidant, such as the frequently used permanganate ion and the thereof to reduce the resulting brownstone.
  • a resolution of the oxide layer causing decontamination or acid is used, which is capable of excess oxidant, such as the frequently used permanganate ion and the thereof to reduce the resulting brownstone.
  • an amount of decontamination acid sufficient to neutralize excess oxidant on the one hand and to cause oxide dissolution on the other hand is added to the solution.
  • the treatment sequence "oxidation step reduction step decontamination step” or “oxidation step decontamination step with simultaneous reduction” is applied several times to obtain a sufficient result.
  • the same deconic acid or mixture of deconic acids is always used in the decontamination step.
  • the oxidative treatment of the oxide layer is necessary because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, are difficult to dissolve in the acids that are suitable for decontamination.
  • the oxide layer is first treated with an aqueous solution of an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or O 3 .
  • an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or O 3 .
  • the result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- .
  • the Cr-VI formed in the oxidation step which is present as chromate in the cleaning solution, is reduced again to Cr-III.
  • the cleaning solution contains Cr-III, Fe-II, Fe-III, Ni-II and, in addition, radioactive isotopes, e.g. Co-60th These metal ions can be removed from the cleaning solution with an ion exchanger.
  • Deconic acid which is commonly used in the decontamination step, is oxalic acid because it dissolves the oxide layers to be removed from component surfaces.
  • oxalic acid with divalent metal ions such as Ni 2+ , Fe 2+ , CO 2+ , Cu 2+ forms sparingly soluble oxalate precipitates which are distributed throughout the coolant system and spread on the inner surfaces of pipelines and of components, for example of steam generators. deposit.
  • the rainfall complicates the entire process implementation.
  • organic components of a solution are often converted by treatment with an oxidizing agent and UV irradiation to carbon dioxide and water and thus removed from the solution.
  • precipitation makes the solution cloudy, which significantly reduces the effectiveness of UV radiation. It also comes to coprecipitation of radionuclides and thus to a recontamination of the component surfaces.
  • At least one treatment cycle is carried out, which comprises an oxidation step, a reduction step, and a subsequent first decontamination step includes.
  • a treatment cycle can be carried out only once or even several times.
  • the oxidation step the component is treated with an aqueous cleaning solution containing an oxidizing agent whose oxidizing power is sufficient to convert trivalent chromium contained in the oxide layer to hexavalent chromium.
  • this step increases the solubility of an oxide layer present on the component.
  • the component is treated with a solution containing a reducing agent to reduce excess oxidizing agent from the oxidation step.
  • the component is treated with an aqueous solution which contains exclusively or predominantly, ie more than 50 mol%, at least one decontamination acid which is mixed with metal ions contained in the solution, in particular bivalent metal ions such as Ni-II, Fe. II, Co-II and Mn-II forms no sparingly soluble precipitates, as is the case with oxalic acid.
  • a deconic acid is used which does not form sparingly soluble precipitates even with trihydric and higher valency acids, but this is the case with the acids commonly used for decontamination of the present type, for example in the case of formic acid and glyoxylic acid.
  • the solution is led over an ion exchanger to remove metal ions contained in it and originating from the oxide layer and / or the base metal of the component.
  • the reduction step and the decontamination step can also be carried out together, as already explained above.
  • the first process stage can thus be removed in the proposed manner, a significant portion of the critical with respect to the formation of poorly soluble precipitates metal ions, so especially Ni-II, Fe-II and Co-II from the cleaning solution and thus from the component surface to be decontaminated without the risk of the formation of sparingly soluble precipitation.
  • a second decontamination step in a second process stage, in which the highly effective oxalic acid can now be used without problems especially for dissolving Fe-III present in the oxide layer and also Fe-II, since the critical divalent ions, Above all, Ni-II, no longer or in a no longer leading to precipitation concentration in the cleaning solution are present.
  • oxalic acid predominates, i. with more than 50 mole% is present.
  • a method according to the invention thus offers the possibility of preventing or at least greatly reducing the formation of sparingly soluble precipitates without thereby impairing the effectiveness of decontamination.
  • the method can be carried out in such a way that at least one treatment cycle is carried out in the first process stage, and in the subsequent second process stage, the component surface is carried out without a preceding oxidation of the second decontamination step, ie the oxide layer of the component is treated with oxalic acid.
  • the oxide layer of the component is treated with oxalic acid.
  • the oxide layer dissolution carried out with oxalic acid is required.
  • an organic acid is used because its organic constituent, insofar as it consists of carbon, hydrogen and oxygen, converts into carbon dioxide and water and thus can be removed virtually without residue, since the carbon dioxide escapes as gas from the solution.
  • the removal of the organic constituents takes place in a manner known per se by irradiating the solution, which has been mixed with an oxidizing agent such as hydrogen peroxide, with UV light.
  • an oxidizing agent such as hydrogen peroxide
  • an acid with max. used two carbon atoms.
  • the decomposition of such an acid to carbon dioxide and water is faster than the decomposition of three and more carbon atoms containing acids, so that time, energy and oxidizing agent, ultimately cost can be saved.
  • inorganic acids such as HNO3, HBF4 and H2SO4, non-complexing monocarboxylic acids formic acid, acetic acid, monohydroxyacetic acid and dihydroxyacetic acid, and complexing acids such as EDTA, nitrilotriacetic acid and tartronic acid are suitable for the decontamination step in the 1st process stage.
  • non-complexing monocarboxylic acids formic acid, acetic acid, monohydroxyacetic acid and dihydroxyacetic acid
  • complexing acids such as EDTA, nitrilotriacetic acid and tartronic acid
  • Formic acid and glyoxylic acid have proven to be suitable with regard to waste prevention, with the best decontamination factors being achieved when only glyoxylic acid is used in the first process stage.
  • These acids form a soluble salt with the metal ions, in particular with the nickel of the oxide layer.
  • the metal ion is retained, wherein the acid anions remain in the solution and later, as described above, can be decomposed oxidatively without residue.
  • glycine containing a nitrogen atom or inorganic acids is not.
  • Each treatment cycle includes an oxidation step and a decontamination step.
  • the exposure time is 16 hours.
  • the decontamination step is not oxalic acid, but formic acid and / or glyoxylic acid (see Tables 1-3).
  • excess oxidizing agent (HMnO4) is neutralized by adding an appropriate amount of reducing agent and then adding the acid used in each decontamination step.
  • the reaction time of the acid in the decontamination step is in each case 5 hours.
  • glyoxylic acid is most effective for the decontamination or dissolution of the oxide layer, in particular if this acid is used in several, preferably in all decontamination cycles of the first process stage.
  • the residual oxidizing agent is neutralized with a mixture of hydrogen peroxide and nitric acid, the former being necessary to dissolve the manganese dioxide (MnO2) formed from HMnO4 in the oxidation step.
  • MnO2 manganese dioxide
  • HNO3 nitric acid
  • the gamma activity of the sample drops to a value of 2.18E + 4Bq. Compared to the initial activity of the sample of 6.88E + 4Bq, this means a decontamination factor of 3.16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Claims (10)

  1. Procédé de décontamination chimique de la surface comportant une couche d'oxyde d'une pièce métallique appartenant au circuit primaire d'un réacteur à eau pressurisée, ledit procédé étant divisé en deux étapes et réalisé en outre comme suit :
    - selon une première étape du procédé, on réalise au moins un cycle de traitement comprenant une étape d'oxydation, une étape de réduction et une première étape de décontamination subséquente à celles-ci,
    -- ladite pièce étant traitée, dans ladite étape d'oxydation, avec une solution aqueuse contenant un agent oxydant qui transforme le chrome trivalent contenu dans la couche d'oxyde en chrome hexavalent,
    -- ladite pièce étant traitée, dans ladite étape de réduction, avec une solution aqueuse contenant un agent de réduction qui effectue la réduction de l'agent oxydant excédentaire issu de l'étape d'oxydation,
    -- ladite pièce étant traitée, dans ladite première étape de décontamination, avec une solution aqueuse contenant exclusivement ou dans une proportion majoritaire au moins un acide de décontamination ne formant pas de précipités peu solubles avec les ions métalliques contenus dans la solution, s'agissant notamment d'ions métalliques divalents, et
    -- ladite solution étant passée sur un échangeur d'ions afin d'éliminer les ions métalliques qu'elle contient et qui sont issus de la couche d'oxyde et/ou du métal de base de ladite pièce,
    - selon une deuxième étape de procédé, on réalise au moins un cycle de traitement comprenant une deuxième étape de décontamination consistant à traiter ladite pièce avec une solution aqueuse contenant exclusivement ou dans une proportion majoritaire de l'acide oxalique en tant qu'acide de décontamination.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un cycle de traitement de la deuxième étape de procédé comprend une étape d'oxydation réalisée en amont de la deuxième étape de décontamination.
  3. Procédé selon les revendications 1 ou 2, caractérisé en ce que l'on utilise un acide organique dans la première étape de décontamination.
  4. Procédé selon la revendication 3, caractérisé en ce que l'on utilise un acide de décontamination constitué exclusivement de carbone, d'oxygène et d'hydrogène.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on utilise, dans la première étape de décontamination, un acide organique ne formant pas de complexe avec des ions métalliques.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que, dans la première étape de décontamination, on utilise au moins un acide de décontamination dont la molécule renferme au maximum deux atomes de carbone.
  7. Procédé selon la revendication 6, caractérisé par l'utilisation d'acide formique et/ou d'acide glyoxylique.
  8. Procédé selon la revendication 7, caractérisé en ce que l'on utilise de l'acide glyoxylique dans chaque première étape de décontamination.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on neutralise un reste d'agent oxydant présent dans la solution de nettoyage au terme de l'étape d'oxydation au moyen d'un agent de réduction que l'on ajoute à ladite solution et l'on utilise la solution ainsi traitée dans l'étape de décontamination réalisée ensuite.
  10. Procédé selon la revendication 9, caractérisé en ce que l'acide de décontamination mis en oeuvre dans l'étape de décontamination sert d'agent de réduction.
EP10795259A 2009-12-04 2010-12-01 Procédé de décontamination de surfaces Not-in-force EP2417606B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047524A DE102009047524A1 (de) 2009-12-04 2009-12-04 Verfahren zur Oberflächen-Dekontamination
PCT/EP2010/068602 WO2011067271A1 (fr) 2009-12-04 2010-12-01 Procédé de décontamination de surfaces

Publications (2)

Publication Number Publication Date
EP2417606A1 EP2417606A1 (fr) 2012-02-15
EP2417606B1 true EP2417606B1 (fr) 2013-02-20

Family

ID=43867196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10795259A Not-in-force EP2417606B1 (fr) 2009-12-04 2010-12-01 Procédé de décontamination de surfaces

Country Status (11)

Country Link
US (1) US20120138086A1 (fr)
EP (1) EP2417606B1 (fr)
JP (1) JP5602241B2 (fr)
KR (1) KR101309609B1 (fr)
CN (1) CN102405500A (fr)
CA (1) CA2755288A1 (fr)
DE (1) DE102009047524A1 (fr)
ES (1) ES2404895T3 (fr)
TW (1) TW201131581A (fr)
WO (1) WO2011067271A1 (fr)
ZA (1) ZA201106436B (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018787A1 (fr) * 2012-07-26 2014-01-30 Dominion Engineering, Inc. Procédés de réutilisation d'une solution de nettoyage
JP2014041100A (ja) * 2012-08-23 2014-03-06 Shimizu Corp コンクリート構造体の表層除染方法
DE102013100933B3 (de) * 2013-01-30 2014-03-27 Areva Gmbh Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors
TWI489489B (zh) * 2013-04-08 2015-06-21 Yi Hsing Huang 放射性廢料除污劑及其製造處理方法
KR101523763B1 (ko) * 2013-06-19 2015-06-01 한국원자력연구원 금속 표면 고착성 방사능 오염 산화막 제거를 위한 산화 제염제 및 이를 이용한 산화 제염방법
DE102015120722B4 (de) * 2015-11-30 2017-07-27 Areva Gmbh Kernkraftwerk und Verfahren zum Betreiben eines Kernkraftwerks
DE102016104846B3 (de) * 2016-03-16 2017-08-24 Areva Gmbh Verfahren zur Behandlung von Abwasser aus der Dekontamination einer Metalloberfläche, Abwasserbehandlungsvorrichtung und Verwendung der Abwasserbehandlungsvorrichtung
DE102017107584A1 (de) * 2017-04-07 2018-10-11 Rwe Power Aktiengesellschaft Zinkdosierung zur Dekontamination von Leichtwasserreaktoren
CN107170503B (zh) * 2017-06-02 2019-04-02 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法
CN107240429B (zh) * 2017-06-28 2019-09-06 洛阳市琦安科技有限公司 一种放射性核污染物扩散迁移的压制材料及压制方法
DE102017115122B4 (de) * 2017-07-06 2019-03-07 Framatome Gmbh Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
CN108242273A (zh) * 2017-12-28 2018-07-03 中核四0四有限公司 一种用于放射性混凝土构筑物浅层剥离的装置
JP7475171B2 (ja) * 2020-03-17 2024-04-26 日立Geニュークリア・エナジー株式会社 化学除染方法および化学除染装置
CN112700900A (zh) * 2020-12-10 2021-04-23 中国辐射防护研究院 一种注锌反应堆部件放射性沉积氧化物的清洗方法
CN113105955A (zh) * 2021-03-31 2021-07-13 山东核电有限公司 一种用于ap1000反应堆一回路部件放射性污染沉积氧化物的去污配方和去污方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD118956A1 (fr) * 1975-03-11 1976-03-20
DE2847780C2 (de) * 1978-11-03 1984-08-30 Kraftwerk Union AG, 4330 Mülheim Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kernreaktoranlagen
US4481040A (en) * 1981-06-17 1984-11-06 Central Electricity Generating Board Of Sudbury House Process for the chemical dissolution of oxide deposits
DE3413868A1 (de) * 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim Verfahren zur chemischen dekontamination von metallischen bauteilen von kernreaktoranlagen
CH673545A5 (fr) * 1987-10-02 1990-03-15 Industrieorientierte Forsch
DE58906153D1 (de) * 1988-08-24 1993-12-16 Siemens Ag Verfahren zur chemischen Dekontamination der Oberfläche eines metallischen Bauteils einer Kernreaktoranlage.
FR2699936B1 (fr) * 1992-12-24 1995-01-27 Electricite De France Procédé de dissolution d'oxydes déposés sur un substrat métallique.
US5305360A (en) * 1993-02-16 1994-04-19 Westinghouse Electric Corp. Process for decontaminating a nuclear reactor coolant system
JP3417296B2 (ja) * 1998-05-29 2003-06-16 栗田エンジニアリング株式会社 除染方法
FR2817492B1 (fr) * 2000-12-04 2003-07-18 Commissariat Energie Atomique Procede de dissolution des solides formes dans une installation nucleaire
KR100724710B1 (ko) * 2002-11-21 2007-06-04 가부시끼가이샤 도시바 방사화 부품의 화학적 오염제거 시스템 및 방법
JP4083607B2 (ja) * 2003-03-19 2008-04-30 株式会社東芝 放射能の化学除染方法および装置
JP4551843B2 (ja) * 2005-08-29 2010-09-29 株式会社東芝 化学除染方法
CN101199026B (zh) * 2005-11-29 2012-02-22 阿利发Np有限公司 对核技术设施的部件或系统的含氧化层表面去污的方法
CN103155047B (zh) * 2010-07-21 2016-08-03 加拿大原子能有限公司 反应堆去污方法和试剂

Also Published As

Publication number Publication date
KR101309609B1 (ko) 2013-09-17
CA2755288A1 (fr) 2011-06-09
EP2417606A1 (fr) 2012-02-15
ZA201106436B (en) 2012-08-29
JP2013513098A (ja) 2013-04-18
DE102009047524A1 (de) 2011-06-09
KR20120057568A (ko) 2012-06-05
CN102405500A (zh) 2012-04-04
JP5602241B2 (ja) 2014-10-08
US20120138086A1 (en) 2012-06-07
WO2011067271A1 (fr) 2011-06-09
TW201131581A (en) 2011-09-16
ES2404895T3 (es) 2013-05-29

Similar Documents

Publication Publication Date Title
EP2417606B1 (fr) Procédé de décontamination de surfaces
EP2564394B1 (fr) Procede pour la decontamination des surfaces
EP1968075B1 (fr) Procédé de décontamination d'une surface comprenant une couche d'oxyde d'un composant ou d'un système d'une installation nucléaire
EP0355628B1 (fr) Procédé pour décontaminer chimiquement la surface d'un élément de construction métallique d'une installation de réacteur nucléaire
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
EP0313843B1 (fr) Procédé pour décontaminer des surfaces
DE3013551A1 (de) Dekontamination von kernreaktoren
EP2923360B1 (fr) Procédé de décontamination des composées de circuit de refroidissement d'un réacteur nucléair
EP2787509B1 (fr) Procédé de décomposition d'une couche d'oxyde
DE19818772C2 (de) Verfahren zum Abbau der Radioaktivität eines Metallteiles
EP2758966B1 (fr) Procédé de dégradation d'une couche d'oxyde
EP2188814B1 (fr) Procédé de décontamination de surfaces d'installations nucléaires contaminées par des rayons alpha
EP3494579A1 (fr) Procédé de décomposition d'une couche d'oxyde contenant des radionucléides
DE102016104846B3 (de) Verfahren zur Behandlung von Abwasser aus der Dekontamination einer Metalloberfläche, Abwasserbehandlungsvorrichtung und Verwendung der Abwasserbehandlungsvorrichtung
EP3607562B1 (fr) Dosage de zinc pour la decontamination des réacteurs à eau légère
EP1084078B1 (fr) Procede d'elimination d'ions nitrate contenus dans une solution
DE102013108802A1 (de) Verfahren zur Verringerung der radioaktiven Kontamination eines wasserführenden Kreislaufs eines Kernkraftwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002369

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AREVA GMBH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2404895

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20130422

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20130422

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002369

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20130422

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002369

Country of ref document: DE

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161221

Year of fee payment: 7

Ref country code: FI

Payment date: 20161219

Year of fee payment: 7

Ref country code: CH

Payment date: 20161222

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161221

Year of fee payment: 7

Ref country code: FR

Payment date: 20161221

Year of fee payment: 7

Ref country code: SE

Payment date: 20161222

Year of fee payment: 7

Ref country code: BE

Payment date: 20161221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171202