EP2758966B1 - Procédé de dégradation d'une couche d'oxyde - Google Patents

Procédé de dégradation d'une couche d'oxyde Download PDF

Info

Publication number
EP2758966B1
EP2758966B1 EP12759480.2A EP12759480A EP2758966B1 EP 2758966 B1 EP2758966 B1 EP 2758966B1 EP 12759480 A EP12759480 A EP 12759480A EP 2758966 B1 EP2758966 B1 EP 2758966B1
Authority
EP
European Patent Office
Prior art keywords
acid
solution
ions
oxidative decontamination
cations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12759480.2A
Other languages
German (de)
English (en)
Other versions
EP2758966A1 (fr
Inventor
Horst-Otto Bertholdt
Andreas Loeb
Hartmut Runge
Dieter Stanke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bertholdt Horst-Otto
NIS Ingenieur GmbH
Original Assignee
NIS Ingenieur GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIS Ingenieur GmbH filed Critical NIS Ingenieur GmbH
Priority to EP12759480.2A priority Critical patent/EP2758966B1/fr
Publication of EP2758966A1 publication Critical patent/EP2758966A1/fr
Application granted granted Critical
Publication of EP2758966B1 publication Critical patent/EP2758966B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a process for the decomposition of a chromium, iron, nickel, if necessary, zinc oxide and radionuclide-containing oxide layer by means of a permanganic acid and a mineral acid-containing aqueous oxidative decontamination solution, which flows in a circuit (K1), wherein the oxidative decontamination solution to a pH Value ⁇ 2.5, in particular for the decomposition of oxide layers deposited on inner surfaces of areas or components of a nuclear power plant.
  • the invention relates to a method for the extensive degradation of radionuclides in the primary system and the auxiliary systems in a nuclear power plant using the existing operating medium and the power plant operating systems.
  • oxidic protective layers Fe0.5Ni1.0Cr1.5O4, NiFe2O4 are formed at operating temperatures of> 180 ° C and reducing conditions on the wetted inner surfaces of the systems and components. Radionuclides are incorporated into the oxide matrix.
  • the aim of chemical decontamination methods is to dissolve this oxide layer in order to be able to remove the incorporated radionuclides. This is intended to ensure that in the case of a revision, the radiation exposure of the inspection personnel kept as low as possible or in the case of dismantling of the nuclear reactor, the components can be easily fed into a recycling cycle.
  • the oxide protective layers are considered to be chemically insoluble. By a preliminary oxidative chemical treatment of the oxide structure, this can be broken and the sparingly soluble oxide matrix in easily soluble metal oxides are transferred. This breakdown of the oxide matrix occurs by oxidation of the trivalent chromium into the hexavalent chromium: Fe 0.5 Ni 1.0 Cr 1.5 O 4 / NiFe 2 O 4 / Fe 3 O 4 ⁇ oxidation ⁇ CrO 4 2- , FeO, NiO, Fe 2 O 3 equation (1)
  • the manganese ion is present in the permanganate in the oxidation state 7 and is reduced according to equation (2) in the oxidation state 4, at the same time present in the trivalent oxidation state chromium is oxidized to the oxidation state 6.
  • 2 MOL MnO 4- are needed for the oxidation of 1 MOL Cr 2 O 3 .
  • manganese oxihydrate [MnO (OH) 2 ] or manganese dioxide (MnO 2 ) is formed in all decontamination technologies used so far, as equations (3) and (4) illustrate.
  • the manganese dioxide is insoluble and deposits on the inner surface of the components / systems. With increasing manganese oxyhydrate / manganese dioxide deposition, the desired oxidation of the oxide protective layer is hindered. In addition, the converted iron and nickel oxides remain undissolved on the surface, so that the barrier layer on the surface further amplified.
  • Object of the present invention is to avoid the disadvantages of the prior art, in particular to allow a simplification of the process flow, the formation of manganese dioxide and oxalate to be avoided.
  • the formation of CO 2 should at least be reduced. Also, the release of oxide particles should be largely avoided.
  • EP-A-1 054 413 describes in the cited prior art the use of permanganic acid without sulfuric acid to decontaminate radioactive materials.
  • Object of the present invention is to avoid the disadvantages of the prior art, in particular to allow a simplification of the procedure, the formation of manganese dioxide and oxalate to be avoided.
  • the formation of CO 2 should at least be reduced. Also, the release of oxide particles should be largely avoided.
  • the object is essentially achieved in that the oxidation of the oxide layer and its dissolution takes place in a single treatment step with the aid of the aqueous decontamination solution, that sulfuric acid is used as the mineral acid, by means of which the pH is adjusted, and that after degradation of the Permanganic acid the solution flows through a bypass line of the circuit while maintaining the circulation operation of a cation exchanger in which existing in the solution 2-valent cations and 2-valent radionuclides are fixed with simultaneous release of sulfate and dichromate anions.
  • the pH is set by metered addition of sulfuric acid.
  • the solution flows through a bypass line an anion exchanger in which the dichromate is fixed with simultaneous release of SO 4 - ions.
  • the amount of anion exchange resin used is designed to amount of dichromate ions to be fixed.
  • the permanganate concentration in the oxidative decontamination solution is adjusted in such a way that, when the predetermined dichromate concentration is reached, the permanganate ions are consumed by chemical oxidation reactions, the relationship being particularly true:
  • a method for reducing the activity inventory in components and systems, wherein the oxide layers of the wetted inner surfaces are removed with an oxidative decontamination solution.
  • the oxidative decontamination can be carried out with power plants own systems without the help of external decontamination auxiliary systems, the activity reduction without manganese formation and other cation precipitations and without CO 2 -Anfall and without release of oxidic particles take place and the metal oxides are simultaneously dissolved chemically and as Cations / anions are fixed together with the manganese and the nuclides (Co-60, Co-58, Mn-54, etc.) on ion exchange resins.
  • the chemical conversion of the sparingly soluble oxides into readily soluble oxides, the dissolution of the oxides / radionuclides and the discharge and fixing of the dissolved cations to cation exchangers take place in a single process step, which acts as an oxidative decontamination step referred to as.
  • the permanganic acid used is completely converted to the Mn 2+ cation in the course of the preoxidation step. Manganese oxyhydrate precipitation does not occur.
  • H 2 Cr 2 O 7 and H 2 SO 4 are advantageous since both compounds are needed in the ongoing process and are thus desired in terms of process engineering.
  • the dichromate protects the basic material of the system or the component from chemical attacks and the sulfuric acid ensures the required low pH value throughout the process, as is also the case with the Fig. 1 is clarified.
  • the remaining hematite (Fe 2 O 3 ) in the system can not be dissolved by mineral acids that have oxidizing properties (such as nitric acid).
  • the Fe 2 O 3 is therefore dissolved in a subsequent step, a so-called hematite step, and then the dissolved Fe ion is bound to cation exchanger.
  • the chemical reaction according to equation (5) reliably leads to the formation of Mn 2+ .
  • the reaction is controlled by protons (H + ions).
  • sulfuric acid is used for the pH adjustment.
  • the amount of sulfuric acid required to prevent MnO (OH) 2 formation is based on the permanganate concentration. With increasing permanganate concentration, the pH must be lowered, that is, a higher acid concentration must be set (s. Fig. 1 ).
  • the Fe / Cr / Ni / Zn composition of the protective layer it is possible, according to the present invention, to calculate exactly the amount of the individual cations depending on the amount of HMnO 4 used. which are released in the "oxidative decontamination step". This is possible because the amount of HMnO 4 used converts to 100% in Mn 2+ and stoichiometrically produces the amount of dichromate produced.
  • the amount of oxidized Cr-III is 06. November 2014/54066 amended description pages Again, the amount of converted Fe / Cr / Ni / Zn - oxides and thus the resulting in the oxidative decontamination step Fe / Ni / Zn / Mn - ions before.
  • Fig. 2 shows by way of example the temporal degradation of permanganic acid and the concomitant simultaneous construction of the cations (Fe-II, Ni-II, Mn-II) and the anion Cr 2 O 7 2- in the "oxidative decontamination solution" in a system with high chromium contents.
  • the system to be decontaminated is operated in the circulation without ion exchange integration. This should in principle be based on the Fig. 6 be clarified.
  • the oxidative decontamination step which is carried out in the circulation until the conversion of the HMnO 4 amount to 100% in Mn 2+ (cycle operation K1), without the solution passing through a cation exchanger (KIT).
  • the amount of HMnO 4 used is the amount of the oxide layer which can be dissolved from the oxide matrix of the Fe / Cr / Ni protective layer.
  • Fig. 7 shows this relationship with an example of a performed system decontamination.
  • the averaged oxide protective layer thickness was about 5.5 ⁇ m.
  • the "oxidative decontamination step" including the "hematite step” was performed 11 times. This in Fig. 7 shown graph shows that the average oxide layer degradation per HMnO 4 dosage was reproducibly on the order of about 0.5 microns.
  • a maximum permanganic acid concentration of 150 ppm has to be used per oxidative decontamination step, which is repeated as a function of the previously determined or estimated chromium concentration, as explained above.
  • NiO Ni-II oxide
  • Ni 2 O 3 Ni-III oxide
  • the Ni oxides are then dissolved in an intermediate by HMnO 4 and formation of Ni (MnO 4 ) 2 according to equation (9): NiO + 2HMnO 4 + 5H 2 O ⁇ [Ni (MnO 4 ) 2 ⁇ 6 H 2 O] (Equation (9)
  • FeO Fe-II oxide
  • Fe 2 O 3 Fe-III oxide
  • a process temperature of preferably 60 ° C to 120 ° C is set.
  • the oxidative decontamination is preferably carried out in a temperature range of 95 ° C to 105 ° C.
  • the divalent cations (Mn-II, Fe-II, Zn-II and Ni-II) as well as the divalent radionuclides (Co-58, Co-60, Mn-54) are removed from the solution.
  • the corresponding anions (sulfate and dichromate) are released and are available to the process again. See equations (13) and (14).
  • the operation of the cation exchanger KIT takes place at a process temperature of ⁇ 100 ° C.
  • permanganic acid is again added and the above-described process steps are repeated until the dichromic acid concentration has reached a predetermined value such as 300 ppm or less.
  • Fig. 5 the courses of the cation concentration of an "oxidative decontamination step" are shown by way of example with the aid of a three-time HMnO 4 dosing.
  • This sequence ( Fig. 3 and Fig. 5 , Phase D1 and D2) can be repeated until the dichromic acid concentration has reached a value of about 300 ppm.
  • the maximum dichromic acid concentration is limited to 100 ppm.
  • the dichromate is removed from the solution by means of the anion exchanger AIT (see p. Fig. 6 - Cleaning circuit K3).
  • the prerequisite for the integration of the anion exchanger is that all permanganate ions are consumed by the chemical oxidation reactions and the solution is free of permanganate ions (s. Fig. 6 - Cleaning circuit K3).
  • the amount of anion exchanger used is based on the dichromate inventory of the solution to be purified. Only the amount of anion exchanger is provided whose capacity is sufficient for a recording of the dichromate. This ensures that the sulfuric acid concentration does not change in the solution.
  • both the sulfate ions of the sulfuric acid and the dichromate ions of the dichromic acid are bound to the anion exchange resins. If the anion exchanger is charged to 100% with dichromate and sulfate, the sulphate ions already fixed are displaced by the dichromate ions during further loading of the anion exchanger with sulfate ions and dichromate ions. This process continues until the anion exchanger is 100% loaded with dichromate ions and all sulfate ions are again available for oxidative decontamination.
  • step sequences The repetition of the step sequences is carried out until cation discharge no longer takes place. If all cations and anions are fixed on ion exchangers after carrying out previous steps, only sulfuric acid is present in the solution.
  • step II all the ingredients of the pre-oxidation step (residual permanganate, colloidal MnO (OH) 2 , chromate and nickel permanganate) and all converted metal oxides are present in the system in the solution. or component surface.
  • the oxalate compounds formed from divalent cations and the reduction chemical "oxalic acid” have limited solubility in water.
  • the solubility of the divalent cations is: 50 ° C 80 ° C unit NiC 2 O 4 about 3 about 6 mg Ni-II / liter FeC 2 O 4 can.15 about 45 mg Fe-II / liter MnC 2 O 4 about 120 about 170 mg Mn-II / liter
  • the oxide protective layers of a primary system of a pressurized-water nuclear power plant usually result in a total total NOx inventory of 1,900 kg to 2,400 kg [Fe, Cr, Ni oxide].
  • the already dissolved radionuclides (Co-58, Co-60, Mn-54) are incorporated into the oxalate layer. This leads to a recontamination in the systems.
  • the liberated divalent cations (Ni, Mn, Fe, Zn) and the dichromate are dissolved in the "oxidative decontamination step", and the fixation of the cations and anions takes place promptly on ion exchange resins.
  • the oxalate deposits conventionally used in conducting chemical decontamination do not take place.
  • the "hematite step” is performed.
  • the hematite (Fe 2 O 3 ) is dissolved according to equation (17): Fe 2 O 3 + 6 OH 2 C 2 O 4 ⁇ 2 [Fe (C 2 O 4 ) 3 ] 3- + 3 H 2 O Equation (17)
  • Ni-II oxalate and Fe-II oxalate are as follows: Ni 2+ - oxalate ⁇ approx. 80 mg Ni-II / liter Fe 2+ - oxalate ⁇ about 150 mg Fe-II / liter.
  • the oxalic acid concentration should be 50 to 1000 ppm H 2 C 2 O 4 at the hematite step.
  • the dissolved cations are bound to cation exchangers, the dissolution of the hematite and the fixing of the dissolved Fe ions being carried out simultaneously (see Fig. 4 - Phases of the "hematite step").
  • the "hematite step” is carried out until no iron is removed from the system.
  • the entire "oxidative decontamination” sequence can be repeated. This repetition is based on the remaining Cr 2 O 3 to be broken down in the system.
  • a "hematite step” is subsequently carried out again.
  • Each nuclear power plant has its own specific oxide structure, oxide composition, oxide dissolving behavior, and oxide / activity inventory.
  • oxide structure For the preliminary planning of a decontamination only assumptions can be made. Only in the course of carrying out the decontamination then shows whether the preliminary assumptions were correct.
  • a decontamination concept must therefore be able to adapt to the respective changes during execution.
  • Decontamination in accordance with the present invention, requires a very low level of chemicals compared to previous processing techniques.
  • NPP nuclear power plants
  • the process parameters can be quickly adapted to the respective new requirements (chemical dosing, chemical concentrations, process temperature, time of KIT and AIT exchanger integration, step sequences, etc.).
  • process variations can be carried out until the desired activity output or the desired dose rate reduction has been achieved.
  • the sulfuric acid present in the solution remains in the solution during the execution of all process steps.
  • the concentration is not changed. Only at the end of the total decontamination procedure are the sulfate ions bound to the anion exchanger AIT during the final purification (see Fig. 4 , AIT cleaning step D6).
  • Fig. 1 Based on Fig. 1 is clarified that, when the pH depending on the permanganate concentration below the in Fig. 1 drawn oblique straight line, it is ensured that brownstone can not form.
  • the prior art operates at a pH and permanganate acid concentration above the line. As a result of this, brownstone forms.
  • the straight line is determined according to equations (6) and (7) or (7 ⁇ ).
  • the Fig. 2 illustrates that, depending on the process time and the conversion of the permanganate to Mn 2+, the concentration of cations and dichromic acid increases.
  • Fig. 3 The inventive oxidative decontamination is purely in principle of Fig. 3 refer to.
  • permanganate acid is metered into the solution as a function of the pH adjusted by means of sulfuric acid according to equations (6, 7, 7 ') in order to dissolve the metal oxides and form readily soluble sulfates.
  • the Cr-III oxide is oxidized to Cr-VI and is present in the solution as dichromic acid.
  • the solution flows through a bypass, the cation exchanger KIT, in which the cations are fixed. In the solution remains sulfuric acid and dichromic acid.
  • the hematite is used according to the Fig. 4 separated from the solution.
  • oxalic acid is first added (process step D4).
  • the solution flows through a cation exchanger KIT, the dissolution of the hematite and the fixing of the Fe ions being carried out simultaneously.
  • This process step D4 is carried out until no more iron is discharged.
  • permanganic acid is added to decompose the oxalic acid to form carbon dioxide and the forming manganese sulfate removed by means of cation exchanger. In the solution then remains only sulfuric acid.
  • the oxide layer can be reproducibly removed in layers, depending on the number of oxidative decontamination steps carried out, that is to say the metered addition of HMnO 4 . It can be seen that oxide layer thicknesses in the order of 0.3 .mu.m to 0.6 .mu.m are removed per oxidative decontamination step.
  • the poorly soluble Fe, Cr, Ni structure is converted chemically into slightly soluble oxide forms by means of permanganic acid.
  • Dissolution of the converted oxide forms is carried out with sulfuric acid. In terms of process technology, this is done in a cycle operation K1 ( Fig. 6 ) in a sulfuric acid / permanganic acid solution.
  • the circuit operation K1 remains maintained until the permanganic consumed completely and has been converted to Mn 2+.
  • the permanganic acid concentration is set to less than 50 ppm, more preferably between 30 and 50 ppm, the conversion of permanganic acid to Mn 2+ takes 2 to 4 hours. The conversion of the oxide structure and the dissolution of the converted oxides takes place at the same time.
  • phase D2 begins.
  • sulfate salts present metal cations on the cation exchanger KIT and fixed there. In this exchange process, the sulfate is released again and the decontamination solution is available again.
  • the circulation mode K1 is maintained unchanged and the connection of the cation exchanger takes place in the bypass mode.
  • the purification rate (flow rate) through the cation exchanger (m 3 / h) to the total volume of the system to be decontaminated [m 3 ] is specified by the respective system design of the nuclear power plant.
  • the bypass operation K2 in the case of continuing circulation operation K1 of the cation exchanger is carried out until all the cations have been bound to the cation exchanger KIT. The total time required for this is given by the available cleaning rate.
  • phase D1 and D2 After completion of the phases D1 and D2 a procedural breakpoint is specified.
  • the further process steps are based on the total oxide content of the system to be decontaminated. If there are large amounts of chromium in the oxide matrix, it is advisable to repeat phases D1 and D2.
  • This repetition procedure D1 + D2 can be carried out until the Dichromate concentration in the decontamination solution has a value of z. B. has reached 100 ppm dichromate.
  • the process step D3 takes place.
  • the decontamination solution contains sulfuric acid and dichromic acid. The dichromic acid is removed from the solution by bypassing an anion exchanger.
  • the cycle operation K1 of the system to be contaminated continues to operate unchanged.
  • the connection of the anion exchange circuit K3 takes place in bypass mode.
  • the bypass operation of the cation exchange circuit K2 can continue to operate.
  • the bypass operation K3 of the anion exchanger is carried out until the dichromate ions are bound to the anion exchanger AIT. The time required for this is given by the available cleaning rate.
  • the degradation of the dichromate concentration is advantageously carried out to a final concentration of less than 10 ppm.
  • the presence of small amounts of dichromate in the solution preserves the basic protective property of the dichromate.
  • phase D3 After completion of phase D3 a procedural 2nd breakpoint is specified. In the course of breakpoint 2, the further procedure is determined, taking into account the consideration described below.
  • the further process steps are based on the total oxide inventory of the system to be decontaminated. If there is a large oxide inventory, the process sequence D1 to D3 must be repeated several times before the beginning of the hematite step, wherein the number of sequences D1 to D3 is preferably limited to a maximum of 4 passes.
  • the hematite step to be referred to as phase D4, causes the hematite Fe 2 O 3 formed in the oxidative decontamination step to be dissolved in a sulfuric acid-oxalic acid solution.
  • the dissolved iron is fixed on the cation exchanger KIT.
  • Sulfuric acid and oxalic acid are released from the beginning by removal of cations and are constantly available for the hematite dissolution process.
  • both the circulation operation K1 of the system to be decontaminated and the cation exchange circuit K2 are operated.
  • the integration of the cation exchange circuit K2, in which the iron is fixed, takes place in bypass mode.
  • the hematite initiation phase, ie phase D4 is carried out until no appreciable iron discharge occurs.
  • the oxalic acid is oxidatively degraded to CO 2 .
  • the oxidative degradation takes place by means of HMnO 4 .
  • the circuit K1 is operated without passing through the cation exchanger K2 or the anion exchanger K3.
  • sulfuric acid and Mn sulfate are present in the solution. Only after the degradation has taken place is the Mn 2+ bound to the cation exchanger by switching on the circulation K 2.
  • a procedural breakpoint 3 is specified. In the course of the stop 3 the further procedure is determined. The further process steps are based on the total oxide inventory of the system to be decontaminated. If there is a large amount of oxide inventory, process steps D1 to D5 must be repeated until the desired decontamination result (dose rate reduction) has been achieved. If so, the final cleaning step is performed. Chemically, this means that sulfuric acid is removed from the system. This is done by means of anion exchange resins D6. During process step D6, both the large cycle operation K1 of the system to be decontaminated and the anion exchange cycle K3 are operated. The bypass operation K3 of the anion exchanger is carried out until the sulfate ions are bound to the anion exchanger AIT. The total time required for this is given by the available cleaning rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Claims (18)

  1. Procédé de décomposition d'une couche d'oxydes renfermant du chrome, du fer, du nickel, le cas échéant du zinc et des radionucléides au moyen d'une solution de décontamination oxydante aqueuse renfermant de l'acide permanganique et un acide minéral circulant dans un circuit fermé (K1), la solution de décontamination oxydante étant réglée à une valeur de pH ≤2,5, en particulier pour décomposer des couches d'oxydes déposées sur des surfaces internes de zones ou de composants d'une centrale nucléaire,
    caractérisé en ce qu'
    on effectue l'oxydation de la couche d'oxyde et sa dissolution en une seule étape de traitement à l'aide de la solution de décontamination aqueuse, on utilise en tant qu'acide minéral de l'acide sulfurique au moyen duquel la valeur du pH est réglée, et, après la décomposition de l'acide permanganique, la solution traverse avec maintien du fonctionnement en circuit fermé, par une conduite en dérivation du circuit fermé, un échangeur de cations dans lequel, des cations divalents et des radionucléides divalents présents dans la solution sont fixés avec libération simultanée d'anions sulfate et dichromate.
  2. Procédé conforme à la revendication 1,
    caractérisé en ce qu'
    après enrichissement avec de l'acide dichromique à une concentration prédéfinie, en particulier 300 ppm ou moins de préférence 100 ppm ou moins la solution traverse, par une conduite en dérivation un échangeur d'anions dans lequel le dichromate est fixé avec libération simultanée des ions SO4.
  3. Procédé conforme à la revendication 1 ou 2,
    caractérisé en ce que
    la quantité de résine échangeuse d'anions mise en oeuvre est dimensionnée en fonction de la quantité d'ions dichromate à fixer.
  4. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    la concentration en permanganate dans la solution de décontamination oxydante est réglée de sorte que, lorsqu'a été atteinte la concentration en dichromate prédéfinie, les ions permanganate sont consommés par des réactions d'oxydation chimique, en particulier selon la relation :

            demande totale en HMnO4[kg]= dénombrement Cr-III [kg] x U,

    avec 1,35 ≤U≤1,40, en particulier U = 1,38.
  5. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    la concentration en acide sulfurique de réglage de la valeur du pH à ajouter dans la solution de décontamination oxydante est calculée en fonction de l'acide permanganique à ajouter, et la quantité d'acide permanganique est calculée en fonction de la quantité à attendre du chrome à oxyder dans la couche d'oxyde à décomposer selon les équations :

            pH = X- [(HMnO4 ajouté mg/kg) x 9E-05]     Equation (6)

    avec 2,0≤X≤2,2, en particulier X=2,114
    et

            H2SO4 mg/kg = YxpH-z     Equation (7)

    avec 16≤Y≤18, en particulier Y=16,836,
    et 4,5≤Z≤6,5, en particulier Z=5,296,
    dans la mesure où les cations dissous dans la solution de décontamination oxydante restent non pris en considération, ou

            H2SO4 mg/kg = [YxpH-z] + [(K1*F1) + (K2F2)+...(Kn*Fn)]     Equation (7')

    dans la mesure où les cations dissous dans la solution de décontamination oxydante sont pris en considération,
    équation selon laquelle 16≤Y≤18, en particulier Y = 16,836 et 4,5≤Z≤6,5, en particulier Z=5,296 et F1, F2,... Fn est un facteur spécifique des cations à dissoudre.
  6. Procédé conforme à la revendication 5,
    caractérisé en ce que
    le facteur spécifique (F) pour les cations ci-dessous est fixé de la manière suivante :
    - F1 (Fe-II) entre 1,70 et 1,74, en particulier 1,72
    - F2 (Fe-III) entre 2,55 et 2,61, en particulier 2,58
    - F3 (Ni-II) entre 1,62 et 1,66, en particulier 1,64
    - F4 (Zn-II) entre 1,45 et 1,50, en particulier 1,47
    - F5 (Mn-II) entre 1,70 et 1,80, en particulier 1,75.
  7. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    dans la solution de décontamination oxydante l'acide permanganique est réglé à une concentration maximum de 150 ppm, de préférence à 50 ppm.
  8. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    après la fixation du dichromate dans l'échangeur d'anions, l'hématite présente dans la solution de décontamination oxydante est dissoute par addition d'acide carboxylique ou d'acide dicarboxylique, en particulier d'acide oxalique, et les cations Fe dissous sont liés dans un échangeur de cations.
  9. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    la concentration en acide oxalique est réglée à une valeur comprise entre 50 ppm et 1000 ppm, en particulier à une valeur maximum de 100 ppm.
  10. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    après évacuation totale des ions Fe, l'acide oxalique restant dans la solution de décontamination oxydante est décomposé au moyen d'acide permanganique par formation de CO2 et de Mn2+, et les ions Mn2+ sont fixés sur l'échangeur de cations.
  11. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    la concentration en acide permanganique est réglée de sorte que, jusqu'à consommation complète de l'acide permanganique, une couche d'oxyde d'épaisseur comprise entre 0,3 µm et 0,6 µm soit enlevée, et de préférence l'épaisseur de la couche d'oxyde à enlever est commandée par la quantité d'acide permanganique ajoutée.
  12. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'étape de décontamination par oxydation (D1, D2, D3) est mise en oeuvre à une température comprise entre 60°C et 120°C et de façon particulièrement préférentielle entre 95°C et 105°C.
  13. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'élimination de l'hématite est effectuée à une température comprise entre 60°C et 120°C et de manière particulièrement préférentielle entre 95°C et 105°C.
  14. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    lors de l'étape de décontamination par oxydation, l'acide sulfurique est régénéré par extraction des ions Mn-II-/ Fe-II-/ Fe-III-/ Ni-II au moyen de l'échangeur de cations.
  15. Procédé conforme à au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'acide dichromique se formant pendant la décomposition de la couche d'oxyde est inséré activement dans le processus de décontamination.
  16. Procédé conforme à au moins la revendication 1,
    caractérisé en ce que
    la couche d'oxyde déposée sur les surfaces internes d'un circuit d'agent réfrigérant d'une centrale nucléaire ou de ses composants est oxydé et dissoute par couches par l'acide permanganique et l'acide sulfurique circulant en circuit fermé (D1), après consommation totale de l'acide permanganique lors de la poursuite du fonctionnement en circuit fermé, la solution de décontamination oxydante est transférée par une dérivation au travers d'un échangeur de cations pour lier les cations Fe-, Ni-, Zn-, Mn- divalents présents dans la solution (D2), puis, on ajoute à nouveau à la solution de décontamination oxydante de l'acide permanganique en particulier pour régler la concentration de départ,
    et les étapes de procédé précédentes (D1, D2) sont répétées jusqu'à ce que dans la solution de décontamination oxydante il y ait une quantité prédéfinie d'acide dichromique, puis, par une poursuite du fonctionnement en circuit fermé la solution est transférée par une conduite en dérivation à un échangeur d'anions pour lier le dichromate (D3), les étapes de procédé précédentes (D1, D2, D3) sont répétées jusqu'à ce qu'une épaisseur prédéfinie de la couche d'oxydation ait été enlevée, puis, dans une autre étape de procédé (D4), par addition d'un acide carboxylique ou dicarboxylique tel que de l'acide oxalique, la solution d'acide sulfurique renfermant un acide carboxylique ou un acide dicarboxylique tel que de l'acide oxalique circulant en circuit fermé est transférée par une dérivation au travers d'un échangeur de cations dans lequel les ions fer sont liés avec libération simultanée d'ions carbonate ou dicarbonate ou oxalate et sulfate.
  17. Procédé conforme à la revendication 16,
    caractérisé en ce que
    en tant qu'acide dicarboxylique on utilise de l'acide oxalique, et après extraction totale des ions fer l'acide oxalique est oxydé en dioxyde de carbone par du permanganate et les ions Mn2+ formés sont fixés sur l'échangeur de cations.
  18. Procédé conforme à au moins la revendication 1 ou 16,
    caractérisé en ce que
    au début la décomposition de la couche d'oxyde, la valeur du pH est réglée au moyen de l'acide sulfurique, et pendant la décomposition de la couche d'oxyde et la mise en oeuvre des autres étapes de procédé, on n'effectue aucune autre addition d'acide sulfurique, la valeur du pH étant de préférence réglée au moyen de l'acide sulfurique à une valeur < 2,2, en particulier ≤ 2,0.
EP12759480.2A 2011-09-20 2012-09-20 Procédé de dégradation d'une couche d'oxyde Active EP2758966B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12759480.2A EP2758966B1 (fr) 2011-09-20 2012-09-20 Procédé de dégradation d'une couche d'oxyde

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP11181978 2011-09-20
DE102011083380 2011-09-26
DE102011084607 2011-10-17
EP12759480.2A EP2758966B1 (fr) 2011-09-20 2012-09-20 Procédé de dégradation d'une couche d'oxyde
PCT/EP2012/068485 WO2013041595A1 (fr) 2011-09-20 2012-09-20 Procédé de dégradation d'une couche d'oxyde

Publications (2)

Publication Number Publication Date
EP2758966A1 EP2758966A1 (fr) 2014-07-30
EP2758966B1 true EP2758966B1 (fr) 2016-03-16

Family

ID=46852033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12759480.2A Active EP2758966B1 (fr) 2011-09-20 2012-09-20 Procédé de dégradation d'une couche d'oxyde

Country Status (4)

Country Link
US (1) US10056163B2 (fr)
EP (1) EP2758966B1 (fr)
ES (1) ES2576187T3 (fr)
WO (1) WO2013041595A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134067A1 (fr) 2017-01-19 2018-07-26 Framatome Gmbh Procédé de décontamination de surfaces métalliques d'une installation nucléaire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149862A1 (fr) 2017-02-14 2018-08-23 Siempelkamp NIS Ingenieurgesellschaft mbH Procédé de décomposition d'une couche d'oxyde contenant des radionucléides
DE102017115122B4 (de) * 2017-07-06 2019-03-07 Framatome Gmbh Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
DE102019135486A1 (de) * 2019-12-20 2021-06-24 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zum Betreiben eines Analysators zur Bestimmung des Permanganat-Indexes sowie einen Analysator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
US4481040A (en) * 1981-06-17 1984-11-06 Central Electricity Generating Board Of Sudbury House Process for the chemical dissolution of oxide deposits
DE3413868A1 (de) 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim Verfahren zur chemischen dekontamination von metallischen bauteilen von kernreaktoranlagen
BE904139A (nl) 1986-01-30 1986-05-15 Lemmens Godfried Werkwijze voor de decontaminatie van radioaktief besmette materialen.
DE58906153D1 (de) 1988-08-24 1993-12-16 Siemens Ag Verfahren zur chemischen Dekontamination der Oberfläche eines metallischen Bauteils einer Kernreaktoranlage.
FR2648946B1 (fr) * 1989-06-27 1994-02-04 Electricite De France Procede de dissolution d'oxyde depose sur un substrat metallique et son application a la decontamination
FR2699936B1 (fr) 1992-12-24 1995-01-27 Electricite De France Procédé de dissolution d'oxydes déposés sur un substrat métallique.
DE4410747A1 (de) 1994-03-28 1995-10-05 Siemens Ag Verfahren und Einrichtung zum Entsorgen einer Lösung, die eine organische Säure enthält
DE19818772C2 (de) 1998-04-27 2000-05-31 Siemens Ag Verfahren zum Abbau der Radioaktivität eines Metallteiles
US6635232B1 (en) 1999-05-13 2003-10-21 Kabushiki Kaisha Toshiba Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
KR100724710B1 (ko) * 2002-11-21 2007-06-04 가부시끼가이샤 도시바 방사화 부품의 화학적 오염제거 시스템 및 방법
CN101199026B (zh) 2005-11-29 2012-02-22 阿利发Np有限公司 对核技术设施的部件或系统的含氧化层表面去污的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134067A1 (fr) 2017-01-19 2018-07-26 Framatome Gmbh Procédé de décontamination de surfaces métalliques d'une installation nucléaire
US11443863B2 (en) 2017-01-19 2022-09-13 Framatome Gmbh Method for decontaminating metal surfaces of a nuclear facility

Also Published As

Publication number Publication date
WO2013041595A1 (fr) 2013-03-28
ES2576187T3 (es) 2016-07-06
US20140352717A1 (en) 2014-12-04
EP2758966A1 (fr) 2014-07-30
US10056163B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
EP2417606B1 (fr) Procédé de décontamination de surfaces
EP1968075B1 (fr) Procédé de décontamination d&#39;une surface comprenant une couche d&#39;oxyde d&#39;un composant ou d&#39;un système d&#39;une installation nucléaire
EP0160831B1 (fr) Procédé pour décontaminer chimiquement les parties métalliques des installations de réacteur nucléaire
EP2564394B1 (fr) Procede pour la decontamination des surfaces
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
EP2787509B1 (fr) Procédé de décomposition d&#39;une couche d&#39;oxyde
EP2758966B1 (fr) Procédé de dégradation d&#39;une couche d&#39;oxyde
WO1989003113A1 (fr) Procede de decontamination de surfaces
EP2828205B1 (fr) Procédé pour éliminer des polluants radioactifs d&#39;eaux résiduaires
EP2923360B1 (fr) Procédé de décontamination des composées de circuit de refroidissement d&#39;un réacteur nucléair
EP1082728B1 (fr) Procede pour la suppression de la radioactivite d&#39;une piece metallique
WO1995026555A1 (fr) Procede et dispositif permettant d&#39;eliminer une solution contenant un acide organique
EP3494579B1 (fr) Procédé de dégradation d&#39;une couche d&#39;oxyde contenant des radionucléides
EP3607562B1 (fr) Dosage de zinc pour la decontamination des réacteurs à eau légère
EP3430628B1 (fr) Procédé pour le traitement de l&#39;eau usée de la décontamination d&#39;une surface métallique d&#39;un circuit primaire de refroidissement d&#39;un réacteur nucléaire, dispositif d&#39;un réacteur nucléaire pour le traitement de l&#39;eau usée et usage d&#39;un tel dispositif
DE102018131902B3 (de) Verfahren zur Konditionierung von Ionenaustauscherharzen und Vorrichtung zur Durchführung des Verfahrens
DE102008005336A1 (de) Verfahren zur Konditionierung radioaktiver Ionenaustauscherharze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150828

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIS INGENIEURGESELLSCHAFT MBH

Owner name: BERTHOLDT, HORST-OTTO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 781839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006311

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2576187

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160706

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160316

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012006311

Country of ref document: DE

Representative=s name: STOFFREGEN, HANS-HERBERT, DIPL.-PHYS. DR.RER.N, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012006311

Country of ref document: DE

Owner name: SIEMPELKAMP NIS INGENIEURGESELLSCHAFT MBH, DE

Free format text: FORMER OWNERS: BERTHOLDT, HORST-OTTO, 90443 NUERNBERG, DE; NIS INGENIEURGESELLSCHAFT MBH, 63755 ALZENAU, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006311

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SIEMPELKAMPS NIS INGENIEURGESELLSCHAFT MBH, DE

Effective date: 20161129

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMPELKAMPS NIS INGENIEURGESELLSCHAFT MBH, DE

Effective date: 20161129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS AND PARTNER AG PATENTANWAELTE, CH

Ref country code: CH

Ref legal event code: PUEA

Owner name: SIEMPELKAMP NIS INGENIEURGESELLSCHAFT MBH, DE

Free format text: FORMER OWNER: NIS INGENIEURGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170615 AND 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160920

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMPELKAMP NIS INGENIEURGESELLSCHAFT MBH

Effective date: 20170913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 781839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220920

Year of fee payment: 11

Ref country code: GB

Payment date: 20220920

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20221122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220928

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 12

Ref country code: DE

Payment date: 20230926

Year of fee payment: 12

Ref country code: BE

Payment date: 20230920

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230920