JP5294116B2 - Treatment method of activated concrete - Google Patents

Treatment method of activated concrete Download PDF

Info

Publication number
JP5294116B2
JP5294116B2 JP2009039572A JP2009039572A JP5294116B2 JP 5294116 B2 JP5294116 B2 JP 5294116B2 JP 2009039572 A JP2009039572 A JP 2009039572A JP 2009039572 A JP2009039572 A JP 2009039572A JP 5294116 B2 JP5294116 B2 JP 5294116B2
Authority
JP
Japan
Prior art keywords
pulverized product
determined
nuclide
treatment liquid
activated concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009039572A
Other languages
Japanese (ja)
Other versions
JP2010197094A (en
Inventor
晃嗣 大石
祐一 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2009039572A priority Critical patent/JP5294116B2/en
Publication of JP2010197094A publication Critical patent/JP2010197094A/en
Application granted granted Critical
Publication of JP5294116B2 publication Critical patent/JP5294116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating activated concrete which treats the activated concrete both efficiently and economically. <P>SOLUTION: Ground products S of the activated concrete 1 obtained in a pulverization process 2 are grouped by prescribed particle diameter ranges and are treated by setting the treatment times for a washing process 3 and a solid-liquid separation process 4 according to each of the grouped ground products S. Moreover, a recovery process 5 includes a noncritical nuclide recovery process 5a for recovering noncritical nuclides in a treatment liquid W' by depositing them and a critical nuclide recovery process 5b for recovering critical nuclides in the treatment liquid W' by depositing them after the noncritical nuclide recovery process 5a. Furthermore, the ground products S obtained in the pulverization process 2 are grouped into fine ground products S1 of fine particles and normal ground products S2, which are treated in the washing process 3 and the solid-liquid separation process 4, and the fine ground products S1 are poured into the treatment liquid W' in a process before the treatment liquid W' separated from the normal ground products S2' is treated in the noncritical nuclide recovery process 5a to remove critical nuclides from the fine ground products S1. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、放射化したコンクリートから決定核種を除去して、該放射化コンクリートを処理する放射化コンクリートの処理方法に関する。   The present invention relates to a method for treating activated concrete, in which a determined nuclide is removed from activated concrete and the activated concrete is processed.

従来、例えば原子力発電所などの原子力関連施設においては、十分な強度を有するとともに放射線の遮蔽性に優れることから、構造躯体をコンクリートで構築するようにしている。   2. Description of the Related Art Conventionally, in a nuclear facility such as a nuclear power plant, a structural frame is constructed of concrete because it has sufficient strength and is excellent in radiation shielding.

一方、このような原子力関連施設のコンクリートは、放射線に暴露されて放射化されるため、施設の改築などを行う際に、放射性廃棄物として保管管理の必要が生じてしまう。そして、放射化コンクリートは、例えば全コンクリートの1%程度であるにもかかわらず、その保管管理に多大な費用を要するという問題があり、決定核種を除去してその多くを一般廃棄物として取り扱えるようにすることが求められている。   On the other hand, since the concrete of such nuclear facilities is exposed to radiation and activated, it is necessary to store and manage it as radioactive waste when reconstructing the facility. And even though activated concrete is about 1% of the total concrete, for example, there is a problem that it takes a great deal of cost to store and manage it. It is requested to be.

これに対し、本願の発明者らは、放射化コンクリートを粉砕する粉砕工程と、粉砕工程で得られた放射化コンクリートの粉砕物を硝酸などの処理液(洗浄液)で洗浄し、粉砕物から決定核種(対象元素)を化学的に分離する洗浄工程と、洗浄工程後に固液分離を行う固液分離工程と、固液分離工程で固形分(粉砕物)と分離した処理液を中和することにより、処理液中の決定核種を沈殿させて回収する回収工程とを備える放射化コンクリートの処理方法を提案している(例えば、特許文献1参照)。そして、この放射化コンクリートの処理方法で放射化コンクリート(廃コンクリート)を処理することによって、放射化コンクリートを減容化し、その多くを一般廃棄物として取り扱えるようにし、処理費(処分費)を大幅に削減できるようにしている。   On the other hand, the inventors of the present application determine the pulverized product by pulverizing the activated concrete, and washing the pulverized product of the activated concrete obtained by the pulverizing step with a treatment liquid (cleaning solution) such as nitric acid. Neutralizing the cleaning process that chemically separates the nuclide (target element), the solid-liquid separation process that performs solid-liquid separation after the cleaning process, and the treatment liquid that is separated from the solid content (crushed material) in the solid-liquid separation process Has proposed a method for treating activated concrete comprising a recovery step of precipitating and recovering the determined nuclide in the treatment liquid (see, for example, Patent Document 1). By treating the activated concrete (waste concrete) with this activated concrete treatment method, the volume of the activated concrete can be reduced and most of it can be handled as general waste, greatly increasing the processing costs (disposal costs). Can be reduced.

特開2002−341088号公報Japanese Patent Laid-Open No. 2002-341088

しかしながら、上記の放射化コンクリートの処理方法では、粉砕工程で得られた粉砕物から決定核種を除去する洗浄工程と、洗浄工程後に決定核種を含む処理液と粉砕物(固形分)とを分離する固液分離工程において、粒径が異なる全ての粉砕物を同時に処理するようにしているため、処理に掛かる時間、エネルギーのロスが大きいという問題があった。すなわち、粒径が小さい粉砕物と粒径が大きい粉砕物とでは、洗浄工程で決定核種を除去したり、固液分離工程で処理液と固形分を分離する際の必要処理時間が異なり、特に洗浄工程において粒径が小さい粉砕物は粒径が大きい粉砕物よりも短時間で処理することが可能である。このため、従来のように粒径が異なる粉砕物を洗浄工程や固液分離工程で同時に処理すると、最も処理に時間を要する粉砕物の粒径(粉砕物の最大径や最小径)に応じて処理時間を設定せざるを得ず、処理に掛かる時間、エネルギーのロスが大きくなる。   However, in the above-described activation concrete processing method, the cleaning step of removing the determined nuclide from the pulverized product obtained in the pulverization step, and the treatment liquid containing the determined nuclide and the pulverized product (solid content) are separated after the cleaning step. In the solid-liquid separation step, all pulverized products having different particle sizes are processed at the same time, so that there is a problem that the time and energy loss required for the processing are large. That is, the pulverized product with a small particle size and the pulverized product with a large particle size are different in the processing time required for removing the determined nuclide in the washing process or separating the processing liquid and the solid content in the solid-liquid separation process. In the washing step, the pulverized product having a small particle size can be processed in a shorter time than the pulverized product having a large particle size. For this reason, when pulverized products having different particle diameters are processed at the same time in the washing step and the solid-liquid separation step as in the past, depending on the particle size of the pulverized product (maximum diameter or minimum diameter of the pulverized product) that requires the most processing time. The processing time must be set, and the time and energy loss required for processing increase.

一方、回収工程では、洗浄工程で硝酸などを用いることにより強酸性を示す処理液に対し、水酸化ナトリウムを添加して中和する。これにより、処理液中の決定核種(処理液に溶解した決定核種)を水酸化物として沈殿させて回収するようにしている。しかしながら、例えば放射化コンクリートのセメント分や骨材に含まれている鉄やアルミニウムなどの非決定核種も洗浄工程後の処理液に溶解しているため、水酸化ナトリウムを添加して中和すると、これら非決定核種も決定核種とともに沈殿することになる。そして、中和処理によって得られる沈殿物の大半が非決定核種の沈殿物であるにもかかわらず、全ての沈殿物を放射性廃棄物として処分(保管管理)する必要が生じ、処理費を押し上げる一要因となっていた。   On the other hand, in the recovery step, sodium hydroxide is added to neutralize the treatment solution exhibiting strong acidity by using nitric acid or the like in the washing step. Thereby, the determined nuclide (determined nuclide dissolved in the treatment liquid) in the treatment liquid is precipitated and recovered as a hydroxide. However, for example, non-determined nuclides such as iron and aluminum contained in activated concrete cement and aggregate are also dissolved in the treatment liquid after the cleaning process. Non-determined nuclides will also precipitate with the determined nuclides. And even though most of the precipitates obtained by neutralization are non-determined nuclide precipitates, it is necessary to dispose of all the precipitates as radioactive waste (storage management), which is one factor that increases the processing costs. It was.

また、放射化コンクリートに含まれる粗骨材においては、洗浄工程で硝酸などを用いて処理することにより、元の重量から決定核種を含む固形分として1%程度までその重量を低減させることが可能である。これに対し、粉砕工程で発生する微粉砕物(微細粒子)、特に粒径が0.5mmを下回る微粉砕物は、洗浄工程で処理した後に、固液分離工程で分離し回収することが難しいため、そのまま放射性廃棄物として処分することが検討されている。しかしながら、この微粉砕物は、粉砕前の重量の数%を占めるため、そのまま処分すると放射性廃棄物量、ひいては処理費の増大を招くことになる。このため、微粉砕物においても決定核種を除去して処理する手法が強く望まれていた。   In addition, the coarse aggregate contained in activated concrete can be reduced in weight from the original weight to about 1% as solids including the determined nuclide by treating it with nitric acid in the washing process. It is. On the other hand, the finely pulverized product (fine particles) generated in the pulverization step, particularly the fine pulverized product having a particle size of less than 0.5 mm, is difficult to separate and recover in the solid-liquid separation step after being processed in the washing step. Therefore, it is being considered to dispose of it as radioactive waste. However, since this finely pulverized material accounts for several percent of the weight before pulverization, if it is disposed as it is, the amount of radioactive waste and, consequently, an increase in processing costs will be caused. For this reason, there has been a strong demand for a method for removing the determined nuclide from the finely pulverized product.

本発明は、上記事情に鑑み、放射化コンクリートを効率的に且つ経済的に処理することが可能な放射化コンクリートの処理方法を提供することを目的とする。   An object of this invention is to provide the processing method of activated concrete which can process activated concrete efficiently and economically in view of the said situation.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

請求項1記載の放射化コンクリートの処理方法は、放射化コンクリートを粉砕する粉砕工程と、前記粉砕工程で得られた放射化コンクリートの粉砕物を処理液で洗浄して前記粉砕物から決定核種を除去する洗浄工程と、前記洗浄工程後の粉砕物と処理液を分離する固液分離工程と、前記固液分離工程で分離した処理液から決定核種を回収する回収工程とを備える放射化コンクリートの処理方法において、前記粉砕工程で得られた前記粉砕物を所定の粒径範囲毎にグループ分けし、グループ分けした前記粉砕物毎に前記洗浄工程と前記固液分離工程の処理時間を設定して処理するようにしたことを特徴とする。   The activation concrete processing method according to claim 1, wherein the activated concrete is pulverized, and the activated concrete obtained in the pulverization step is washed with a treatment liquid to determine the determined nuclide from the pulverized product. Of the activated concrete comprising: a cleaning step to be removed; a solid-liquid separation step for separating the pulverized material after the cleaning step and the treatment liquid; and a recovery step for collecting the determined nuclide from the treatment liquid separated in the solid-liquid separation step. In the processing method, the pulverized product obtained in the pulverization step is grouped for each predetermined particle size range, and the processing time of the washing step and the solid-liquid separation step is set for each grouped pulverized product. It is characterized by being processed.

請求項2記載の放射化コンクリートの処理方法は、請求項1記載の放射化コンクリートの処理方法において、前記回収工程が、前記処理液中の非決定核種を沈殿させて回収する非決定核種回収工程と、非決定核種回収工程後に前記処理液中の決定核種を沈殿させて回収する決定核種回収工程とを備えていることを特徴とする。   The method for treating activated concrete according to claim 2 is the method for treating activated concrete according to claim 1, wherein the recovery step precipitates and collects nondetermined nuclides in the treatment liquid, and And a determined nuclide recovery step of precipitating and recovering the determined nuclide in the treatment liquid after the non-determined nuclide recovery step.

請求項3記載の放射化コンクリートの処理方法は、請求項2記載の放射化コンクリートの処理方法において、前記非決定核種回収工程では、前記処理液にアンモニア水を添加して中和することによって非決定核種を沈殿させ、前記決定核種回収工程では、前記処理液に水酸化ナトリウムを添加して中和することによって決定核種を沈殿させることを特徴とする。   The activated concrete treatment method according to claim 3 is the activated concrete treatment method according to claim 2, wherein in the non-determined nuclide recovery step, ammonia water is added to the treatment solution to neutralize the non-determined nuclide. In the determined nuclide recovery step, the determined nuclide is precipitated by adding sodium hydroxide to the treatment liquid to neutralize the solution.

請求項4記載の放射化コンクリートの処理方法は、請求項2または請求項3に記載の放射化コンクリートの処理方法において、前記粉砕工程で得られた粉砕物を、微細粒子の微粉砕物と該微粉砕物以外の通常粉砕物とにグループ分けし、前記通常粉砕物を前記洗浄工程と前記固液分離工程で処理し、前記通常粉砕物と分離した前記処理液を前記回収工程の前記非決定核種回収工程で処理する前の段階で、前記処理液に前記微粉砕物を投入し、該微粉砕物から前記決定核種を除去するようにしたことを特徴とする。   The activation concrete treatment method according to claim 4 is the activation concrete treatment method according to claim 2 or claim 3, wherein the pulverized material obtained in the pulverization step is divided into finely pulverized material and the pulverized material. The normal pulverized product other than the finely pulverized product is grouped, the normal pulverized product is processed in the washing step and the solid-liquid separation step, and the treatment liquid separated from the normal pulverized product is treated as the non-determined nuclide in the recovery step. Before the treatment in the recovery step, the finely pulverized product is introduced into the treatment liquid, and the determined nuclide is removed from the finely pulverized product.

請求項1記載の放射化コンクリートの処理方法においては、粉砕工程で得られた粉砕物を所定の粒径範囲毎にグループ分けし、グループ毎に洗浄工程と固液分離工程で処理するようにしている。そして、各グループの粉砕物は、グループ毎の粒径によって洗浄や固液分離に掛かる必要処理時間が異なるため、グループ毎に処理時間を設定することにより効率的に処理することが可能になる。これにより、従来のように粒径が異なる粉砕物を同時に処理する場合と比較して、処理に掛かる時間及びエネルギーを削減でき、放射化コンクリートを効率的に且つ経済的に処理することが可能になる。   In the method for treating activated concrete according to claim 1, the pulverized material obtained in the pulverization step is grouped for each predetermined particle size range, and each group is processed in the washing step and the solid-liquid separation step. Yes. The pulverized product of each group can be processed efficiently by setting the processing time for each group because the required processing time for washing and solid-liquid separation differs depending on the particle size of each group. As a result, the time and energy required for the treatment can be reduced and the activated concrete can be treated efficiently and economically as compared with the case where the pulverized products having different particle sizes are treated at the same time as in the past. Become.

また、請求項2記載の放射化コンクリートの処理方法においては、回収工程を非決定核種回収工程と決定核種回収工程に分け、洗浄工程で硝酸などを用いることにより強酸性を示す処理液に対し、はじめに、非決定核種回収工程で例えばアンモニア水などを用いて中和処理する。これにより、処理液中の例えば鉄やアルミニウムなどの非決定核種のみを水酸化物として沈殿させて回収することが可能になる。そして、非決定核種を除去した処理液に対し、水酸化ナトリウムなどを用いてさらに中和処理を行うことにより、処理液中に残っている例えばコバルト(Co)やユーロピウム(Eu)などの決定核種を水酸化物として沈殿させて回収することが可能になる。このように、非決定核種の沈殿物と決定核種を多く含む沈殿物をそれぞれ個別に沈殿させて回収することにより、従来の処理液を中和処理して非決定核種と決定核種を同時に沈殿させて回収する場合と比較して、決定核種を多く含む沈殿物を決定核種回収工程後に得ることができ、処理費を大幅に削減することが可能になる。よって、放射化コンクリートをより効率的に且つより経済的に処理することが可能になる。   Further, in the method for treating activated concrete according to claim 2, the recovery step is divided into a non-determined nuclide recovery step and a determined nuclide recovery step, and for the treatment liquid exhibiting strong acidity by using nitric acid or the like in the washing step, In the non-determined nuclide recovery step, neutralization is performed using, for example, aqueous ammonia. Thereby, only non-determining nuclides such as iron and aluminum in the treatment liquid can be precipitated and recovered as hydroxides. Then, the treatment liquid from which the non-determined nuclides have been removed is further neutralized using sodium hydroxide or the like, so that the determinant nuclides such as cobalt (Co) and europium (Eu) remaining in the treatment liquid are removed. It can be recovered by precipitation as a hydroxide. In this way, the precipitate of non-determined nuclides and the precipitate containing a large amount of determinable nuclides are separately precipitated and collected, thereby neutralizing the conventional treatment liquid and simultaneously collecting the non-determined nuclides and the determinable nuclides to collect them. Compared with the case where it carries out, the deposit which contains many determination nuclides can be obtained after a determination nuclide collection | recovery process, and it becomes possible to reduce processing cost significantly. Therefore, it becomes possible to process activated concrete more efficiently and more economically.

さらに、請求項3記載の放射化コンクリートの処理方法においては、非決定核種回収工程でアンモニア水を、決定核種回収工程で水酸化ナトリウムを用いて処理液を中和処理することにより、非決定核種回収工程で処理液中に決定核種を残し、確実に非決定核種を水酸化物として沈殿させて回収除去することが可能になり、非決定核種回収工程後に処理液中に残った決定核種を決定核種回収工程で確実に水酸化物として沈殿させて回収除去することが可能になる。   Further, in the method for treating activated concrete according to claim 3, the non-determined nuclide recovery step is performed by neutralizing the treatment liquid using ammonia water in the non-determined nuclide recovery step and sodium hydroxide in the non-determined nuclide recovery step. In this way, it is possible to leave the determined nuclide in the processing liquid and to reliably collect and remove the non-determined nuclide as a hydroxide, and to remove the determined nuclide remaining in the processing liquid after the non-determined nuclide recovery process in the determined nuclide recovery process. It is possible to reliably recover and remove it as a hydroxide.

また、請求項4記載の放射化コンクリートの処理方法においては、通常粉砕物を洗浄工程と固液分離工程で処理して、通常粉砕物を分離した処理液に対し非決定核種回収工程を行う前の段階で(すなわち中和処理する前に)、微粉砕物を投入する。このように非決定核種回収工程前の処理液に投入することにより、微粉砕物の粒径が小さいため、短時間に且つ安定的に微粉砕物から決定核種を除去することが可能になる。そして、微粉砕物から決定核種を除去した後に、非決定核種回収工程と決定核種回収工程を行い、決定核種を含んでいない非決定核種の沈殿物と、決定核種を多く含む沈殿物をそれぞれ個別に回収することによって、通常粉砕物とともに微粉砕物を確実に処理することが可能になる。これにより、放射化コンクリートをさらに効率的に且つ経済的に処理することが可能になる。   Further, in the method for treating activated concrete according to claim 4, before the nondetermined nuclide recovery step is performed on the treatment liquid in which the normal pulverized product is processed in the washing step and the solid-liquid separation step and the normal pulverized product is separated. At a stage (ie before neutralization), the finely pulverized product is charged. Since the particle size of the finely pulverized product is small by adding it to the treatment liquid before the non-determined nuclide recovery step in this way, it is possible to remove the determined nuclide from the finely pulverized product stably in a short time. After removing the determined nuclide from the finely pulverized product, the non-determined nuclide recovery step and the determined nuclide recovery step are performed, and the precipitate of the non-determined nuclide that does not contain the determined nuclide and the precipitate that contains a large amount of the determined nuclide are collected individually. By doing so, it becomes possible to reliably process the finely pulverized product together with the normal pulverized product. Thereby, it becomes possible to process activated concrete more efficiently and economically.

本発明の一実施形態に係る放射化コンクリートの処理方法を示すフロー図である。It is a flowchart which shows the processing method of the activated concrete which concerns on one Embodiment of this invention. 中性子束変動によるコンクリート中の放射化放射性物質濃度の差異を示す図であり、コンクリート深さと放射化放射性物質濃度との関係を示す図である。It is a figure which shows the difference of the radioactive radioactive substance density | concentration in concrete by a neutron flux fluctuation | variation, and is a figure which shows the relationship between concrete depth and radioactive radioactive substance concentration.

以下、図1及び図2を参照し、本発明の一実施形態に係る放射化コンクリートの処理方法について説明する。本実施形態は、例えば、原子力発電所などの原子力関連施設の改修などに伴い固体廃棄物として発生する放射化コンクリートを処理する方法に関するものである。   Hereinafter, with reference to FIG.1 and FIG.2, the processing method of the activated concrete which concerns on one Embodiment of this invention is demonstrated. The present embodiment relates to a method for treating activated concrete generated as solid waste in accordance with, for example, renovation of a nuclear facility such as a nuclear power plant.

本実施形態の放射化コンクリートの処理方法は、図1に示すように、原子力関連施設等で生じる放射化コンクリート(廃コンクリート塊)1を粉砕する粉砕工程2と、粉砕工程2で得られた放射化コンクリートの粉砕物Sを処理液(洗浄液W)で洗浄して粉砕物Sから決定核種を除去(抽出)する洗浄工程3と、洗浄工程3後の固形分(粉砕物S’)と処理液W’を分離する固液分離工程4と、固液分離工程4で分離した処理液W’から決定核種を回収する回収工程5と、固液分離工程4で分離した固形分S’を乾燥処理する乾燥工程6とを備えている。   As shown in FIG. 1, the activated concrete processing method of the present embodiment includes a pulverization step 2 for pulverizing the activated concrete (waste concrete lump) 1 generated in a nuclear facility, and the radiation obtained in the pulverization step 2. Washing process 3 in which the crushed concrete S is washed with the treatment liquid (cleaning liquid W) to remove (extract) the determined nuclide from the crushed material S, and the solid content after the washing process 3 (crushed product S ′) and the treatment liquid The solid-liquid separation step 4 for separating W ′, the recovery step 5 for recovering the determined nuclide from the treatment liquid W ′ separated in the solid-liquid separation step 4, and the solid content S ′ separated in the solid-liquid separation step 4 are dried. And a drying process 6.

粉砕工程2では、粉砕機を用いて放射化コンクリート1を例えば10mm以下の粒径となるように粉砕する。このとき、例えばロールクラッシャーなどの粉砕機を用いて、表面積を極力大きくした粉砕物Sが得られるように放射化コンクリート1を薄片状に粉砕することが望ましい。   In the pulverization step 2, the activated concrete 1 is pulverized using a pulverizer so as to have a particle size of, for example, 10 mm or less. At this time, it is desirable to pulverize the activated concrete 1 in a flake form so that a pulverized product S having a surface area as large as possible can be obtained by using a pulverizer such as a roll crusher.

また、本実施形態においては、篩などを用いて粉砕工程2で得られた粉砕物Sを粒径が0.5mmを下回る微粉砕物S1と、0.5mm以上の通常粉砕物S2とにグループ分けする(粉砕物Sを微細粒子の微粉砕物S1と、微粉砕物S1以外の通常粉砕物S2とにグループ分けする)。さらに、通常粉砕物S2を例えば0.5〜2mm、2mm〜4mm、4mm〜7mm、7mm〜10mmにグループ分けする。このように、本実施形態では粉砕工程2で得られた粉砕物Sを所定の粒径範囲毎に5グループに分別する。   In the present embodiment, the pulverized product S obtained in the pulverization step 2 using a sieve or the like is grouped into a finely pulverized product S1 having a particle size of less than 0.5 mm and a normal pulverized product S2 of 0.5 mm or more. (The pulverized product S is grouped into a finely pulverized product S1 and a normal pulverized product S2 other than the finely pulverized product S1). Furthermore, the normal pulverized product S2 is grouped into, for example, 0.5 to 2 mm, 2 mm to 4 mm, 4 mm to 7 mm, and 7 mm to 10 mm. Thus, in this embodiment, the pulverized product S obtained in the pulverization step 2 is divided into five groups for each predetermined particle size range.

ついで、通常粉砕物S2の4グループの粉砕物Sを洗浄工程3で洗浄する。ここで、現在予測されている原子力発電所の生体遮蔽体の放射化コンクリート1は、図2に示すように、ごく僅かの放射性核種、すなわち全放射性核種に対して決定核種となる60Co、 152Eu、 154Euを取り除けば、放射化コンクリート(廃コンクリート)1の全てを一般廃棄物として取り扱うことが可能になる。このため、本実施形態では、Co(コバルト)とEu(ユウロピウム)を決定核種とし、これを粉砕物Sから分離除去するものとして説明を行う。 Next, the four groups of pulverized products S of the normal pulverized product S2 are washed in the cleaning step 3. Here, as shown in FIG. 2, the activated concrete 1 of the biological shield of the nuclear power plant that is currently predicted has a very small amount of radionuclides, that is, 60 Co, 152 which is a determinant for all radionuclides. If Eu and 154 Eu are removed, all of the activated concrete (waste concrete) 1 can be handled as general waste. For this reason, in the present embodiment, Co (cobalt) and Eu (europium) are used as determinants, and this is described as being separated and removed from the pulverized product S.

本実施形態の放射化コンクリートの処理方法では、通常粉砕物S2を洗浄工程3で洗浄する際にグループ毎に洗浄を行う。すなわち、はじめに、第1グループの通常粉砕物S2を洗浄槽に投入するとともにこの洗浄槽に予め調整した処理液Wを供給し、この第1グループの通常粉砕物S2の内部に存在するCoとEuを処理液Wによって化学的に分離(抽出)する。このように第1グループの通常粉砕物S2を洗浄処理した段階で、洗浄槽内の通常粉砕物(固形分S2’) と処理液W’を次工程の固液分離工程4に送る。そして、第2グループの通常粉砕物S2、第3グループの通常粉砕物S2、第4グループの通常粉砕物S2を、順次第1グループの通常粉砕物S2と同様に洗浄工程3で洗浄し、各グループの通常粉砕物S2から決定核種を除去してゆく。   In the activation concrete processing method of this embodiment, when the crushed material S2 is washed in the washing step 3, the washing is performed for each group. That is, first, the first group of normal pulverized material S2 is charged into the cleaning tank, and the pretreated liquid W is supplied to the cleaning tank, and Co and Eu present in the first group of normal pulverized material S2 are supplied. Is chemically separated (extracted) by the treatment liquid W. Thus, at the stage where the first pulverized product S2 of the first group is washed, the ordinary pulverized product (solid content S2 ') in the washing tank and the treatment liquid W' are sent to the solid-liquid separation step 4 of the next step. Then, the normal pulverized material S2 of the second group, the normal pulverized material S2 of the third group, and the normal pulverized material S2 of the fourth group are sequentially washed in the cleaning step 3 in the same manner as the normal pulverized material S2 of the first group. The nuclide is removed from the group's normal pulverized product S2.

このとき、処理液Wには、例えばpH調整剤とキレート剤が使用され、pH調整剤には、例えば硝酸や過塩素酸、硝酸アンモニウム塩などの酸性水溶液などが用いられる。さらに、キレート剤には、Coとキレート化合物を形成するものとして例えばピロリジン−N−ジチオカルボン酸アンモニウム塩(APDC)が用いられ、Euとキレート化合物を形成するものとして例えばトリフルオルテノイルアセトン(TTA)が用いられる。   At this time, for example, a pH adjusting agent and a chelating agent are used for the treatment liquid W, and an acidic aqueous solution such as nitric acid, perchloric acid, or ammonium nitrate is used for the pH adjusting agent. Further, as the chelating agent, for example, pyrrolidine-N-dithiocarboxylic acid ammonium salt (APDC) is used as a compound that forms a chelate compound with Co, and as a compound that forms a chelate compound with Eu, for example, trifluoroacenoylacetone (TTA). Is used.

ここで、上記のように通常粉砕物S2を洗浄工程で洗浄処理する際に、各グループの通常粉砕物S2は、グループ毎に粒径(粒径範囲)が異なっているため、グループ毎に洗浄に掛かる必要処理時間が異なる。このため、本実施形態では、粒径範囲毎にグループ分けした通常粉砕物S2に対し、グループ毎に処理時間を設定する。これにより、各グループの通常粉砕物S2は、グループ毎の粒径に応じて設定した必要処理時間で洗浄処理が行われ、グループ毎に確実に決定核種が除去される。よって、本実施形態の洗浄工程3では、従来のように粒径が異なる粉砕物Sを同時に処理する場合と比較し、処理に掛かる時間及びエネルギーを削減して効率的に洗浄処理が行われる。   Here, when the normal pulverized product S2 is washed in the cleaning process as described above, the normal pulverized product S2 of each group has a different particle size (particle size range) for each group. The required processing time is different. For this reason, in this embodiment, processing time is set for every group with respect to the normal pulverized material S2 divided into groups for each particle size range. Thereby, the normal pulverized product S2 of each group is subjected to a cleaning process for a necessary processing time set according to the particle size of each group, and the determined nuclide is reliably removed for each group. Therefore, in the cleaning process 3 of the present embodiment, the cleaning process is efficiently performed while reducing the time and energy required for the processing as compared with the case where the pulverized material S having different particle diameters is simultaneously processed as in the conventional case.

また、洗浄工程3後に順次固液分離工程4に送られた各グループの通常粉砕物S2’と処理液W’は、遠心分離法などを用いてこの固液分離工程4で固液分離され、固形分である通常粉砕物S2’は必要に応じて再度洗浄工程3に返送され、液体分である処理液W’は回収工程5に送られる。そして、このように各グループの通常粉砕物S2’と処理液W’を固液分離工程4で処理する際に、洗浄工程3から処理液W’とともに順次送られてくる通常粉砕物S2’は、グループ毎に粒径(粒径範囲)が異なっているため、グループ毎に固液分離に掛かる必要処理時間が異なる。このため、本実施形態では、粒径範囲毎にグループ分けした通常粉砕物S2’と処理液W’に対し、グループ毎に処理時間を設定する。これにより、各グループの通常粉砕物S2’と処理液W’は、グループ毎の粒径に応じて設定した必要処理時間で処理されて、グループ毎に確実に固液分離される。よって、本実施形態の固液分離工程4では、従来のように粒径が異なる粉砕物Sを同時に処理する場合と比較し、処理に掛かる時間及びエネルギーを削減して効率的に固液分離処理が行われる。   Moreover, the normal pulverized product S2 ′ and the treatment liquid W ′ of each group sequentially sent to the solid-liquid separation step 4 after the washing step 3 are solid-liquid separated in the solid-liquid separation step 4 using a centrifugal separation method, The normal pulverized product S2 ′, which is a solid content, is returned again to the cleaning step 3 as necessary, and the processing liquid W ′, which is a liquid content, is sent to the recovery step 5. When the normal pulverized product S2 ′ and the treatment liquid W ′ of each group are processed in the solid-liquid separation process 4, the normal pulverized product S2 ′ sequentially sent together with the treatment liquid W ′ from the cleaning process 3 is Since the particle size (particle size range) is different for each group, the required processing time required for solid-liquid separation is different for each group. For this reason, in this embodiment, the processing time is set for each group for the normal pulverized product S2 'and the processing liquid W' grouped for each particle size range. As a result, the normal pulverized product S2 'and the processing liquid W' of each group are processed for a required processing time set according to the particle size of each group, and are reliably solid-liquid separated for each group. Therefore, in the solid-liquid separation step 4 of the present embodiment, compared with the conventional case where the pulverized product S having different particle diameters is processed at the same time, the time and energy required for the processing are reduced and the solid-liquid separation processing is efficiently performed. Is done.

固液分離工程4後に順次回収工程5に送られた強酸性の処理液W’は、回収工程5で処理液W’中からCoとEuを回収する処理が行われる。このとき、洗浄工程3で硝酸などの処理液Wを用いて通常粉砕物S2の洗浄処理を行うことで、例えば放射化コンクリート1のセメント分や骨材に含まれている鉄やアルミニウムなどの金属成分(非決定核種)もCoやEuとともに処理液W’に溶解している。このため、回収工程5に送られた処理液W’に対し、水酸化ナトリウムを添加して中和処理すると、処理液W’中のCoやEuの決定核種だけでなく、鉄(Fe)やアルミニウム(Al)などの非決定核種も水和物として沈殿してしまう。   The strongly acidic process liquid W ′ sequentially sent to the recovery process 5 after the solid-liquid separation process 4 is subjected to a process of recovering Co and Eu from the process liquid W ′ in the recovery process 5. At this time, by performing a cleaning process on the normal pulverized material S2 using a processing liquid W such as nitric acid in the cleaning process 3, for example, a metal such as iron or aluminum contained in the cement of the activated concrete 1 or the aggregate The component (non-determined nuclide) is also dissolved in the processing liquid W ′ together with Co and Eu. For this reason, when sodium hydroxide is added and neutralized with respect to the treatment liquid W ′ sent to the recovery step 5, not only the determined nuclides of Co and Eu in the treatment liquid W ′ but also iron (Fe) and Nondetermined nuclides such as aluminum (Al) also precipitate as hydrates.

これに対し、本実施形態では、回収工程5を非決定核種回収工程5aと決定核種回収工程5bとに分け、強酸性を示す処理液W’に対し、はじめに、非決定核種回収工程5aでアンモニア水を用いて中和処理する。このとき、処理液W’にアンモニア水を添加して、この処理液W’のpHを3〜5の弱酸域に中和処理することにより、CoとEuを処理液W’中に溶解した状態で残し、FeやAlなどの非決定核種のみを水酸化物として沈殿させる。そして、非決定核種の沈殿物を処理液W’から取り除き(非決定核種の沈殿物と決定核種が残る処理液W’を分離し)、非決定核種を処理液W’中から回収する。   On the other hand, in the present embodiment, the recovery process 5 is divided into a non-determined nuclide recovery process 5a and a determined nuclide recovery process 5b, and ammonia water is first added to the non-determined nuclide recovery process 5a with respect to the treatment liquid W ′ exhibiting strong acidity. Use to neutralize. At this time, by adding ammonia water to the treatment liquid W ′ and neutralizing the pH of the treatment liquid W ′ to a weak acid region of 3 to 5, Co and Eu are dissolved in the treatment liquid W ′. And only nondetermining nuclides such as Fe and Al are precipitated as hydroxides. Then, the non-determined nuclide precipitate is removed from the processing liquid W ′ (separate the non-determining nuclide precipitate and the processing liquid W ′ in which the determining nuclide remains), and the non-determining nuclide is recovered from the processing liquid W ′.

ついで、非決定核種回収工程5a後の処理液W’を決定核種回収工程5bで処理する。この決定核種回収工程5bでは、CoとEuが溶解した状態で残っている処理液W’に水酸化ナトリウム(水酸化ナトリウム溶液)を添加して、この処理液のpHが7になるように中和処理を行う。このように水酸化ナトリウムを用いて中和処理すると、CoとEuの決定核種が水酸化物として沈殿する。これにより、FeやAlなどの非決定核種の水酸化物が少なく、CoとEuの水酸化物を多く含む沈殿物が生成されるため、この沈殿物を処理液W’中から回収することにより、従来の放射化コンクリートの処理方法と比較してCoとEuの決定核種を含んで減容化した沈殿物が回収されることになる。   Next, the processing liquid W ′ after the non-determined nuclide recovery step 5a is processed in the determined nuclide recovery step 5b. In this determined nuclide recovery step 5b, sodium hydroxide (sodium hydroxide solution) is added to the treatment liquid W ′ remaining in a state where Co and Eu are dissolved, so that the pH of the treatment liquid becomes 7. Perform sum processing. When neutralization is performed using sodium hydroxide in this way, Co and Eu determined nuclides are precipitated as hydroxides. As a result, a precipitate containing a large amount of hydroxides of Co and Eu and a small amount of non-determined nuclide hydroxides such as Fe and Al is produced. By collecting the precipitate from the processing liquid W ′, Compared with the conventional method for treating activated concrete, the volume-reduced precipitate containing Co and Eu determinate nuclides is recovered.

一方、本実施形態の放射化コンクリートの処理方法では、通常粉砕物S2’を分離した処理液W’に対し非決定核種回収工程5aを行う前の段階で(すなわち中和処理する前に)、微粉砕物(微粉砕物のグループ)S1を投入する。このように微粉砕物S1を非決定核種回収工程5a前の処理液W’に投入することにより、0.5mmを下回り微粉砕物S1の粒径が小さいため、短時間に且つ安定的に微粉砕物S1からCoとEuの決定核種が除去される。そして、微粉砕物S1からCoとEuの決定核種を除去した後に、非決定核種回収工程5aと決定核種回収工程5bを行い、決定核種を含んでいない非決定核種の沈殿物と、決定核種を多く含む沈殿物をそれぞれ個別に回収する。これにより、微粉砕物S1からCoとEuが除去されて、通常粉砕物S2とともにこの微粉砕物S1が確実に処理されることになる。   On the other hand, in the method for treating activated concrete according to the present embodiment, finely before the nondetermined nuclide recovery step 5a is performed on the treatment liquid W ′ from which the pulverized product S2 ′ has been separated (ie, before the neutralization treatment). The ground material (group of fine ground materials) S1 is charged. In this way, by adding the finely pulverized product S1 to the treatment liquid W ′ before the non-determined nuclide recovery step 5a, the particle size of the finely pulverized product S1 is smaller than 0.5 mm, so that the finely pulverized product S1 can be pulverized stably and quickly. Co and Eu determinate nuclides are removed from the object S1. Then, after removing the determined nuclides of Co and Eu from the finely pulverized product S1, the non-determined nuclide recovery step 5a and the determined nuclide recovery step 5b are performed, and a precipitate of non-determined nuclides not including the determined nuclide and a large amount of determined nuclides are contained. Collect each precipitate individually. As a result, Co and Eu are removed from the finely pulverized product S1, and the finely pulverized product S1 is surely processed together with the normal pulverized product S2.

また、このとき、粉砕工程2から回収工程5の処理液W’に投入して決定核種を除去した微粉砕物S1’は、粒径が小さいため、その一部が処理液W’中に浮遊した状態となる。そして、この決定核種を除去した微粉砕物S1’の一部は、デカンテーション(上澄み除去)により固液分離工程4に返送される。また、デカンテーションで除去されず、処理液W’に残った決定核種除去後の微粉砕物S1’は、非決定核種回収工程5aで非決定核種とともに回収されることになる。   At this time, the finely pulverized product S1 ′, which has been introduced into the treatment liquid W ′ from the pulverization step 2 to the recovery step 5 to remove the determined nuclide, has a small particle size, and therefore a part of the fine pulverization product S1 ′ floats in the treatment liquid W ′. It will be in the state. A part of the finely pulverized product S1 'from which the determined nuclide has been removed is returned to the solid-liquid separation step 4 by decantation (supernatant removal). In addition, the finely pulverized product S1 'after removal of the determined nuclide that is not removed by decantation and remains in the processing liquid W' is recovered together with the non-determined nuclide in the non-determined nuclide recovery step 5a.

そして、最後に、固液分離工程4で得られた固形分の粉砕物S’(S1’、S2’)が乾燥機による乾燥工程6で乾燥処理され、所定の含水率以下に調整される。乾燥後の粉砕物S’は、放射線量を測定し、決定核種が確実に取り除かれていることを確認した上で、一般廃棄物として処分され、あるいは細骨材や粗骨材などのリサイクル品7として出荷される。また、回収工程5で回収した非決定核種の沈殿物(微粉砕物S1’を含む)も乾燥処理した後に一般廃棄物として処分したり、リサイクル品7として出荷される。さらに、決定核種を多く含む沈殿物が放射性廃棄物として処分される。   Finally, the solid pulverized product S ′ (S1 ′, S2 ′) obtained in the solid-liquid separation step 4 is dried in the drying step 6 using a dryer, and adjusted to a predetermined moisture content or less. The dried pulverized material S ′ is measured as a radiation dose and confirmed that the determined nuclide has been removed, and then disposed of as general waste, or recycled products such as fine aggregate and coarse aggregate. Shipped as 7. The non-determined nuclide precipitates (including the finely pulverized product S1 ') recovered in the recovery step 5 are also dried and disposed of as general waste or shipped as a recycled product 7. Furthermore, the precipitate containing a large amount of nuclide is disposed as radioactive waste.

したがって、本実施形態の放射化コンクリートの処理方法においては、粉砕工程2で得られた粉砕物Sを所定の粒径範囲毎にグループ分けし、洗浄工程3と固液分離工程4でグループ毎に粉砕物Sの粒径に応じた処理時間を設定することによって、効率的に処理することが可能になる。これにより、従来のように粒径が異なる粉砕物Sを同時に処理した場合と比較して、処理に掛かる時間及びエネルギーを削減でき、放射化コンクリート1を効率的に且つ経済的に処理することが可能になる。   Therefore, in the activation concrete processing method of the present embodiment, the pulverized product S obtained in the pulverization step 2 is grouped for each predetermined particle size range, and the washing step 3 and the solid-liquid separation step 4 for each group. By setting the processing time according to the particle size of the pulverized product S, it becomes possible to perform the processing efficiently. Thereby, compared with the case where the ground material S from which a particle size differs conventionally is processed simultaneously, the time and energy concerning processing can be reduced, and the activated concrete 1 can be processed efficiently and economically. It becomes possible.

また、回収工程5を非決定核種回収工程5aと決定核種回収工程5bに分け、洗浄工程3で硝酸などを用いることにより強酸性を示す処理液W’に対し、はじめに、アンモニア水を用いて非決定核種回収工程5aで中和処理することにより、処理液W’中の例えばFeやアルミニウムAlなどの非決定核種のみを水酸化物として沈殿させて回収することが可能になる。そして、非決定核種を除去した処理液W’に対し、水酸化ナトリウムを用いてさらに中和処理を行うことにより、処理液W’中に残っているCoやEuの決定核種を水酸化物として沈殿させて回収することが可能になる。このように、非決定核種の沈殿物と決定核種を多く含む沈殿物をそれぞれ個別に沈殿させて回収することにより、従来の処理液W’を中和処理して非決定核種と決定核種を同時に沈殿させて回収する場合と比較し、決定核種を多く含む沈殿物を決定核種回収工程5b後に得ることができ、処理費を大幅に削減することが可能になる。よって、放射化コンクリート1をより効率的に且つより経済的に処理することが可能になる。   In addition, the recovery process 5 is divided into a non-determined nuclide recovery process 5a and a determined nuclide recovery process 5b, and the treatment liquid W ′ that shows strong acidity by using nitric acid or the like in the washing process 3 is first used for the non-determined nuclide using ammonia water. By performing the neutralization process in the recovery step 5a, it becomes possible to precipitate and recover only non-determined nuclides such as Fe and aluminum Al in the processing liquid W ′ as hydroxides. Then, the treatment liquid W ′ from which the non-determined nuclides have been removed is further neutralized using sodium hydroxide to precipitate Co and Eu determined nuclides remaining in the treatment liquid W ′ as hydroxides. Can be recovered. In this way, the precipitate of nondetermining nuclides and the precipitate containing a large amount of deciding nuclides are separately precipitated and recovered, so that the conventional treatment liquid W ′ is neutralized to simultaneously precipitate the nondetermining nuclides and the determinating nuclides. Compared with the case of collecting in this manner, a precipitate containing a large amount of the determined nuclide can be obtained after the determined nuclide recovery step 5b, and the processing cost can be greatly reduced. Therefore, it becomes possible to process the activated concrete 1 more efficiently and more economically.

このとき、非決定核種回収工程5aでアンモニア水を、決定核種回収工程5bで水酸化ナトリウムを用いて処理液W’を中和処理することにより、非決定核種回収工程5aで処理液中に決定核種を残し、確実に非決定核種を水酸化物として沈殿させて回収除去することが可能になり、非決定核種回収工程5a後に処理液W’中に残った決定核種を決定核種回収工程5bで確実に水酸化物として沈殿させて回収除去することが可能になる。   At this time, by neutralizing the treatment liquid W ′ using ammonia water in the non-determined nuclide recovery step 5a and sodium hydroxide in the deterministic nuclide recovery step 5b, the determined nuclide is contained in the treatment liquid in the non-determined nuclide recovery step 5a. The non-determined nuclides can be reliably precipitated and removed as hydroxides, and the determined nuclides remaining in the processing solution W ′ after the non-determined nuclide recovery step 5a are reliably hydroxylated in the determined nuclide recovery step 5b. It becomes possible to precipitate and remove as a product.

また、非決定核種回収工程5a前の処理液W’に微粉砕物S1を投入することにより、短時間に且つ安定的に微粉砕物S1から決定核種を除去することが可能になる。そして、微粉砕物S1から決定核種を除去した後に、非決定核種回収工程5aと決定核種回収工程5bを行い、決定核種を含んでいない非決定核種の沈殿物と、決定核種を多く含む沈殿物をそれぞれ個別に回収することによって、通常粉砕物S2とともに微粉砕物S1を確実に処理することが可能になる。これにより、放射化コンクリート1をさらに効率的に且つ経済的に処理することが可能になる。   In addition, by introducing the finely pulverized product S1 into the treatment liquid W ′ before the non-determined nuclide recovery step 5a, it becomes possible to remove the determined nuclide from the finely pulverized product S1 in a short time and stably. Then, after removing the determined nuclide from the finely pulverized product S1, the non-determined nuclide recovery step 5a and the determined nuclide recovery step 5b are performed, and the precipitate of the non-determined nuclide that does not include the determined nuclide and the precipitate that contains a large amount of the determined nuclide, respectively. By individually collecting, the finely pulverized product S1 can be reliably processed together with the normal pulverized product S2. Thereby, it becomes possible to process the activated concrete 1 more efficiently and economically.

以上、本発明に係る放射化コンクリートの処理方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the processing method of the activated concrete which concerns on this invention was described, this invention is not limited to said one Embodiment, In the range which does not deviate from the meaning, it can change suitably.

1 放射化コンクリート(廃コンクリート塊)
2 粉砕工程
3 洗浄工程
4 固液分離工程
5 回収工程
5a 非決定核種回収工程
5b 決定核種回収工程
6 乾燥工程
7 リサイクル品
S 粉砕物
S’ 粉砕物
S1 微粉砕物
S1’ 微粉砕物
S2 通常粉砕物
S2’ 通常粉砕物
W 処理液(洗浄液)
W’ 処理液(洗浄液)
1 Activated concrete (waste concrete block)
2 Crushing process 3 Washing process 4 Solid-liquid separation process 5 Recovery process 5a Non-determined nuclide recovery process 5b Decided nuclide recovery process 6 Drying process 7 Recycled product S Ground product S 'Ground product S1 Finely ground product S1' S2 'Normal ground product W Treatment liquid (cleaning liquid)
W 'Treatment liquid (cleaning liquid)

Claims (4)

放射化コンクリートを粉砕する粉砕工程と、前記粉砕工程で得られた放射化コンクリートの粉砕物を処理液で洗浄して前記粉砕物から決定核種を除去する洗浄工程と、前記洗浄工程後の粉砕物と処理液を分離する固液分離工程と、前記固液分離工程で分離した処理液から決定核種を回収する回収工程とを備える放射化コンクリートの処理方法において、
前記粉砕工程で得られた前記粉砕物を所定の粒径範囲毎にグループ分けし、
グループ分けした前記粉砕物毎に前記洗浄工程と前記固液分離工程の処理時間を設定して処理するようにしたことを特徴とする放射化コンクリートの処理方法。
A pulverization step of pulverizing the activated concrete, a cleaning step of washing the pulverized product of the activated concrete obtained in the pulverization step with a treatment liquid to remove the determined nuclide from the pulverized product, and a pulverized product after the cleaning step In a method for treating activated concrete, comprising: a solid-liquid separation step for separating the treatment liquid; and a recovery step for collecting the determined nuclide from the treatment liquid separated in the solid-liquid separation step.
The pulverized product obtained in the pulverization step is grouped for each predetermined particle size range,
A method for treating activated concrete, wherein the pulverized material divided into groups is treated by setting treatment times for the washing step and the solid-liquid separation step.
請求項1記載の放射化コンクリートの処理方法において、
前記回収工程が、前記処理液中の非決定核種を沈殿させて回収する非決定核種回収工程と、非決定核種回収工程後に前記処理液中の決定核種を沈殿させて回収する決定核種回収工程とを備えていることを特徴とする放射化コンクリートの処理方法。
In the processing method of the activated concrete of Claim 1,
The recovery step comprises a non-determined nuclide recovery step for precipitating and recovering non-determined nuclides in the treatment liquid, and a determined nuclide recovery step for precipitating and recovering the deterministic nuclides in the treatment liquid after the non-determined nuclide recovery step. A method for treating activated concrete, comprising:
請求項2記載の放射化コンクリートの処理方法において、
前記非決定核種回収工程では、前記処理液にアンモニア水を添加して中和することによって非決定核種を沈殿させ、
前記決定核種回収工程では、前記処理液に水酸化ナトリウムを添加して中和することによって決定核種を沈殿させることを特徴とする放射化コンクリートの処理方法。
In the processing method of activation concrete of Claim 2,
In the non-determined nuclide recovery step, the non-determined nuclide is precipitated by adding ammonia water to the treatment liquid and neutralizing it,
In the determined nuclide recovery step, the determined nuclide is precipitated by adding and neutralizing sodium hydroxide to the treatment liquid.
請求項2または請求項3に記載の放射化コンクリートの処理方法において、
前記粉砕工程で得られた粉砕物を、微細粒子の微粉砕物と該微粉砕物以外の通常粉砕物とにグループ分けし、
前記通常粉砕物を前記洗浄工程と前記固液分離工程で処理し、前記通常粉砕物と分離した前記処理液を前記回収工程の前記非決定核種回収工程で処理する前の段階で、前記処理液に前記微粉砕物を投入し、該微粉砕物から前記決定核種を除去するようにしたことを特徴とする放射化コンクリートの処理方法。
In the processing method of the activated concrete of Claim 2 or Claim 3,
The pulverized product obtained in the pulverization step is grouped into a finely pulverized product of fine particles and a normal pulverized product other than the finely pulverized product,
The normal pulverized product is processed in the washing step and the solid-liquid separation step, and the processing liquid separated from the normal pulverized product is processed into the processing solution in a stage before being processed in the non-determined nuclide recovery step of the recovery step. A method for treating activated concrete, wherein the finely pulverized material is introduced and the determined nuclides are removed from the finely pulverized material.
JP2009039572A 2009-02-23 2009-02-23 Treatment method of activated concrete Expired - Fee Related JP5294116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039572A JP5294116B2 (en) 2009-02-23 2009-02-23 Treatment method of activated concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039572A JP5294116B2 (en) 2009-02-23 2009-02-23 Treatment method of activated concrete

Publications (2)

Publication Number Publication Date
JP2010197094A JP2010197094A (en) 2010-09-09
JP5294116B2 true JP5294116B2 (en) 2013-09-18

Family

ID=42821979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039572A Expired - Fee Related JP5294116B2 (en) 2009-02-23 2009-02-23 Treatment method of activated concrete

Country Status (1)

Country Link
JP (1) JP5294116B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794523B2 (en) * 2011-04-26 2015-10-14 清水建設株式会社 Treatment method of activated concrete
JP6009850B2 (en) * 2011-07-30 2016-10-19 文久 寺山 Decontamination apparatus and decontamination method for contaminated water contaminated with radioactive substances
JP5757204B2 (en) * 2011-09-08 2015-07-29 清水建設株式会社 Treatment method of activated concrete
JP6304537B2 (en) * 2014-03-28 2018-04-04 清水建設株式会社 Decontamination method for concrete
JP6481816B2 (en) * 2015-03-16 2019-03-13 清水建設株式会社 Low activation concrete

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549985A (en) * 1982-06-07 1985-10-29 General Electric Company Waste disposal process
US5045240A (en) * 1989-05-01 1991-09-03 Westinghouse Electric Corp. Contaminated soil restoration method
JP2997178B2 (en) * 1995-01-19 2000-01-11 核燃料サイクル開発機構 Separation method of exothermic elements from high-level radioactive liquid waste
JP4403533B2 (en) * 2001-05-21 2010-01-27 清水建設株式会社 Treatment method of activated concrete
JP4471110B2 (en) * 2005-02-25 2010-06-02 清水建設株式会社 Method for recycling activated concrete

Also Published As

Publication number Publication date
JP2010197094A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5294116B2 (en) Treatment method of activated concrete
US9890441B2 (en) Extraction and recovery of yttrium and rare earth elements
US5573738A (en) Method for removing depleted uranium from contaminated soils
JP4403533B2 (en) Treatment method of activated concrete
JP2015511316A (en) Decontamination method for radioactive contamination materials
JP2000512759A (en) Method for removing cesium from radioactive liquid waste and method for producing hexacyanoferrate
JPS60636B2 (en) Treatment method for radioactive waste liquid
JP5440860B2 (en) Treatment method of activated concrete
JP5234416B2 (en) Treatment method of activated concrete
KR101919200B1 (en) Electrolytic decontamination method capable of regenerative electrolyte
KR101558739B1 (en) Method for decontamination of radioactive concrete waste
JP2014145619A (en) Processing method for radioactive cement
McGinnis et al. Caustic leaching of high-level radioactive tank sludge: a critical literature review
JP5794523B2 (en) Treatment method of activated concrete
JP5794932B2 (en) Removal method of radioactive material in soil
JP5757204B2 (en) Treatment method of activated concrete
JP4225659B2 (en) Decontamination method of radioactive liquid waste
KR102568063B1 (en) A separation method of radionuclides from activated concrete waste using dense medium separation technology
JP6344927B2 (en) Method for removing radioactive cesium 134 and 137
KR102332493B1 (en) Treatment Method for Volume Reduction of Radioactive Concrete Powder
Fehrmann Westinghouse modular grinding process-improvement for follow on processes
WO2003065381A1 (en) Process and apparatus for volume reduction of oil scale waste
EP0882297B1 (en) Treatment of radioactive material
Park et al. A study on the decontamination of the gravels contaminated by uranium
NL1038859C2 (en) DEVICE AND METHOD FOR THE PURPOSE OF PROCESSING NATURALLY RADIOACTIVE MATERIAL TO CONCRETE FOR USEFUL USE ELSEWHERE.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R150 Certificate of patent or registration of utility model

Ref document number: 5294116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees