JPH0699193A - Chemical decontamination - Google Patents

Chemical decontamination

Info

Publication number
JPH0699193A
JPH0699193A JP27768992A JP27768992A JPH0699193A JP H0699193 A JPH0699193 A JP H0699193A JP 27768992 A JP27768992 A JP 27768992A JP 27768992 A JP27768992 A JP 27768992A JP H0699193 A JPH0699193 A JP H0699193A
Authority
JP
Japan
Prior art keywords
acid
chemical decontamination
persulfate
reducing
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27768992A
Other languages
Japanese (ja)
Inventor
Susumu Inoue
進 井上
Fumiaki Ikehara
文明 池原
Atsuo Miyazaki
厚生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Industrial Cleaning Co Ltd
Original Assignee
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Industrial Cleaning Co Ltd filed Critical Ebara Industrial Cleaning Co Ltd
Priority to JP27768992A priority Critical patent/JPH0699193A/en
Publication of JPH0699193A publication Critical patent/JPH0699193A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a chemical decontamination method capable of surely and effectively treating the primary system of a nuclear reactor and a part thereof by chemical decontamination in as a short time as possible. CONSTITUTION:A chemical decontamination method for dissolving and removing the clad of a pipeline and an apparatus in a nuclear power plant comprises the first step in which oxidizing and dissolving treatment is performed by a cleaning liquid comprising persulfuric acid and persulfate, and the second step in which a reducing agent is added to the cleaning waste liquid formed in the first stage in an excessive amount in comparison with the amount sufficient for decomposing and reducing the residual persulfuric acid and persulfate to carry out reducing and dissolving treatment. At least one kind selected from among ascorbic acid, erysorbic acid, oxalic acid, salts and derivaties thereof is used as the reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学除染方法に係り、特
に原子力発電設備のクラッド(金属酸化物のことをい
う)を溶解除去する化学除染方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical decontamination method, and more particularly to a chemical decontamination method for dissolving and removing a clad (which means a metal oxide) of a nuclear power plant.

【0002】[0002]

【従来の技術】原子力発電設備の配管機器系は、その運
転によって、放射性物質を含むクラッドが管などの内面
に付着する。その為に配管や機器の周囲は放射線量が高
まり、定期点検作業時被ばく線量が増加することによる
問題が生じている。
2. Description of the Related Art In a piping equipment system of a nuclear power generation facility, a clad containing a radioactive material adheres to an inner surface of a pipe or the like by its operation. As a result, the radiation dose around the pipes and equipment is high, and the radiation dose is increased during the periodic inspection work, causing a problem.

【0003】その対策として、一部では化学除染を実施
することでかなりの効果を上げている。しかし、化学除
染の方法は種々提示されているが、クロム酸化物の含有
率が高いクラッドからなる対象物を除染する場合には、
酸化溶解剤としては主としてアルカリ性過マンガン酸塩
(AP法と云う)を用い、そのあとに種々の還元溶解法
との組合せで実施されることが多い。だが、現状よりも
除染効果が高く廃液処理が容易な化学除染の方法が望ま
れている。除染効果が高まれば全被ばく線量当量がその
分低減化されるものである。又、除染作業における被ば
く線量も、そのプロセスの簡略化によって低減化される
ので、これも重要な改善事項である。
[0003] As a countermeasure, in some cases, chemical decontamination is carried out to obtain a considerable effect. However, although various chemical decontamination methods have been proposed, when decontaminating an object consisting of a clad with a high content of chromium oxide,
Alkaline permanganate (referred to as AP method) is mainly used as an oxidizing and dissolving agent, and then it is often carried out in combination with various reducing and dissolving methods. However, there is a demand for a chemical decontamination method that has a higher decontamination effect than the current state and is easy to treat waste liquid. If the decontamination effect increases, the total dose equivalent will be reduced accordingly. The exposure dose in the decontamination work is also reduced by simplifying the process, which is also an important improvement item.

【0004】[0004]

【発明が解決しようとする課題】従って本発明の課題
は、原子炉の一次系統及びその一部を、化学的除染を確
実に、しかもなるべく短い時間で効果的に処理すること
のできる化学除染方法を提供することにある。
Therefore, an object of the present invention is to perform chemical decontamination on the primary system of a nuclear reactor and a part thereof so that chemical decontamination can be performed reliably and effectively in as short a time as possible. It is to provide a dyeing method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、原子力発電プラントの配管、機器のク
ラッドを溶解除去する化学除染方法において、過硫酸及
び過硫酸塩を用いた洗浄液で酸化溶解処理を行う第1工
程と、第1工程での洗浄廃液に還元剤を、残余の過硫酸
及び過硫酸塩を分解還元するよりも過剰量加えて還元溶
解処理を行う第2工程とからなることとしたものであ
る。上記方法において、還元剤としては、アスコルビン
酸、エリソルビン酸、シュウ酸、それらの塩及びそれら
の誘導体から選ばれた1種以上を用いることができ、ま
た、第2工程においては過剰の過硫酸の還元分解により
硫酸が生ずるが更に必要に応じて硫酸又はスルファミン
酸を追加して添加してもよい。
In order to solve the above problems, in the present invention, in a chemical decontamination method for dissolving and removing the piping of a nuclear power plant and the cladding of equipment, a cleaning solution using persulfuric acid and persulfate. And a second step in which a reducing agent is added to the cleaning waste liquid in the first step in an amount larger than that for decomposing and reducing the residual persulfuric acid and persulfate, and a reducing and dissolving treatment is performed. It is supposed to consist of. In the above method, as the reducing agent, one or more selected from ascorbic acid, erythorbic acid, oxalic acid, salts thereof and derivatives thereof can be used, and in the second step, excess persulfate Sulfuric acid is generated by reductive decomposition, but sulfuric acid or sulfamic acid may be additionally added if necessary.

【0006】次に、本発明をより詳しく説明する。本発
明によれば酸化処理に過硫酸及び過硫酸塩を使用する。
その結果、この過硫酸塩によりクラッド中のクロム酸化
物(3価)は溶解性のクロム酸(6価)に酸化され溶解
する。これに従って、過硫酸及び過硫酸塩は分解され硫
酸及び硫酸と硫酸塩を発生する。過硫酸及び過硫酸塩の
水溶液は温度が70℃を越えると急速に反応が始まり、
上述の分解を起す。この分解によって硫酸を副生する。
クロムの溶解が止まり、過硫酸塩の残存を確認すること
で、酸化処理工程は終了する。この工程中は常に過硫酸
塩が存在していることが必要である。そうすることによ
ってステンレス鋼の腐食を抑制することが可能である。
Next, the present invention will be described in more detail. According to the invention, persulfuric acid and persulfates are used for the oxidation treatment.
As a result, the chromium oxide (trivalent) in the clad is oxidized and dissolved by the persulfate into soluble chromic acid (hexavalent). Accordingly, persulfuric acid and persulfate are decomposed to generate sulfuric acid and sulfuric acid and sulfate. Aqueous solutions of persulfuric acid and persulfate start reacting rapidly when the temperature exceeds 70 ° C.
It causes the above decomposition. By this decomposition, sulfuric acid is produced as a by-product.
When the dissolution of chromium stops and it is confirmed that the persulfate remains, the oxidation treatment step is completed. Persulfate must always be present during this step. By doing so, corrosion of stainless steel can be suppressed.

【0007】次に、酸化処理工程に引き続き、酸洗浄工
程に移行するが、酸洗浄において還元剤を加えること
は、酸化鉄の溶解を促進するので通常よくこの手法は利
用され、一般に還元洗浄とも云われている。この手法に
従い、還元剤を過硫酸及び過硫酸塩の残存量の当量に更
に0.3〜1%程度過剰の濃度になるように添加する。
この処理によって過硫酸及び過硫酸塩は全て硫酸及び硫
酸と硫酸塩になる。ここで生じた硫酸をクラッド溶解剤
として利用する。つまり還元洗浄の条件が整うことにな
る。この工程では、先にクロム酸化物が溶解除去され、
クラッドの構造が変質し、溶解が容易なものに変化す
る。そこに硫酸酸性の還元洗浄を行うことにより鉄を初
めニッケルや他の重金属の酸化物が溶解することによ
り、クラッドは全て溶解除去できる。
Next, after the oxidation treatment step, the process proceeds to the acid washing step. However, adding a reducing agent in the acid washing accelerates the dissolution of iron oxide, and this method is usually used. It is said. According to this method, the reducing agent is added so as to have a concentration of about 0.3 to 1% in excess of the equivalent amount of the remaining amount of persulfuric acid and persulfate.
By this treatment, all persulfuric acid and persulfate become sulfuric acid and sulfuric acid and sulfate. The sulfuric acid generated here is used as a clad dissolving agent. That is, the conditions for reduction cleaning are set. In this process, chromium oxide is dissolved and removed first,
The structure of the clad is altered and changes to one that is easy to melt. Iron and nickel and oxides of other heavy metals are dissolved by reducing and washing with sulfuric acid to dissolve the clad.

【0008】例えば、この1%の過硫酸ナトリウムは
0.41%の硫酸と0.59%の硫酸ナトリウムに分解
する。酸化処理工程で3%の過硫酸ナトリウムを用いた
場合、最終的に生成する硫酸は、1.23%となる。も
し、必要ならこれに更に硫酸を加え、濃度を上げること
はもちろん可能であり、クラッドの溶解力を上げるため
の良い措置である。
For example, this 1% sodium persulfate decomposes into 0.41% sulfuric acid and 0.59% sodium sulfate. When 3% sodium persulfate is used in the oxidation treatment step, the sulfuric acid finally produced is 1.23%. If necessary, sulfuric acid can be added to this to increase the concentration, which is a good measure for increasing the dissolving power of the clad.

【0009】[0009]

【作用】本発明の除染方法によれば、難溶解性のクロム
酸化物の溶出もAP法とほとんど同じであり、酸化溶解
処理方法として有効であることを確認し、さらに従来用
いられていた金属酸である過マンガン酸カリウムを使用
しなくても良いことは、同塩の水への溶解性が低く、現
地での作業に時間を要することによる被ばく線量の増加
が、本法により低減化される。また、一般に除染で溶出
する重金属イオン濃度として200〜500mg/リッ
トル程度の濃度であって見れば、過マンガン酸塩を使用
する除染方法の場合に例えば過マンガン酸カリウム0.
1%の濃度でマンガンイオンの350mg/リットルの
濃度は、廃液の全体濃度に占める大きな比重を占めるこ
とになり廃棄物の増加に連らなる。従って、本法はこの
点でも廃棄物の減容化に著しい作用、効果を生むもので
ある。
According to the decontamination method of the present invention, the dissolution of the hardly soluble chromium oxide is almost the same as that of the AP method, and it was confirmed that it is effective as an oxidative dissolution treatment method. Since it is not necessary to use potassium permanganate, which is a metal acid, the solubility of this salt in water is low and the increase in exposure dose due to the time required for on-site work is reduced by this method. To be done. Further, in general, when the concentration of heavy metal ions eluted in decontamination is about 200 to 500 mg / liter, in the case of a decontamination method using permanganate, for example, potassium permanganate 0.
A concentration of 1 mg of manganese ions of 350 mg / liter occupies a large specific gravity in the total concentration of the waste liquid, resulting in an increase in waste. Therefore, this method also produces a remarkable action and effect in reducing the volume of waste materials in this respect as well.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 次に本発明の実施例を記載する。実際に原子力発電設備
の水系の配管を切り出してクラッドの調査を行うこと
は、一般的に非常に困難なことである。つまり、放射能
を含有するクラッドが付着している配管類は、例えその
ものがあっても厳重な管理下におかれているので、一般
にそのものを入手することは極めて困難である。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 Next, an example of the present invention will be described. It is generally very difficult to actually cut out the water system piping of the nuclear power generation facility and investigate the clad. In other words, the pipes to which the clad containing radioactivity is attached are under strict control even if they exist, so it is generally extremely difficult to obtain the pipes themselves.

【0011】そこで模擬クラッドを作成し、このクラッ
ドによる種々の溶解性の試験を行い、比較検討を行って
いるのが実状である。作成した模擬クラッドの組成は表
1に示すとおりである。
Therefore, it is the actual situation that a simulated clad is prepared, various solubility tests using this clad are carried out, and comparative examinations are conducted. The composition of the prepared simulated clad is as shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】模擬クラッドの溶解性の試験要領は次のと
おりである。500mlの栓付きガラス容器に洗浄剤を
500ml採り、これに模擬クラッドを0.500g精
秤し、投入する。溶解条件を一定にするため、マグネッ
トスターラを用い、一定の回転数で攪拌を与える。温度
の調整はそれぞれの洗浄剤の条件により変わるが、それ
ぞれの温度に調整可能な恒温水槽を用い設定温度の±1
℃で制御した。模擬クラッドが完全に溶解すると、表2
に示す濃度になる。
The test procedure for the solubility of the simulated cladding is as follows. Into a 500 ml glass container with a stopper, 500 ml of a cleaning agent is placed, and 0.500 g of a simulated clad is precisely weighed and put into this. In order to keep the dissolution conditions constant, a magnetic stirrer is used and stirring is applied at a constant rotation speed. The temperature adjustment varies depending on the condition of each cleaning agent, but using a constant temperature water bath that can be adjusted to each temperature ± 1 of the set temperature
Controlled at ° C. When the simulated cladding is completely melted, Table 2
The concentration will be as shown in.

【0014】[0014]

【表2】 [Table 2]

【0015】模擬クラッドの0.500gを採り、表3
に示す洗浄剤と処理条件で溶解性をためした。
Taking 0.500 g of the simulated clad, Table 3
Solubility was tested under the detergent and treatment conditions shown in.

【表3】 [Table 3]

【0016】結果は、次の表4に示すとおりである。The results are shown in Table 4 below.

【表4】 還元溶解工程の濃度は処理工程上、連続しているので酸
化工程で溶解した金属イオン濃度を含む全溶出濃度であ
る。実際の除染に際しては、これらの選定結果を基に、
現物があれば実際にそのものを用いて、ホットラボ内で
そのクラッドの溶解性の確認試験ができることが望まし
い。
[Table 4] Since the concentration in the reduction dissolution step is continuous in the treatment step, it is the total elution concentration including the concentration of metal ions dissolved in the oxidation step. In actual decontamination, based on these selection results,
If there is an actual product, it is desirable to be able to actually use the product itself and perform a solubility confirmation test of the clad in the hot laboratory.

【0017】比較例1 模擬クラッドの0.500gを採り塩酸を5%の濃度で
60℃と95℃で溶解性をためした。その結果は、表5
に示す。
Comparative Example 1 0.500 g of the simulated clad was taken and the solubility of hydrochloric acid was tested at a concentration of 5% at 60 ° C. and 95 ° C. The results are shown in Table 5.
Shown in.

【表5】 代表的な化学洗浄である塩酸5%濃度の処理でも、6時
間の処理の溶解濃度は95℃でも30%程度であり、模
擬クラッドはかなり難溶解性であることが判断できる。
[Table 5] Even with the treatment of 5% concentration of hydrochloric acid, which is a typical chemical cleaning, the dissolved concentration of the treatment for 6 hours is about 30% even at 95 ° C., and it can be judged that the simulated cladding is quite insoluble.

【0018】比較例2 通常除染法として行われる、酸化溶解処理工程としてア
ルカリ性過マンガン酸カリウム(AP法と云う)法を8
0℃、6時間処理する工程と、引き続き還元剤を含む硫
酸5%液として、95℃で6時間処理する還元溶解法を
組合せた処理を行った。その時の条件は表6に示すとお
りである。
Comparative Example 2 The alkaline potassium permanganate (referred to as AP method) method was used as an oxidative dissolution treatment step which is usually carried out as a decontamination method.
A treatment was carried out in which a step of treating at 0 ° C. for 6 hours and a reducing dissolution method of treating at 5 ° C. for 6 hours as a 5% solution of sulfuric acid containing a reducing agent were combined. The conditions at that time are as shown in Table 6.

【0019】[0019]

【表6】 [Table 6]

【0020】その結果は、表7に示す。The results are shown in Table 7.

【表7】 [Table 7]

【0021】[0021]

【発明の効果】上記の方法により、従来の方法に比べ
て、難溶解性のクラッドをも良く溶解することが可能で
あること、処理時間が短縮されることにより作業に従事
する人の被ばく線量を低減化できるなど、従来法に比し
て大きな利点がある。また、除染で排出される廃液も酸
化溶解処理と還元溶解処理が同一液で実施できるので発
生する廃棄物の減容化を達成できると共に、過マンガン
酸塩などの金属酸塩を用いないことにより、除染廃液の
重金属イオンの濃度を低減化でき、廃棄物の削減ができ
る。処理後の廃液は原子力発電所既設廃棄物処理設備の
イオン交換再生廃液と同じ処理が可能となり、廃棄物の
大巾な減容化が可能である。
EFFECTS OF THE INVENTION According to the method described above, it is possible to dissolve even the insoluble clad better than the conventional method, and the treatment time is shortened, so that the exposure dose of the person engaged in the work is reduced. There is a great advantage over the conventional method in that In addition, the waste solution discharged by decontamination can be oxidized and reduced in the same solution, so the volume of the generated waste can be reduced and metal acid salts such as permanganate should not be used. As a result, the concentration of heavy metal ions in the decontamination waste liquid can be reduced, and waste can be reduced. The treated waste liquid can be treated in the same way as the ion exchange regeneration waste liquid of the existing waste treatment facility of the nuclear power plant, and the volume of the waste can be greatly reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子力発電プラントの配管、機器のクラ
ッドを溶解除去する化学除染方法において、過硫酸及び
過硫酸塩を用いた洗浄液で酸化溶解処理を行う第1工程
と、第1工程での洗浄廃液に還元剤を、残余の過硫酸及
び過硫酸塩を分解還元するよりも過剰量加えて還元溶解
処理を行う第2工程とからなることを特徴とする化学除
染方法。
1. A chemical decontamination method for dissolving and removing piping of a nuclear power plant and a clad of equipment, wherein a first step of performing an oxidative dissolution treatment with a cleaning solution using persulfuric acid and a persulfate, and a first step A chemical decontamination method comprising a second step of performing a reducing dissolution treatment by adding a reducing agent to the cleaning waste liquid in an amount larger than that for decomposing and reducing the residual persulfuric acid and persulfate.
【請求項2】 前記還元剤としては、アスコルビン酸、
エリソルビン酸、シュウ酸、それらの塩及びそれらの誘
導体から選ばれた1種以上を用いることを特徴とする請
求項1記載の化学除染方法。
2. The reducing agent is ascorbic acid,
The chemical decontamination method according to claim 1, wherein at least one selected from erythorbic acid, oxalic acid, salts thereof and derivatives thereof is used.
【請求項3】 前記第2工程には、更に硫酸又はスルフ
ァミン酸を追加添加することを特徴とする請求項1又は
2記載の化学除染方法。
3. The chemical decontamination method according to claim 1, wherein sulfuric acid or sulfamic acid is further added in the second step.
JP27768992A 1992-09-24 1992-09-24 Chemical decontamination Pending JPH0699193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27768992A JPH0699193A (en) 1992-09-24 1992-09-24 Chemical decontamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27768992A JPH0699193A (en) 1992-09-24 1992-09-24 Chemical decontamination

Publications (1)

Publication Number Publication Date
JPH0699193A true JPH0699193A (en) 1994-04-12

Family

ID=17586935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27768992A Pending JPH0699193A (en) 1992-09-24 1992-09-24 Chemical decontamination

Country Status (1)

Country Link
JP (1) JPH0699193A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335475B1 (en) 1998-09-29 2002-01-01 Hitachi, Ltd. Method of chemical decontamination
US6549603B1 (en) 1999-09-09 2003-04-15 Hitachi, Ltd. Method of chemical decontamination
US6973154B2 (en) 1998-09-29 2005-12-06 Hitachi, Ltd. Method of chemical decontamination and system therefor
JP2012225711A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Chemical washing method
JP2013529299A (en) * 2010-04-30 2013-07-18 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface decontamination method
CZ308870B6 (en) * 2019-05-03 2021-07-21 České vysoké učení technické v Praze Method of decontaminating the internal surfaces of the primary circuit of a nuclear power plant and decontaminating solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335475B1 (en) 1998-09-29 2002-01-01 Hitachi, Ltd. Method of chemical decontamination
US6921515B2 (en) 1998-09-29 2005-07-26 Hitachi, Ltd. Apparatus for chemical decontamination
US6973154B2 (en) 1998-09-29 2005-12-06 Hitachi, Ltd. Method of chemical decontamination and system therefor
US6549603B1 (en) 1999-09-09 2003-04-15 Hitachi, Ltd. Method of chemical decontamination
JP2013529299A (en) * 2010-04-30 2013-07-18 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface decontamination method
JP2012225711A (en) * 2011-04-18 2012-11-15 Mitsubishi Heavy Ind Ltd Chemical washing method
CZ308870B6 (en) * 2019-05-03 2021-07-21 České vysoké učení technické v Praze Method of decontaminating the internal surfaces of the primary circuit of a nuclear power plant and decontaminating solution

Similar Documents

Publication Publication Date Title
US3873362A (en) Process for cleaning radioactively contaminated metal surfaces
US4226640A (en) Method for the chemical decontamination of nuclear reactor components
US4587043A (en) Decontamination of metal surfaces in nuclear power reactors
EP0046029B1 (en) An application technique for the descaling of surfaces
US11289232B2 (en) Chemical decontamination method using chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface
EP0071336B1 (en) Process for the chemical dissolution of oxide deposits
JPH0549080B2 (en)
EP0032416B1 (en) Descaling process
US5093073A (en) Process for the decontamination of surfaces
JPS608479B2 (en) Method of chemical decontamination of nuclear reactor structural parts
JPS601600B2 (en) Method of chemical decontamination of nuclear reactor structural parts
JP2004170278A (en) Chemical decontamination method and system for radioactive chemical
JPH0699193A (en) Chemical decontamination
US10340050B2 (en) Method of decontaminating metal surfaces in a cooling system of a nuclear reactor
EP0416756A2 (en) Method for decontaminating a pressurized water nuclear reactor system
EP0859671B1 (en) Method for decontamination of nuclear plant components
Murray A chemical decontamination process for decontaminating and decommissioning nuclear reactors
JP2000346988A (en) Method of chemical decontamination of metal structural material for facility related to reprocessing
EP0164988B1 (en) Method of decontaminating metal surfaces
RU2338278C1 (en) Method of chemical deactivation of nuclear power plants equipment
US4913849A (en) Process for pretreatment of chromium-rich oxide surfaces prior to decontamination
US2981643A (en) Process for descaling and decontaminating metals
JP3417296B2 (en) Decontamination method
JP2002333498A (en) Method of decontaminating radioactive substance
JPH11231097A (en) Chemical decontamination method