JP2013057591A - Method for processing activation concrete - Google Patents

Method for processing activation concrete Download PDF

Info

Publication number
JP2013057591A
JP2013057591A JP2011196037A JP2011196037A JP2013057591A JP 2013057591 A JP2013057591 A JP 2013057591A JP 2011196037 A JP2011196037 A JP 2011196037A JP 2011196037 A JP2011196037 A JP 2011196037A JP 2013057591 A JP2013057591 A JP 2013057591A
Authority
JP
Japan
Prior art keywords
precipitate
washing
nitric acid
neutralization
target nuclide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196037A
Other languages
Japanese (ja)
Other versions
JP5757204B2 (en
Inventor
Yuichi Tanimoto
祐一 谷本
Akitsugu Oishi
晃嗣 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011196037A priority Critical patent/JP5757204B2/en
Publication of JP2013057591A publication Critical patent/JP2013057591A/en
Application granted granted Critical
Publication of JP5757204B2 publication Critical patent/JP5757204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To efficiently and certainly remove Co, Eu of a target nuclide from activation concrete, to make an installation space of a processor small by improving dewaterability, to suppress process costs, and to reduce a labor and costs of pH management.SOLUTION: The present invention provides a processing method including: an extraction process 3 of immersing a ground product S consisting of activation concrete 1 obtained in a grinding process 2 in nitric acid solution M1; a neutralization process 4 of immediately raising the nitric acid solution M1 to an alkali region of ph7-12 to precipitate metal salt consisting of components of a target nuclide K1 of Co, Eu, and a non-target nuclide K2 such as Fe and Al contained in the ground product S; a washing process 5 of washing a precipitate T1 obtained in the neutralization process 4 with water W1; and an ether extraction process 6 of collecting the non-target nuclide K2 in a precipitate T2 after washing after the washing process 5 by ether extraction, after solving the precipitate T2 after the washing washed in the washing process 5 in hydrochloric acid.

Description

本発明は、放射化したコンクリートから目的核種を除去して、放射化コンクリートを処理する放射化コンクリートの処理方法に関する。   The present invention relates to a method for treating activated concrete in which the target nuclide is removed from the activated concrete to treat the activated concrete.

従来、例えば原子力発電所などの原子力関連施設においては、十分な強度を有するとともに放射線の遮蔽性に優れることから、構造躯体をコンクリートで構築するようにしている。このような原子力関連施設のコンクリートは、放射線に暴露されて放射化されるため、施設のリプレイス(廃炉)などを行う際に、放射性廃棄物として保管管理の必要が生じている。このため、近年では、放射化コンクリートの処理方法が提案されている(例えば非特許文献1参照)。   2. Description of the Related Art Conventionally, in a nuclear facility such as a nuclear power plant, a structural frame is constructed of concrete because it has sufficient strength and is excellent in radiation shielding. Since the concrete of such nuclear facilities is exposed to radiation and activated, there is a need for storage management as radioactive waste when the facility is replaced (decommissioned). For this reason, in recent years, the processing method of activation concrete has been proposed (for example, refer nonpatent literature 1).

ところで、コンクリートには、種々の元素が含まれているが、この中で放射化する目的核種は、Co(コバルト)およびEu(ユーロピウム)である。また、コンクリートには、非目的核種のFe(鉄)やAl(アルミニウム)なども含まれている。
非特許文献1の放射化コンクリートの処理方法では、コンクリートを硝酸などの酸性の処理液で溶解・加熱し、処理液中に抽出された金属(Co、Eu、Fe、Alなど)を回収している。
By the way, although various elements are contained in concrete, the target nuclide to be activated in this is Co (cobalt) and Eu (europium). Concrete also contains non-target nuclides such as Fe (iron) and Al (aluminum).
In the method for treating activated concrete of Non-Patent Document 1, the concrete is dissolved and heated with an acidic treatment liquid such as nitric acid, and the metals (Co, Eu, Fe, Al, etc.) extracted in the treatment liquid are recovered. Yes.

このような放射化コンクリートの減容技術では、骨材等から目的核種を硝酸で抽出し、さらに中和工程を経て、目的核種を回収することとしている。そして、抽出した硝酸には目的核種外の金属(鉄)なども多く含まれるため、2段階の中和工程を行うことにより、鉄分主体の目的外核種成分と目的核種成分を別々に分けて処分することが行われている。つまり、2段階中和法における一段目では、pH4程度で中和して鉄分(FeやAl)を沈殿させて回収し、さらに二段目で前記沈殿によるpH(pH4程度)によって沈殿しない目的核種を上澄みに留め、さらにpHを7程度まで上昇させることにより、目的核種のCo、Euを固形化を促して回収している。   In such a volume reduction technology for activated concrete, the target nuclide is extracted from the aggregate with nitric acid, and the target nuclide is recovered through a neutralization step. And since the extracted nitric acid contains a lot of metal (iron) outside the target nuclide, the non-target nuclide component mainly composed of iron and the target nuclide component are separated and disposed of by performing a two-step neutralization process. To be done. In other words, in the first stage of the two-stage neutralization method, the target nuclide is neutralized at about pH 4 to precipitate and collect iron (Fe or Al) and further precipitated in the second stage due to the pH (about pH 4) by the precipitation. Is kept in the supernatant, and the pH is raised to about 7 to promote the solidification of the target nuclides Co and Eu.

“世界初、放射化コンクリートの放射能低減化技術を開発”、[online]、平成22年3月2日、清水建設、[平成23年9月8日検索]、インターネット<URL:http://www.shimz.co.jp/news_release/2010/770.html>“Developed the world's first technology to reduce the activity of activated concrete”, [online], March 2, 2010, Shimizu Corporation, [Search September 8, 2011], Internet <URL: http: // / Www. shimz. co. jp / news_release / 2010/770. html>

しかしながら、従来の放射化コンクリートの処理方法では、以下のような問題があった。
すなわち、従来の2段階中和法における一段目の沈殿では、微量の目的核種(Co、Eu)が鉄分主体とされる沈殿に混入することから、目的性能を発揮しないおそれがあった。また、脱水性が悪く、処理装置スペースが過大になるという問題があった。
また、一段目の上澄みをさらに高いpH7程度で処理する際にも、目的核種が沈殿せず、そのまま液中に溜まってしまう欠点があることから、液中に残存した目的核種を回収するためにさらにプロセスが必要となるおそれがあり、さらなるコスト増加の懸念があった。
さらにまた、中和時で硝酸液のpH値を4や7で管理するのが非常に難しく、このpH管理にかかる手間と費用が増大しており、その点で改良の余地があった。
However, the conventional activation concrete processing method has the following problems.
That is, in the first-stage precipitation in the conventional two-stage neutralization method, a trace amount of target nuclides (Co, Eu) is mixed into the precipitate mainly composed of iron, so that the target performance may not be exhibited. Further, there is a problem that the dewaterability is poor and the space for the processing apparatus becomes excessive.
In addition, when the first-stage supernatant is processed at a higher pH of about 7, the target nuclide does not precipitate and accumulates in the liquid as it is, so that the target nuclide remaining in the liquid can be recovered. Furthermore, there is a concern that a process may be required, and there has been a concern of further cost increase.
Furthermore, it is very difficult to control the pH value of the nitric acid solution at 4 or 7 at the time of neutralization, and the labor and cost for this pH control are increased, and there is room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、放射化コンクリートから目的核種のCo、Euを効率的にかつ確実に除去することができ、脱水性を向上させることで処理装置の設置スペースを小さくすることができる放射化コンクリートの処理方法を提供することを目的とする。
また、本発明の他の目的は、プロセスコストを抑えることができるうえ、pH管理にかかる手間と費用を低減することができる放射化コンクリートの処理方法を提供することである。
The present invention has been made in view of the above-described problems, and can efficiently and reliably remove target nuclides of Co and Eu from activated concrete, and can improve the dehydrability and install a processing apparatus. An object of the present invention is to provide a method for treating activated concrete capable of reducing the space.
Another object of the present invention is to provide a method for treating activated concrete that can reduce the process cost and reduce the labor and cost for pH control.

上記目的を達成するため、本発明に係る放射化コンクリートの処理方法では、放射化コンクリートを粉砕する粉砕工程と、粉砕工程で得られた粉砕物を硝酸液に浸す抽出工程と、硝酸液をpH7〜12のアルカリ領域まで一気に上昇させ、粉砕物に含まれるコバルト、ユーロピウムの目的核種、及び非目的核種の成分からなる金属塩を沈殿させる中和工程と、中和工程で得られた沈殿物を水で洗浄する洗浄工程と、を有することを特徴としている。   In order to achieve the above object, in the method for treating activated concrete according to the present invention, a pulverizing step of pulverizing the activated concrete, an extraction step of immersing the pulverized material obtained in the pulverizing step in a nitric acid solution, and a nitric acid solution having a pH of 7 The neutralization process which raises at a stretch to the alkaline region of -12, and precipitates the metal salt which consists of the component of the target nuclide of cobalt, europium, and a non-target nuclide contained in a ground material, and the precipitate obtained by the neutralization process. And a washing step of washing with water.

本発明では、中和工程において、粉砕工程で得られた粉砕物を浸す抽出工程を経た硝酸液をpH7〜12のアルカリ領域まで一気に上昇させることで、非目的核種のFe(鉄)やAl(アルミニウム)などが水酸化物となり沈殿するとともに、目的核種のCo(コバルト)およびEu(ユーロピウム)も水酸化物となり共沈する。つまり、抽出液に含まれる目的核種と非目的核種の成分とが共沈するので、確実にかつ効率的に沈殿・除去を行うことができる。そして、中和後の硝酸中和液には少なくとも目的核種は残存しない状態となり、この硝酸中和液を一般廃液として適宜処理することができる。さらに、洗浄工程において、中和工程で得られた沈殿物を水で洗浄することにより、沈殿物に保持された水分中に高濃度で溶け込んでいる中和塩(例えば、硝酸ナトリウムや硝酸アンモニウム)を沈殿物より取り除くことができる。また、洗浄後の洗浄水中には、目的核種の溶け込みは無い状態である。   In the present invention, in the neutralization step, the nitric acid solution that has undergone the extraction step in which the pulverized product obtained in the pulverization step is immersed is raised to an alkaline region of pH 7 to 12 at a stretch, so that non-target nuclides such as Fe (iron) and Al ( Aluminum) and the like precipitate as hydroxides, and the target nuclides Co (cobalt) and Eu (europium) also become hydroxides and coprecipitate. That is, since the target nuclide and non-target nuclide components contained in the extract co-precipitate, precipitation and removal can be performed reliably and efficiently. Then, at least the target nuclide is not left in the neutralized nitric acid neutralized solution, and this nitric acid neutralized solution can be appropriately treated as a general waste solution. Further, in the washing step, the precipitate obtained in the neutralization step is washed with water, so that neutralized salts (for example, sodium nitrate and ammonium nitrate) dissolved in a high concentration in the moisture retained in the precipitate are removed. Can be removed from sediment. Further, the target nuclide is not dissolved in the washed water after washing.

このように、本発明に係る放射化コンクリートの処理方法では、洗浄工程により洗浄された沈殿物を乾燥して固形化した放射性廃棄物として処分する沈殿物には非目的核種の鉄分も含まれるが、元の骨材等の重量比で10%以下に減容化することが可能となる。
さらに、本発明に係る放射化コンクリートの処理方法では、硝酸液による中和工程を1回で行う方法となるので、除去作業を効率的に行うことができ、従来のように2段階の中和方法に比べてプロセスコストの低減を図ることができる。そのうえ、2段階の中和方法においてpH管理が難しい一段目のpH4程度の管理が無くなるので、pH管理を容易に行うことができ、これによりコストの低減を図ることができるという効果を奏する。
しかも、従来の2段階の中和方法では一段目の沈殿物の脱水性が悪く、固液分離には多大な施設コストが必要であるが、本発明では、脱水性にも優れており、簡単な構造の設備で対応することが可能である。
As described above, in the method for treating activated concrete according to the present invention, the precipitate that is disposed of as the radioactive waste obtained by drying and solidifying the precipitate that has been washed in the washing step includes iron content of non-target nuclides. It becomes possible to reduce the volume to 10% or less by weight ratio of the original aggregate and the like.
Further, in the method for treating activated concrete according to the present invention, the neutralization step with nitric acid solution is performed once, so that the removal operation can be performed efficiently, and two-step neutralization is performed as in the past. The process cost can be reduced as compared with the method. In addition, since there is no need to manage the pH of about 4 at the first stage, which is difficult to control in the two-step neutralization method, the pH can be easily controlled, and the cost can be reduced.
Moreover, the conventional two-stage neutralization method has poor dewaterability of the first-stage precipitate, and requires a large facility cost for solid-liquid separation. However, in the present invention, the dewaterability is also excellent and simple. It is possible to cope with equipment with a simple structure.

また、本発明に係る放射化コンクリートの処理方法では、洗浄工程で洗浄した沈殿物を塩酸に溶かした後、エーテル抽出によって沈殿物中の非目的核種を回収することが好ましい。   In the method for treating activated concrete according to the present invention, it is preferable to recover the non-target nuclide in the precipitate by ether extraction after dissolving the precipitate washed in the washing step in hydrochloric acid.

この場合、洗浄工程で洗浄した沈殿物の中で高濃度を占める鉄分に対して、さらに塩酸に溶かした後、エーテル抽出によって洗浄後の沈殿物中の非目的核種(鉄)を回収することができ、これにより塩酸中には元の硝酸に含まれていた目的核種のすべてが存在し、鉄分のみをほぼ100%排除することができる。   In this case, the iron content occupying a high concentration in the precipitate washed in the washing step can be further dissolved in hydrochloric acid, and then the non-target nuclide (iron) in the washed precipitate can be recovered by ether extraction. Thus, all the target nuclides contained in the original nitric acid are present in the hydrochloric acid, and only iron content can be eliminated almost 100%.

また、本発明に係る放射化コンクリートの処理方法では、洗浄工程で使用する水は、熱水であることがより好ましい。   Moreover, in the processing method of the activated concrete which concerns on this invention, it is more preferable that the water used at a washing | cleaning process is hot water.

この場合、上記洗浄工程において、熱水を使用して沈殿物を洗浄することにより、中和塩を沈殿物より確実に取り除くことができる。   In this case, the neutralized salt can be reliably removed from the precipitate by washing the precipitate using hot water in the washing step.

本発明の放射化コンクリートの処理方法によれば、粉砕物を浸した硝酸液をpH7〜12のアルカリ領域まで一気に上昇させることで、放射化コンクリートから目的核種のCo、Euを効率的にかつ確実に除去することができる。また、脱水性を向上させることで処理装置の設置スペースを小さくすることができる。
さらに、本発明の放射化コンクリートの処理方法では、一段階の中和工程とすることで、プロセスコストを抑えることができるうえ、従来の2段階中和法のように管理の難しいpH値が4程度のpH管理が不要となるので、pH管理にかかる手間と費用を低減することができるという効果を奏する。
According to the method for treating activated concrete of the present invention, the nitric acid solution in which the pulverized material is soaked is rapidly raised to the alkaline region of pH 7 to 12, so that the target nuclides Co and Eu are efficiently and reliably obtained from the activated concrete. Can be removed. Moreover, the installation space of a processing apparatus can be made small by improving dehydrating property.
Furthermore, in the activation concrete processing method of the present invention, the process cost can be suppressed by using a one-step neutralization step, and the pH value is difficult to manage as in the conventional two-step neutralization method. Since it is not necessary to manage the pH to a certain extent, there is an effect that it is possible to reduce labor and cost for pH management.

本発明の実施の形態による放射化コンクリートの処理方法を示すフロー図である。It is a flowchart which shows the processing method of the activated concrete by embodiment of this invention. 本発明の他の実施の形態による放射化コンクリートの処理方法を示すフロー図である。It is a flowchart which shows the processing method of the activated concrete by other embodiment of this invention.

以下、本発明の実施の形態による放射化コンクリートの処理方法について、図面に基づいて説明する。   Hereinafter, the processing method of activated concrete by embodiment of this invention is demonstrated based on drawing.

図1に示すように、本実施の形態による放射化コンクリートの処理方法は、例えば、原子力発電所などの原子力関連施設の改修・解体などに伴い固体廃棄物として発生する放射化した廃コンクリート塊(放射化コンクリート1)を処理する方法に関するものである。   As shown in FIG. 1, the activated concrete processing method according to the present embodiment is, for example, an activated waste concrete lump (solid waste generated as a result of renovation or dismantling of a nuclear facility such as a nuclear power plant). It relates to a method for treating activated concrete 1).

図1に示すように、本放射化コンクリートの処理方法は、放射化コンクリート1を粉砕する粉砕工程2と、粉砕工程2で得られた粉砕物Sを硝酸液M1に浸す抽出工程3と、その硝酸液M1をpH7〜12のアルカリ領域まで一気に上昇させ、粉砕物Sに含まれていたCo(コバルト)、Eu(ユーロピウム)の目的核種K1、及びFe(鉄)やAl(アルミニウム)などの非目的核種K2の成分からなる金属塩(沈殿物T1)を沈殿させる中和工程4と、中和工程4で得られた沈殿物T1を水W1で洗浄する洗浄工程5と、洗浄工程5で洗浄した沈殿物(洗浄後沈殿物T2)を塩酸に溶かした後、エーテル抽出によって洗浄工程5後の洗浄後沈殿物T2中の非目的核種K2を回収するエーテル抽出工程6と、エーテル抽出工程6後の沈殿物(抽出後沈殿物T3)を乾燥させ固形化させて回収する回収工程7と、を有している。   As shown in FIG. 1, the activated concrete processing method includes a pulverization step 2 for pulverizing the activated concrete 1, an extraction step 3 for immersing the pulverized material S obtained in the pulverization step 2 in a nitric acid solution M1, and its The nitric acid solution M1 is raised to an alkaline region of pH 7 to 12 at a stretch, and the target nuclides K1 of Co (cobalt) and Eu (europium) contained in the pulverized product S, and non-such as Fe (iron) and Al (aluminum) Neutralization step 4 for precipitating the metal salt (precipitate T1) composed of the component of the target nuclide K2, washing step 5 for washing the precipitate T1 obtained in the neutralization step 4 with water W1, and washing in the washing step 5 After the obtained precipitate (washed precipitate T2) is dissolved in hydrochloric acid, ether extraction step 6 for recovering the non-target nuclide K2 in the washed precipitate T2 after the washing step 5 by ether extraction, and after the ether extraction step 6 Deposit ( And a recovery step 7 for drying and solidifying the precipitate T3) after extraction.

(粉砕工程2)
図1に示すように、粉砕工程2では、粉砕機を用いて放射化コンクリート1を例えば8mm以下の粒径となるように粉砕する。このとき、例えばロールクラッシャーなどの粉砕機を用いて、表面積を極力大きくした粉砕物Sが得られるように放射化コンクリート1を薄片状に粉砕することが望ましい。そして、篩などで粉砕物Sの粒径が8mm以下であることを確認し、8mm以上のものに対しては、再度粉砕工程2を行い8mm以下にする。なお、粉砕物Sは、粒径が8mm以下であれば、それぞれの粒径が不揃いであってもよい。
(Crushing process 2)
As shown in FIG. 1, in the pulverization step 2, the activated concrete 1 is pulverized using a pulverizer so as to have a particle diameter of, for example, 8 mm or less. At this time, it is desirable to pulverize the activated concrete 1 in a flake form so that a pulverized product S having a surface area as large as possible can be obtained by using a pulverizer such as a roll crusher. Then, it is confirmed that the particle size of the pulverized product S is 8 mm or less with a sieve or the like. In addition, as long as the particle size of the pulverized material S is 8 mm or less, each particle size may be uneven.

(抽出工程3、中和工程4)
次に、粉砕工程2で得られた粉砕物Sを硝酸液M1に浸す抽出工程3を実施した後、その硝酸液M1をアルカリ領域まで一気に上昇させ、粉砕物Sに含まれるコバルト、ユーロピウムの目的核種K1、及び非目的核種K2の成分からなる金属塩(沈殿物T1)を沈殿させる中和工程4を行う。硝酸液M1の濃度は、30重量%以上70重量%以下のものを使用する。この硝酸液M1をpH7〜12のアルカリ領域まで任意の時間で一気に上昇させることで、目的核種K1と非目的核種K2の成分とが共沈して抽出される。この中和過程において、非目的核種K2のFeやAlなどが水酸化物となり沈殿し、目的核種K1のCoおよびEuが水酸化物となり共に共沈する。ここで、粉砕物Sを硝酸液M1に浸す抽出時間は、例えば骨材の大きさや材質等で異なるが12〜48時間である。そして、中和後の硝酸中和液M2には少なくとも目的核種K1は残存しない状態となり、この硝酸液M2を適宜処理する。
(Extraction process 3, neutralization process 4)
Next, after performing the extraction step 3 in which the pulverized product S obtained in the pulverization step 2 is immersed in the nitric acid solution M1, the nitric acid solution M1 is raised to the alkaline region at once, and the purpose of cobalt and europium contained in the pulverized product S The neutralization process 4 which precipitates the metal salt (precipitate T1) which consists of a component of the nuclide K1 and the non-target nuclide K2 is performed. The concentration of the nitric acid solution M1 is 30% by weight or more and 70% by weight or less. By raising the nitric acid solution M1 at once to an alkaline region of pH 7 to 12 at an arbitrary time, the target nuclide K1 and the non-target nuclide K2 components are co-precipitated and extracted. In this neutralization process, Fe, Al, and the like of the non-target nuclide K2 become hydroxides and precipitate, and Co and Eu of the target nuclide K1 become hydroxides and coprecipitate together. Here, the extraction time for immersing the pulverized material S in the nitric acid solution M1 is 12 to 48 hours, although it varies depending on the size and material of the aggregate, for example. Then, at least the target nuclide K1 does not remain in the neutralized nitric acid neutralized solution M2, and the nitric acid solution M2 is appropriately treated.

(洗浄工程5)
続いて、中和工程4で得られた沈殿物T1を硝酸中和液から分離し、水W1で洗浄する洗浄工程5を行う。
具体的には、硝酸中和液を遠心分離装置、フィルターろ過装置などの固液分離装置に導入し、固液分離する。それ沈殿に水W1を供給して沈殿物T1を洗浄する。これにより、沈殿物T1に保持された水分中に高濃度で溶け込んでいる中和塩(例えば、硝酸ナトリウムや硝酸アンモニウム)を沈殿物T1より取り除くことができる。このとき、洗い水中には、CoおよびEuが再溶解することはない。なお、この水W1は、例えば40〜90℃の熱水を使用することで、より確実な洗浄を行うことが可能である。
(Washing process 5)
Then, the washing | cleaning process 5 which isolate | separates the deposit T1 obtained by the neutralization process 4 from a nitric acid neutralization liquid, and wash | cleans with the water W1 is performed.
Specifically, the nitric acid neutralization liquid is introduced into a solid-liquid separation apparatus such as a centrifugal separator or a filter filtration apparatus, and solid-liquid separation is performed. Water W1 is supplied to the precipitate to wash the precipitate T1. Thereby, the neutralized salt (for example, sodium nitrate and ammonium nitrate) dissolved in the water | moisture content hold | maintained at the precipitate T1 at high concentration can be removed from the precipitate T1. At this time, Co and Eu are not redissolved in the wash water. In addition, this water W1 can perform more reliable washing | cleaning, for example by using hot water of 40-90 degreeC.

(エーテル抽出工程6)
次に、洗浄工程5で洗浄した洗浄後沈殿物T2の中で高濃度を占める鉄分に関しては、さらに塩酸に溶かした後、エーテル抽出によって洗浄後沈殿物T2中の非目的核種K2を回収するエーテル抽出工程6を行う。これにより、塩酸中には元の硝酸に含まれていた目的核種K1の100%が存在し、鉄分のみをほぼ100%排除することができる。
(Ether extraction step 6)
Next, with respect to the iron content occupying a high concentration in the washed precipitate T2 washed in the washing step 5, after further dissolving in hydrochloric acid, ether for recovering the non-target nuclide K2 in the washed precipitate T2 by ether extraction Extraction step 6 is performed. As a result, 100% of the target nuclide K1 contained in the original nitric acid is present in the hydrochloric acid, and only about 100% of the iron content can be eliminated.

(回収工程7)
続いて、エーテル抽出工程6後の沈殿した目的核種K1のCoとEuの水酸化物および非目的核種K2のAlなどの水酸化物をこれら成分が混在した状態の抽出後沈殿物T3に対して、乾燥させ固形化させて回収する回収工程7を行う。なお、これらの回収された水酸化物を、金属成分乾燥工程(図示省略)に送り、乾燥処理した後に、放射性廃棄物として処分する。このとき、乾燥した固形分には上記洗浄工程5によって中和塩が取り除かれているので、中和塩が少ない状態で処分されることになる。
また、洗浄工程5などで中和塩が溶け込んで高塩水となった処理液W2は、希釈して放流する。
(Recovery process 7)
Subsequently, after extraction of the target nuclide K1 and the hydroxide of Co and Eu and the non-target nuclide K2 such as Al, which are precipitated after the ether extraction step 6, with respect to the precipitate T3 after extraction. Then, a recovery step 7 for drying and solidifying and recovering is performed. These recovered hydroxides are sent to a metal component drying step (not shown), dried, and then disposed of as radioactive waste. At this time, since the neutralized salt has been removed from the dried solid content by the washing step 5, it is disposed in a state where the neutralized salt is low.
Further, the treatment liquid W2 in which the neutralized salt is dissolved in the washing step 5 to become high salt water is diluted and discharged.

次に、上述した放射化コンクリートの処理方法の作用について、図面に基づいて説明する。
図1に示すように、中和工程4において、粉砕工程2で得られた粉砕物Sを浸す抽出工程3を経た硝酸液M1をpH7〜12のアルカリ領域まで一気に上昇させることで、硝酸液M1の非目的核種K2のFeやAlなどが水酸化物となり沈殿するとともに、目的核種K1のCoおよびEuが水酸化物となり共沈する。
つまり、抽出液に含まれる目的核種K1と非目的核種K2の成分とが共沈するので、確実にかつ効率的に沈殿・除去を行うことができる。そして、中和後の硝酸中和液M2には少なくとも目的核種K1は残存しない状態となり、この硝酸中和液M2を一般廃液として適宜処理することができる。
Next, the effect | action of the processing method of the activated concrete mentioned above is demonstrated based on drawing.
As shown in FIG. 1, in the neutralization step 4, the nitric acid solution M1 that has passed through the extraction step 3 in which the pulverized product S obtained in the pulverization step 2 is immersed is raised to an alkaline region of pH 7 to 12 at a stretch. The non-target nuclide K2 such as Fe and Al precipitates as hydroxides, and the target nuclide K1 Co and Eu form hydroxides and coprecipitate.
That is, since the target nuclide K1 and the non-target nuclide K2 components co-precipitated in the extract are co-precipitated, precipitation and removal can be performed reliably and efficiently. Then, at least the target nuclide K1 does not remain in the neutralized nitric acid neutralized liquid M2, and the nitric acid neutralized liquid M2 can be appropriately treated as a general waste liquid.

さらに、洗浄工程5において、中和工程4で得られた沈殿物T1を水W1で洗浄することにより、その沈殿物T1に保持された水分中に高濃度で溶け込んでいる中和塩を沈殿物T1より取り除くことができる。また、洗浄後の洗浄水W2中には、目的核種K1の溶け込みは無い状態である。   Further, in the washing step 5, the precipitate T1 obtained in the neutralization step 4 is washed with water W1, so that the neutralized salt dissolved at a high concentration in the water retained in the precipitate T1 is precipitated. It can be removed from T1. Further, the target nuclide K1 is not dissolved in the cleaning water W2 after the cleaning.

このように、洗浄工程5による洗浄後沈殿物T2を乾燥して固形化した放射性廃棄物として処分する抽出後沈殿物T3には非目的核種K2の鉄分も含まれるが、元の骨材等の重量比で10%以下(後述する実施例では7%)に減容化することが可能となる。
さらに、硝酸液M1による中和工程4を1回で行う方法となるので、除去作業を効率的に行うことができ、従来のように2段階の中和方法に比べてプロセスコストの低減を図ることができる。そのうえ、2段階の中和方法においてpH管理が難しい一段目のpH4程度の管理が無くなるので、pH管理を容易に行うことができ、これによりコストの低減を図ることができるという効果を奏する。
しかも、従来の2段階の中和方法では一段目の沈殿物の脱水性が悪く、固液分離には多大な施設コストが必要であるが、本実施の形態では、脱水性にも優れており、簡単な構造の設備で対応することが可能である。
As described above, the post-extraction precipitate T3 that is disposed of as the radioactive waste obtained by drying and solidifying the post-cleaning precipitate T2 in the cleaning step 5 includes the iron content of the non-target nuclide K2. The volume can be reduced to 10% or less (7% in the examples described later) by weight.
Furthermore, since the neutralization step 4 with the nitric acid solution M1 is performed once, the removal operation can be performed efficiently, and the process cost is reduced as compared with the conventional two-step neutralization method. be able to. In addition, since there is no need to manage the pH of about 4 at the first stage, which is difficult to control in the two-step neutralization method, the pH can be easily controlled, and the cost can be reduced.
Moreover, the conventional two-stage neutralization method has poor dewaterability of the first-stage precipitate, and requires a large facility cost for solid-liquid separation. However, in this embodiment, the dewaterability is also excellent. It is possible to cope with equipment with a simple structure.

また、洗浄工程5で洗浄した洗浄後沈殿物T2の中で高濃度を占める鉄分に対して、さらに塩酸に溶かした後、エーテル抽出によって洗浄後沈殿物T2中の非目的核種K2を回収することができ、これにより塩酸中には元の硝酸に含まれていた目的核種K1のすべてが存在し、鉄分のみをほぼ100%排除することができる。   Further, the iron content occupying a high concentration in the washed precipitate T2 washed in the washing step 5 is further dissolved in hydrochloric acid, and then the non-target nuclide K2 in the washed precipitate T2 is recovered by ether extraction. As a result, all of the target nuclide K1 contained in the original nitric acid is present in the hydrochloric acid, and only iron content can be eliminated almost 100%.

上述のように本実施の形態による放射化コンクリートの処理方法では、粉砕物Sを浸した硝酸液をpH7〜12のアルカリ領域まで一気に上昇させることで、放射化コンクリート1から目的核種K1のCo、Euを効率的にかつ確実に除去することができる。また、脱水性を向上させることで処理装置の設置スペースを小さくすることができる。
さらに、一段階の中和工程4とすることで、プロセスコストを抑えることができるうえ、従来の2段階中和法のように管理の難しいpH値が4程度のpH管理が不要となるので、pH管理にかかる手間と費用を低減することができるという効果を奏する。
As described above, in the method for treating activated concrete according to the present embodiment, the nitric acid solution in which the pulverized material S is soaked is raised at a stretch to the alkaline region of pH 7 to 12, so that from the activated concrete 1 to Co of the target nuclide K1, Eu can be efficiently and reliably removed. Moreover, the installation space of a processing apparatus can be made small by improving dehydrating property.
Furthermore, by setting it as the neutralization process 4 of 1 step | paragraph, since process cost can be suppressed, pH management of about 4 difficult pH values like the conventional 2 step | paragraph neutralization method becomes unnecessary, There is an effect that it is possible to reduce labor and cost for pH control.

以上、本発明による放射化コンクリートの処理方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では洗浄工程5の後にエーテル抽出工程6を行ってから、その抽出後沈殿物T3を回収しているが、このような処理工程に制限されることはなく、図2に示すようにエーテル抽出工程6を省略することも可能である。この場合、洗浄工程5で洗浄した洗浄後沈殿物T2に対して、乾燥させ固形化させて回収する回収工程7を行う方法となる。
As mentioned above, although embodiment of the processing method of the activated concrete by this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning.
For example, in this embodiment, the ether extraction step 6 is performed after the washing step 5 and then the precipitate T3 is recovered after the extraction. However, the present invention is not limited to such a processing step, and FIG. As shown, the ether extraction step 6 can be omitted. In this case, it becomes the method of performing the collection | recovery process 7 which dries, solidifies, and collect | recovers with respect to the precipitate T2 after washing | cleaning wash | cleaned by the washing | cleaning process 5.

また、本実施の形態では洗浄工程5において熱水を用いているが、熱水に限定されず、常温の水であってもかまわない。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
In the present embodiment, hot water is used in the cleaning step 5, but it is not limited to hot water, and water at normal temperature may be used.
In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1 放射化コンクリート
2 粉砕工程
3 HNO抽出工程
4 中和工程
5 洗浄工程
6 エーテル抽出工程
7 回収工程
K1 目的核種
K2 非目的核種
M1 硝酸液
M2 硝酸中和液
S 粉砕物
T1 沈殿物
T2 洗浄後沈殿物
T3 抽出後沈殿物
W1 水
W2 処理液
1 Activation concrete 2 milling step 3 HNO 3 extraction step 4 neutralization step 5 washing step 6 ether extraction step 7 recovery step K1 object species K2 non-target species M1 nitrate solution M2 nitrate neutralization solution S pulverized material T1 precipitate T2 washed Precipitate T3 Precipitate after extraction W1 Water W2 Treatment liquid

Claims (3)

放射化コンクリートを粉砕する粉砕工程と、
前記粉砕工程で得られた粉砕物を硝酸液に浸し、該硝酸液をpH7〜12のアルカリ領域まで一気に上昇させ、前記粉砕物に含まれるコバルト、ユーロピウムの目的核種、及び非目的核種の成分からなる金属塩を沈殿させる中和工程と、
前記中和工程で得られた沈殿物を硝酸中和液から分離し、水で洗浄する洗浄工程と、
を有することを特徴とする放射化コンクリートの処理方法。
A crushing process for crushing the activated concrete;
The pulverized product obtained in the pulverization step is immersed in a nitric acid solution, and the nitric acid solution is raised to an alkaline region of pH 7 to 12 at a stretch. From the components of cobalt, europium target nuclides, and non-target nuclides contained in the pulverized product. A neutralization step of precipitating a metal salt,
A step of separating the precipitate obtained in the neutralization step from the nitric acid neutralization solution and washing with water;
A method for treating activated concrete, comprising:
前記洗浄工程で洗浄した沈殿物を塩酸に溶かした後、エーテル抽出によって前記沈殿物中の非目的核種を回収することを特徴とする請求項1に記載の放射化コンクリートの処理方法。   The method for treating activated concrete according to claim 1, wherein after the precipitate washed in the washing step is dissolved in hydrochloric acid, non-target nuclides in the precipitate are recovered by ether extraction. 前記洗浄工程で使用する水は、熱水であることを特徴とする請求項1又は2に記載の放射化コンクリートの処理方法。
The method of treating activated concrete according to claim 1 or 2, wherein the water used in the washing step is hot water.
JP2011196037A 2011-09-08 2011-09-08 Treatment method of activated concrete Expired - Fee Related JP5757204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196037A JP5757204B2 (en) 2011-09-08 2011-09-08 Treatment method of activated concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196037A JP5757204B2 (en) 2011-09-08 2011-09-08 Treatment method of activated concrete

Publications (2)

Publication Number Publication Date
JP2013057591A true JP2013057591A (en) 2013-03-28
JP5757204B2 JP5757204B2 (en) 2015-07-29

Family

ID=48133593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196037A Expired - Fee Related JP5757204B2 (en) 2011-09-08 2011-09-08 Treatment method of activated concrete

Country Status (1)

Country Link
JP (1) JP5757204B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105998A (en) * 1994-10-07 1996-04-23 Power Reactor & Nuclear Fuel Dev Corp High volume reduction solidification method for high level radioactive waste liquid
JP2002333498A (en) * 2001-05-10 2002-11-22 Toshiba Corp Method of decontaminating radioactive substance
JP2010197094A (en) * 2009-02-23 2010-09-09 Shimizu Corp Method for treating activated concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105998A (en) * 1994-10-07 1996-04-23 Power Reactor & Nuclear Fuel Dev Corp High volume reduction solidification method for high level radioactive waste liquid
JP2002333498A (en) * 2001-05-10 2002-11-22 Toshiba Corp Method of decontaminating radioactive substance
JP2010197094A (en) * 2009-02-23 2010-09-09 Shimizu Corp Method for treating activated concrete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015003143; 大石晃嗣 他1名: '「原子力発電所の放射化コンクリートを減容化 その処理技術の展開」' セメント・コンクリート No.770, 20110410, p.26-31 *

Also Published As

Publication number Publication date
JP5757204B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
HRP20202028T1 (en) A method of recovering metals from spent li-ion batteries
CN103991898B (en) A kind of catalytic coal gasifaction lime-ash utilize method
JP5880131B2 (en) Metal recovery method
CN104384167A (en) Comprehensive recycling method for waste titanium based vanadium SCR catalyst
JPS60636B2 (en) Treatment method for radioactive waste liquid
JP5294116B2 (en) Treatment method of activated concrete
JP2018508658A (en) Method for recycling used electronic circuit boards and system for carrying out the recycling method
JP5825074B2 (en) Rare earth metal recovery method
JP5757204B2 (en) Treatment method of activated concrete
CN103215012B (en) Preparation method for regenerating rear-earth polishing powder
JP4403533B2 (en) Treatment method of activated concrete
JP5234416B2 (en) Treatment method of activated concrete
JP5794523B2 (en) Treatment method of activated concrete
CN103008094A (en) Comprehensive recycle technology of red mud
CN100425712C (en) Technique for extracting vanadium pentoxide by the pulp resin method
CN114433347B (en) Comprehensive recycling method for valuable components of zinc smelting high-sulfur slag
CN106745146A (en) A kind of discarded process for treating steel slag
CN111087114A (en) Treatment method of tantalum-niobium production wastewater
JP2014145619A (en) Processing method for radioactive cement
CN111004913A (en) Impurity removal and extraction process for neodymium iron boron waste
JP5219968B2 (en) Method for electrolysis of scrap containing conductive metal oxide
CN102127646B (en) Method for reprocessing rare earth slag by acid composition
KR20040048662A (en) Method for withdrawing indium from waste-ITO target by using nitric acid
CN103667706A (en) Separation and purification method of gold in gold platinum alloy waste
JP6544518B2 (en) Neodymium recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5757204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees