EP2564394B1 - Process for decontamination of surfaces - Google Patents

Process for decontamination of surfaces Download PDF

Info

Publication number
EP2564394B1
EP2564394B1 EP11721251.4A EP11721251A EP2564394B1 EP 2564394 B1 EP2564394 B1 EP 2564394B1 EP 11721251 A EP11721251 A EP 11721251A EP 2564394 B1 EP2564394 B1 EP 2564394B1
Authority
EP
European Patent Office
Prior art keywords
solution
oxidation step
oxide layer
decontamination
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11721251.4A
Other languages
German (de)
French (fr)
Other versions
EP2564394A1 (en
Inventor
Rainer Gassen
Bertram Zeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva GmbH filed Critical Areva GmbH
Publication of EP2564394A1 publication Critical patent/EP2564394A1/en
Application granted granted Critical
Publication of EP2564394B1 publication Critical patent/EP2564394B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids

Definitions

  • the invention relates to a method for surface decontamination of components or systems of a nuclear power plant, for example a pressurized water reactor (PWR).
  • a nuclear power plant for example a pressurized water reactor (PWR).
  • the core of a nuclear power plant is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged.
  • a coolant circuit forming tube system is connected, which is connected in the case of a PWR with at least one coolant pump and a steam generator.
  • the oxide layers contain iron oxide with di- and tri-valent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the steels mentioned above, depending on the type of alloy used for a component.
  • Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.
  • the oxide layer present on the surfaces of the components is removed as completely as possible by means of a decontamination process.
  • a decontamination process either the entire coolant system or a part separated therefrom by valves is filled with an aqueous cleaning solution or individual components of the system are treated in a separate container containing the cleaning solution.
  • the oxide layer is first treated oxidatively (oxidation step) and then the oxide layer is dissolved under acidic conditions.
  • decontamination step which is referred to below as a decontamination step (or shorter than decontamination step)
  • decontamination step is also often worked under reductive conditions.
  • the oxidizing agent used in the preceding oxidation step is therefore removed or neutralized, as will be shown below.
  • the oxidative treatment of the oxide layer is required because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, in the for decontamination in question coming Decontamination acids, eg in oxalic acid, difficult to solve.
  • the oxide layer is first treated with an aqueous solution of an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 or O 3 .
  • an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 or O 3 .
  • the result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- .
  • the cleaning solution present at the end of an oxidative treatment is either discarded or processed so that it can be used in the decontamination step. If the latter is the case, a remaining residual content of oxidizing agent must be removed or neutralized by a reducing agent, for example by using a corresponding excess of deconic acid.
  • the decontamination step subsequent to the oxidation serves to dissolve the previously oxidatively treated oxide layer with the aid of one or mixtures of complex-forming organic acid.
  • a deconic acid can simultaneously also serve for the neutralization of the oxidizing agent used in the oxidation step.
  • an oxidizing agent such as HMnO 4
  • a reducing agent added in addition to the deconic acid for example ascorbic acid, citric acid or hydrogen peroxide.
  • the Cr-VI formed in the oxidation step is also reduced again to Cr-III.
  • the cleaning solution contains Cr-III, Fe-II, Fe-III, Ni-II and radioactive isotopes such as Co-60. These metal ions can be removed from the cleaning solution with an ion exchanger.
  • the decontact factor is the ratio of the initial value measured prior to the execution of a cleaning cycle and the final value of the radioactive radiation present at the end of the cleaning cycle, starting from a component or system surface or the oxide layer present thereon.
  • the object of the invention is to provide a method for surface decontamination with improved effectiveness.
  • This object is achieved according to claim 1 by a method of the type mentioned, in which at least one oxidation step in acidic and at least one oxidation step are carried out in alkaline solution. It has been found that a change in the pH of the oxidation solution from the acidic to the alkaline region or vice versa - such a change is referred to below as a pH change - causes an increase in the decontactor.
  • the pH change can take place in one and the same cleaning cycle.
  • an oxidation step in acidic or alkaline solution and in a subsequent cleaning cycle an oxidation step in alkaline or acidic solution is carried out in a cleaning cycle.
  • the oxidizing agent are preferably O 3 , in dissolved or gaseous form, S 2 O 8 2- , for example, used as Na salt and cerium-IV compound, but especially in (preferably nitric) acid solution HMnO 4 and KMnO 4 and in alkaline solution KMnO 4 , especially with NaOH, as alkalizing agent.
  • an oxide layer located on a component of a nuclear power plant is at least partially removed by treating this oxide layer or the component with several cleaning cycles.
  • this oxide layer For a decontamination of an entire system, such as a coolant system of a pressurized or boiling water reactor, this is filled with the respective cleaning solutions.
  • the system acts as its own container. If, on the other hand, individual components are decontaminated, a container is used in which the component is treated with the appropriate cleaning solutions.
  • oxidation of the oxide layer is made to oxidize chromium III contained therein to chromium VI.
  • oxidizing agents which are capable of oxidizing chromium-III to chromium-VI, for example ozone, peroxodisulfate, cerium-IV-oxide and permanganic acid or permanganate, could be used as the oxidizing agent.
  • the oxidation is conveniently carried out at elevated temperature, for example from 80-95 ° C.
  • the cleaning solution is exchanged or, as described above, treated so that it can be used in the subsequent decontamination step.
  • organic acids such as oxalic acid, citric acid, ascorbic acid and the like are used.
  • a residual oxidizing agent remaining in the solution of the oxidation step is neutralized by a corresponding excess of deconic acid.
  • the metal ions dissolved out of the oxide layer are removed, likewise in a manner known per se, with the aid of an ion exchanger. If this is the case to a sufficient extent, a renewed cleaning cycle is started, whereby a change in the pH of the oxidation solution from acidic to alkaline or vice versa already takes place during this or a subsequent cleaning cycle.
  • pH values of less than 6, preferably less than 4 are maintained.
  • the pH values are greater than 8, preferably greater than 10.
  • the attached diagram shows the result of an experiment in which a sample has been decontaminated in the manner according to the invention.
  • the sample came from a coolant tube that was in use for several years.
  • a radial cylinder was taken from the pipe and its former pipe outside forming side and its peripheral surface were provided with a protective layer, so that only the front side of the radial cylinder, which corresponds to the earlier pipe inside, are accessible to the cleaning solutions.
  • the tube or sample consisted of steel of the type AISI 316 L.
  • the oxide layer contained about 50% iron, 40% chromium and 10% nickel, based on the total content of metals.
  • the radioactivity, which was based essentially on the presence of cobalt-60 in the oxide layer, was 2.4 * 10 5 becquerels.
  • the oxide layer or the end face of the sample carrying it had an area of 5.3 cm 2 .
  • a total of 9 cleaning cycles were performed.
  • oxidation was carried out in acidic medium using permanganic acid at a concentration of 0.3 g / l and at a temperature of 95 ° C. This resulted in a pH of about 3 a.
  • the duration of the oxidation was about 17 hours.
  • the remaining reaction solution was replaced with an oxalic acid solution having a concentration of 2 g / l, and thus the oxide layer was treated at a temperature of 95 ° C for about 5 hours.
  • two more cycles of the type described were performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Oberflächen-Dekontamination von Bauteilen oder Systemen eines Kernkraftwerks, beispielsweise eines Druckwasserreaktors (DWR). Kernstück eines Kernkraftwerks ist ein Reaktordruckbehälter, in dem Kernbrennstoff enthaltende Brennelemente angeordnet sind. Am Reaktordruckbehälter ist ein den Kühlmittelkreislauf bildendes Röhrensystem angeschlossen, das im Falle eines DWR mit wenigstens einer Kühlmittelpumpe und einem Dampferzeuger verbunden ist.The invention relates to a method for surface decontamination of components or systems of a nuclear power plant, for example a pressurized water reactor (PWR). The core of a nuclear power plant is a reactor pressure vessel in which nuclear fuel-containing fuel elements are arranged. At the reactor pressure vessel a coolant circuit forming tube system is connected, which is connected in the case of a PWR with at least one coolant pump and a steam generator.

Unter den Bedingungen des Leistungsbetriebes eines Kernreaktors mit Temperaturen bis zu 288°C zeigen selbst rostfreie austenitische FeCrNi-Stähle, aus denen beispielsweise das Röhrensystem des Kühlmittelkreislauf eines DWR besteht, Ni-Legierungen, aus denen beispielsweise die Austauscher-Rohre von Dampferzeugern bestehen und sonstige etwa für Kühlmittelpumpen verwendete, z.B. Cobalt enthaltende Bauteile, eine gewisse Löslichkeit in Wasser. Aus den genannten Legierungen herausgelöste Metallionen gelangen mit dem Kühlmittelstrom zum Reaktordruckbehälter, wo sie durch die dort herrschende Neutronenstrahlung teilweise in radioaktive Nuklide umgewandelt werden. Die Nuklide werden wiederum vom Kühlmittelstrom im gesamten Kühlmittelsystem verteilt und werden in Oxidschichten, die sich während des Betriebs auf den Oberflächen von Bauteilen des Kühlmittelsystems bilden, eingelagert. Mit zunehmender Betriebsdauer summiert sich die Menge der abgelagerten aktivierten Nuklide, so dass die Radioaktivität bzw. die Dosisleistung an den Bauteilen des Kühlmittelsystems zunimmt. Die Oxidschichten enthalten je nach Art der für ein Bauteil verwendeten Legierung als Hauptbestandteil Eisenoxid mit zwei- und dreiwertigem Eisen und Oxide anderer Metalle, vor allem Chrom und Nickel, die als Legierungsbestandteile in den oben erwähnten Stählen vorhanden sind. Dabei liegt Nickel stets in zweiwertiger Form (Ni2+), Chrom in dreiwertiger (Cr3+) Form vor.Under the conditions of power operation of a nuclear reactor with temperatures up to 288 ° C show even stainless austenitic FeCrNi steels, which, for example, the tube system of the coolant circuit of a PWR, Ni alloys, of which, for example, the exchanger tubes of steam generators and others about used for coolant pumps, eg cobalt-containing components, a certain solubility in water. Metal ions liberated from the abovementioned alloys pass with the coolant flow to the reactor pressure vessel, where they are partially converted into radioactive nuclides by the neutron radiation prevailing there. The nuclides, in turn, are dispersed by the coolant flow throughout the coolant system and are stored in oxide layers that form on the surfaces of coolant system components during operation. With increasing operating time, the amount of deposited activated nuclides adds up, so that the radioactivity or the Dose rate increases at the components of the coolant system. The oxide layers contain iron oxide with di- and tri-valent iron and oxides of other metals, especially chromium and nickel, which are present as alloying constituents in the steels mentioned above, depending on the type of alloy used for a component. Nickel is always present in divalent form (Ni 2+ ), chromium in trivalent (Cr 3+ ) form.

Bevor Kontroll-, Wartungs-, Reparatur- und Rückbaumaßnahmen am Kühlmittelsystem vorgenommen werden können ist eine Reduzierung der radioaktiven Strahlung der jeweiligen Bauteile bzw. Komponenten erforderlich, um die Strahlungsbelastung des Personals zu verringern. Dies geschieht dadurch, dass die auf den Oberflächen der Bauteile vorhandene Oxidschicht mittels eines Dekontaminationsverfahrens möglichst vollständig entfernt wird. Bei einer derartigen Dekontamination wird entweder das gesamte Kühlmittelsystem bzw. ein davon etwa durch Ventile abgetrennter Teil mit einer wässrigen Reinigungslösung befüllt oder es werden einzelne Bauteile des Systems in einem separaten, die Reinigungslösung enthaltenden Behälter behandelt. Die Oxidschicht wird bei Chrom enthaltenden Bauteilen, etwa im Falle eines Druckwasserreaktors, zunächst oxidativ behandelt (Oxidationsschritt) und anschließend die Oxidschicht unter sauren Bedingungen aufgelöst. In diesem Verfahrensschritt, der im Folgenden als Dekontaminationsschritt (bzw. kürzer als Dekontschritt) bezeichnet wird, wird außerdem oft unter reduktiven Bedingungen gearbeitet. Das im vorhergehenden Oxidationsschritt eingesetzte Oxidationsmittel wird daher entfernt oder neutralisiert, wie weiter unten noch gezeigt wird. Die oxidative Behandlung der Oxidschicht ist erforderlich, weil sich Chrom-III-Oxide und dreiwertiges Chrom enthaltende Mischoxide vor allem des Spinelltyps in den für eine Dekontamination in Frage kommenden Dekontaminationssäuren, z.B. in Oxalsäure, nur schwer lösen. Um die Löslichkeit zu erhöhen, wird daher zunächst die Oxidschicht mit einer wässerigen Lösung eines Oxidationsmittels wie Ce4+, HMnO4, H2S2O8, KMnO4 oder O3 behandelt. Ergebnis dieser Behandlung ist, dass Cr-III zu Cr-VI oxidiert wird, welches als CrO4 2- in Lösung geht. Die am Ende einer oxidativen Behandlung vorliegende Reinigungslösung wird entweder verworfen oder so aufbereitet, dass sie im Dekontschritt verwendet werden kann. Wenn letzteres der Fall ist, muss ein noch vorhandener Restgehalt an Oxidationsmittel durch ein Reduktionsmittel entfernt bzw. neutralisiert werden, indem z.B. ein entsprechender Überschuss an Dekontsäure eingesetzt wird.Before control, maintenance, repair and demolition measures can be carried out on the coolant system, it is necessary to reduce the radioactive radiation of the respective components in order to reduce the radiation exposure of the personnel. This happens because the oxide layer present on the surfaces of the components is removed as completely as possible by means of a decontamination process. In such a decontamination, either the entire coolant system or a part separated therefrom by valves is filled with an aqueous cleaning solution or individual components of the system are treated in a separate container containing the cleaning solution. In the case of components containing chromium, for example in the case of a pressurized-water reactor, the oxide layer is first treated oxidatively (oxidation step) and then the oxide layer is dissolved under acidic conditions. In this process step, which is referred to below as a decontamination step (or shorter than decontamination step), is also often worked under reductive conditions. The oxidizing agent used in the preceding oxidation step is therefore removed or neutralized, as will be shown below. The oxidative treatment of the oxide layer is required because chromium-III oxides and trivalent chromium-containing mixed oxides, especially of the spinel type, in the for decontamination in question coming Decontamination acids, eg in oxalic acid, difficult to solve. To increase the solubility, therefore, the oxide layer is first treated with an aqueous solution of an oxidizing agent such as Ce 4+ , HMnO 4 , H 2 S 2 O 8 , KMnO 4 or O 3 . The result of this treatment is that Cr-III is oxidized to Cr-VI, which goes into solution as CrO 4 2- . The cleaning solution present at the end of an oxidative treatment is either discarded or processed so that it can be used in the decontamination step. If the latter is the case, a remaining residual content of oxidizing agent must be removed or neutralized by a reducing agent, for example by using a corresponding excess of deconic acid.

Der sich an die Oxidation anschließende Dekontschritt dient dazu, die vorher oxidativ behandelte Oxidschicht mit Hilfe einer oder Mischungen von komplexbildenden organischen Säure aufzulösen. Eine solche Dekontsäure kann, wie oben erwähnt, gleichzeitig auch für die Neutralisation des im Oxidationsschritt eingesetzten Oxidationsmittels dienen. Es ist aber auch möglich, ein Oxidationsmittel wie z.B. HMnO4 mit Hilfe eines zusätzlich zur Dekontsäure zugesetzten Reduktionsmittels, beispielsweise Ascorbinsäure, Zitronensäure oder Wasserstoffperoxid, zu reduzieren bzw. zu neutralisieren. Dadurch wird auch das im Oxidationsschritt entstandene Cr-VI wieder zu Cr-III reduziert. Am Ende eines Dekontschrittes befinden sich in der Reinigungslösung u.a. Cr-III, Fe-II, Fe-III, Ni-II und daneben radioaktive Isotope wie z.B. Co-60. Diese Metallionen können aus der Reinigungslösung mit einem Ionentauscher entfernt werden.The decontamination step subsequent to the oxidation serves to dissolve the previously oxidatively treated oxide layer with the aid of one or mixtures of complex-forming organic acid. As mentioned above, such a deconic acid can simultaneously also serve for the neutralization of the oxidizing agent used in the oxidation step. But it is also possible to reduce or neutralize an oxidizing agent such as HMnO 4 by means of a reducing agent added in addition to the deconic acid, for example ascorbic acid, citric acid or hydrogen peroxide. As a result, the Cr-VI formed in the oxidation step is also reduced again to Cr-III. At the end of a decontamination step, the cleaning solution contains Cr-III, Fe-II, Fe-III, Ni-II and radioactive isotopes such as Co-60. These metal ions can be removed from the cleaning solution with an ion exchanger.

In der Regel werden mehrere einen Oxidationschritt und einen Dekontschritt umfassende Behandlungszyklen durchgeführt, um einen ausreichenden Reingiungserfolg zu erzielen, d.h. um einen möglichst hohen Dekontfaktor zu erzielen. Der Dekontfaktor ist das Verhältnis aus dem vor der Durchführung eines Reinigungszyklus gemessenen Anfangswert und dem am Ende des Reinigungszyklus vorhandenen Endwert der radioaktiven Strahlung, die von einer Bauteil- oder Systemoberfläche bzw. der darauf vorhandenen Oxidschicht ausgeht.As a rule, several treatment cycles comprising an oxidation step and a decontamination step are carried out in order to achieve a sufficient purification success, i. to achieve the highest possible decontact factor. The decontact factor is the ratio of the initial value measured prior to the execution of a cleaning cycle and the final value of the radioactive radiation present at the end of the cleaning cycle, starting from a component or system surface or the oxide layer present thereon.

Aufgabe der Erfindung ist es ein Verfahren zur Oberflächen-Dekontamination mit verbesserter Effektivität anzugeben.The object of the invention is to provide a method for surface decontamination with improved effectiveness.

Diese Aufgabe wird nach Anspruch 1 durch ein Verfahren der eingangs genannten Art gelöst, bei dem wenigstens ein Oxidationsschritt in saurer und wenigstens ein Oxidationsschritt in alkalischer Lösung durchgeführt werden. Es hat sich gezeigt, dass ein Wechsel des pH-Werts der Oxidationslösung vom sauren in den alkalischen Bereich oder umgekehrt - ein solcher Wechsel wird nachfolgend als pH-Wert-Wechsel bezeichnet - einen Anstieg des Dekontfaktors bewirkt. Der pH-Wert-Wechsel kann dabei in ein und demselben Reinigungszyklus erfolgen. Vorzugsweise wird jedoch in einem Reinigungszyklus ein Oxidationsschritt in saurer oder alkalischer Lösung und in einem sich anschließenden Reinigungszyklus ein Oxidationsschritt in alkalischer bzw. saurer Lösung durchgeführt. Werden nach einem pH-Wert-Wechsel die sauren bzw. alkalischen Bedingungen in nachfolgenden Oxidationsschritten beibehalten, zeigt sich keine signifikante Erhöhung des Dekontaminationsfaktors. Dies ist erst dann wieder der Fall, wenn bei einem nachfolgenden Oxidationsschritt ein pH-Wert-Wechsel erfolgt. Ein besonders deutlicher Anstieg des Dekontfaktors nach einem pH-Wert-Wechsel wird erreicht, wenn im Falle der sauren Oxidation ein pH-Wert von weniger als 6, vorzugsweise von weniger als 4 und bei der alkalischen Oxidation ein pH-Wert von mehr als 8 vorzugsweise von mehr als 10, eingehalten wird.This object is achieved according to claim 1 by a method of the type mentioned, in which at least one oxidation step in acidic and at least one oxidation step are carried out in alkaline solution. It has been found that a change in the pH of the oxidation solution from the acidic to the alkaline region or vice versa - such a change is referred to below as a pH change - causes an increase in the decontactor. The pH change can take place in one and the same cleaning cycle. Preferably, however, an oxidation step in acidic or alkaline solution and in a subsequent cleaning cycle an oxidation step in alkaline or acidic solution is carried out in a cleaning cycle. If, after a pH change, the acidic or alkaline conditions are maintained in subsequent oxidation steps, there is no significant increase in the decontamination factor. This is only the case again when a pH value change occurs in a subsequent oxidation step. A particularly significant increase in the decontactor after a pH change is achieved if in the case of acidic oxidation, a pH of less than 6, preferably less than 4 and in the alkaline oxidation, a pH of more than 8, preferably of more than 10, is maintained.

Als Oxidationsmittel werden vorzugsweise O3, in gelöster oder in Gasform, S2O8 2- , beispielsweise als Na-Salz und Cer-IV-Verbindung verwendet, vor allem aber in (vorzugsweise Salpeter)-saurer Lösung HMnO4 sowie KMnO4 und in alkalischer Lösung KMnO4, insbesondere mit NaOH, als Alkalisierungsmittel.As the oxidizing agent are preferably O 3 , in dissolved or gaseous form, S 2 O 8 2- , for example, used as Na salt and cerium-IV compound, but especially in (preferably nitric) acid solution HMnO 4 and KMnO 4 and in alkaline solution KMnO 4 , especially with NaOH, as alkalizing agent.

Die Erfindung wird nun anhand eines Ausführungsbeispiels und unter Bezugnahme auf das beigefügte Diagramm näher erläutert.The invention will now be explained in more detail with reference to an embodiment and with reference to the accompanying diagram.

Bei einem Verfahren der erfindungsgemäßen Art wird, wie eingangs beschrieben eine sich auf einem Bauteil eines Kernkraftwerks befindliche Oxidschicht zumindest teilweise entfernt, indem diese Oxidschicht bzw. das Bauteil mit mehreren Reinigungszyklen behandelt wird. Für eine Dekontamination eines gesamten Systems, etwa eines Kühlmittelsystems eines Druck- oder Siedewasserreaktors wird dieses mit den jeweiligen Reinigungslösungen befüllt. Das System dient quasi als sein eigener Behälter. Werden dagegen einzelne Bauteile dekontaminiert, so wird dazu ein Behälter verwendet, in welchem das Bauteil mit den entsprechenden Reinigungslösungen behandelt wird. Zunächst wird eine Oxidation der Oxidschicht vorgenommen, um darin enthaltenes Chrom-III zu Chrom-VI zu oxidieren. Als Oxidationsmittel könnten prinzipiell alle Oxidationsmittel eingesetzt werden, die in der Lage sind, Chrom-III zu Chrom-VI zu oxidieren, beispielsweise Ozon, Peroxodisulfat, Cer-IV-Oxid und Permangansäure bzw. Permanganat. Die Oxidation erfolgt zweckmäßiger Weise bei erhöhter Temperatur, etwa von 80-95°C. Nach einer Einwirkungszeit z.B. von mehreren Stunden, wird die Reinigungslösung ausgetauscht oder, etwa wie weiter oben beschrieben, so behandelt, dass sie im nachfolgenden Dekontschritt verwendet werden kann. Zur Dekontamination werden vor allem organische Säuren wie Oxalsäure, Zitronensäure, Ascorbinsäure und dergleichen eingesetzt. Ein in der Lösung des Oxidationsschrittes noch vorhandener Rest an Oxidationsmittel wird durch einen entsprechenden Überschuss an Dekontsäure neutralisiert. Die aus der Oxidschicht herausgelösten Metallionen werden, ebenfalls in an sich bekannter Weise, mit Hilfe eines Ionentauschers entfernt. Wenn dies in ausreichendem Ausmaß der Fall ist, wird ein erneuter Reinigungszyklus gestartet, wobei bereits bei diesem oder bei einem späteren Reinigungszyklus ein Wechsel des pH-Werts der Oxidationslösung von sauer zu alkalisch bzw. umgekehrt erfolgt. Im sauren Bereich werden dabei pH-Werte von weniger als 6, vorzugsweise weniger als 4 eingehalten. Im basischen Bereich sind die pH-Werte größer 8, vorzugsweise größer 10. Die Folgen eines Wechsels unterschiedlich durchgeführter Oxidationsschritte der beschriebenen Art ist, dass gegenüber der Radioaktivität der Oxidschicht des vorhergehenden Zyklus eine signifikante Steigerung des Dekontfaktors erreicht wird. Wird ein pH-Wert-Wechsel innerhalb eines Reinigungszyklus vorgenommen, wird also beispielsweise nach einem Oxidationsschritt in saurer Lösung ein Oxidationsschritt in alkalischer Lösung durchgeführt, indem die saure Lösung gegen eine alkalische, das Oxidationsmittel enthaltende Lösung ausgetauscht oder in eine solche Lösung überführt wird, so ergibt sich eine Steigerung des Dekontfaktors gegenüber einem Reinigungszyklus in dem zwar mehrere Oxidationsschritte, diese aber ohne pH-Wert-Wechsel durchgeführt werden.In a method of the type according to the invention, as described above, an oxide layer located on a component of a nuclear power plant is at least partially removed by treating this oxide layer or the component with several cleaning cycles. For a decontamination of an entire system, such as a coolant system of a pressurized or boiling water reactor, this is filled with the respective cleaning solutions. The system acts as its own container. If, on the other hand, individual components are decontaminated, a container is used in which the component is treated with the appropriate cleaning solutions. First, oxidation of the oxide layer is made to oxidize chromium III contained therein to chromium VI. In principle, all oxidizing agents which are capable of oxidizing chromium-III to chromium-VI, for example ozone, peroxodisulfate, cerium-IV-oxide and permanganic acid or permanganate, could be used as the oxidizing agent. The oxidation is conveniently carried out at elevated temperature, for example from 80-95 ° C. To an exposure time, for example, of several hours, the cleaning solution is exchanged or, as described above, treated so that it can be used in the subsequent decontamination step. For decontamination, especially organic acids such as oxalic acid, citric acid, ascorbic acid and the like are used. A residual oxidizing agent remaining in the solution of the oxidation step is neutralized by a corresponding excess of deconic acid. The metal ions dissolved out of the oxide layer are removed, likewise in a manner known per se, with the aid of an ion exchanger. If this is the case to a sufficient extent, a renewed cleaning cycle is started, whereby a change in the pH of the oxidation solution from acidic to alkaline or vice versa already takes place during this or a subsequent cleaning cycle. In the acidic range, pH values of less than 6, preferably less than 4, are maintained. In the basic range, the pH values are greater than 8, preferably greater than 10. The consequences of a change in different oxidation steps of the type described is that a significant increase in the decontactor is achieved compared to the radioactivity of the oxide layer of the previous cycle. If a change in pH is made within a cleaning cycle, then, for example, after an oxidation step in acidic solution, an oxidation step is carried out in alkaline solution by replacing the acidic solution with an alkaline solution containing the oxidizing agent or converting it into such a solution results in an increase of the decontactor over a cleaning cycle in which although several oxidation steps, but these are carried out without pH change.

Das beigefügte Diagramm zeigt das Ergebnis eines Versuchs, bei dem eine Probe auf die erfindungsgemäße Weise dekontaminiert worden ist. Die Probe stammte aus einem Kühlmittelrohr, das mehrere Jahre im Einsatz war. Zur Probenahme wurde aus dem Rohr ein Radialzylinder entnommen und dessen die frühere Rohraußenseite bildende Seite und dessen Umfangsfläche mit einer Schutzschicht versehen wurden, damit nur die Stirnseite des Radialzylinders, welche der früheren Rohrinnenseite entspricht, zugänglich für die Reinigungslösungen sind. Das Rohr bzw. die Probe bestand aus Stahl der Type AISI 316 L. Die Oxidschicht enthielt ca. 50% Eisen, 40% Chrom und 10% Nickel, bezogen auf den Gesamtgehalt an Metallen. Die Radioaktivität, die im Wesentlichen auf die Anwesenheit von Kobalt-60 in der Oxidschicht basierte, betrug 2,4*105 Becquerel. Die Oxidschicht bzw. die sie tragende Stirnseite der Probe hatte eine Fläche von 5,3 cm2. In Behältern mit einem Fassungsvermögen von etwa einem Liter wurden insgesamt 9 Reinigungszyklen durchgeführt. In den ersten drei Zyklen erfolgte eine Oxidation im sauren Medium unter Verwendung von Permangansäure mit einer Konzentration von 0,3 g/l und bei einer Temperatur von 95°C. Dabei stellte sich ein pH-Wert von etwa 3 ein. Die Dauer der Oxidation betrug etwa 17 Stunden. Danach wurde die verbliebene Reaktionslösung durch eine Oxalsäurelösung mit einer Konzentration von 2 g/l ersetzt und damit die Oxidschicht etwa 5 Stunden lang bei einer Temperatur von 95°C behandelt. Danach wurden zwei weitere Zyklen des beschriebenen Art durchgeführt.The attached diagram shows the result of an experiment in which a sample has been decontaminated in the manner according to the invention. The sample came from a coolant tube that was in use for several years. For sampling, a radial cylinder was taken from the pipe and its former pipe outside forming side and its peripheral surface were provided with a protective layer, so that only the front side of the radial cylinder, which corresponds to the earlier pipe inside, are accessible to the cleaning solutions. The tube or sample consisted of steel of the type AISI 316 L. The oxide layer contained about 50% iron, 40% chromium and 10% nickel, based on the total content of metals. The radioactivity, which was based essentially on the presence of cobalt-60 in the oxide layer, was 2.4 * 10 5 becquerels. The oxide layer or the end face of the sample carrying it had an area of 5.3 cm 2 . In containers with a capacity of about one liter, a total of 9 cleaning cycles were performed. In the first three cycles, oxidation was carried out in acidic medium using permanganic acid at a concentration of 0.3 g / l and at a temperature of 95 ° C. This resulted in a pH of about 3 a. The duration of the oxidation was about 17 hours. Thereafter, the remaining reaction solution was replaced with an oxalic acid solution having a concentration of 2 g / l, and thus the oxide layer was treated at a temperature of 95 ° C for about 5 hours. Thereafter, two more cycles of the type described were performed.

Im vierten Zyklus erfolgte ein Wechsel der Bedingungen im Oxidationsschritt. Es wurde nun mehr im alkalischen Bereich mit 1,6 g/l Kaliumpermanganat und 1,6 g/l Natronlauge gearbeitet. Dauer der Behandlung und Temperatur der Behandlungslösungen waren dieselben wie oben beschrieben. Gegenüber dem Zyklus 3 war nun eine deutliche Erhöhung des Dekontfaktors auf den Wert 10 zu beobachten. Die Zyklen 5-8 wurden unter den gleichen Bedingungen durchgeführt wie Zyklus 4. Dabei zeigte sich, dass die jeweils erreichten Dekontfaktoren weit unterhalb des im Zyklus 4 erreichten lagen. Im Zyklus 9 schließlich erfolgte wieder ein Wechsel zu einem Oxidationsschritt im sauren Bereich, wobei die oben genannten Bedingungen eingehalten wurden. Hier zeigte sich nun eine noch deutlichere Steigerung des Dekontfaktors gegenüber dem vorhergehenden Zyklus 8 auf einen Wert von 21.In the fourth cycle, the conditions in the oxidation step were changed. It was now more in the alkaline range with 1.6 g / l potassium permanganate and 1.6 g / l sodium hydroxide worked. Duration of treatment and temperature of the treatment solutions were the same as described above. Opposite the cycle 3 was now a significant increase in the decontactor to the value of 10 observed. Cycles 5-8 were performed under the same conditions as cycle 4. It was found that the decontamination factors achieved were well below those reached in cycle 4. Finally, in cycle 9 there was again a change to an oxidation step in the acidic range, whereby the above-mentioned conditions were observed. Here, an even clearer increase of the decontactor compared to the previous cycle 8 to a value of 21 was shown.

Claims (6)

  1. Method for the chemical decontamination of a surface of a metallic component or of a system of a nuclear power station, said surface having an oxide layer, with several cleaning cycles, which each comprise at least one oxidation step, in which the oxide layer is treated with an aqueous solution containing an oxidising agent, and one subsequent decontamination step, in which the oxide layer is treated with an aqueous solution of an acid, wherein at least one oxidation step is carried out in acidic solution and at least one oxidation step is carried out in alkaline solution, wherein at least one oxidising agent from the group O3, S2O82- and cerium IV compound is used in the oxidation step.
  2. Method according to claim 1,
    characterised by,
    a pH value < 6 of the acidic solution and a pH value > 8 of the alkaline solution.
  3. Method according to claim 2,
    characterised by,
    a pH value < 4 of the acidic solution and a pH value > 10 of the alkaline solution.
  4. Method according to one of claims 1 to 3,
    characterised in that,
    HMnO4 or HMnO4 with HNO3 or KMnO4 with HNO3 is used as an oxidising agent for the oxidation step in acidic solution.
  5. Method according to one of claims 1 to 3,
    characterised in that,
    KMnO4 is used together with an alkalising agent for the oxidation step in alkaline solution.
  6. Method according to claim 5,
    characterised in that,
    NaOH is used as an alkalising agent.
EP11721251.4A 2010-04-30 2011-04-26 Process for decontamination of surfaces Active EP2564394B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010028457A DE102010028457A1 (en) 2010-04-30 2010-04-30 Process for surface decontamination
PCT/EP2011/056580 WO2011134958A1 (en) 2010-04-30 2011-04-26 Method for surface decontamination

Publications (2)

Publication Number Publication Date
EP2564394A1 EP2564394A1 (en) 2013-03-06
EP2564394B1 true EP2564394B1 (en) 2013-12-11

Family

ID=44521403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11721251.4A Active EP2564394B1 (en) 2010-04-30 2011-04-26 Process for decontamination of surfaces

Country Status (9)

Country Link
US (1) US20130220366A1 (en)
EP (1) EP2564394B1 (en)
JP (1) JP2013529299A (en)
KR (1) KR20130014494A (en)
CN (1) CN102667958A (en)
DE (1) DE102010028457A1 (en)
ES (1) ES2441589T3 (en)
TW (1) TW201201221A (en)
WO (1) WO2011134958A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787588B2 (en) * 2011-04-18 2015-09-30 三菱重工業株式会社 Chemical cleaning method
KR101523763B1 (en) * 2013-06-19 2015-06-01 한국원자력연구원 Oxidation decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and oxidation decontamination method using the same
JP6547224B2 (en) * 2015-01-30 2019-07-24 三菱重工業株式会社 Chemical decontamination method
JP6796587B2 (en) * 2015-02-05 2020-12-09 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング How to decontaminate metal surfaces with a nuclear reactor cooling system
DE102016104846B3 (en) 2016-03-16 2017-08-24 Areva Gmbh A method of treating waste water from decontamination of a metal surface, waste water treatment apparatus and use of the waste water treatment apparatus
JP6580509B2 (en) * 2016-03-31 2019-09-25 三菱重工業株式会社 Solids removal method
US10830093B2 (en) * 2017-06-13 2020-11-10 General Electric Company System and methods for selective cleaning of turbine engine components
JP6901947B2 (en) * 2017-09-29 2021-07-14 三菱重工業株式会社 Chemical decontamination method
CN108560003A (en) * 2018-01-08 2018-09-21 绵阳科大久创科技有限公司 A kind of metal surface radioactive pollution detergent and its application method
CN113105955A (en) * 2021-03-31 2021-07-13 山东核电有限公司 Decontamination formula and decontamination method for radioactive contamination deposited oxide of primary loop component of AP1000 reactor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587043A (en) * 1983-06-07 1986-05-06 Westinghouse Electric Corp. Decontamination of metal surfaces in nuclear power reactors
SE451915B (en) * 1984-03-09 1987-11-02 Studsvik Energiteknik Ab PROCEDURE FOR DECOMPOSITION OF PRESSURE WATER REACTORS
DE3413868A1 (en) * 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim METHOD FOR CHEMICAL DECONTAMINATION OF METAL COMPONENTS OF CORE REACTOR PLANTS
JPH0631867B2 (en) * 1984-07-09 1994-04-27 石川島播磨重工業株式会社 Denitration concentrator clad melting method
JPH0664191B2 (en) * 1986-05-07 1994-08-22 科学技術庁原子力局長 Decontamination method for chemically dissolving radioactive cladding
CH673545A5 (en) * 1987-10-02 1990-03-15 Industrieorientierte Forsch
EP0355628B1 (en) * 1988-08-24 1993-11-10 Siemens Aktiengesellschaft Process for chemically decontaminating the surface of a metallic construction element of a nuclear power plant
JPH0699193A (en) * 1992-09-24 1994-04-12 Ebara Kogyo Senjo Kk Chemical decontamination
JP3859902B2 (en) * 1998-06-23 2006-12-20 株式会社東芝 Chemical decontamination method and apparatus for structural parts of radiation handling facilities
US20030139047A1 (en) * 2002-01-24 2003-07-24 Thomas Terence M. Metal polishing slurry having a static etch inhibitor and method of formulation
CN101199026B (en) * 2005-11-29 2012-02-22 阿利发Np有限公司 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
JP4204596B2 (en) * 2006-02-09 2009-01-07 株式会社東芝 Chemical decontamination apparatus and decontamination method thereof
FR2897786B1 (en) * 2006-02-24 2008-06-27 Commissariat Energie Atomique PROCESS FOR CLEANING A CONTAMINATED SUBSTRATE WITH PARTICULATE INORGANIC CONTAMINANTS USING DENSE FLUID UNDER PRESSURE
FR2937054B1 (en) * 2008-10-13 2010-12-10 Commissariat Energie Atomique METHOD AND DEVICE FOR DECONTAMINATING A METAL SURFACE

Also Published As

Publication number Publication date
CN102667958A (en) 2012-09-12
JP2013529299A (en) 2013-07-18
DE102010028457A1 (en) 2011-11-03
ES2441589T3 (en) 2014-02-05
KR20130014494A (en) 2013-02-07
TW201201221A (en) 2012-01-01
WO2011134958A1 (en) 2011-11-03
US20130220366A1 (en) 2013-08-29
EP2564394A1 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
EP2564394B1 (en) Process for decontamination of surfaces
EP2417606B1 (en) Method for decontaminating surfaces
EP1955335B1 (en) Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
EP2399262B1 (en) Method for decontaminating radioactively contaminated surfaces
EP0313843B1 (en) Process for decontaminating surfaces
DE102017115122A1 (en) Method for decontaminating a metal surface in a nuclear power plant
EP2923360B1 (en) Process for decontamination of surfaces of parts of the cooling circuit of a nuclear reactor
EP2787509B1 (en) Method for decomposing an oxide layer
WO1999056286A2 (en) Method for reducing the level of radioactivity of a metal part
EP2758966B1 (en) Method for decomposing an oxide layer
EP3494579B1 (en) Process for the removal of a radionuclide containing oxide-layer
EP3033751B1 (en) Process for the reduction of radioactive contamination of the surface of a component used in a nuclear reactor
EP3430628B1 (en) Process for treatment of waste water from the decontamination of a metal surface from the primary cooling circuit of a nuclear reactor, nuclear reactor waste water treatment device and use of this device
EP3607562B1 (en) Dosing of zinc for decontamination of light water reactors
EP0951582A1 (en) Surface processing of steel or nickel alloy and processed steel or nickel alloy
DE102013108802A1 (en) Method for reducing the radioactive contamination of a water-bearing circuit of a nuclear power plant
EP1141975A2 (en) Method for disposing of metal cations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21F 9/28 20060101ALI20130830BHEP

Ipc: G21F 9/00 20060101AFI20130830BHEP

Ipc: B08B 3/08 20060101ALI20130830BHEP

INTG Intention to grant announced

Effective date: 20130919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 644946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2441589

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001803

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140311

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001803

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

26N No opposition filed

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001803

Country of ref document: DE

Effective date: 20140912

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001803

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001803

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110426

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 644946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001803

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011001803

Country of ref document: DE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, 91052 ERLANGEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FRAMATOME GMBH, DE

Free format text: FORMER OWNER: AREVA GMBH, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190107

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AREVA GMBH

Effective date: 20190111

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FRAMATOME GMBH

Effective date: 20190516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011001803

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 13

Ref country code: ES

Payment date: 20230504

Year of fee payment: 13

Ref country code: DE

Payment date: 20230412

Year of fee payment: 13

Ref country code: CH

Payment date: 20230502

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240325

Year of fee payment: 14