JP2002333498A - Method of decontaminating radioactive substance - Google Patents

Method of decontaminating radioactive substance

Info

Publication number
JP2002333498A
JP2002333498A JP2001139478A JP2001139478A JP2002333498A JP 2002333498 A JP2002333498 A JP 2002333498A JP 2001139478 A JP2001139478 A JP 2001139478A JP 2001139478 A JP2001139478 A JP 2001139478A JP 2002333498 A JP2002333498 A JP 2002333498A
Authority
JP
Japan
Prior art keywords
decontamination
waste liquid
radioactive substance
concentration
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001139478A
Other languages
Japanese (ja)
Inventor
Masami Toda
正見 遠田
Yumi Yaita
由美 矢板
Masato Murai
正人 村井
Tetsuo Goto
哲夫 後藤
Satoru Tairagi
哲 平良木
Yoshinari Takamatsu
義成 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2001139478A priority Critical patent/JP2002333498A/en
Publication of JP2002333498A publication Critical patent/JP2002333498A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decontaminate metal contaminated with a radioactive substance in a short time. SOLUTION: A decontaminant solution added with hydrogen peroxide to an aqueous organic acid solution is used when a base material of the contaminated metal contaminated with the radioactive substance is dissolved to remove contamination, by the aqueous organic solution. The radioactive substance is removed since the base material of the contaminated metal is dissolved when the decontaminant solution is made to contact with the contaminated metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力施設の運転
時、定期検査時及び廃止措置時等に発生する放射性物質
で汚染された金属から汚染を除去するための放射性物質
の除染方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decontaminating radioactive materials for removing contamination from metals contaminated with radioactive materials generated during operation of nuclear facilities, periodic inspections, decommissioning, and the like.

【0002】[0002]

【従来の技術】従来から、放射能で汚染された金属から
汚染放射能を除去する除染技術としては、例えば特開昭
63−18799号公報、特開平1−311300号公報、特開平2
−22597号公報にそれぞれ記載されているように、酸性
除染液を用いた化学的除染方法が国内外で開発されてい
る。これらの方法は、放射能で汚染された金属(汚染金
属)を、第1液として濃度5wt%以上の硫酸溶液中に60
℃以上の温度条件で浸漬した後、第2液として硫酸に酸
化性の金属塩を添加した水溶液中に浸漬して溶解するも
のである。
2. Description of the Related Art Conventionally, as a decontamination technique for removing contaminated radioactivity from radioactively contaminated metal, for example, Japanese Unexamined Patent Publication No.
JP-A-63-18799, JP-A-1-31300, JP-A-2
As described in JP-A-22597, chemical decontamination methods using an acidic decontamination solution have been developed in Japan and overseas. In these methods, a metal contaminated with radioactivity (contaminated metal) is dissolved in a sulfuric acid solution having a concentration of 5 wt% or more as a first solution.
After being immersed in a temperature condition of not less than ° C., it is immersed and dissolved in an aqueous solution obtained by adding an oxidizing metal salt to sulfuric acid as a second liquid.

【0003】また、汚染金属の一部と犠牲アノードを短
絡させるか、あるいは還元電圧を一定時間印加し停止す
るサイクルを繰り返すことによって、汚染金属のぼ材を
溶解して除染する方法も知られている。
There is also known a method of short-circuiting a part of a contaminated metal and a sacrificial anode or repeating a cycle in which a reduction voltage is applied for a certain period of time to stop the contaminated metal, thereby decontaminating the debris of the contaminated metal. ing.

【0004】さらに、例えば特開昭60−235099号公報に
は、機器の健全性を維持するための系統除染等の目的
で、1wt%以下の濃度の有機酸溶液により、除染対象機
器表面の汚染源である酸化被膜のみを選択的に溶解する
方法が記載されている。
Further, for example, Japanese Patent Application Laid-Open No. 60-235099 discloses that the surface of a device to be decontaminated with an organic acid solution having a concentration of 1% by weight or less is used for the purpose of system decontamination for maintaining the soundness of the device. A method for selectively dissolving only an oxide film, which is a source of contamination, is described.

【0005】また、放射性物質で汚染された汚染金属の
母材を有機酸溶液により溶解して汚染を除去する除染方
法が例えば特開平9−113690号公報に開示されている。
この除染方法は、例えば除染対象の汚染金属の材質がス
テンレス鋼の場合、ステンレス鋼の酸化還元電位よりも
負な電位を有する炭素鋼を接触させてステンレス鋼の母
材を溶解して除染する。
Further, a decontamination method for dissolving a contaminated metal base material contaminated with a radioactive substance with an organic acid solution to remove the contamination is disclosed in, for example, JP-A-9-113690.
In this decontamination method, for example, when the material of the contaminated metal to be decontaminated is stainless steel, carbon steel having a potential more negative than the oxidation-reduction potential of the stainless steel is brought into contact with the material to dissolve and remove the base material of the stainless steel. Dye.

【0006】この除染方法はステンレス鋼に炭素鋼を接
触させることにより、ステンレス鋼の溶解速度が向上
し、それに伴って除染速度が向上する。また、除染対象
金属が炭素鋼の場合には、有機酸に単純に炭素鋼を浸漬
することにより金属母材が溶解し、汚染が除去される。
なお、除染作業後の使用済有機酸は紫外線と過酸化水素
により分解できるため、二次廃棄物の発生量を低減化で
きる。
In this decontamination method, the dissolution rate of the stainless steel is improved by bringing carbon steel into contact with the stainless steel, and accordingly, the decontamination rate is improved. When the metal to be decontaminated is carbon steel, simply immersing carbon steel in an organic acid dissolves the metal base material and removes contamination.
In addition, since the used organic acid after the decontamination work can be decomposed by ultraviolet rays and hydrogen peroxide, the amount of secondary waste generated can be reduced.

【0007】[0007]

【発明が解決しようとする課題】例えば、ギ酸(HCOO
H)水溶液と無機酸である硫酸(H2SO4)をそれぞれ除染
液として使用した場合、両者とも下式に示すようにH+
オンの酸化力により炭素鋼を溶解する。 HCOOH = H+ + HCOO pKa 3.55 H2SO4 = 2H+ + SO4 2‐ pKa 1.99
For example, formic acid (HCOO)
H) When an aqueous solution and sulfuric acid (H 2 SO 4 ), which is an inorganic acid, are used as decontamination solutions, both dissolve carbon steel by the oxidizing power of H + ions as shown in the following formula. HCOOH = H + + HCOO - pKa 3.55 H 2 SO 4 = 2H + + SO 4 2- pKa 1.99

【0008】ギ酸は酸解離指数(pKa)からわかるよう
に弱酸であるため、炭素鋼に対する腐食性は小さい。こ
のため、ギ酸水溶液の温度及び濃度を高くして金属母材
の溶解速度を大きくし、放射性物質を短時間に除去する
方法を採用していた。
Since formic acid is a weak acid as can be seen from the acid dissociation index (pKa), it has low corrosiveness to carbon steel. Therefore, a method of increasing the temperature and concentration of the formic acid aqueous solution to increase the dissolution rate of the metal base material and removing the radioactive substance in a short time has been adopted.

【0009】しかしながら、ギ酸水溶液の温度を上げる
ためにはヒーター設備が必要になり、また蒸発する除染
液を凝縮回収する設備が必要になるため、除染装置のコ
ストが増加する。しかも除染液の温度が高温の場合は除
染作業従事者の安全に十分に考慮する必要がある。ま
た、ギ酸水溶液は炭酸ガスと水に分解して二次廃棄物量
を低減できるが、ギ酸濃度が高いと分解処理に長時間を
要する等の課題がある。
However, in order to raise the temperature of the formic acid aqueous solution, a heater facility is required, and a facility for condensing and recovering the evaporating decontamination liquid is required, so that the cost of the decontamination apparatus increases. In addition, when the temperature of the decontamination solution is high, it is necessary to sufficiently consider the safety of the decontamination worker. In addition, the formic acid aqueous solution can be decomposed into carbon dioxide and water to reduce the amount of secondary waste, but if the formic acid concentration is high, there is a problem that the decomposition treatment requires a long time.

【0010】本発明は、上記課題を解決するためになさ
れたもので、有機酸の濃度及び温度を小さくしても汚染
金属母材の溶解速度を大きくして汚染金属に付着してい
る放射性物質を短時間に除去するこことができ、しかも
除染後の使用済除染液を効率良く分解処理できる放射性
物質の除染方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. Even if the concentration and the temperature of an organic acid are reduced, the dissolution rate of a contaminated metal base material is increased so that radioactive substances adhering to the contaminated metal are increased. It is an object of the present invention to provide a method for decontaminating a radioactive substance, which can remove odors in a short time and can efficiently decompose a used decontamination solution after decontamination.

【0011】[0011]

【課題を解決するための手段】請求項1に係る発明は、
有機酸水溶液に過酸化水素を添加した除染剤を使用して
放射性物質で汚染された金属を溶解し除染することを特
徴とする。請求項1の発明によれば、除染液として有機
酸水溶液に過酸化水素を加えた場合にはギ酸を単独水に
溶かした水溶液の除染液に比較して汚染金属母材の溶解
速度を大きくできるため、汚染金属から放射性物質を短
時間で除去できる。
The invention according to claim 1 is
It is characterized by dissolving and decontaminating metals contaminated with radioactive materials using a decontamination agent obtained by adding hydrogen peroxide to an organic acid aqueous solution. According to the invention of claim 1, when hydrogen peroxide is added to an organic acid aqueous solution as a decontamination liquid, the dissolution rate of the contaminated metal base material is reduced as compared with a decontamination liquid of an aqueous solution in which formic acid is dissolved in water alone. Since it can be made larger, radioactive substances can be removed from contaminated metals in a short time.

【0012】請求項2に係る発明は、有機酸水溶液に過
酸化水素を添加した除染剤を用いて放射性物質で汚染さ
れた金属を溶解し除染する除染工程と、この除染工程に
おける前記有機酸および前記過酸化水素の濃度を測定す
る濃度測定工程と、この濃度測定工程での測定濃度に応
じて有機酸および過酸化水素を補給する補給工程とを有
することを特徴とする。
According to a second aspect of the present invention, there is provided a decontamination step of dissolving and decontaminating a metal contaminated with a radioactive substance using a decontamination agent obtained by adding hydrogen peroxide to an organic acid aqueous solution. It has a concentration measuring step of measuring the concentrations of the organic acid and the hydrogen peroxide, and a replenishing step of replenishing the organic acid and the hydrogen peroxide according to the measured concentration in the concentration measuring step.

【0013】請求項2の発明によれば、汚染金属の母材
溶解とともに有機酸および過酸化水素の濃度が徐々に低
下するため、除染作業中に濃度測定工程で有機酸と過酸
化水素の濃度を随時測定し、試薬補給工程により、濃度
低下に相当する有機酸および過酸化水素を補給すること
ができる。これにより安定した除染性能を得ることがで
きる。
According to the second aspect of the present invention, the concentration of the organic acid and hydrogen peroxide gradually decreases with the dissolution of the base material of the contaminated metal. The concentration can be measured as needed, and an organic acid and hydrogen peroxide corresponding to the concentration decrease can be supplied in the reagent supply step. Thereby, stable decontamination performance can be obtained.

【0014】請求項3に係る発明は、前記除染工程の除
染廃液中の有機酸を炭酸ガスと水とに分解する分解工程
と、この分解工程後の分解廃液のpHを中性またはアル
カリ性に調整するpH調整工程と、このpH調整工程に
より析出する金属イオンを分離する分離工程とを有する
ことを特徴とする。
According to a third aspect of the present invention, there is provided a decomposing step of decomposing an organic acid in the decontamination waste liquid into carbon dioxide gas and water in the decontamination step, and adjusting the pH of the decomposition waste liquid after the decomposition step to neutral or alkaline. And a separation step of separating metal ions precipitated by the pH adjustment step.

【0015】請求項3の発明によれば、金属表面から有
機酸の分解により炭酸ガスが多量に発生するが、分解分
離工程により炭酸ガスのバブリング効果で酸化被膜を除
去して放射性物質を短時間で除去できる。また、pH調
節工程で金属イオンを水酸化物として沈殿させ、上澄み
液を廃液処理系に排出することができる。
According to the third aspect of the present invention, a large amount of carbon dioxide is generated by the decomposition of the organic acid from the metal surface, but the radioactive substance is removed for a short time by removing the oxide film by the bubbling effect of the carbon dioxide in the decomposition and separation step. Can be removed. Further, in the pH adjusting step, metal ions are precipitated as hydroxide, and the supernatant liquid can be discharged to a waste liquid treatment system.

【0016】請求項4に係る発明は、前記除染工程後の
除染廃液中の有機酸を炭酸ガスと水とに分解する分解工
程と、この分解工程後の分解廃液中の金属イオンをイオ
ン交換樹脂で分離する分離工程とを有することを特徴と
する。
The invention according to claim 4 is a decomposition step of decomposing an organic acid in the decontamination waste liquid after the decontamination step into carbon dioxide gas and water, and converting the metal ions in the decomposition waste liquid after this decomposition step into ions. And a separation step of separating with an exchange resin.

【0017】請求項4の発明によれば、分解処理した廃
液中の金属イオンを陽イオン交換樹脂に吸着し、分離し
た処理廃液を廃液処理系に排出することができる。これ
により、使用済除染廃液の処理を汚染金属の除染処理と
同時に行うことができ、有機炭素を短時間で分解でき
る。
According to the fourth aspect of the invention, the metal ions in the decomposed waste liquid can be adsorbed on the cation exchange resin, and the separated treated waste liquid can be discharged to the waste liquid treatment system. Thereby, the treatment of the used decontamination waste liquid can be performed simultaneously with the decontamination treatment of the contaminated metal, and the organic carbon can be decomposed in a short time.

【0018】[0018]

【発明の実施の形態】図1により、本発明に係る放射性
物質の除染方法の第1の実施の形態を説明する。図1
は、本実施の形態を説明するための工程図である。本実
施の形態では図1に示したように除染工程1における除
染液に有機酸と過酸化水素の混合液を使用する。そし
て、除染液に放射性物質で汚染された汚染金属2aを接
触させると、汚染金属2aの母材は溶解し放射性物質が
除去され、除染後の金属2bには清浄な面が露出され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a first embodiment of a method for decontaminating radioactive substances according to the present invention will be described. FIG.
FIG. 4 is a process diagram for describing the present embodiment. In this embodiment, a mixed solution of an organic acid and hydrogen peroxide is used as the decontamination solution in the decontamination step 1 as shown in FIG. Then, when the contaminated metal 2a contaminated with the radioactive substance is brought into contact with the decontamination liquid, the base material of the contaminated metal 2a is dissolved and the radioactive substance is removed, and a clean surface is exposed on the metal 2b after decontamination. .

【0019】すなわち、放射能量(X)、重量(W)
を有する汚染金属2aは除染工程1において有機酸と過
酸化水素水の混合水溶液からなる除染液により除染され
る。除染液中には、金属母材から溶出した金属量△Wと
放射能量△Xが移行し、除染後の金属2bの重量はW−
△Wに、放射能量はX−△Xにそれぞれ低下する。
That is, radioactivity (X 0 ), weight (W)
Is decontaminated in the decontamination step 1 by a decontamination liquid composed of a mixed aqueous solution of an organic acid and a hydrogen peroxide solution. In the decontamination solution, the amount of metal △ W eluted from the metal base material and the amount of radioactivity △ X are transferred, and the weight of the metal 2b after decontamination is W-
△ in W, radioactivity is X 0 - △ decreases respectively X.

【0020】除染工程1では除染液中の有機酸及び過酸
化水素の濃度が、金属母材の溶解に伴って低下するた
め、濃度測定工程3で有機酸及び過酸化水素の濃度を随
時測定し、濃度低下に対応した量の有機酸及び過酸化水
素を試薬補給工程4から除染工程1に補給する。
In the decontamination step 1, the concentrations of the organic acid and hydrogen peroxide in the decontamination solution decrease with the dissolution of the metal base material. After the measurement, the amounts of the organic acid and hydrogen peroxide corresponding to the decrease in the concentration are supplied from the reagent supply step 4 to the decontamination step 1.

【0021】除染工程1での使用済除染液は分解処理工
程5に移され、分解処理工程5において使用済除染液中
の有機酸は炭酸ガスと水に分解され、有機炭素(TOC)濃
度は10ppm以下に低下する。
The spent decontamination liquid in the decontamination step 1 is transferred to the decomposition processing step 5, where the organic acids in the used decontamination liquid are decomposed into carbon dioxide and water, and the organic carbon (TOC) is removed. ) The concentration drops below 10 ppm.

【0022】分解処理工程5での分解処理後の分解処理
廃液pHは6前後であるためpH調整工程6で分解処理
廃液のpHを中性の7またはそれ以上のアルカリ性に調
整して金属イオンを水酸化物として沈殿させ、次に沈殿
物分離工程7により沈殿物を分離除去し、上澄液を廃液
処理系に排出して処理する。なお、有機酸としては例え
ばギ酸、シュウ酸、クエン酸等を使用する。
Since the pH of the decomposition effluent after the decomposition treatment in the decomposition step 5 is about 6, the pH of the decomposition effluent is adjusted to neutral 7 or more alkaline in the pH adjustment step 6 to remove metal ions. Precipitate as hydroxide, and then precipitate is separated and removed in a precipitate separation step 7, and the supernatant is discharged to a waste liquid treatment system for treatment. As the organic acid, for example, formic acid, oxalic acid, citric acid and the like are used.

【0023】つぎに図2により本発明に係る放射性物質
の除染方法の第2の実施の形態を説明する。図2は、第
2の実施の形態を説明するための工程図である。本実施
の形態は分解処理工程5までは前述した第1の実施の形
態と同様で、異なる点は分解処理工程5で排出される分
解処理廃液中の金属イオンを溶出するための溶出金属分
離工程8を設けたことにある。この溶出金属分離工程8
により分解処理廃液中の金属イオンは陽イオン交換樹脂
と陰イオン交換樹脂からなる混合樹脂に吸着して分離さ
れ、その後、廃液処理系に排出されて処理される。
Next, a second embodiment of the radioactive substance decontamination method according to the present invention will be described with reference to FIG. FIG. 2 is a process chart for explaining the second embodiment. This embodiment is the same as the above-described first embodiment up to the decomposition processing step 5, except that the elution metal separation step for eluting metal ions in the decomposition waste liquid discharged in the decomposition processing step 5 is performed. 8 is provided. This elution metal separation step 8
Thus, the metal ions in the waste liquid for decomposition treatment are adsorbed and separated by the mixed resin composed of the cation exchange resin and the anion exchange resin, and then discharged to the waste liquid treatment system for treatment.

【0024】次に図3及び図4により第1および第2の
実施の形態における除染工程1での有機酸と過酸化水素
水の混合水溶液からなる除染液の効果について説明す
る。図3は、有機酸としてギ酸を使用した場合のギ酸単
独水溶液と、ギ酸と過酸化水素との混合水溶液につい
て、それぞれ炭素鋼試験片(材質:SS41、大きさ:50
mm×50mm)を浸漬した場合の温度の依存性をアレニウス
プロットした結果を示している。試験条件は、温度が20
〜80℃、ギ酸濃度が1mol・L‐1、過酸化水素濃度はギ酸
濃度の1/2当量で実施した。炭素鋼の溶解速度は、ギ酸
単独水溶液及びギ酸と過酸化水素との混合水溶液とも1/
Tに対して直線関係が得られた。
Next, the effect of the decontamination liquid composed of the mixed aqueous solution of the organic acid and the hydrogen peroxide solution in the decontamination step 1 in the first and second embodiments will be described with reference to FIGS. 3 and 4. FIG. 3 shows carbon steel test pieces (material: SS41, size: 50) for an aqueous solution of formic acid alone and a mixed aqueous solution of formic acid and hydrogen peroxide when formic acid is used as an organic acid.
2 shows the results of an Arrhenius plot of the dependence of temperature upon immersion of the sample. The test condition is that the temperature is 20
8080 ° C., the concentration of formic acid was 1 mol·L −1 , and the concentration of hydrogen peroxide was 1/2 equivalent of the concentration of formic acid. The dissolution rate of carbon steel is 1 / l for both the formic acid alone aqueous solution and the mixed aqueous solution of formic acid and hydrogen peroxide.
A linear relationship was obtained for T.

【0025】図4は、ギ酸単独水溶液と、ギ酸と過酸化
水素との混合水溶液に炭素鋼試験片(材質:SS41、大
きさ:50mm×50mm)を浸漬して、ギ酸濃度の依存性
を示している。試験条件は、ギ酸濃度が0.2〜1mol・
L‐1、過酸化水素濃度はギ酸濃度の1/2当量、温度は室
温(20℃程度)で実施した。
FIG. 4 shows the dependence of formic acid concentration on a carbon steel test piece (material: SS41, size: 50 mm × 50 mm) immersed in an aqueous solution of formic acid alone and a mixed aqueous solution of formic acid and hydrogen peroxide. ing. The test conditions were as follows:
The concentration of L- 1 and hydrogen peroxide was 1/2 equivalent of the concentration of formic acid, and the temperature was room temperature (about 20 ° C).

【0026】炭素鋼の溶解速度は、ギ酸単独水溶液及び
ギ酸と過酸化水素混合水溶液ともギ酸濃度が大きくなる
とともに増加することが認められた。ただし、ギ酸濃度
1mo・L‐1で比較するとギ酸水溶液単独では1.5μm・h‐1
の溶解速度に対して、ギ酸と過酸化水素との混合水溶液
は約10倍の溶解速度が得られた。
The dissolution rate of carbon steel was found to increase as the formic acid concentration increased in both the formic acid alone aqueous solution and the formic acid / hydrogen peroxide mixed aqueous solution. However, formic acid concentration
Compared with 1mo · L -1 , 1.5μm · h -1 for formic acid aqueous solution alone
The dissolution rate of the mixed aqueous solution of formic acid and hydrogen peroxide was about 10 times as high as that of.

【0027】以上のように有機酸水溶液に過酸化水素を
添加した場合には金属母材の溶解速度が向上することが
認められた。これは、 ギ酸(HCOOH)による母材の溶解 (HCOOH)2 + Fe → Fe(HCOO)2 + H2↑ (1) Fe2+と(H2O2)との反応によるOHラジカル(OH・)の生成 H2O2 + Fe2+ → Fe3+ + OH + OH・ (2) OHラジカルの酸化力による母材溶解の促進 などが起因しているものと考えられる。
As described above, it was recognized that the dissolution rate of the metal base material was improved when hydrogen peroxide was added to the organic acid aqueous solution. This dissolution of the base material with formic acid (HCOOH) (HCOOH) 2 + Fe → Fe (HCOO) 2 + H 2 ↑ (1) Fe 2+ and (H 2 O 2) OH radical by reaction with (OH · )) H 2 O 2 + Fe 2+ → Fe 3+ + OH + OH · (2) It is considered that the dissolution of the base material is promoted by the oxidizing power of the OH radical.

【0028】このようにギ酸水溶液に過酸化水素を添加
することにより従来のギ酸単独水溶液に比較して金属母
材の溶解速度を大きくできるため、金属表面から放射性
物質を短時間に除去することができる。また、金属表面
からはギ酸の分解を示す炭酸ガスが多量に発生するた
め、表面の酸化皮膜は炭酸ガスのバブリング効果で酸化
皮膜を除去でき、この効果でも放射性物質を短時間に除
去可能である。
Since the dissolution rate of the metal base material can be increased by adding hydrogen peroxide to the formic acid aqueous solution as compared with the conventional aqueous solution of formic acid alone, the radioactive substance can be removed from the metal surface in a short time. it can. In addition, since a large amount of carbon dioxide gas, which indicates the decomposition of formic acid, is generated from the metal surface, the oxide film on the surface can be removed by the bubbling effect of carbon dioxide gas, and this effect can also remove radioactive substances in a short time. .

【0029】なお、(2)式に示したOHラジカルは、有
機酸を分解する酸化剤として知られており、ギ酸は
(3)式に示す反応で分解される。 HCOOH + 2OH・ → CO2↑ + 2H2O (3)
The OH radical shown in the formula (2) is known as an oxidizing agent for decomposing organic acids, and formic acid is decomposed by the reaction shown in the formula (3). HCOOH + 2OH ・ → CO 2 ↑ + 2H 2 O (3)

【0030】本試験においても、試験途中に水溶液中の
有機炭素濃度を測定し、ギ酸分解を確認した。ギ酸単独
水溶液では、ギ酸濃度5wt%において20分後の有機炭素
濃度は約4%減少していた。一方、ギ酸と過酸化水素の
混合水溶液は、約25%減少していた。
Also in this test, the concentration of organic carbon in the aqueous solution was measured during the test to confirm the decomposition of formic acid. In the formic acid alone aqueous solution, the organic carbon concentration after 20 minutes was reduced by about 4% when the formic acid concentration was 5 wt%. On the other hand, the mixed aqueous solution of formic acid and hydrogen peroxide decreased by about 25%.

【0031】このように炭素鋼の溶解とともにギ酸及び
過酸化水素濃度は徐々に低下するため、除染中にこれら
濃度を随時測定して、濃度低下に相当するギ酸及び過酸
化水素を補給することにより、安定した除染性能を得る
ことができる。
As described above, the concentration of formic acid and hydrogen peroxide gradually decreases with the dissolution of carbon steel. Therefore, it is necessary to measure these concentrations as needed during decontamination, and to supply formic acid and hydrogen peroxide corresponding to the concentration decrease. Thereby, stable decontamination performance can be obtained.

【0032】つぎに図5により図1および図2に示した
分解処理工程5において除染後の使用済除染液である有
機酸の分解処理方法を説明する。図5はギ酸水溶液(ギ
酸濃度1mol・L‐1)の分解試験結果を示し、◇印のプロ
ットは従来の分解方法で廃液中に鉄が150ppm溶解した状
態で、ギ酸濃度に対して過酸化水素を1.5倍当量添加し
た結果を示す。
Next, a method for decomposing an organic acid which is a used decontamination liquid after decontamination in the decomposing step 5 shown in FIGS. 1 and 2 will be described with reference to FIG. Fig. 5 shows the results of a decomposition test of a formic acid aqueous solution (formic acid concentration: 1 mol·L -1 ). The plots marked with ◇ indicate that 150 ppm of iron was dissolved in the waste liquid by the conventional decomposition method. Shows the result of adding 1.5 times equivalent of.

【0033】一方、○、□および△印のプロットは本発
明に係る分解処理方法で、除染廃液に炭素鋼試験片を浸
漬し、同時にギ酸濃度に対して過酸化水素を1.5倍当量
添加した結果を示す。○印が試験温度30℃、□印が50
℃、△が80℃の結果を示す。本試験結果から分かるよう
に本発明の分解方法は、従来の分解処理方法と比較して
TOC濃度は目標濃度(10ppm以下)に短時間に分解でき
る。本発明の室温での分解時間は、従来の半分程度に短
縮された。また、80℃では30℃の1/10の処理時間であ
る。
On the other hand, the plots marked with 、, □ and Δ show the decomposition treatment method according to the present invention, in which a carbon steel test piece was immersed in the decontamination waste liquid, and at the same time, 1.5 times equivalent of hydrogen peroxide was added to the formic acid concentration. The results are shown. ○ indicates test temperature 30 ℃, □ indicates 50
° C and Δ indicate results at 80 ° C. As can be seen from the test results, the decomposition method of the present invention is compared with the conventional decomposition treatment method.
The TOC concentration can be decomposed in a short time to the target concentration (10 ppm or less). The decomposition time at room temperature of the present invention was reduced to about half of the conventional one. At 80 ° C., the processing time is 1/10 of 30 ° C.

【0034】以上のように、従来の分解処理方法では、
除染液廃液中のFe2+は過酸化水素によりFe3+に酸化され
るため、分解に必要なFe2+濃度が低下し、分解反応に長
時間を要していた。これに対して、本発明は除染廃液中
に炭素鋼製の汚染金属を浸漬し、前述(1)式より廃液
中にFe2+を常時供給し、(2)式によりOHラジカルを増
加させることによりギ酸(TOC)を短時間に分解できる。
As described above, in the conventional decomposition processing method,
Since Fe 2+ in the waste liquid of the decontamination solution was oxidized to Fe 3+ by hydrogen peroxide, the concentration of Fe 2+ required for decomposition decreased, and the decomposition reaction took a long time. On the other hand, in the present invention, a contaminated metal made of carbon steel is immersed in the decontamination waste liquid, Fe 2+ is constantly supplied to the waste liquid according to the above formula (1), and OH radicals are increased according to the formula (2). As a result, formic acid (TOC) can be decomposed in a short time.

【0035】ほとんどの原子力発電所の液体廃液物処理
系は、廃液中の有機炭素濃度の受け入れ基準が10ppm以
下に規定されているため、有機酸を含む除染廃液を液体
廃棄物処理系に排出するためには、有機酸の分解処理は
必要不可欠である。ただし、分解処理は本来の除染処理
には関係ないため、できる限り短時間に分解処理できる
ことが望ましい。従って、本発明の分解処理工程8を適
用することにより除染処理と同時に分解処理することが
できるため、全体の除染処理工数を大幅に低減可能であ
る。
Most of the liquid waste liquid treatment systems of nuclear power plants have a standard for accepting the concentration of organic carbon in the waste liquid of 10 ppm or less, so that the decontamination waste liquid containing organic acids is discharged to the liquid waste treatment system. In order to do so, the decomposition treatment of the organic acid is indispensable. However, since the decomposition process is not related to the original decontamination process, it is desirable that the decomposition process can be performed in as short a time as possible. Therefore, by applying the decomposition treatment step 8 of the present invention, the decomposition treatment can be performed simultaneously with the decontamination treatment, so that the total number of decontamination treatment steps can be significantly reduced.

【0036】次に、分解処理工程5で有機酸を分解処理
した後の分解処理廃液の処理方法を説明する。分解処理
工程5で分解処理した分解処理廃液はpHが6前後であ
り、しかも汚染金属から溶出した鉄イオン、放射性核種
であるCoイオンなどが溶解している。この状態では分解
処理廃液中の塩濃度および放射性物質濃度が高いため既
設の廃液処理系に排出できない。
Next, a method of treating the waste liquid after the decomposition treatment of the organic acid in the decomposition treatment step 5 will be described. The pH of the waste liquid from the decomposition treatment in the decomposition treatment step 5 is about 6, and iron ions eluted from the contaminated metal and Co ions as radionuclides are dissolved therein. In this state, the salt concentration and the radioactive substance concentration in the waste liquid for decomposition treatment are high, so that the waste liquid cannot be discharged to the existing waste liquid treatment system.

【0037】そこで、図1に示したように分解処理した
分解処理廃液はpH調整工程6で水酸化ナトリウムを添加
して廃液のpHを7以上の中性またはアルカリ性にし
て、金属イオン(鉄イオン、Coイオンなど)を水酸化物
として沈殿させる。この後に溶出金属を分離するための
析出物分離工程7で沈殿したスラッジを沈降分離または
フィルターで分離して上澄み液を廃液処理系に排出す
る。
In view of the above, as shown in FIG. 1, the decomposed effluent which has been decomposed as shown in FIG. , Co ions, etc.) as a hydroxide. Thereafter, the sludge precipitated in the precipitate separation step 7 for separating the eluted metal is settled or separated by a filter, and the supernatant is discharged to a waste liquid treatment system.

【0038】次に本発明に係る放射性物質の除染方法の
第3の実施の形態を説明する。本実施の形態は図1およ
び図2における分解処理工程5で分解処理した分解処理
廃液を陽イオン交換樹脂と陰イオン交換樹脂の混合樹脂
に通水して、分解処理廃液中の金属イオンを混合樹脂に
吸着させる方法にある。
Next, a third embodiment of the method for decontaminating radioactive materials according to the present invention will be described. In the present embodiment, the decomposition treatment waste liquid decomposed in the decomposition treatment step 5 in FIGS. 1 and 2 is passed through a mixed resin of a cation exchange resin and an anion exchange resin to mix metal ions in the decomposition treatment waste liquid. There is a method of causing the resin to adsorb.

【0039】例えば、分解処理廃液中の鉄イオンはFe3+
として存在するため、陽イオン交換樹脂に吸着される。
分解処理廃液から金属イオンを分離除去した除去処理廃
液は廃液処理系に排出し処理することが可能である。
For example, the iron ions in the waste liquid of the decomposition treatment are Fe 3+
And is adsorbed on the cation exchange resin.
The removal waste liquid obtained by separating and removing metal ions from the decomposition treatment waste liquid can be discharged to a waste liquid treatment system for processing.

【0040】本実施の形態によれば、pH調整工程6及
び溶出金属分離工程8と比較して人手作業を要しないた
め、作業員の被ばくを低減することが可能である。ただ
し、使用済みのイオン交換樹脂が大量に発生するため、
イオン交換樹脂を焼却処理することが望ましい。
According to the present embodiment, since no manual operation is required as compared with the pH adjustment step 6 and the elution metal separation step 8, it is possible to reduce the exposure of workers. However, since a large amount of used ion exchange resin is generated,
It is desirable to incinerate the ion exchange resin.

【0041】[0041]

【発明の効果】本発明によれば、ギ酸単独水溶液の除染
液に比較して汚染金属母材の溶解速度が大きくなるた
め、汚染金属に付着した放射性物質を短時間で除去でき
る。
According to the present invention, the dissolving speed of the contaminated metal base material is higher than that of the decontamination solution of the aqueous solution of formic acid alone, so that the radioactive substance attached to the contaminated metal can be removed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る放射性物質の除染方法の第1の実
施の形態を説明するための工程図。
FIG. 1 is a process diagram for explaining a first embodiment of a radioactive substance decontamination method according to the present invention.

【図2】本発明に係る放射性物質の除染方法の第1の実
施の形態を説明するための工程図。
FIG. 2 is a process diagram for explaining a first embodiment of the radioactive substance decontamination method according to the present invention.

【図3】本発明に係る第1及び第2の実施の形態におい
て除染工程での炭素鋼溶解速度の温度依存性を示す特性
図。
FIG. 3 is a characteristic diagram showing temperature dependence of a carbon steel dissolution rate in a decontamination step in the first and second embodiments according to the present invention.

【図4】本発明に係る第1及び第2の実施の形態におい
て除染工程での炭素鋼溶解速度のギ酸濃度依存性を示す
特性図。
FIG. 4 is a characteristic diagram showing the formic acid concentration dependence of the dissolution rate of carbon steel in the decontamination step in the first and second embodiments according to the present invention.

【図5】本発明に係る第1及び第2の実施の形態におい
て除染工程でのギ酸分解の経時変化を示す特性図。
FIG. 5 is a characteristic diagram showing a change over time of formic acid decomposition in a decontamination step in the first and second embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1…除染工程、2a…除染前汚染金属、2b…除染後の
金属、3…濃度測定工程、4…試薬補給工程、5…分解
処理工程、6…pH調整工程、7…沈殿物分離工程、8
…溶出金属分離工程。
DESCRIPTION OF SYMBOLS 1 ... Decontamination process, 2a ... Contaminated metal before decontamination, 2b ... Metal after decontamination, 3 ... Concentration measurement process, 4 ... Reagent supply process, 5 ... Decomposition treatment process, 6 ... pH adjustment process, 7 ... Precipitate Separation process, 8
... Eluted metal separation process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/64 C02F 1/64 Z 1/72 1/72 Z (72)発明者 矢板 由美 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 村井 正人 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 後藤 哲夫 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 平良木 哲 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 (72)発明者 高松 義成 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 Fターム(参考) 4D025 AA09 AB22 BA08 BA13 DA10 4D038 AA08 AB66 AB67 AB79 BB13 BB17 BB18 4D050 AA12 AB16 BB09 BD06 CA08 CA15 CA16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/64 C02F 1/64 Z 1/72 1/72 Z (72) Inventor Yumi Yaita Kawasaki-shi, Kanagawa 2-1, Ukishima-cho, Kawasaki-ku, Japan Toshiba Hamakawasaki Plant (72) Inventor Masato Murai 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture In-house Toshiba Yokohama Office (72) Inventor Tetsuo Goto Yokohama, Kanagawa Prefecture 8, Shinsugita-cho, Isogo-ku, Japan Toshiba Yokohama Office (72) Inventor Tetsu Hiraki, 66-2 Horikawa-cho, Saisaki-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Engineering Corporation (72) Inventor Yoshinari Takamatsu, Kawasaki-shi, Kanagawa Prefecture 66-2 Horikawa-cho, Sachi-ku Toshiba Engineering Corporation F term (reference) 4D025 AA09 AB22 BA08 BA13 DA10 4D038 AA08 AB66 AB67 AB79 BB13 BB17 BB18 4 D050 AA12 AB16 BB09 BD06 CA08 CA15 CA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機酸水溶液に過酸化水素を添加した除
染剤を使用して放射性物質で汚染された金属を溶解し除
染することを特徴とする放射性物質の除染方法。
1. A method for decontaminating a radioactive substance, comprising dissolving and decontaminating a metal contaminated with the radioactive substance using a decontaminant obtained by adding hydrogen peroxide to an organic acid aqueous solution.
【請求項2】 有機酸水溶液に過酸化水素を添加した除
染剤を用いて放射性物質で汚染された金属を溶解し除染
する除染工程と、 この除染工程における前記有機酸および前記過酸化水素
の濃度を測定する濃度測定工程と、 この濃度測定工程での測定濃度に応じて有機酸および過
酸化水素を補給する補給工程とを有することを特徴とす
る放射性物質の除染方法。
2. A decontamination step of dissolving and decontaminating a metal contaminated with a radioactive substance using a decontamination agent obtained by adding hydrogen peroxide to an aqueous solution of an organic acid; A method for decontaminating a radioactive substance, comprising: a concentration measuring step of measuring the concentration of hydrogen oxide; and a replenishing step of replenishing an organic acid and hydrogen peroxide according to the measured concentration in the concentration measuring step.
【請求項3】 前記除染工程の除染廃液中の有機酸を炭
酸ガスと水とに分解する分解工程と、この分解工程後の
分解廃液のpHを中性またはアルカリ性に調整するpH
調整工程と、 このpH調整工程により析出する金属イオンを分離する
分離工程とを有することを特徴とする請求項2記載の放
射性物質の除染方法。
3. A decomposing step of decomposing an organic acid in the decontamination waste liquid in the decontamination step into carbon dioxide gas and water, and a pH adjusting the pH of the decomposed waste liquid after the decomposition step to neutral or alkaline.
3. The method for decontaminating a radioactive substance according to claim 2, comprising: an adjusting step; and a separating step of separating metal ions precipitated in the pH adjusting step.
【請求項4】 前記除染工程後の除染廃液中の有機酸を
炭酸ガスと水とに分解する分解工程と、 この分解工程後の分解廃液中の金属イオンをイオン交換
樹脂で分離する分離工程とを有することを特徴とする請
求項2記載の放射性物質の除染方法。
4. A decomposing step of decomposing an organic acid in the decontamination waste liquid after the decontamination step into carbon dioxide gas and water, and separating the metal ions in the decomposed waste liquid after the decomposition step by using an ion exchange resin. 3. A method for decontaminating radioactive substances according to claim 2, comprising the steps of:
JP2001139478A 2001-05-10 2001-05-10 Method of decontaminating radioactive substance Pending JP2002333498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001139478A JP2002333498A (en) 2001-05-10 2001-05-10 Method of decontaminating radioactive substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001139478A JP2002333498A (en) 2001-05-10 2001-05-10 Method of decontaminating radioactive substance

Publications (1)

Publication Number Publication Date
JP2002333498A true JP2002333498A (en) 2002-11-22

Family

ID=18986251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139478A Pending JP2002333498A (en) 2001-05-10 2001-05-10 Method of decontaminating radioactive substance

Country Status (1)

Country Link
JP (1) JP2002333498A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315641A (en) * 2004-04-27 2005-11-10 Toshiba Corp Treating method and treating device of decontamination waste liquid
JP2010151596A (en) * 2008-12-25 2010-07-08 Chubu Electric Power Co Inc Method for treating radioactive metal waste
JP2013057591A (en) * 2011-09-08 2013-03-28 Shimizu Corp Method for processing activation concrete
EP2876645A2 (en) 2013-09-06 2015-05-27 Hitachi-GE Nuclear Energy, Ltd. Method of chemical decontamination for carbon steel member of nuclear power plant
JP2021113683A (en) * 2020-01-16 2021-08-05 日立Geニュークリア・エナジー株式会社 Method for depositing noble metal on carbon steel member of nuclear power plant and method for suppressing deposition of radioactive nuclide on carbon steel member of nuclear power plant
WO2024014845A1 (en) * 2022-07-13 2024-01-18 한국원자력연구원 Method for treating wastewater using transition metal oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315641A (en) * 2004-04-27 2005-11-10 Toshiba Corp Treating method and treating device of decontamination waste liquid
JP2010151596A (en) * 2008-12-25 2010-07-08 Chubu Electric Power Co Inc Method for treating radioactive metal waste
JP2013057591A (en) * 2011-09-08 2013-03-28 Shimizu Corp Method for processing activation concrete
EP2876645A2 (en) 2013-09-06 2015-05-27 Hitachi-GE Nuclear Energy, Ltd. Method of chemical decontamination for carbon steel member of nuclear power plant
US9230699B2 (en) 2013-09-06 2016-01-05 Hitachi-Ge Nuclear Energy, Ltd. Method of chemical decontamination for carbon steel member of nuclear power plant
JP2021113683A (en) * 2020-01-16 2021-08-05 日立Geニュークリア・エナジー株式会社 Method for depositing noble metal on carbon steel member of nuclear power plant and method for suppressing deposition of radioactive nuclide on carbon steel member of nuclear power plant
JP7344132B2 (en) 2020-01-16 2023-09-13 日立Geニュークリア・エナジー株式会社 Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
WO2024014845A1 (en) * 2022-07-13 2024-01-18 한국원자력연구원 Method for treating wastewater using transition metal oxide

Similar Documents

Publication Publication Date Title
CA1252415A (en) Decontaminating metal surfaces with chelating solution and electrolysis
JPS6158800B2 (en)
KR20140095266A (en) Chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and chemical decontamination method using the same
US5093073A (en) Process for the decontamination of surfaces
WO1996037442A1 (en) Oxidation of complexing agents
EP0032416B2 (en) Descaling process
JP3481746B2 (en) Decontamination method of metal contaminated by radioactivity
JPH10508697A (en) Pollution removal method
JP4131814B2 (en) Method and apparatus for chemical decontamination of activated parts
US6147274A (en) Method for decontamination of nuclear plant components
EP0859671B1 (en) Method for decontamination of nuclear plant components
KR100446810B1 (en) Method for reducing the level of radioactivity of a metal part
JP2002333498A (en) Method of decontaminating radioactive substance
WO1997017146A9 (en) Method for decontamination of nuclear plant components
CA2695691C (en) Method for decontaminating surfaces, which have been contaminated with alpha emitters, of nuclear plants
JP2007064634A (en) Method and device for chemical decontamination
KR930005582B1 (en) Hypohalite oxidation in decontaminating nuclear reators
JP3849925B2 (en) Chemical decontamination method
KR101601201B1 (en) Chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and chemical decontamination method using the same
JP3866402B2 (en) Chemical decontamination method
GB2284702A (en) Decontamination of metals
JP5096652B2 (en) Treatment agent and treatment method for aluminum member surface
KR900003610B1 (en) Contamination removal method of reactor
KR20190112159A (en) Recontamination Reduction Method by Carbon Steel Passivation of Nuclear Power Systems and Components
JP2004212228A (en) Chemical decontamination method for metal structural component contaminated with radioactive substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315