EP2348067B1 - Method for producing air-permeable composite sheet - Google Patents
Method for producing air-permeable composite sheet Download PDFInfo
- Publication number
- EP2348067B1 EP2348067B1 EP20090820634 EP09820634A EP2348067B1 EP 2348067 B1 EP2348067 B1 EP 2348067B1 EP 20090820634 EP20090820634 EP 20090820634 EP 09820634 A EP09820634 A EP 09820634A EP 2348067 B1 EP2348067 B1 EP 2348067B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- porous ptfe
- hardening
- hardenable
- composite sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000463 material Substances 0.000 claims description 83
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 82
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 58
- -1 silicon alkoxide compound Chemical class 0.000 claims description 36
- 239000011148 porous material Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 14
- 239000004744 fabric Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 238000005470 impregnation Methods 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 4
- 150000004703 alkoxides Chemical class 0.000 claims description 3
- 238000007607 die coating method Methods 0.000 claims description 3
- 238000007606 doctor blade method Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000035699 permeability Effects 0.000 description 16
- 239000000499 gel Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005299 abrasion Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000007385 chemical modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000002715 modification method Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000006359 acetalization reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1692—Other shaped material, e.g. perforated or porous sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/36—Polytetrafluoroethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/10—Filtering material manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/18—PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0061—Gel or sol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/14—Filters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/249991—Synthetic resin or natural rubbers
Definitions
- the present invention relates to a method for producing an air-permeable composite sheet, and a filter and the like containing the air-permeable composite sheet.
- a porous PTFE sheet exhibit a specific properties of passing gases such as water vapor therethrough, while not permeating water, so that the sheet is excellent in moisture permeable waterproof property, by which a low humidity can be kept inside even in rain and in sports. Therefore, a porous PTFE sheet has been widely used as fabrics materials of shoes, wear and the like. In addition, a porous PTFE sheet has been widely used also as various filter materials, since a porous PTFE is excellent in heat resistance and chemical resistance, and the pore size thereof is adjustable.
- a porous PTFE sheet is not sufficient in compressive resistance, mechanical strength and abrasion resistance due to the structural issue that a porous PTFE sheet is made of a fluorinated resin and is porous.
- a porous PTFE sheet is made of a fluorinated resin and is porous.
- Patent Documents 1 to 9 disclose a porous PTFE sheet of which pores are filled with a filler, and the production methods thereof.
- porous PTFE sheets described in the Patent Documents are produded by blending a PTFE powder with a filler powder, and preliminarily-molding the mixture, and then expanding it.
- the sheets have a structure in which filler powders are adsorbed on the pores of the porous PTFE sheet, whereby it is difficult to say that the inherent defects of porous PTFE sheet are sufficiently improved.
- a sheet made of ultra-high molecular weight polyethylene has been known as a porous sheet with wear resistance.
- it is difficult to make the sheet thin since the sheet is produced by cutting a sintered body.
- the sheet is made of polyethylene and thus lacks in compressive resistance and heat resistance.
- Patent Document 10 discloses a composite material produced by compressing a thermoplastic resin fiber with heating to produce a porous material, impregnating the porous material with a solution of another thermoplastic resin, and then cooling it.
- the material is excellent in wear resistance and the like and also has high-strength and is excellent in heat resistance; however, the material does not apparently show permeability that is an inherent characteristic of porous PTFE sheet, since the pores are filled with the resin.
- Patent Document 11 discloses a sheet that is improved in both of moisture permeability and wear resistance.
- the sheet is produced by a complicated process of forming a porous polyurethane main layer on a substrate, and then forming a surface layer on the main layer.
- it is difficult in such a production process to control the condition for maintaining moisture permeability.
- the compressibility and heat resistance cannot be improved in the sheet, since the pores of the porous layer are maintained as they are.
- Japanese Patent Application Publication No JP55127444 discloses a method wherein a liquid of a hydrophilic nature-imparting powder is penetrated into pores of a porous plastic molded article and the molded article is stretched under heating condition to remove the solvent and to retain the hydrophilic nature-imparting powder within the pores.
- Japanese Patent Application Publication No JP 6 049 265 discloses a transparent water repelling film containing transparent ceramic material held in the cavities of a porous film made of a florine containing polymer.
- EP 0 248 617 discloses a process for manufacturing a composite of a sheet of expanded, porous polytetrafluoroethylene (PTFE) impregnated with another resin, the other resin being impregnated within the pores of the expanded PTFE.
- PTFE polytetrafluoroethylene
- porous PTFE sheet As described above, a variety of technologies for improving porous PTFE sheet have been developed so far. However, there has been no sheet that exhibits both of mechanical strength and compressive resistance without impairing advantages specific to PTFE including permeability, water repellency, heat resistance and chemical resistance.
- the present inventor made intensive studies to solve the above problems. As a result, the present inventor found that a composite sheet obtained by filling pores of a porous PTFE sheet with a hardening material solution and then hardening or semi-hardening the sheet and further expanding the sheet has a partially exposed PTFE and a continuous hole, and thus has inherent characteristics of the porous PTFE sheet such as permeability and also exhibits improved mechanical strength, and further compressive resistance and abrasion resistance due to the hardening material, thereby completing the present invention.
- the filter according to the present invention is characterized in comprising the air-permeable composite sheet produced by the method according to the present invention; and the fabrics material according to the present invention is characterized in comprising the air-permeable composite sheet.
- the filter and fabrics material has properties of the air-permeable composite sheet according to the present invention, such as excellent air-permeability, water repellency, mechanical strength, compression resistance and abrasion resistance.
- the method for producing an air-permeable composite sheet according to the present invention is characterized in comprising steps of filling pores of a porous PTFE sheet with a hardenable material solution; hardening or semi-hardening the porous PTFE sheet filled with the hardenable material solution; and expanding the hardened or semi-hardened porous PTFE sheet.
- pores of a porous PTFE sheet are filled with a hardenable material solution.
- a porous PTFE sheet to be a raw material used in the present invention is obtained by mixing a polytetrafluoroethylene fine powder with a molding aid in order to obtain a paste, obtaining a molded body from the paste, expanding the molded body after removing or not removing the molding aid from the molded body, and optionally sintering the expanded body.
- the sheet In the case of uniaxial expanding, the sheet has a fibrous structure in which fibrils orient to the expanding direction and there are pores between the fibrils.
- the sheet In the case of biaxial expanding, the sheet has an arachnoid fibrous structure in which fibrils radially extend and there are many pores surrounded by nodes and the fibrils.
- the porous PTFE sheet is very useful as a material for a member which has to be produced in high temperature or used outside for a long time, since the PTFE sheet has properties such as heat resistance and weather resistance.
- the porosity of the porous PTFE sheet is not particularly limited so long as the sheet can be impregnated with a solution; and for securing impregnation ability thereof, the porosity is preferably not less than 30%, more preferably not less than 50%, and still more preferably not less than 70%.
- the thickness of the porous PTFE sheet to be a raw material is not particularly limited and may be properly determined depending on the intended use; however, the thickness is preferably not less than 1 ⁇ m and not more than 1000 ⁇ m. If the thickness is less than 1 ⁇ m, the sheet strength may be insufficient and thus may be difficult to be handled; while if the thickness exceeds 1000 ⁇ m, the re-expanding after the impregnation into a hardenable material solution may be difficult.
- the thickness of the sheet is preferably not less than 10 ⁇ m and not more than 500 ⁇ m, and more preferably not less than 20 ⁇ m and not more than 200 ⁇ m.
- the thickness is preferably adjusted to such an extent that the sheet is capable of being wound in the form of a roll for allowing efficient production such as roll-to-roll processing.
- a thin sheet may be called as a film, and a thin porous PTFE sheet may be handled as a porous PTFE film; however, in the present invention, a sheet is not particularly distinguished from a film, and the term "sheet" is mainly used.
- a PTFE sheet of which functionality is improved by chemical modification or physical modification may be used.
- Chemical modification and physical modification methods are not particularly limited; and the chemical modification method is exemplified by a method of adding a functional group to a fibril surface by acetylation, isocyanation, acetalization or the like, and a method of covering a fibril surface with an organic substance or inorganic substance by chemical reaction.
- the physical modification method is exemplified by physical vapor deposition such as vacuum deposition, ion plating and sputtering, chemical vapor deposition, and plating methods such as electroless plating and electrolytic plating. Only one of the modification methods may be used, or plural methods may be used in combination.
- the porous PTFE sheet to be a raw material used in the present invention method may have a single layer or a multiple layer.
- a hardenable material also plays a role as an adhesive to obtain a air-permeable composite sheet having a multiple layer.
- the hardenable material used in the present invention is not particularly limited so long as the material is hardened according to the respective suitable condition.
- hardenable sol-gel materials, thermoset materials and ultraviolet hardenable materials can be used.
- hardenable sol-gel materials are suitable from the viewpoints of heat resistance and mechanical strength.
- hardenable sol-gel material stands for a material that includes a soluble monomer or oligomer having relatively low-molecular-weight, and is polymerized and hardened by polymerization reaction.
- Such hardenable sol-gel materials can include metal alkoxide compounds.
- the metal element constituting metal alkoxide compounds may be exemplified by Si, Ti, Al, Sn, Zn and Mg.
- the alkoxy group constituting metal alkoxide compounds may be exemplified by C 1-6 alkoxy groups such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy and t-butoxy.
- a metal alkoxide compound of which functionality is improved by chemical modification or physical modification may be used as the metal alkoxide compound.
- silicon alkoxide compounds are suitable.
- the sheet of the present invention produced by impregnating with a silicon alkoxide compound solution and hardening the impregnated sheet is excellent in compressive resistance and mechanical strength.
- a polymer of a silicon alkoxide compound is chemically stable and excellent in heat resistance, weather resistance and the like, such a polymer also can withstand the use in a hot process and in the outdoor.
- the silicon alkoxide compound may be exemplified by methyltrimethoxysillane, methyltriethoxysillane, ethyltrimethoxysillane, ethyltriethoxysillane, propyltrimethoxysillane, propyltriethoxysillane, isobutyltrimethoxysillane, isobutyltriethoxysillane, diisobutyldimethoxysillane, dimethoxymethylsillane, phenyltriethoxysillane, methacryloxypropyltrimethoxysillane, aminopropyltriethoxysillane, aminoethylaminopropyltriethoxysill ane, tetramethoxysillane, tetraethoxysillane, tetraisopropoxysillane, tetrabutoxysillane, and oligomers thereof.
- the silicon alkoxide compound may contain other metal alkoxide compound such as aluminium alkoxide compound, titanium alkoxide compound and zirconium alkoxide compound, as long as the silicon alkoxide compound contains silicon alkoxide as main component, that is, not less than 50% of silicon alkoxide.
- thermoset material stands for a material in which polymerization reaction is initiated by heating and which is irreversibly hardened by forming a three-dimensional crosslinked structure between molecules.
- the thermoset materials is exemplified by, for example, thermosetting epoxy resins, phenol resins, melamine resins, urethane resins and unsaturated polyester resins.
- ultraviolet hardenable material stands for a material in which polymerization reaction or crosslinking reaction is initiated by ultraviolet irradiation to be hardened.
- the ultraviolet hardenable materials is exemplified by, for example, epoxy acrylate, urethane acrylate and polyester acrylate.
- the ratio of a hardenable material in a solution may be properly adjusted.
- the content amount of a final hardenable material in the sheet of the present invention depends on not only the porosity of the used porous PTFE sheet to be a raw material but also the concentration of the hardenable material solution.
- the concentration of the hardenable material solution can be adjusted according to the compressive resistance and the mechanical strength demanded for the sheet of the present invention.
- the concentration is generally preferably not less than about 20 wt% and not more than about 95 wt%.
- the solvent constituting the hardenable material solution used in the present invention method may be properly selected from solvents that can dissolve the hardenable material to be used.
- solvents that can dissolve the hardenable material to be used.
- an alcohol is preferable. Alcohol is excellent in solubility for metal alkoxide compounds and also can be readily distilled off after polymerization reaction.
- not less than about 0.2 mol/L and not more than 50 mol/L of water may be added to the solution.
- methanol, ethanol, 1-propanol, 2-propanol and butanol are exemplified. Only one of them may be used or more than one may be combined for use. The mixing ratio may not be limited.
- the alcohol corresponding to the alkoxide group in a metal alkoxide compound is preferable.
- an acid or base may be added as a catalyst for the polymerization reaction of a metal alkoxide compound.
- an acid hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrofluoric acid are exemplified; and as such a base, sodium hydroxide, potassium hydroxide and ammonia are exemplified.
- a metal oxide particle may further be added.
- the properties derived from the metal oxide particle to be added can be imparted to the composite sheet of the present invention.
- the particle of oxide of one or two or more metals selected from boron, aluminum, silicon, titanium, germanium, yttrium, zirconium, niobium, tantalum, zinc, indium, tin, barium, magnesium and lithium may be added; as a result, the properties of the metal oxide particle can be imparted to the present invention sheet. For example, linear coefficient of thermal expansion and heat shrinkage factor of the sheet can be reduced.
- the average particle diameter of the metal oxide particle is not particularly limited; however, if the average diameter is too large, the particle may be dropped out of the composite sheet.
- the average particle diameter is therefore preferably not more than 200 nm, more preferably not more than 100 nm, more preferably not more than 50 nm, and still more preferably not more than 20 nm.
- the lower limit of the average particle diameter is not particularly limited; however, the average diameter is, for example, not less than 1 nm.
- the shape of the metal oxide particle is not particularly limited; however, the particle may be sphere-shaped, rod-shaped, indeterminate-shaped or the like; these particles may be used alone or in combination of plural shapes. Two or more kinds of different metal oxide particles may be blended together.
- the blending amount of the metal oxide particle is not particularly limited; and in general, the ratio is preferably not less than 10% by mass and not more than 90% by mass relative to the amount of the hardenable material solution. If the amount is less than 10% by mass, the effect of the added metal oxide particle may not be sufficiently exerted. On the other hand, if the amount exceeds 90% by mass, there is a possibility that the polymerization reaction of the metal alkoxide compound may not sufficiently proceed.
- the blending amount is more preferably not less than 20% by mass and not more than 80% by mass, and still more preferably not less than 30% by mass and not more than 60% by mass.
- the hardenable material solution can be added various organic-based or inorganic-based additives such as an ultraviolet absorber, an antimicrobial agent, an antistatic agent, a photocatalyst, a hardening catalyst other than the above, a plasticizer, a thickener, a defoamer, carbon black, and colorant 11 such as a pigment and a dye.
- organic-based or inorganic-based additives such as an ultraviolet absorber, an antimicrobial agent, an antistatic agent, a photocatalyst, a hardening catalyst other than the above, a plasticizer, a thickener, a defoamer, carbon black, and colorant 11 such as a pigment and a dye.
- the method for filling the porous PTFE sheet with the hardenable material solution is not particularly limited and common procedures can be used.
- the method may be any one of, for example, vacuum pressure impregnation, vacuum impregnation, spraying, evaporation to dryness, a metaling bar method, a die coating method, a gravure method, a reverse roll method and a doctor blade method. Even if the solution is applied to the porous PTFE sheet only, the pores are filled with the solution.
- the term, "filling”, in the present invention is a concept that the void of the porous PTFE sheet may be simply filled with the solution and includes applying and the like as a means for that purpose.
- the pores of the porous PTFE sheet may be filled with the solution only by the impregnation of one time.
- the porous PTFE sheet is thick, the void may not be able to be completely filled with the solution only by the impregnation of one time. In such a case, the sheet is impregnated with the solution a plurality of times so that the void is made to be completely filled.
- the application method is not particularly limited, and may be, for example, any method such as a metaling bar method, a die coating method, a gravure method, a reverse roll method and a doctor blade method.
- the application is carried out in a state in which the solvent of the surface to be applied of the porous PTFE sheet is removed as much as possible. If the application is carried out in a state in which a solvent is attached to the surface of the porous PTFE sheet, 12 coating stains are likely to occur, which may adversely affect the homogeneity and thickness of the single layer of the polymer of the metal alkoxide compound.
- the surface of the porous PTFE sheet can also be subjected to surface activation treatment such as a corona treatment, a plasma treatment, a flame treatment and an alkali treatment.
- porous PTFE sheet filled with the hardenable material solution is hardened or semi-hardened.
- Hardening or semi-hardening is carried out by hardening means in accordance with the used hardenable material.
- a hardenable sol-gel material when used, a sol-gel reaction is conducted; and when a thermoset material or an ultraviolet hardenable material is used, heating or ultraviolet radiation is carried out, respectively.
- thermoset material or an ultraviolet hardenable material when used, heating or ultraviolet radiation is carried out, respectively.
- the sol-gel reaction is described in detail. For instance, when a silicon alkoxide compound is used, the sol-gel reaction is progressed that generates a siloxane bond in oligomerizztion or polymerization with Si-O bond.
- the hardening method is not particularly limited as long as the polymerization reaction proceeds; and the methods include a method that imparts energy to the material by irradiating ultraviolet light, x-rays, electron beams, infrared light or microwaves in addition to a heat treatment. It is preferable to carry out a heat treatment, since the treatment can be easily carried out.
- the temperature of the heat treatment for hardening a hardenable sol-gel material may be properly adjusted; and in general, the temperature is set at not less than about 20°C and not more than about 320°C.
- the hardening reaction may hardly proceed in some cases at less than 20°C; on the other hand, when the temperature exceeds 320°C, crack may be likely to be generated and thus a good composite sheet may be hardly obtained.
- the temperature is more preferably not less than 100°C and not more than 300°C, and still more preferably not less than 200°C and not more than 300°C.
- the heating time may also be properly adjusted, and generally the time is not less than about 10 minutes and not more than about 360 minutes. When energy beam is radiated, the kind and strength thereof can also be properly selected.
- the material may further be heated preferably under reduced pressure to evaporate the remaining solvent.
- the hardened or semi-hardened porous PTFE sheet is expanded.
- the porous PTFE sheet consisting of nodes and fibrils of which surface is intermittently covered with the hardenable material can be obtained.
- the expanding ratio may be properly adjusted, and is preferably not less than 1.1 times and not more than 20 times. If the expanding ratio is less than 1.1 times, the sheet may not become porous sufficiently, and thus there may be a fear that the permeability may not be kept. On the other hand, if the expanding ratio exceeds 14 20 times, disadvantages such as fracture and necking may be generated and hence a good composite sheet may not be obtained.
- the expanding ratio is more preferably not less than 2 times and not more than 10 times.
- the expanding means common procedures may be used; and for example, a method of passing the hardened or semi-hardened porous PTFE sheet between rolls having different rotating speed can be adopted.
- the expanding may be uniaxial expanding or biaxial expanding, both of which may be properly selected.
- the step re-generates continuous holes that penetrate from the surface to the back in the porous PTFE sheet having pores filled with a hardenable material.
- the hardenable material is partially present on the surface of such pores, and PTFE is exposed in the other parts.
- the porous PTFE sheet maintains the inherent properties thereof, such as permeability and water repellency, and also shows improved compressive resistance.
- the presence or absence of the continuous hole in the present invention sheet can be readily confirmed by an air permeability tester or the like.
- the content ratio of a hardenable material contained in the composite sheet of the present invention is preferably not less than about 10% by mass and not more than about 90% by mass. If the ratio of the hardenable material is less than 10% by mass, the compressive resistance and the mechanical strength may not be sufficiently improved. On the other hand, if the ratio exceeds 90% by mass, the strength of the PTFE relative to the hardenable material may be relatively decreased so that the sheet may be fractured before sufficient expanding, and also the exposure of the PTFE may be excessively decreased so that the inherent properties of PTFE, such as permeability and water repellence, may not be maintained.
- the ratio is more preferably not less than about 30% by mass and not more than about 80% by mass.
- the expanded composite sheet may be re-hardened in order to further harden the hardenable material or harden the semi-hardened hardenable material.
- a re-hardening By such a re-hardening, further improvement of the heat resistance and mechanical strength of the composite sheet can be expected so that the use under further high temperature or high pressure conditions may be possible.
- Such re-hardening can be carried out by heating.
- the permeable composite sheet of the present invention produced by the above method is improved in compressive resistance, mechanical strength and abrasion resistance in addition to innate properties of the porous PTFE sheet including chemical resistance, heat resistance, permeability and water repellence.
- the PTFE sheet is therefore useful particularly as a filter material and a fabrics material.
- the composite sheet of the present invention may be a single layer sheet or laminated sheet.
- the composite sheet of the present invention may be a laminated sheet produced by, for example, laminating a single layer composite sheet according to the present invention to a single layer composite sheet according to the present invention, or alternatingly-laminating another layer consisting of resin or an inorganic substance to a single layer composite sheet according to the present invention.
- the number of layers and the thickness of each layers can be adjusted in accordance with purposes.
- the above resin layer is preferably made from, for example, a fluorine resin, an acrylic resin, triacetyl cellulose or polyvinyl alcohol.
- the inorganic layer is also not particularly limited; and the material thereof, for example, can be an oxide, nitride or oxynitride including one or more of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta and the like.
- the method for forming the resin layer and inorganic layer may be any method so long as an objective thin film can be formed; and the example thereof includes physical vapor deposition such as a sputtering method, a vacuum deposition method and an ion plating method, and an application method of forming a film by a chemical reaction using heat energy and light energy, and chemical vapor deposition method.
- a conventional porous PTFE sheet When a conventional porous PTFE sheet is used as various filter materials, such a filter is excellent in chemical resistance and heat resistance; however, a filter with satisfied performance is never obtained, since the pores thereof are broken or the filter itself is damaged due to the pressure of the fluid or the collision of foreign matter.
- the filter including the permeable composite sheet according to the present invention as a constituent material is excellent also in compressive resistance and abrasion resistance. Therefore, although it is impossible for the conventional porous PTFE filters to directly remove foreign particles or dusts adsorbed on the surface with a brush, the filter according to the present invention is very rarely damaged and the pores thereof are hardly collapsed, so that the above-mentioned maintenance is possible for the present invention filter.
- the porous PTFE is inferior in abrasion resistance.
- the permeable composite sheet according to the present invention is excellent in abrasion resistance and mechanical strength
- the fabrics material containing the present invention sheet is also excellent in abrasion resistance and mechanical strength in addition to permeability and water repellence.
- fabrics material in the present invention stands for a textile product such as fiber, fabrics and cloth.
- the permeable composite sheet according to the present invention is also excellent both in mechanical strength and compressive resistance in addition to innate properties of PTFE including permeability, water repellence, heat resistance and chemical resistance. According to the present invention method, a permeable composite sheet having such excellent properties can simply and easily be produced. Therefore, the present invention relates to a sheet useful as a filter material, a fabrics material or the like, and thus is industrially very useful.
- a porous PTFE sheet (thickness: 60 ⁇ m, porosity: 70%) was cut out into 25 cm x 30 cm.
- the sheet was sufficiently impregnated with a silica solution (silicon alkoxide solution manufactrered by Nikko Inc., product name: Heatless Glass GS-600-1), and then taken out of the silica solution.
- the solvent was distilled off by heating the sheet at 70°C for 5 minutes until the silica solution became nonviscous.
- the sheet was uniaxially expanded 4-fold.
- the sheet was further heated at 100°C for 3 hours for re-hardening in order to obtain a permeable composite sheet. When water was added dropwise to the obtained permeable composite sheet, water was repelled without infiltration into the membrane.
- a porous PTFE sheet (thickness: 165 ⁇ m, porosity: 70%) was cut out into 25 cm ⁇ 30 cm.
- the sheet was sufficiently impregnated with a silica solution (silicon alkoxide solution manufactrered by Nikko Inc., product name: Heatless Glass GS-600-1), and then taken out of the silica solution.
- the solvent was distilled off by heating the sheet at 70°C for 5 minutes until the silica solution became nonviscous.
- the sheet was uniaxially expanded 4-fold.
- the sheet was further heated at 100°C for 3 hours for re-hardening in order to obtain a permeable composite sheet. When water was added dropwise to the obtained permeable composite sheet, water was repelled without infiltration into the membrane.
- a porous PTFE sheet (thickness: 100 ⁇ m, porosity: 70%) was cut out into 25 cm ⁇ 30 cm.
- the sheet was sufficiently impregnated with a silica solution (silicon alkoxide solution manufactrered by Nikko Inc., product name: Heatless Glass GS-600-1), and then taken out of the silica solution.
- the solvent was distilled off by heating the sheet at 70°C for 5 minutes until the silica solution became nonviscous.
- the sheet was uniaxially expanded 1.5-fold.
- the sheet was further heated at 100°C for 3 hours for re-hardening in order to obtain a permeable composite sheet. When water was added dropwise to the obtained permeable composite sheet, water was repelled without infiltration into the membrane.
- Test example 1 Air permeability test
- the Gurley numbers of the permeable composite sheets produced in the above Examples 1 and 2 were measured by using an Oken type air permeability tester (manufactured by Asahi Seiko Co., Ltd., product name: KG1S) in accordance with the method of JIS P8117.
- the porous PTFE sheets used as raw materials in the above Examples 1 and 2 were regarded as Comparative examples 1 and 2 respectively, and the Gurley numbers thereof were similarly measured.
- the Gurley number means the time (sec) for 100 cm 3 of air passes through a sample with an area of 6.45 cm 2 at a pressure of 1.29 kPa in the vertical direction.
- the results are shown in Table 1. [Table 1] Example 1 Copmarative example 1 Example 2 Copmarative example 2 Gurley number (sec) 1.2 2.8 9 17
- the permeable composite sheets according to the present invention included silica gel as a hardenable material, the sheets had sufficient air permeabilities due to being expanded, and permeabilities thereof were rather higher than those of the porous PTFE sheets to be used as a raw material.
- Test example 2 Compressive resistance test
- the upper plate of the small press machine was heated to each temperature shown in Table 2, and each sheet was pressurized for 10 seconds at a press pressure of 40 kgf/cm 2 (about 3.9 MPa). Additionally, the same procedure was carried out at ambient temperature. After the press procedure, the decrease ratio of thickness (%) relative to the case where each sheet before pressurized was set at 100 was calculated by the following equation as the criterion of compressive resistance. The results are shown in Table 2.
- the decrease ratio of thickness (%) 100 - [(the thickness after the press procedure / the thickness before the press procedure) x 100] [Table 2] temperature of press procedure ambient temperature 100°C 200°C 300°C Comparative example 1 35.5% 44.0% 53.7% 57.4% Example 1 1.0% 0.9% 0.0% 1.0% Comparative example 3 10.3% 32.5% 32.2% 35.8% Example 3 1.4% 2.7% 4.1% 5.4%
- the permeable composite sheet according to the present invention As in the above results, conventional porous PTFE sheets were insufficient in compressive resistance and were hardly returned to the former state when pressurized.
- the decrease ratio of thickness (%) was reduced to not more than about 5% or less even when pressurized at high temperature and high pressure, indicating that the compressive resistance is improved remarkably. Therefore, the permeable composite sheet according to the present invention is thought to be very useful as a filter material or a fabrics material that require compressive resistance.
- Test example 3 Mechanical strength test
- the permeable composite sheet according to the present invention had a twice or more strength as compared with the porous PTFE sheet to be a raw material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008268846A JP5449739B2 (ja) | 2008-10-17 | 2008-10-17 | 通気性複合シートの製造方法 |
PCT/JP2009/067894 WO2010044456A1 (ja) | 2008-10-17 | 2009-10-16 | 通気性複合シートの製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2348067A1 EP2348067A1 (en) | 2011-07-27 |
EP2348067A4 EP2348067A4 (en) | 2012-05-09 |
EP2348067B1 true EP2348067B1 (en) | 2015-01-21 |
Family
ID=42106620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20090820634 Active EP2348067B1 (en) | 2008-10-17 | 2009-10-16 | Method for producing air-permeable composite sheet |
Country Status (8)
Country | Link |
---|---|
US (2) | US9138690B2 (zh) |
EP (1) | EP2348067B1 (zh) |
JP (1) | JP5449739B2 (zh) |
KR (1) | KR101429802B1 (zh) |
CN (1) | CN102245687A (zh) |
AU (1) | AU2009304675B2 (zh) |
CA (1) | CA2740474C (zh) |
WO (1) | WO2010044456A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102260378B (zh) * | 2011-05-06 | 2013-03-20 | 广东生益科技股份有限公司 | 复合材料、用其制作的高频电路基板及其制作方法 |
US20140044591A1 (en) * | 2012-08-10 | 2014-02-13 | Zentox Corporation | Photocatalytic oxidation media and system |
CN103879034B (zh) * | 2013-01-30 | 2016-08-03 | 中国科学院宁波材料技术与工程研究所 | 一种高气密性全热交换膜及全热交换器 |
JP2017146101A (ja) * | 2016-02-15 | 2017-08-24 | セイコーエプソン株式会社 | 防水部材、防水部材の製造方法、圧力センサーおよび電子モジュール |
TWI668046B (zh) * | 2018-07-18 | 2019-08-11 | 國立臺北科技大學 | 過濾材的製造方法、過濾材的製造裝置及使用該方法所得之過濾材 |
CN110787533A (zh) * | 2019-11-11 | 2020-02-14 | 深圳自来泉科技有限公司 | 酚醛树脂纤维滤芯及其制备方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55127444A (en) | 1979-03-26 | 1980-10-02 | Nitto Electric Ind Co Ltd | Production of hydrophilic plastic sheet |
US4613544A (en) * | 1984-12-04 | 1986-09-23 | Minnesota Mining And Manufacturing Co. | Waterproof, moisture-vapor permeable sheet material and method of making the same |
JPH0627216B2 (ja) * | 1984-12-11 | 1994-04-13 | ジャパンゴアテックス株式会社 | 伸縮性をもった衣料用透湿防水性フィルム |
NZ218971A (en) * | 1986-01-21 | 1989-05-29 | Mitsui Toatsu Chemicals | Porous polyolefin films and their preparation |
DE3785487T2 (de) * | 1986-06-02 | 1993-07-29 | Japan Gore Tex Inc | Verfahren zur herstellung von traegern fuer gedruckte schaltungen. |
US4833026A (en) | 1987-10-08 | 1989-05-23 | Minnesota Mining And Manufacturing Company | Breathable, waterproof sheet materials and methods for making the same |
JPH01225652A (ja) | 1988-03-04 | 1989-09-08 | Nippon Valqua Ind Ltd | 充填材含有ポリテトラフルオロエチレン成形品およびその組成物とそれらの製造方法 |
US4985296A (en) * | 1989-03-16 | 1991-01-15 | W. L. Gore & Associates, Inc. | Polytetrafluoroethylene film |
GB9003417D0 (en) | 1990-02-15 | 1990-04-11 | Tba Industrial Products Ltd | Sheet sealing materials |
GB9003416D0 (en) | 1990-02-15 | 1990-04-11 | Tba Industrial Products Ltd | Sheet sealing materials |
DE69218531T2 (de) | 1991-09-24 | 1997-07-03 | Takagi Kogyo Kk | Brenner mit geringer Erzeugung von Stickoxiden und kleine Verbrennungsvorrichtung |
JP2671722B2 (ja) | 1992-08-04 | 1997-10-29 | トヨタ自動車株式会社 | 透明撥水皮膜 |
DE19730245B4 (de) | 1997-07-15 | 2007-08-30 | W.L. Gore & Associates Gmbh | Beschichtungsmaterial, beschichtetes Material und Verfahren zu deren Herstellung |
JP2001225652A (ja) | 2000-02-18 | 2001-08-21 | Koyo Seiko Co Ltd | ドライブシャフト |
JP2001278997A (ja) | 2000-03-29 | 2001-10-10 | Toshiba Corp | 樹脂系複合材料及びその製造方法 |
JP2001329105A (ja) * | 2000-05-25 | 2001-11-27 | Japan Gore Tex Inc | シリカゲル複合膜 |
JP4523709B2 (ja) * | 2000-09-05 | 2010-08-11 | ジャパンゴアテックス株式会社 | 発光性複合布帛及び衣類 |
JP4221756B2 (ja) | 2002-12-27 | 2009-02-12 | セイコーエプソン株式会社 | 圧電発振器およびその製造方法 |
JP4509492B2 (ja) | 2003-04-25 | 2010-07-21 | 日本バルカー工業株式会社 | 充填材入りフッ素樹脂シートおよびその製造方法 |
JP2005002335A (ja) * | 2003-05-21 | 2005-01-06 | Japan Gore Tex Inc | 接着フィルムおよびこれを使った半導体装置 |
US20050047243A1 (en) | 2003-08-29 | 2005-03-03 | Hin Chee Chong | Media sensing via digital image processing |
JP4195037B2 (ja) | 2006-01-30 | 2008-12-10 | 東洋クロス株式会社 | シート材、並びに、シート材の製造方法 |
JP4213167B2 (ja) | 2006-03-24 | 2009-01-21 | 日本バルカー工業株式会社 | 充填材入りフッ素樹脂シートの製造方法 |
JP5226938B2 (ja) | 2006-04-28 | 2013-07-03 | 日本バルカー工業株式会社 | 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート |
JP5068043B2 (ja) | 2006-06-28 | 2012-11-07 | 日本バルカー工業株式会社 | 充填材入りフッ素樹脂シートおよび充填材入りフッ素樹脂シートの製造方法 |
JP2008013654A (ja) | 2006-07-05 | 2008-01-24 | Nippon Valqua Ind Ltd | 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート |
JP5014692B2 (ja) | 2006-07-07 | 2012-08-29 | 日本バルカー工業株式会社 | 充填材入りフッ素樹脂シートの製造方法および充填材入りフッ素樹脂シート |
-
2008
- 2008-10-17 JP JP2008268846A patent/JP5449739B2/ja active Active
-
2009
- 2009-10-16 AU AU2009304675A patent/AU2009304675B2/en not_active Ceased
- 2009-10-16 US US13/124,498 patent/US9138690B2/en active Active
- 2009-10-16 EP EP20090820634 patent/EP2348067B1/en active Active
- 2009-10-16 WO PCT/JP2009/067894 patent/WO2010044456A1/ja active Application Filing
- 2009-10-16 KR KR1020117010720A patent/KR101429802B1/ko active IP Right Grant
- 2009-10-16 CN CN2009801516274A patent/CN102245687A/zh active Pending
- 2009-10-16 CA CA2740474A patent/CA2740474C/en active Active
-
2014
- 2014-10-27 US US14/523,995 patent/US9221021B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20150040764A1 (en) | 2015-02-12 |
CA2740474A1 (en) | 2010-04-22 |
EP2348067A4 (en) | 2012-05-09 |
US9221021B2 (en) | 2015-12-29 |
EP2348067A1 (en) | 2011-07-27 |
WO2010044456A1 (ja) | 2010-04-22 |
AU2009304675A1 (en) | 2010-04-22 |
AU2009304675B2 (en) | 2013-09-12 |
JP5449739B2 (ja) | 2014-03-19 |
CA2740474C (en) | 2014-12-16 |
JP2010095658A (ja) | 2010-04-30 |
KR20110079719A (ko) | 2011-07-07 |
KR101429802B1 (ko) | 2014-08-18 |
CN102245687A (zh) | 2011-11-16 |
US9138690B2 (en) | 2015-09-22 |
US20110268961A1 (en) | 2011-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9221021B2 (en) | Method for producing air-permeable composite sheet | |
EP1737901B1 (en) | Fluoropolymer barrier material | |
Zocca et al. | SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer | |
CN106715547B (zh) | 切口预浸料以及缺口预浸渍片材 | |
JP2008013672A (ja) | エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料 | |
CA2955913C (en) | Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation | |
TW200827392A (en) | Fiber composite material and method for producing the same | |
KR102030333B1 (ko) | 유체 분리용 복합 다공질막, 이의 제조 방법 및 필터 | |
FI101231B (fi) | Ohuita itsekannattavia epäorgaanisia raakapuristeita ja menetelmä täll aisten raakapuristeiden valmistamiseksi | |
KR20200115452A (ko) | 낮은 공공률의 섬유 보강 복합 재료를 제조하는데 유용한 프리프레그 시트 및 프리프레그 스택 | |
US11344836B2 (en) | Porous fluorine resin film and preparation method thereof | |
JP6522464B2 (ja) | 複合膜及びその製造方法 | |
CN111770787A (zh) | 多孔的基于氟的树脂复合膜及其制造方法 | |
CN115768823B (zh) | 含有膨胀聚(四甲基-对-硅亚苯基硅氧烷)的制品及其制备方法 | |
KR101305942B1 (ko) | 친수성으로 개질된 ptfe 공중합체를 함유한 ptfe계 다공질 막, 그의 제조방법 및 그 막의 용도 | |
KR20210053696A (ko) | 다공성 불소계 수지 복합체 및 이의 제조 방법 | |
WO2020027869A2 (en) | Method to produce polymer matrix composites | |
KR101963243B1 (ko) | 섬유강화 복합재 및 그의 제조방법 | |
EP4168477A1 (en) | Aerogel articles made from aerogel particles and methods for making the same | |
JP2023158529A (ja) | 熱可塑性プリプレグの製造方法 | |
KR20110079144A (ko) | 친수성 ptfe 고분자 중합체 제조방법, 그로부터 제조된 친수성 ptfe 고분자 중합체 및 성형체 | |
KR20180131804A (ko) | 실리카를 이용한 탄소복합소재의 물성 향상 기술 | |
KR20170119890A (ko) | 극성 고분자가 함침된 멤브레인 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110511 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120411 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08L 27/18 20060101ALN20120330BHEP Ipc: B32B 5/18 20060101ALI20120330BHEP Ipc: C08J 5/18 20060101ALI20120330BHEP Ipc: C08J 9/40 20060101AFI20120330BHEP |
|
17Q | First examination report despatched |
Effective date: 20140527 |
|
17Q | First examination report despatched |
Effective date: 20140605 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009029154 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08J0009360000 Ipc: C08J0009400000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140912 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B32B 5/18 20060101ALI20140829BHEP Ipc: C08J 5/18 20060101ALI20140829BHEP Ipc: C08J 9/40 20060101AFI20140829BHEP Ipc: C08L 27/18 20060101ALN20140829BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: W. L. GORE & ASSOCIATES, CO., LTD. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009029154 Country of ref document: DE Effective date: 20150305 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 709176 Country of ref document: AT Kind code of ref document: T Effective date: 20150315 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 709176 Country of ref document: AT Kind code of ref document: T Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150421 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150421 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150521 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009029154 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20151022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151016 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240919 Year of fee payment: 16 |