EP2417606B1 - Method for decontaminating surfaces - Google Patents

Method for decontaminating surfaces Download PDF

Info

Publication number
EP2417606B1
EP2417606B1 EP10795259A EP10795259A EP2417606B1 EP 2417606 B1 EP2417606 B1 EP 2417606B1 EP 10795259 A EP10795259 A EP 10795259A EP 10795259 A EP10795259 A EP 10795259A EP 2417606 B1 EP2417606 B1 EP 2417606B1
Authority
EP
European Patent Office
Prior art keywords
decontamination
acid
stage
component
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10795259A
Other languages
German (de)
French (fr)
Other versions
EP2417606A1 (en
Inventor
Rainer Gassen
Bertram Zeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of EP2417606A1 publication Critical patent/EP2417606A1/en
Application granted granted Critical
Publication of EP2417606B1 publication Critical patent/EP2417606B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for surface decontamination of components of the coolant circuit of a pressurized water reactor.
  • the core of the coolant circuit is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged.
  • At the reactor pressure vessel several cooling loops are usually connected, each with a coolant pump and a steam generator.
  • the oxide layers contain depending on the type of a component
  • the alloy used is iron oxide with di- and trivalent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the above-mentioned steels.
  • Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.
  • a decontamination process for chromium-nickel steels which comprises a reduction step, an oxidation step and a decontamination step.
  • a mixture of oxalic acid and formic acid (more than 90%) is used.
  • the oxidizing agent used is ozone, permanganic acid or permanganate.
  • either the entire coolant system or a part separated therefrom by valves is filled with an aqueous cleaning solution or individual components of the system are treated in a separate container containing the cleaning solution.
  • the oxide layer is first treated oxidatively in the case of components containing chromium, for example in the case of a pressurized water reactor (oxidation step), and then the oxide layer is dissolved under acidic conditions in a so-called decontamination step with the aid of an acid, which is referred to below as decontamination or deconic acid.
  • decontamination or deconic acid The metal ions which pass from the oxide layer into the solution can then be removed from the solution by passing it through an ion exchanger.
  • Excess oxidizing agent of the oxidation step is neutralized or reduced in a reduction step by adding a reducing agent.
  • the dissolution of the oxide layer or the dissolution of metal ions in the decontamination step thus takes place in the absence of an oxidizing agent.
  • the reduction of excess Oxidizing agent may be an independent treatment step, wherein the cleaning solution is dosed a reducing agent serving for the purpose of reduction, for example ascorbic acid, citric acid or hydrogen peroxide for the reduction of permanganate ions and manganese dioxide.
  • the reduction of excess oxidant can also take place in the context of the decontamination step, wherein in addition to the reducing agent, a resolution of the oxide layer causing decontamination or acid is used, which is capable of excess oxidant, such as the frequently used permanganate ion and the thereof to reduce the resulting brownstone.
  • a resolution of the oxide layer causing decontamination or acid is used, which is capable of excess oxidant, such as the frequently used permanganate ion and the thereof to reduce the resulting brownstone.
  • an amount of decontamination acid sufficient to neutralize excess oxidant on the one hand and to cause oxide dissolution on the other hand is added to the solution.
  • the treatment sequence "oxidation step reduction step decontamination step” or “oxidation step decontamination step with simultaneous reduction” is applied several times to obtain a sufficient result.
  • the same deconic acid or mixture of deconic acids is always used in the decontamination step.
  • the oxidative treatment of the oxide layer is necessary because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, are difficult to dissolve in the acids that are suitable for decontamination.
  • the oxide layer is first treated with an aqueous solution of an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or O 3 .
  • an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or O 3 .
  • the result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- .
  • the Cr-VI formed in the oxidation step which is present as chromate in the cleaning solution, is reduced again to Cr-III.
  • the cleaning solution contains Cr-III, Fe-II, Fe-III, Ni-II and, in addition, radioactive isotopes, e.g. Co-60th These metal ions can be removed from the cleaning solution with an ion exchanger.
  • Deconic acid which is commonly used in the decontamination step, is oxalic acid because it dissolves the oxide layers to be removed from component surfaces.
  • oxalic acid with divalent metal ions such as Ni 2+ , Fe 2+ , CO 2+ , Cu 2+ forms sparingly soluble oxalate precipitates which are distributed throughout the coolant system and spread on the inner surfaces of pipelines and of components, for example of steam generators. deposit.
  • the rainfall complicates the entire process implementation.
  • organic components of a solution are often converted by treatment with an oxidizing agent and UV irradiation to carbon dioxide and water and thus removed from the solution.
  • precipitation makes the solution cloudy, which significantly reduces the effectiveness of UV radiation. It also comes to coprecipitation of radionuclides and thus to a recontamination of the component surfaces.
  • At least one treatment cycle is carried out, which comprises an oxidation step, a reduction step, and a subsequent first decontamination step includes.
  • a treatment cycle can be carried out only once or even several times.
  • the oxidation step the component is treated with an aqueous cleaning solution containing an oxidizing agent whose oxidizing power is sufficient to convert trivalent chromium contained in the oxide layer to hexavalent chromium.
  • this step increases the solubility of an oxide layer present on the component.
  • the component is treated with a solution containing a reducing agent to reduce excess oxidizing agent from the oxidation step.
  • the component is treated with an aqueous solution which contains exclusively or predominantly, ie more than 50 mol%, at least one decontamination acid which is mixed with metal ions contained in the solution, in particular bivalent metal ions such as Ni-II, Fe. II, Co-II and Mn-II forms no sparingly soluble precipitates, as is the case with oxalic acid.
  • a deconic acid is used which does not form sparingly soluble precipitates even with trihydric and higher valency acids, but this is the case with the acids commonly used for decontamination of the present type, for example in the case of formic acid and glyoxylic acid.
  • the solution is led over an ion exchanger to remove metal ions contained in it and originating from the oxide layer and / or the base metal of the component.
  • the reduction step and the decontamination step can also be carried out together, as already explained above.
  • the first process stage can thus be removed in the proposed manner, a significant portion of the critical with respect to the formation of poorly soluble precipitates metal ions, so especially Ni-II, Fe-II and Co-II from the cleaning solution and thus from the component surface to be decontaminated without the risk of the formation of sparingly soluble precipitation.
  • a second decontamination step in a second process stage, in which the highly effective oxalic acid can now be used without problems especially for dissolving Fe-III present in the oxide layer and also Fe-II, since the critical divalent ions, Above all, Ni-II, no longer or in a no longer leading to precipitation concentration in the cleaning solution are present.
  • oxalic acid predominates, i. with more than 50 mole% is present.
  • a method according to the invention thus offers the possibility of preventing or at least greatly reducing the formation of sparingly soluble precipitates without thereby impairing the effectiveness of decontamination.
  • the method can be carried out in such a way that at least one treatment cycle is carried out in the first process stage, and in the subsequent second process stage, the component surface is carried out without a preceding oxidation of the second decontamination step, ie the oxide layer of the component is treated with oxalic acid.
  • the oxide layer of the component is treated with oxalic acid.
  • the oxide layer dissolution carried out with oxalic acid is required.
  • an organic acid is used because its organic constituent, insofar as it consists of carbon, hydrogen and oxygen, converts into carbon dioxide and water and thus can be removed virtually without residue, since the carbon dioxide escapes as gas from the solution.
  • the removal of the organic constituents takes place in a manner known per se by irradiating the solution, which has been mixed with an oxidizing agent such as hydrogen peroxide, with UV light.
  • an oxidizing agent such as hydrogen peroxide
  • an acid with max. used two carbon atoms.
  • the decomposition of such an acid to carbon dioxide and water is faster than the decomposition of three and more carbon atoms containing acids, so that time, energy and oxidizing agent, ultimately cost can be saved.
  • inorganic acids such as HNO3, HBF4 and H2SO4, non-complexing monocarboxylic acids formic acid, acetic acid, monohydroxyacetic acid and dihydroxyacetic acid, and complexing acids such as EDTA, nitrilotriacetic acid and tartronic acid are suitable for the decontamination step in the 1st process stage.
  • non-complexing monocarboxylic acids formic acid, acetic acid, monohydroxyacetic acid and dihydroxyacetic acid
  • complexing acids such as EDTA, nitrilotriacetic acid and tartronic acid
  • Formic acid and glyoxylic acid have proven to be suitable with regard to waste prevention, with the best decontamination factors being achieved when only glyoxylic acid is used in the first process stage.
  • These acids form a soluble salt with the metal ions, in particular with the nickel of the oxide layer.
  • the metal ion is retained, wherein the acid anions remain in the solution and later, as described above, can be decomposed oxidatively without residue.
  • glycine containing a nitrogen atom or inorganic acids is not.
  • Each treatment cycle includes an oxidation step and a decontamination step.
  • the exposure time is 16 hours.
  • the decontamination step is not oxalic acid, but formic acid and / or glyoxylic acid (see Tables 1-3).
  • excess oxidizing agent (HMnO4) is neutralized by adding an appropriate amount of reducing agent and then adding the acid used in each decontamination step.
  • the reaction time of the acid in the decontamination step is in each case 5 hours.
  • glyoxylic acid is most effective for the decontamination or dissolution of the oxide layer, in particular if this acid is used in several, preferably in all decontamination cycles of the first process stage.
  • the residual oxidizing agent is neutralized with a mixture of hydrogen peroxide and nitric acid, the former being necessary to dissolve the manganese dioxide (MnO2) formed from HMnO4 in the oxidation step.
  • MnO2 manganese dioxide
  • HNO3 nitric acid
  • the gamma activity of the sample drops to a value of 2.18E + 4Bq. Compared to the initial activity of the sample of 6.88E + 4Bq, this means a decontamination factor of 3.16.

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Druckwasserreaktors. Kernstück des Kühlmittelkreislaufs ist ein Reaktordruckbehälter, in dem Kernbrennstoff enthaltende Brennelemente angeordnet sind. Am Reaktordruckbehälter sind meist mehrere Kühlschleifen mit jeweils einer Kühlmittelpumpe und einem Dampferzeuger angeschlossen.The invention relates to a method for surface decontamination of components of the coolant circuit of a pressurized water reactor. The core of the coolant circuit is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged. At the reactor pressure vessel several cooling loops are usually connected, each with a coolant pump and a steam generator.

Unter den Bedingungen des Leistungsbetriebes eines Druckwasserreaktors mit Temperaturen im Bereich von 288°C zeigen selbst rostfreie austenitische FeCrNi-Stähle, aus denen beispielsweise das Röhrensystem der Kühlschleifen besteht, Ni-Legierungen, aus denen beispielsweise die Austauscher-Rohre von Dampferzeugern bestehen und sonstige etwa für Kühlmittelpumpen verwendete, z.B. Cobalt enthaltende Bauteile, eine gewisse Löslichkeit in Wasser. Aus den genannten Legierungen herausgelöste Metallionen gelangen mit dem Kühlmittelstrom zum Reaktordruckbehälter, wo sie durch die dort herrschende Neutronenstrahlung teilweise in radioaktive Nuklide umgewandelt werden. Die Nuklide werden wiederum vom Kühlmittelstrom im gesamten Kühlmittelsystem verteilt und werden in Oxidschichten, die sich während des Betriebs auf den Oberflächen von Bauteilen des Kühlmittelsystems bilden, eingelagert. Mit zunehmender Betriebsdauer summiert sich die Menge der abgelagerten aktivierten Nuklide, so dass die Radioaktivität bzw. die Dosisleistung an den Bauteilen des Kühlmittelsystems zunimmt. Die Oxidschichten enthalten je nach Art der für ein Bauteil verwendeten Legierung als Hauptbestandteil Eisenoxid mit zwei- und dreiwertigem Eisen und Oxide anderer Metalle, vor allem Chrom und Nickel, die als Legierungsbestandteile in den oben erwähnten Stählen vorhanden sind. Dabei liegt Nickel stets in zweiwertiger Form (Ni2+), Chrom in dreiwertiger (Cr3+) Form vor.Under the conditions of the power operation of a pressurized water reactor with temperatures in the range of 288 ° C show even stainless austenitic FeCrNi steels, which, for example, the tube system of the cooling loops, Ni alloys, of which, for example, the exchanger tubes of steam generators and others about for Coolant pumps used, for example cobalt-containing components, a certain solubility in water. Metal ions liberated from the abovementioned alloys pass with the coolant flow to the reactor pressure vessel, where they are partially converted into radioactive nuclides by the neutron radiation prevailing there. The nuclides, in turn, are dispersed by the coolant flow throughout the coolant system and are stored in oxide layers that form on the surfaces of coolant system components during operation. As the operating time increases, the amount of deposited activated nuclides adds up so that the radioactivity or dose rate on the components of the coolant system increases. The oxide layers contain depending on the type of a component For example, as the main component, the alloy used is iron oxide with di- and trivalent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the above-mentioned steels. Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.

Aus der EP 1 422 724 ist ein Dekontaminationsverfahren für Chrom-Nickel-stähle bekannt, das einen Reduktionsschritt, einen Oxydationsschritt und einen Dekontaminationsschritt umfasst. Dabei wird eine Mischung aus Oxalsäure und Ameisensäure (mehr als 90%) verwendet. Als Oxydationsmittel wird Ozon, Permangansäure oder Permanganat verwendet. Bevor Kontroll-, Wartungs-, Reparatur- und Rückbaumaßnahmen am Kühlmittelsystem vorgenommen werden können ist eine Reduzierung der radioaktiven Strahlung der jeweiligen Bauteile bzw. Komponenten erforderlich, um die Strahlungsbelastung des Personals zu verringern. Dies geschieht dadurch, dass die auf den Oberflächen der Bauteile vorhandene Oxidschicht mittels eines Dekontaminationsverfahrens möglichst vollständig entfernt wird. Bei einer derartigen Dekontamination wird entweder das gesamte Kühlmittelsystem bzw. ein davon etwa durch Ventile abgetrennter Teil mit einer wässrigen Reinigungslösung befüllt oder es werden einzelne Bauteile des Systems in einem separaten, die Reinigungslösung enthaltenden Behälter behandelt. Die Oxidschicht wird bei Chrom enthaltenden Bauteilen, etwa im Falle eines Druckwasserreaktors zunächst oxidativ behandelt (Oxidationsschritt) und anschließend die Oxidschicht unter sauren Bedingungen in einem sog. Dekontaminationsschritt mit Hilfe einer Säure, die im Folgenden mit Dekontaminations- oder Dekontsäure bezeichnet wird, aufgelöst. Die dabei aus der Oxidschicht in die Lösung übertretenden Metallionen können dann aus der Lösung entfernt werden, indem diese über einen Ionentauscher geleitet wird. Überschüssiges Oxidationsmittel des Oxidationsschritts wird in einem Reduktionsschritt durch Zugabe eines Reduktionsmittels neutralisiert bzw. reduziert. Die Auflösung der Oxidschicht bzw. das Herauslösen von Metallionen im Dekontaminationsschritt erfolgt somit bei Abwesenheit eines Oxidationsmittels. Die Reduktion des überschüssigen Oxidationsmittels kann ein eigenständiger Behandlungsschritt sein, wobei der Reinigungslösung ein nur dem Zwecke der Reduktion dienendes Reduktionsmittel, beispielsweise Ascorbinsäure, Zitronensäure oder Wasserstoffperoxid zur Reduktion von Permanganat-Ionen und Braunstein zudosiert wird. Die Reduktion überschüssigen Oxidationsmittel kann aber auch im Rahmen des Dekontaminationsschritts erfolgen, wobei zusätzlich zum Reduktionsmittel eine die Auflösung der Oxidschicht bewirkende Dekontaminationssäure oder eine solche Säure verwendet wird, welche in der Lage ist, überschüssiges Oxidationsmittel, z.B. das vielfach eingesetzte Permanganat-Ion und den daraus entstandenen Braunstein zu reduzieren. In dem genannten Fall wird der Lösung eine Menge an Dekontaminationssäure zugesetzt, die ausreicht um einerseits überschüssiges Oxidationsmittel zu neutralisieren und andererseits eine Oxidauflösung zu bewirken. In der Regel wird die Behandlungsfolge "Oxidationsschritt-Reduktionsschritt-Dekontaminationsschritt" oder "Oxidationsschritt-Dekontaminationsschritt mit gleichzeitiger Reduktion" mehrmals angewandt um einen ausreichenden Erfolg zu erzielen. Dabei wird im Dekontschritt stets die gleiche Dekontsäure bzw. Mischung von Dekontsäuren angewendet.From the EP 1 422 724 For example, a decontamination process for chromium-nickel steels is known which comprises a reduction step, an oxidation step and a decontamination step. In this case, a mixture of oxalic acid and formic acid (more than 90%) is used. The oxidizing agent used is ozone, permanganic acid or permanganate. Before control, maintenance, repair and demolition measures can be carried out on the coolant system, it is necessary to reduce the radioactive radiation of the respective components in order to reduce the radiation exposure of the personnel. This happens because the oxide layer present on the surfaces of the components is removed as completely as possible by means of a decontamination process. In such a decontamination, either the entire coolant system or a part separated therefrom by valves is filled with an aqueous cleaning solution or individual components of the system are treated in a separate container containing the cleaning solution. The oxide layer is first treated oxidatively in the case of components containing chromium, for example in the case of a pressurized water reactor (oxidation step), and then the oxide layer is dissolved under acidic conditions in a so-called decontamination step with the aid of an acid, which is referred to below as decontamination or deconic acid. The metal ions which pass from the oxide layer into the solution can then be removed from the solution by passing it through an ion exchanger. Excess oxidizing agent of the oxidation step is neutralized or reduced in a reduction step by adding a reducing agent. The dissolution of the oxide layer or the dissolution of metal ions in the decontamination step thus takes place in the absence of an oxidizing agent. The reduction of excess Oxidizing agent may be an independent treatment step, wherein the cleaning solution is dosed a reducing agent serving for the purpose of reduction, for example ascorbic acid, citric acid or hydrogen peroxide for the reduction of permanganate ions and manganese dioxide. However, the reduction of excess oxidant can also take place in the context of the decontamination step, wherein in addition to the reducing agent, a resolution of the oxide layer causing decontamination or acid is used, which is capable of excess oxidant, such as the frequently used permanganate ion and the thereof to reduce the resulting brownstone. In the said case, an amount of decontamination acid sufficient to neutralize excess oxidant on the one hand and to cause oxide dissolution on the other hand is added to the solution. In general, the treatment sequence "oxidation step reduction step decontamination step" or "oxidation step decontamination step with simultaneous reduction" is applied several times to obtain a sufficient result. The same deconic acid or mixture of deconic acids is always used in the decontamination step.

Die oxidative Behandlung der Oxidschicht ist erforderlich, weil sich Chrom-III-Oxide und dreiwertiges Chrom enthaltende Mischoxide vor allem des Spinelltyps in den für eine Dekontamination in Frage kommenden Säuren nur schwer lösen. Um die Löslichkeit zu erhöhen, wird daher zunächst die Oxidschicht mit einer wässerigen Lösung eines Oxidationsmittels wie Ce4+, HMnO4, H2S2O8, KMnO4, KMnO4 mit Säure oder Lauge oder O3 behandelt. Ergebnis dieser Behandlung ist, dass Cr-III zu Cr-VI oxidiert wird, welches als CrO4 2- in Lösung geht.The oxidative treatment of the oxide layer is necessary because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, are difficult to dissolve in the acids that are suitable for decontamination. To increase the solubility, therefore, the oxide layer is first treated with an aqueous solution of an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 , KMnO 4 with acid or alkali or O 3 . The result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- .

Aufgrund der Anwesenheit eines Reduktionsmittels im Dekontschritt wird das im Oxidationsschritt entstandene Cr-VI, das als Chromat in der Reinigungslösung vorliegt, wieder zu Cr-III reduziert. Am Ende eines Dekontschrittes befinden sich in der Reinigungslösung Cr-III, Fe-II, Fe-III, Ni-II und daneben radioaktive Isotope wie z.B. Co-60. Diese Metallionen können aus der Reinigungslösung mit einem Ionentauscher entfernt werden. Eine im Dekontschritt häufig verwendete Dekontsäure ist Oxalsäure, weil sich mit ihr die von Bauteiloberflächen zu entfernenden Oxidschichten auflösen lassen.Due to the presence of a reducing agent in the decontamination step, the Cr-VI formed in the oxidation step, which is present as chromate in the cleaning solution, is reduced again to Cr-III. At the end of a decontamination step, the cleaning solution contains Cr-III, Fe-II, Fe-III, Ni-II and, in addition, radioactive isotopes, e.g. Co-60th These metal ions can be removed from the cleaning solution with an ion exchanger. Deconic acid, which is commonly used in the decontamination step, is oxalic acid because it dissolves the oxide layers to be removed from component surfaces.

Nachteilig ist jedoch, dass Oxalsäure mit zweiwertigen Metallionen wie Ni2+, Fe2+, CO2+, Cu2+ schwerlösliche OxalatNiederschläge bildet, die im gesamten Kühlmittelsystem verteilt werden und sich auf den Innenflächen von Rohrleitungen und von Komponenten, beispielsweise von Dampferzeugern, ablagern. Hinzu kommt, dass die Niederschläge die gesamte Verfahrensdurchführung erschweren. So werden vielfach organische Bestandteile einer Lösung durch Behandlung mit einem Oxidationsmittel und UV-Bestrahlung zu Kohlendioxid und Wasser umgewandelt und somit aus der Lösung entfernt. Durch die Niederschläge wird die Lösung jedoch trübe, was die Effektivität der UV-Bestrahlung erheblich verringert. Auch kommt es zur Mitfällung von Radionukliden und somit zu einer Rekontamination der Bauteiloberflächen. Die Gefahr einer Rekontamination ist besonders groß bei Komponenten mit einem großen Verhältnis von Oberfläche zu Volumen. Dies ist vor allem bei Dampferzeugern der Fall, die eine sehr große Anzahl von Austauscherrohren mit geringem Durchmesser aufweisen. Ein weiterer Nachteil der Verwendung von Oxalsäure besteht darin, dass Oxalatniederschläge Filtereinrichtungen, etwa die einem Ionentauscher vorgeschalteten Filter und Siebböden oder die Schutzfilter von Umwälzpumpen verstopfen können. Ein weiterer Nachteil ergibt sich schließlich, wenn ein oben beschriebener, aus Oxidationsschritt und Dekontschritt bestehender Behandlungszyklus wiederholt wird, wenn sich also an einen Dekontschritt ein erneuter Oxidationsschritt anschließt. Wenn in dem vorausgegangenen Dekontschritt Oxalatniederschläge entstanden sind, so können die entsprechenden Metallionen, etwa Ni im Falle eines Nickeloxalatniederschlags, nicht mit Hilfe von Ionentauschern aus der Reinigungslösung entfernt werden. Die Folge ist, dass im anschließenden Oxidationsschritt der Oxalatrest der Niederschläge zu Kohlendioxid und Wasser oxidiert wird und dadurch Oxidationsmittel nutzlos verbraucht wird. Wenn dagegen das Oxalat sich in Lösung befindet, also nicht in Form eines Niederschlags gebunden ist, kann das Oxalat auf einfache Weise, etwa bevor die Reinigungslösung in einen Ionentauscher geleitet wird, auf einfache und kostengünstige Weise beispielsweise mit Hilfe von UV-Licht zerstört, d.h. zu Kohlendioxid und Wasser umgesetzt werden. Schließlich ist noch nachteilig, dass eine durch einen Oxalatniederschlag hervorgerufene Trübung die Überwachung des Verfahrens, etwa bei einer Photometrie, stört.However, it is disadvantageous that oxalic acid with divalent metal ions, such as Ni 2+ , Fe 2+ , CO 2+ , Cu 2+ forms sparingly soluble oxalate precipitates which are distributed throughout the coolant system and spread on the inner surfaces of pipelines and of components, for example of steam generators. deposit. In addition, the rainfall complicates the entire process implementation. Thus, organic components of a solution are often converted by treatment with an oxidizing agent and UV irradiation to carbon dioxide and water and thus removed from the solution. However, precipitation makes the solution cloudy, which significantly reduces the effectiveness of UV radiation. It also comes to coprecipitation of radionuclides and thus to a recontamination of the component surfaces. The risk of recontamination is particularly high for components with a large surface to volume ratio. This is especially the case with steam generators which have a very large number of small diameter exchanger tubes. Another disadvantage of the use of oxalic acid is that oxalate precipitates filter devices, such as the upstream of an ion exchanger filter and sieve plates or the Clogging filter from circulation pumps can clog. Finally, a further disadvantage arises when a treatment cycle consisting of oxidation step and decontamination step described above is repeated, that is to say when a renewed oxidation step follows a deconstruction step. If oxalate precipitates have formed in the previous deconvolution step, the corresponding metal ions, such as Ni in the case of a nickel oxalate precipitate, can not be removed from the cleaning solution with the aid of ion exchangers. The consequence is that in the subsequent oxidation step, the oxalate residue of the precipitates is oxidized to carbon dioxide and water, thereby consuming oxidizing agent uselessly. In contrast, if the oxalate is in solution, that is not bound in the form of a precipitate, the oxalate in a simple manner, such as before the cleaning solution is passed into an ion exchanger, destroyed in a simple and cost-effective manner, for example by means of UV light, ie converted to carbon dioxide and water. Finally, it is disadvantageous that turbidity caused by an oxalate precipitate interferes with the monitoring of the process, for example with photometry.

Davon ausgehend ist es die Aufgabe der Erfindung, ein Dekontaminationsverfahren vorzuschlagen, das hinsichtlich der geschilderten Nachteile verbessert ist.On this basis, it is the object of the invention to propose a decontamination method, which is improved in terms of the described disadvantages.

Diese Aufgabe wird durch ein in zwei Verfahrensstufen unterteiltes Dekontaminationsverfahren nach Anspruch 1 gelöst.This object is achieved by a decontamination process according to claim 1, which is subdivided into two process stages.

In der ersten Verfahrensstufe wird wenigstens ein Behandlungszyklus durchgeführt, der einen Oxidationsschritt, einen Reduktionsschritt, und einen sich daran anschließenden ersten Dekontaminationsschritt umfasst. Ein derartiger Behandlungszyklus kann je nach Ausmaß und Art der Oxidbildung auf den Bauteiloberflächen nur einmal oder auch mehrfach durchgeführt werden. Im Oxidationsschritt wird das Bauteil mit einer wässerigen Reinigungslösung behandelt, die ein Oxidationsmittel enthält, dessen Oxidationskraft ausreicht, um in der Oxidschicht enthaltenes dreiwertiges Chrom zu sechswertigem Chrom umzuwandeln. Wie bereits weiter oben erläutert, wird durch diesen Schritt die Löslichkeit einer auf dem Bauteil vorhandenen Oxidschicht erhöht. Im Reduktionsschritt wird das Bauteil mit einer ein Reduktionsmittel enthaltenden Lösung behandelt, um überschüssiges Oxidationsmittel aus dem Oxidationsschritt zu reduzieren. Im ersten Dekontschritt wird das Bauteil mit einer wässerigen Lösung behandelt, die ausschließlich oder zu einem überwiegenden Anteil, d.h. mehr als 50 Mol%, wenigstens eine Dekontaminationssäure enthält, die mit in der Lösung enthaltenen Metallionen, insbesondere zweiwertigen Metallionen wie Ni-II, Fe-II, Co-II und Mn-II keine schwerlöslichen Niederschläge bildet, wie dies etwa bei Oxalsäure der Fall ist. Zweckmäßigerweise wird eine Dekontsäure verwendet, die auch mit drei- und höher wertigen Säuren keine schwerlöslichen Niederschläge bildet, was aber bei den für eine Dekontamination der vorliegenden Art üblicherweise verwendeten Säuren, beispielsweise bei Ameisensäure und Glyoxylsäure, der Fall ist. Auf diese Weise ist vor allem die Bildung von schwerlöslichen Nickeloxalat-Niederschlägen verhindert. Bereits während oder am Ende des Dekontschritts wird die Lösung zur Entfernung von in ihr enthaltener, aus der Oxidschicht und/oder dem Grundmetall des Bauteils stammender Metallionen über einen Ionentauscher geführt.In the first process stage, at least one treatment cycle is carried out, which comprises an oxidation step, a reduction step, and a subsequent first decontamination step includes. Depending on the extent and type of oxide formation on the component surfaces, such a treatment cycle can be carried out only once or even several times. In the oxidation step, the component is treated with an aqueous cleaning solution containing an oxidizing agent whose oxidizing power is sufficient to convert trivalent chromium contained in the oxide layer to hexavalent chromium. As already explained above, this step increases the solubility of an oxide layer present on the component. In the reduction step, the component is treated with a solution containing a reducing agent to reduce excess oxidizing agent from the oxidation step. In the first decontamination step, the component is treated with an aqueous solution which contains exclusively or predominantly, ie more than 50 mol%, at least one decontamination acid which is mixed with metal ions contained in the solution, in particular bivalent metal ions such as Ni-II, Fe. II, Co-II and Mn-II forms no sparingly soluble precipitates, as is the case with oxalic acid. Conveniently, a deconic acid is used which does not form sparingly soluble precipitates even with trihydric and higher valency acids, but this is the case with the acids commonly used for decontamination of the present type, for example in the case of formic acid and glyoxylic acid. In this way, especially the formation of sparingly soluble nickel oxalate precipitates is prevented. Already during or at the end of the deconcentration step, the solution is led over an ion exchanger to remove metal ions contained in it and originating from the oxide layer and / or the base metal of the component.

Der Reduktionsschritt und der Dekontaminationsschritt können auch zusammen bzw. gleichzeitig durchgeführt werden, wie weiter oben schon erläutert wurde.The reduction step and the decontamination step can also be carried out together, as already explained above.

In der ersten Verfahrensstufe kann auf die vorgeschlagene Weise somit ein erheblicher Teil der hinsichtlich der Bildung von schwerlöslichen Niederschlägen kritischen Metallionen, also vor allem Ni-II, Fe-II und Co-II aus der Reinigungslösung und damit von der zu dekontaminierenden Bauteiloberfläche entfernt werden, ohne dass die Gefahr der Bildung schwerlöslicher Niederschläge besteht. Es bietet sich nun die Möglichkeit, in einer zweiten Verfahrensstufe einen zweiten Dekontaminationsschritt durchzuführen, in dem nun problemlos die hochwirksame Oxalsäure vor allem zum Herauslösen von in der Oxidschicht vorhandenem Fe-III und auch Fe-II eingesetzt werden kann, da die kritischen zweiwertigen Ionen, vor allen Dingen Ni-II, nicht mehr oder in einer nicht mehr zu Niederschlägen führenden Konzentration in der Reinigungslösung vorhanden sind. Bei dem erfindungsgemäßen Verfahren werden somit zwei verschiedene Dekontaminationsvarianten angewendet, wobei mit der ersten Variante bzw. dem ersten Dekontaminationsschritt schwerlösliche Oxalatniederschläge bildende Ionen entfernt und anschließend verbleibende Ionen wie Fe-III und Fe-II mit der hinsichtlich Oxidauflösung hoch wirksamen Oxalsäure in Lösung gebracht werden können. Dabei ist es an sich unerheblich, ob durch die in der ersten Verfahrensstufe eingesetzte "unkritische" Dekontaminationssäure hinsichtlich der Auflösung von Fe-II oder Fe-III aus der Oxidschicht effektiv ist oder nicht, da dies in der zweiten Verfahrensstufe auf effektive Weise mit Oxalsäure erfolgen kann.In the first process stage can thus be removed in the proposed manner, a significant portion of the critical with respect to the formation of poorly soluble precipitates metal ions, so especially Ni-II, Fe-II and Co-II from the cleaning solution and thus from the component surface to be decontaminated without the risk of the formation of sparingly soluble precipitation. It is now possible to carry out a second decontamination step in a second process stage, in which the highly effective oxalic acid can now be used without problems especially for dissolving Fe-III present in the oxide layer and also Fe-II, since the critical divalent ions, Above all, Ni-II, no longer or in a no longer leading to precipitation concentration in the cleaning solution are present. In the method according to the invention thus two different Dekontaminationsvarianten be applied, with the first variant or the first decontamination step sparingly soluble Oxalatniederschläge forming ions and then remaining ions such as Fe-III and Fe-II can be brought into solution with respect to oxide dissolution highly effective oxalic acid , It is irrelevant in this case whether or not the "uncritical" decontamination acid used in the first process stage with respect to the dissolution of Fe-II or Fe-III from the oxide layer is effective, since this is done effectively with oxalic acid in the second process stage can.

Vorzugsweise wird im zweiten Dekontaminationsschritt nur Oxalsäure verwendet. Denkbar ist aber auch eine Mischung mit einer oder mehreren anderen Dekontsäuren, wobei jedoch Oxalsäure überwiegt, d.h. mit mehr als 50 Mol% vorhanden ist.Preferably, only oxalic acid is used in the second decontamination step. However, it is also conceivable to mix with one or more other deconic acids, but oxalic acid predominates, i. with more than 50 mole% is present.

Zusammenfassend bietet ein erfindungsgemäßes Verfahren somit die Möglichkeit, die Bildung schwerlöslicher Niederschläge zu verhindern oder zumindest stark zu verringern, ohne dass dadurch die Effektivität der Dekontamination leidet.In summary, a method according to the invention thus offers the possibility of preventing or at least greatly reducing the formation of sparingly soluble precipitates without thereby impairing the effectiveness of decontamination.

Das Verfahren kann so durchgeführt werden, dass in der ersten Verfahrensstufe zunächst zumindest ein Behandlungszyklus durchgeführt wird und in der sich anschließenden 2. Verfahrensstufe die Bauteiloberfläche ohne eine vorausgehende Oxidation der zweite Dekontschritt durchgeführt, also die Oxidschicht des Bauteils mit Oxalsäure behandelt wird. Es ist aber auch denkbar, dass in der zweiten Verfahrensstufe zunächst die Oxidschicht etwa mit den weiter oben erwähnten Oxidationsmitteln behandelt und erst dann die Oxidschichtauflösung mit Oxalsäure durchgeführt wird. In diesem Fall ist natürlich ebenfalls ein Reduktionsschritt, wie weiter oben beschrieben, erforderlich.The method can be carried out in such a way that at least one treatment cycle is carried out in the first process stage, and in the subsequent second process stage, the component surface is carried out without a preceding oxidation of the second decontamination step, ie the oxide layer of the component is treated with oxalic acid. However, it is also conceivable that in the second process stage, first the oxide layer is treated approximately with the oxidizing agents mentioned above, and only then is the oxide layer dissolution carried out with oxalic acid. In this case, of course, a reduction step, as described above, is required.

Vorzugsweise wird im ersten Dekontschritt eine organische Säure eingesetzt, weil sich deren organischer Bestandteil, soweit er aus Kohlenstoff, Wasserstoff und Sauerstoff besteht, in Kohlendioxid und Wasser umwandeln und damit praktisch rückstandsfrei entfernen lässt, da das Kohlendioxid als Gas aus der Lösung entweicht. Die Entfernung der organischen Bestandteile erfolgt in an sich bekannter Weise, indem die mit einem Oxidationsmittel wie Wasserstoffperoxid versetzte Lösung mit UV-Licht bestrahlt wird. Bevorzugt werden Säuren eingesetzt, die ausschließlich aus Kohlenstoff, Wasserstoff und Sauerstoff entstehen, so dass auch durch Elemente wie Stickstoff keine Reste in der Lösung zurückbleiben, die nur mit Hilfe von Ionentauschern und damit unter Entstehung von Sekundärabfall (zu entsorgendes zusätzliches Austauschermaterial)zu entfernen sind.Preferably, in the first decontamination step, an organic acid is used because its organic constituent, insofar as it consists of carbon, hydrogen and oxygen, converts into carbon dioxide and water and thus can be removed virtually without residue, since the carbon dioxide escapes as gas from the solution. The removal of the organic constituents takes place in a manner known per se by irradiating the solution, which has been mixed with an oxidizing agent such as hydrogen peroxide, with UV light. Preference is given to using acids arising exclusively from carbon, hydrogen and oxygen, so that even elements such as nitrogen leaves no residues in the solution, which can be removed only with the help of ion exchangers and thus with the formation of secondary waste (to be disposed of additional exchanger material).

In manchen Ländern, beispielsweise Japan ist es nicht erlaubt, im Zuge von Dekontaminationsmaßnahmen der vorliegenden Art Ionentauscher mit komplexbildenden Säuren bzw. mit Komplexen solcher Säuren zu beladen. Daher ist es in diesen Fällen zweckmäßig, Säuren zu verwenden, die mit Metallionen keine Komplexverbindungen bilden.In some countries, such as Japan, it is not allowed to load ion exchangers with complexing acids or with complexes of such acids in the course of decontamination measures of the present type. Therefore, it is useful in these cases to use acids that do not form complex compounds with metal ions.

Vorzugsweise wird im ersten Dekontaminationsschritt eine Säure mit max. zwei Kohlenstoffatomen verwendet. Die Zersetzung einer solchen Säure zu Kohlendioxid und Wasser geht schneller vonstatten als die Zersetzung drei und mehr Kohlenstoffatome enthaltender Säuren, so dass Zeit, Energie und Oxidationsmittel, letztlich also Kosten eingespart werden können.Preferably, in the first decontamination step, an acid with max. used two carbon atoms. The decomposition of such an acid to carbon dioxide and water is faster than the decomposition of three and more carbon atoms containing acids, so that time, energy and oxidizing agent, ultimately cost can be saved.

Für den Dekontschritt in der 1. Verfahrensstufe eignen sich beispielsweise anorganische Säuren wie HNO3, HBF4 und H2SO4, nicht komplexbildende Monocarbonsäuren Ameisensäure, Essigsäure, Monohydroxyessigsäure und Dihydroxyessigsäure, und komplexbildende Säuren wie EDTA, Nitrilotriessigsäure und Tartronsäure. Als geeignet hinsichtlich Abfallvermeidung haben sich Ameisensäure und Glyoxylsäure erwiesen, wobei die besten Dekontfaktoren erreicht wurden, wenn in der 1. Verfahrensstufe nur Glyoxylsäure eingesetzt wird. Diese Säuren bilden mit den Metallionen, insbesondere mit dem Nickel der Oxidschicht ein lösliches Salz. Wird eine ein solches Salz enthaltende Lösung über einen Kationentauscher geführt, wird das Metallion zurückgehalten, wobei die Säureanionen in der Lösung verbleiben und später, wie oben beschrieben, oxidativ rückstandsfrei zersetzt werden können. Beispielsweise bei Glycin, das ein Stickstoffatom enthält oder bei den anorganischen Säuren ist dies nicht der Fall.For example, inorganic acids such as HNO3, HBF4 and H2SO4, non-complexing monocarboxylic acids formic acid, acetic acid, monohydroxyacetic acid and dihydroxyacetic acid, and complexing acids such as EDTA, nitrilotriacetic acid and tartronic acid are suitable for the decontamination step in the 1st process stage. Formic acid and glyoxylic acid have proven to be suitable with regard to waste prevention, with the best decontamination factors being achieved when only glyoxylic acid is used in the first process stage. These acids form a soluble salt with the metal ions, in particular with the nickel of the oxide layer. Will be a solution containing such a salt guided over a cation exchanger, the metal ion is retained, wherein the acid anions remain in the solution and later, as described above, can be decomposed oxidatively without residue. For example, glycine containing a nitrogen atom or inorganic acids is not.

Ausführungsbeispiele:EXAMPLES

Um die Wirksamkeit des vorgeschlagenen Verfahrens zu prüfen werden Versuche mit Proben aus dem Primärkreis eines Druckwasserreaktors durchgeführt (siehe Tabelle 1). Die Proben werden in einem Behälter in eine Reinigungslösung mit einem Volumen von 1 1 und einer Temperatur etwa 90 °C eingetaucht. Wie weiter oben erläutert wurde, werden bei einem Dekontaminationsverfahren die aus einer Oxidschicht herausgelösten Metallionen mit einem Ionentauscher aus der Reinigungslösung entfernt. Aus Vereinfachungsgründen wird bei den Versuchen kein Ionentausch durchgeführt, sondern die jeweilige Reinigungslösung am Ende eines Behandlungszyklus (Oxidations- und Dekontschritt) verworfen und durch eine neue Reinigungslösung ersetzt. Bei allen unten beschriebenen Versuchen wird im sauren Bereich, pH-Wert etwa 2, gearbeitet.In order to test the effectiveness of the proposed method, experiments are carried out with samples from the primary circuit of a pressurized water reactor (see Table 1). The samples are immersed in a container in a cleaning solution having a volume of 1 liter and a temperature of about 90 ° C. As explained above, in a decontamination process, the metal ions dissolved out of an oxide layer are removed from the cleaning solution with an ion exchanger. For reasons of simplification, no ion exchange is carried out in the experiments, but the respective cleaning solution is discarded at the end of a treatment cycle (oxidation and decontamination step) and replaced by a new cleaning solution. In all experiments described below, the acidic range, pH about 2, worked.

Mit den Proben gemäß Tabellen 1 bis 3 werden 3 verschiedene Verfahrensvarianten mit jeweils 3 Behandlungszyklen durchgeführt. Jeder Behandlungszyklus umfasst einen Oxidationsschritt und einen Dekontaminationsschritt. Zur Oxidation der Oxidschicht wird der die Proben enthaltende Behälter mit einer HMnO4-Lösung (Konzentration = 240 ppm) befüllt. Die Einwirkzeit beträgt jeweils 16 Stunden. In den ersten beiden Zyklen wird für den Dekontschritt nicht Oxalsäure, sondern Ameisensäure und/oder Glyoxylsäure verwendet (siehe Tabellen 1 - 3). Nach jedem Oxidationsschritt wird überschüssiges Oxidationsmittel (HMnO4) durch Zugabe einer entsprechenden Menge Reduktionsmittel neutralisiert und anschließend die jeweils im Dekontschritt verwendete Säure zugesetzt. Die Einwirkzeit der Säure im Dekontschritt beträgt jeweils 5 Stunden. Tabelle 1 Variante 1 mit Probe TA-03-2 Oxidschichtauflösung (Dekontschritt) Verfahrensstufe 1 Zyklus 1 50 mMol/l Ameisensäure Zyklus 2 25 mMol/l Glyoxylsäure Verfahrensstufe 2 Zyklus 3 2000 ppm Oxalsäure Tabelle 2 Variante 2 mit Probe TA-03-3 Oxidschichtauflösung (Dekontschritt) Verfahrensstufe 1 Zyklus 1 25 mMol/l Glyoxylsäure Zyklus 2 25 mMol/l Glyoxylsäure Verfahrensstufe 2 Zyklus 3 2000 ppm Oxalsäure Tabelle 3 Variante 3 mit Probe TA-03-1 Oxidschichtauflösung (Dekontschritt) Verfahrensstufe 1 Zyklus 1 50 mMol/l Ameisensäure Zyklus 2 50 mMol/l Ameisensäure Verfahrensstufe 2 Zyklus 3 2000 ppm Oxalsäure With the samples according to Tables 1 to 3, 3 different process variants are carried out, each with 3 treatment cycles. Each treatment cycle includes an oxidation step and a decontamination step. For oxidizing the oxide layer, the container containing the samples is filled with an HMnO4 solution (concentration = 240 ppm). The exposure time is 16 hours. In the first two cycles, the decontamination step is not oxalic acid, but formic acid and / or glyoxylic acid (see Tables 1-3). After each oxidation step, excess oxidizing agent (HMnO4) is neutralized by adding an appropriate amount of reducing agent and then adding the acid used in each decontamination step. The reaction time of the acid in the decontamination step is in each case 5 hours. <u> Table 1 </ u> Variant 1 with sample TA-03-2 Oxide layer resolution (decontamination step) Process stage 1 Cycle 1 50 mmol / l formic acid Cycle 2 25 mmol / l glyoxylic acid Process stage 2 Cycle 3 2000 ppm oxalic acid Variant 2 with sample TA-03-3 Oxide layer resolution (decontamination step) Process stage 1 Cycle 1 25 mmol / l glyoxylic acid Cycle 2 25 mmol / l glyoxylic acid Process stage 2 Cycle 3 2000 ppm oxalic acid Variant 3 with sample TA-03-1 Oxide layer resolution (decontamination step) Process stage 1 Cycle 1 50 mmol / l formic acid Cycle 2 50 mmol / l formic acid Process stage 2 Cycle 3 2000 ppm oxalic acid

Von den Proben werden jeweils die anfängliche und die nach einem Dekontschritt vorhandene Co60-Gamma-Aktivität (Becqerel bzw Bq) gemessen und die Gesamt-Dekontfaktoren (DF), d.h. das Verhältnis der anfänglichen Aktivität zu der nach einem Zyklus vorhandenen Aktivität einer Probe, bestimmt. Die Ergebnisse sind in Tabelle 4 zusammengefasst. Tabelle 4 Co60-Aktivität in Bq/Probe vor/nach Behandlung und Dekontfaktoren Probe TA-03-2 TA-03-3 TA-03-1 Bq / DF Bq / DF Bq / DF unbehandelt 5,40E+4 4,48E+4 5,08E+4 1. Zyklus 1,32E+4 / 4,1 1,01E+4 / 4,4 9,15E+3 / 5,6 2. Zyklus 4,67E+3 / 11,6 1,61E+3 / 27,8 1,65E+2 / 72 3. Zyklus 1,38E+2 / 391 5,78E+1 / 776 3,07E+1 / 1654 Of the samples in each case the initial and after a decompression step present Co60 gamma activity (Becqerel or Bq) and the total decontamination factors (DF), ie the ratio of the initial activity to the activity of a sample present after one cycle. The results are summarized in Table 4. <u> Table 4 </ u> Co60 activity in Bq / sample before / after treatment and decontamination factors sample TA-03-2 TA-03-3 TA-03-1 Bq / DF Bq / DF Bq / DF untreated 5,40E + 4 4,48E + 4 5,08E + 4 1st cycle 1,32E + 4 / 4,1 1.01E + 4 / 4.4 9,15E + 3 / 5,6 2nd cycle 4,67E + 3 / 11,6 1.61E + 3 / 27.8 1,65E + 2/72 3rd cycle 1,38E + 2/391 5.78E + 1/776 3.07E + 1/1654

Bei der Bewertung der Ergebnisse ist zu berücksichtigen, dass in der Regel ein Dekontfaktor von etwa 10 bereits ausreichend ist. Ein solcher Faktor wird bereits nach dem 2. Zyklus erreicht. Festzustellen hist weiterhin, dass Glyoxylsäure für die Dekontamination bzw. Auflösung der Oxidschicht am wirksamsten ist, insbesondere, wenn in mehreren, vorzugsweise in allen Dekontzyklen der 1. Verfahrensstufe mit dieser Säure gearbeitet wird.When evaluating the results, it should be borne in mind that a decontact factor of about 10 is usually sufficient. Such a factor is already reached after the second cycle. Furthermore, it can be stated that glyoxylic acid is most effective for the decontamination or dissolution of the oxide layer, in particular if this acid is used in several, preferably in all decontamination cycles of the first process stage.

In den oben beschriebenen, das erfindungsgemäße Verfahren nachbildenden Versuchen wurden als Beispiele organischer Säuren Glyoxylsäure und Ameisensäure verwendet. Für die Dekontschritte der 1. Verfahrensstufe eignen sich aber auch anorganische Säuren. Um deren Wirksamkeit zu belegen wird ein Versuch durchgeführt, bei dem eine Probe aus dem Primärkreis eines Druckwasserreaktors mit einer den oben genannten Proben entsprechenden Größe einem aus Oxidationsschritt und Dekontschritt bestehenden Zyklus unterzogen wurde. Bei einem Volumen der Reinigungslösung von 600 ml und einer Temperatur von etwa 95 °C wurde zunächst eine Oxidation der auf der Probe vorhandenen Oxidschicht mit HMnO4 (300 ppm) bei einer Dauer von 20 Stunden durchgeführt. Nach diesem Schritt vorhandener Rest an Oxidationsmittel wird mit einer Mischung aus Wasserstoffperoxid und Salpetersäure neutralisiert, wobei ersteres erforderlich ist, um den sich im Oxidationsschritt aus HMnO4 bildenden Braunstein (MnO2) aufzulösen. Im Anschluss daran erfolgt ein 5-stündiger Dekontschritt bei dem die bereits in Lösung enthaltende Salpetersäure (HNO3) als Dekontsäure, d.h. zur Auflösung der auf der Probe vorhandenen Oxidschicht wirkt. Nach dem Dekontschritt sinkt die Gamma-Aktivität der Probe auf einen Wert von 2,18E+4 Bq. Verglichen mit der anfänglichen Aktivität der Probe von 6,88E+4 Bq bedeutet dies einen Dekontfaktor von 3,16.In the above-described experiments simulating the process according to the invention, glyoxylic acid and formic acid were used as examples of organic acids. However, inorganic acids are also suitable for the decontamination steps of the first process stage. To prove their effectiveness, an experiment is carried out in which a sample from the primary circuit of a pressurized water reactor having a size corresponding to the above-mentioned samples has undergone a cycle consisting of oxidation step and decontamination step. At a Volume of the cleaning solution of 600 ml and a temperature of about 95 ° C was first carried out an oxidation of the existing on the sample oxide layer with HMnO4 (300 ppm) in a period of 20 hours. After this step, the residual oxidizing agent is neutralized with a mixture of hydrogen peroxide and nitric acid, the former being necessary to dissolve the manganese dioxide (MnO2) formed from HMnO4 in the oxidation step. This is followed by a 5-hour decontamination step in which the nitric acid (HNO3) already contained in solution acts as deconic acid, ie to dissolve the oxide layer present on the sample. After the decontamination step, the gamma activity of the sample drops to a value of 2.18E + 4Bq. Compared to the initial activity of the sample of 6.88E + 4Bq, this means a decontamination factor of 3.16.

Claims (10)

  1. Method for chemically decontaminating the surface of a metallic component of the primary circuit of a pressurised water reactor, having an oxide layer, said method being divided into two method steps and being designed as follows:
    - at least one treatment cycle is carried out in the first method step, which comprises an oxidation stage, a reduction stage and a first subsequent decontamination stage, wherein
    -- in the oxidation stage, the component is treated with an aqueous solution containing an oxidising agent, which converts trivalent chromium contained in the oxide layer into hexavalent chromium,
    -- in the reduction stage, the component is treated with an aqueous solution containing a reducing agent for reducing excess oxidising agent from the oxidation stage,
    -- in the first decontamination stage, the component is treated with an aqueous solution containing exclusively or predominantly at least one decontamination acid, which forms no sparingly soluble deposits with metal ions contained in the solution, in particular bivalent metal ions, and
    -- the solution is lead through an ion exchanger to remove the metal ions contained therein originating from the oxide layer and/or the base metal of the component,
    - at least one treatment cycle is carried out in the second method step, which comprises a second decontamination stage wherein the component is treated with an aqueous solution containing exclusively or predominantly oxalic acid as a decontamination acid.
  2. Method according to claim 1,
    characterised in that,
    a treatment cycle of the second method step comprises an oxidation stage prior to the second decontamination stage.
  3. Method according to claim 1 or 2,
    characterised in that,
    an organic acid is used in the first decontamination stage,
  4. Method according to claim 3,
    characterised in that,
    a decontamination acid consisting exclusively of carbon, oxygen and hydrogen is used.
  5. Method according to one of the preceding claims,
    characterised in that,
    an organic acid which does not form a complex compound with metal ions is used in the first decontamination stage.
  6. Method according to one of the preceding claims,
    characterised in that,
    at least one decontamination acid with a maximum of two carbon atoms in the molecule are used in the first decontamination stage.
  7. Method according to claim 6,
    characterised by
    using formic acid and/or glyoxylic acid.
  8. Method according to claim 7,
    characterised in that,
    glyoxylic acid is used in each first decontamination stage.
  9. Method according to one of the preceding claims,
    characterised in that,
    a residue of the oxidising agent present in the purification solution at the end of an oxidation step is neutralised with a reducing agent which is added to the solution, and the thus-treated solution is used in the subsequent decontamination stage.
  10. Method according to claim 9,
    characterised in that,
    the decontamination acid used in the decontamination stage serves as the reducing agent.
EP10795259A 2009-12-04 2010-12-01 Method for decontaminating surfaces Not-in-force EP2417606B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047524A DE102009047524A1 (en) 2009-12-04 2009-12-04 Process for surface decontamination
PCT/EP2010/068602 WO2011067271A1 (en) 2009-12-04 2010-12-01 Method for decontaminating surfaces

Publications (2)

Publication Number Publication Date
EP2417606A1 EP2417606A1 (en) 2012-02-15
EP2417606B1 true EP2417606B1 (en) 2013-02-20

Family

ID=43867196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10795259A Not-in-force EP2417606B1 (en) 2009-12-04 2010-12-01 Method for decontaminating surfaces

Country Status (11)

Country Link
US (1) US20120138086A1 (en)
EP (1) EP2417606B1 (en)
JP (1) JP5602241B2 (en)
KR (1) KR101309609B1 (en)
CN (1) CN102405500A (en)
CA (1) CA2755288A1 (en)
DE (1) DE102009047524A1 (en)
ES (1) ES2404895T3 (en)
TW (1) TW201131581A (en)
WO (1) WO2011067271A1 (en)
ZA (1) ZA201106436B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018787A1 (en) * 2012-07-26 2014-01-30 Dominion Engineering, Inc. Methods of reusing a cleaning solution
JP2014041100A (en) * 2012-08-23 2014-03-06 Shimizu Corp Surface layer decontamination method for concrete structure
DE102013100933B3 (en) * 2013-01-30 2014-03-27 Areva Gmbh Process for surface decontamination of components of the coolant circuit of a nuclear reactor
TWI489489B (en) * 2013-04-08 2015-06-21 Yi Hsing Huang Decontaminator and treatment method for radioactive waste
KR101523763B1 (en) * 2013-06-19 2015-06-01 한국원자력연구원 Oxidation decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and oxidation decontamination method using the same
DE102015120722B4 (en) * 2015-11-30 2017-07-27 Areva Gmbh Nuclear power plant and method for operating a nuclear power plant
DE102016104846B3 (en) * 2016-03-16 2017-08-24 Areva Gmbh A method of treating waste water from decontamination of a metal surface, waste water treatment apparatus and use of the waste water treatment apparatus
DE102017107584A1 (en) * 2017-04-07 2018-10-11 Rwe Power Aktiengesellschaft Zinc dosage for decontamination of light water reactors
CN107170503B (en) * 2017-06-02 2019-04-02 苏州热工研究院有限公司 A kind of chemical cleaning method reducing in-service PWR nuclear power plant collective dose
CN107240429B (en) * 2017-06-28 2019-09-06 洛阳市琦安科技有限公司 A kind of pressed material and drawing method of radioactive nucleus pollutant diffusive migration
DE102017115122B4 (en) * 2017-07-06 2019-03-07 Framatome Gmbh Method for decontaminating a metal surface in a nuclear power plant
CN108242273A (en) * 2017-12-28 2018-07-03 中核四0四有限公司 A kind of device for the stripping of radioactivity concrete structures shallow-layer
JP7475171B2 (en) * 2020-03-17 2024-04-26 日立Geニュークリア・エナジー株式会社 Chemical decontamination method and chemical decontamination apparatus
CN112700900A (en) * 2020-12-10 2021-04-23 中国辐射防护研究院 Method for cleaning radioactive deposition oxide of zinc injection reactor component
CN113105955A (en) * 2021-03-31 2021-07-13 山东核电有限公司 Decontamination formula and decontamination method for radioactive contamination deposited oxide of primary loop component of AP1000 reactor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD118956A1 (en) * 1975-03-11 1976-03-20
DE2847780C2 (en) * 1978-11-03 1984-08-30 Kraftwerk Union AG, 4330 Mülheim Process for the chemical decontamination of metallic components of nuclear reactor plants
EP0071336B1 (en) * 1981-06-17 1986-03-26 Central Electricity Generating Board Process for the chemical dissolution of oxide deposits
DE3413868A1 (en) * 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim METHOD FOR CHEMICAL DECONTAMINATION OF METAL COMPONENTS OF CORE REACTOR PLANTS
CH673545A5 (en) * 1987-10-02 1990-03-15 Industrieorientierte Forsch
EP0355628B1 (en) * 1988-08-24 1993-11-10 Siemens Aktiengesellschaft Process for chemically decontaminating the surface of a metallic construction element of a nuclear power plant
FR2699936B1 (en) * 1992-12-24 1995-01-27 Electricite De France Process for dissolving oxides deposited on a metal substrate.
US5305360A (en) * 1993-02-16 1994-04-19 Westinghouse Electric Corp. Process for decontaminating a nuclear reactor coolant system
JP3417296B2 (en) * 1998-05-29 2003-06-16 栗田エンジニアリング株式会社 Decontamination method
FR2817492B1 (en) * 2000-12-04 2003-07-18 Commissariat Energie Atomique METHOD OF DISSOLVING SOLIDS FORMED IN A NUCLEAR PLANT
JP4083607B2 (en) * 2003-03-19 2008-04-30 株式会社東芝 Radioactive chemical decontamination method and apparatus
KR100724710B1 (en) * 2002-11-21 2007-06-04 가부시끼가이샤 도시바 System and method for chemical decontamination of radioactive material
JP4551843B2 (en) * 2005-08-29 2010-09-29 株式会社東芝 Chemical decontamination method
CN101199026B (en) * 2005-11-29 2012-02-22 阿利发Np有限公司 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
CN103155047B (en) * 2010-07-21 2016-08-03 加拿大原子能有限公司 reactor decontamination method and reagent

Also Published As

Publication number Publication date
WO2011067271A1 (en) 2011-06-09
TW201131581A (en) 2011-09-16
CN102405500A (en) 2012-04-04
ES2404895T3 (en) 2013-05-29
US20120138086A1 (en) 2012-06-07
JP5602241B2 (en) 2014-10-08
ZA201106436B (en) 2012-08-29
JP2013513098A (en) 2013-04-18
KR101309609B1 (en) 2013-09-17
EP2417606A1 (en) 2012-02-15
CA2755288A1 (en) 2011-06-09
KR20120057568A (en) 2012-06-05
DE102009047524A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2417606B1 (en) Method for decontaminating surfaces
EP2564394B1 (en) Process for decontamination of surfaces
EP1968075B1 (en) Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
EP0355628B1 (en) Process for chemically decontaminating the surface of a metallic construction element of a nuclear power plant
DE102017115122B4 (en) Method for decontaminating a metal surface in a nuclear power plant
EP0313843B1 (en) Process for decontaminating surfaces
DE3013551A1 (en) DECONTAMINATION OF CORE REACTORS
DE69312966T2 (en) METHOD FOR RESOLVING OXYDE DEPOSITED ON A METAL SUBSTRATE
EP2923360B1 (en) Process for decontamination of surfaces of parts of the cooling circuit of a nuclear reactor
EP2787509B1 (en) Method for decomposing an oxide layer
DE19818772C2 (en) Process for reducing the radioactivity of a metal part
EP2758966B1 (en) Method for decomposing an oxide layer
EP2188814B1 (en) Method for decontaminating surfaces, which have been contaminated with alpha emitters, of nuclear plants
EP3494579B1 (en) Process for the removal of a radionuclide containing oxide-layer
DE102016104846B3 (en) A method of treating waste water from decontamination of a metal surface, waste water treatment apparatus and use of the waste water treatment apparatus
EP3607562B1 (en) Dosing of zinc for decontamination of light water reactors
EP1084078B1 (en) Method for removing nitrate ions from a solution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002369

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AREVA GMBH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2404895

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20130422

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20130422

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002369

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20130422

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002369

Country of ref document: DE

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002369

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161221

Year of fee payment: 7

Ref country code: FI

Payment date: 20161219

Year of fee payment: 7

Ref country code: CH

Payment date: 20161222

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161221

Year of fee payment: 7

Ref country code: FR

Payment date: 20161221

Year of fee payment: 7

Ref country code: SE

Payment date: 20161222

Year of fee payment: 7

Ref country code: BE

Payment date: 20161221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171202