EP2255026A1 - Passivation optimisée à base de ti-zr de surfaces métalliques - Google Patents

Passivation optimisée à base de ti-zr de surfaces métalliques

Info

Publication number
EP2255026A1
EP2255026A1 EP09721282A EP09721282A EP2255026A1 EP 2255026 A1 EP2255026 A1 EP 2255026A1 EP 09721282 A EP09721282 A EP 09721282A EP 09721282 A EP09721282 A EP 09721282A EP 2255026 A1 EP2255026 A1 EP 2255026A1
Authority
EP
European Patent Office
Prior art keywords
component
water
aluminum
agent
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09721282A
Other languages
German (de)
English (en)
Other versions
EP2255026B1 (fr
Inventor
Jan-Willem Brouwer
Jens KRÖMER
Sophie Cornen
Michael Frank
Nicole Heischkamp
Franz-Adolf Czika
Nicole TEUBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40739996&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2255026(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL09721282T priority Critical patent/PL2255026T3/pl
Publication of EP2255026A1 publication Critical patent/EP2255026A1/fr
Application granted granted Critical
Publication of EP2255026B1 publication Critical patent/EP2255026B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Definitions

  • the present invention relates to a chromium-free aqueous agent based on water-soluble compounds of titanium and / or zirconium and a process for the corrosion-protective conversion treatment of metallic surfaces.
  • the chromium-free aqueous agent is suitable for treating various metallic materials joined together in composite structures, including steel or galvanized or alloy-galvanized steel, and any combination of these materials.
  • surfaces of aluminum and its alloys can be treated with the agent according to the invention to protect against corrosion.
  • the anti-corrosive treatment is primarily intended as a pretreatment for a subsequent immersion coating.
  • the invention further comprises a metallic substrate, which has been treated according to a predetermined sequence of processes with the chromium-free agent according to the invention, and its use, in particular in the automotive production of bodies.
  • Anticorrosion agents which are an acidic aqueous solution of fluoro complexes, have long been known. They are increasingly used as a replacement for chromating, which are increasingly less used because of the toxicological properties of chromium compounds. As a rule, such solutions of fluoro-complexes contain further anti-corrosive agents that further improve the anti-corrosion effect and paint adhesion.
  • DE-A-1933013 in one embodiment, describes a treating solution which is an aqueous solution of ammonium hexafluorozirconate, sodium nitrate, cobalt nitrate and sodium m-nitrobenzenesulfonate, and a pH of 5.2.
  • the solution can be used to treat zinc, steel or aluminum surfaces.
  • EP-A-1 571 237 describes a treatment solution and method of treatment for iron, zinc, aluminum and magnesium containing surfaces. This solution has a pH in the range of 2 to 6 and contains 5 to 5000 ppm of zirconium and / or titanium and 0.1 to 100 ppm of free fluoride.
  • the solution may contain further components selected from chlorate, bromate, nitrite, nitrate, permanganate, vanadate, hydrogen peroxide, tungstate, molybdate or in each case the associated acids.
  • Organic polymers may also be present.
  • WO 93/05198 describes a "dry-in-place" process in which chromium-free compositions containing, as a component, fluorocomplexes of titanium, zirconium, hafnium, silicon and boron and as second component cations of elements selected from cobalt, magnesium, titanium, Zinc, nickel, tin, zirconium, iron, aluminum and copper, wherein both components must be in a certain minimum ratio to each other, in particular applied to galvanized steel surfaces.
  • the exemplary embodiments of the advantageous effect of compositions is documented, the compounds of cobalt as a second component or magnesium.
  • WO 07/065645 likewise discloses aqueous compositions containing fluorocomplexes of, inter alia, titanium and / or zirconium, in which case a further component which is selected from: nitrate ions, copper ions, silver ions, Vanadium or vanadate ions, bismuth ions, magnesium ions, zinc ions, manganese ions, cobalt ions, nickel ions, tin ions, buffer systems for the pH range from 2.5 to 5.5, aromatic carboxylic acids having at least two groups containing donor atoms, or derivatives of such carboxylic acids, silica particles having a mean particle size below 1 micron.
  • WO 07/065645 further teaches that for the interception of excess free fluoride aluminum ions as "Fluoride scavengers" can be added, but without specifying what characterizes an excess of free fluoride and under what conditions aluminum ions can be used as a "fluoride scavenger".
  • EP 1405933 discloses a composition for treating surfaces of iron and / or zinc containing at least one metal from the group consisting of Ti, Zr, Hf and Si and a source of fluorine ions, conditional upon the concentration ratios of these two components being that Amount of free fluoride ions does not exceed 500 ppm.
  • fluoride scavenger compounds containing the elements silver, aluminum, copper, iron, manganese, magnesium, nickel, cobalt and zinc are named.
  • the object of the present invention is now to provide an aqueous chromium-free, titanium and / or zirconium-based agent for the conversion treatment of metallic surfaces, which, for high fluoride contents of the agent, further optimally passivates the treated metal surface so that the directly treated metallic component on the one hand, a sufficient temporary protection against corrosion is imparted and on the other hand, in cooperation with an organic primer coating or an organic dip paint the high demands on a permanent corrosion protection are met, with an extremely good paint adhesion is guaranteed.
  • High fluoride contents corresponding to the task are then present in the aqueous medium if the total number of fluorine atoms is greater than the number of maximum fluorine atoms that can be complexed by the elements titanium and / or zirconium, ie. when the molar ratio of the total number of fluorine atoms to the total number of titanium and / or zirconium atoms exceeds 6.
  • an aqueous chromium-free agent suitable for the conversion treatment of metallic surfaces (A) one or more water-soluble compounds containing at least one atom selected from the elements titanium and / or zirconium, wherein the total concentration of these elements not less than 2.5-10 "4 mol / l, but not greater than 2.0-10 "2 mol / l is.
  • D one or more water-soluble and / or water-dispersible compounds which release metal ions but are not sources of fluoride ions, containing at least one metal atom selected from the group consisting
  • the minimum concentration according to the invention of the elements titanium and / or zirconium of the components (A) represents a threshold value with regard to the conversion layer formation and must therefore be present in the aqueous medium. If the concentration is below this value, there is no homogeneous conversion of the metallic surface with the formation of a mixed oxydic-hydroxidic zirconium-containing passive layer and the layer supports based on the elements titanium and / or zirconium are significantly below 20 mg / m 2 . In such a case, the deposition of copper dominates, while the passivating surface layer formation almost completely disappears.
  • concentrations of the elements titanium and / or zirconium according to the components (A) of more than 2.0-10 "2 mol / l in the aqueous medium are not economical and, furthermore, have no additional advantages in the treatment of metallic components
  • concentrations impede processability and increase the operating costs of the conversion baths due to inevitable additional regenerative and reprocessing measures, especially those aqueous chromium-free compositions whose component (A) consists exclusively of water-soluble compounds of zirconium.
  • the object underlying the invention is achieved by containing an aqueous chromium-free agent suitable for the conversion treatment of metallic surfaces
  • Atoms of the component (B) of at least - - is achieved that a
  • Az sufficient amount of "fluoride scavengers" is included in the composition according to the invention to after contacting the agent with an iron surface, preferably with an unalloyed steel surface, at a treatment time of 90 s and a treatment temperature of 30 0 C on this a layer of at least 20 mg / m 2 based on the elements of component (A) selected from titanium and / or zirconium effect.
  • compositions according to the invention which have this concrete molar ratio D: B of
  • Az corrosion-protective pretreatment can be carried out on metallic surfaces, so that primarily only the condition must be satisfied that the molar ratio D: B is below a value, for after contacting the agent with an iron surface, preferably with a carbon steel surface , At a treatment time of 90 s and a treatment temperature of 30 0 C on this a layer of less than 20 mg / m 2 based on the elements of component (A) selected from titanium and / or zirconium results.
  • the quotient D: B of at least can therefore also be regarded as a guideline
  • a composition according to the invention which causes a sufficient passivating conversion of the metal surface, regardless of the specific procedure when contacting the composition, for such a sufficient conversion must additionally be met the condition that the quotient D: B no values for the contacting of the agent with an iron surface, preferably with an unalloyed steel surface, at a treatment time of 90 s and a treatment temperature of 30 0 C on the latter, a layer of less than 20 mg / m 2 based on the Elements of component (A) selected from titanium and / or zirconium is achieved.
  • the advantageous effect consists in the displacement of the composition of the conversion layer after treatment of a metallic surface with the agent according to the invention in favor of higher layer supports with respect to the elements titanium and / or zirconium, in particular relative to the layer of copper, so that increased corrosion protection and improved adhesion properties applied to subsequently organic topcoats are the result.
  • the chromium-free and titanium and / or zirconium-based agent is preferably used according to the invention when the molar ratio D: B does not exceed values for which, after contacting the agent with an iron surface, preferably with a carbon steel surface at a treatment time of 90 s and a treatment temperature of 30 0 C on this a layer of less than 20 mg / m 2 based on the elements the component (A) selected from titanium and / or zirconium results. It could be shown in this context that closed homogeneous conversion layers are formed only at layer supports of the elements titanium and / or zirconium of about 20 mg / m 2 .
  • such passive layers preferably have a layer support based on the elements titanium and / or zirconium of component (A) of at least 20 mg / m 2 , more preferably of at least 40 mg / m 2 , wherein at the same time based on the layer support preferably does not exceed 100 mg / m 2 , more preferably 80 mg / m 2 , but preferably at least 10 mg / m 2 of copper deposited according to component (C).
  • those agents according to the invention are preferred for which the molar ratio A: C of the total number of atoms of the elements titanium and / or zirconium of component (A) to the total number of copper atoms of component (C) is not less than 1: 3, preferably not less than 2: 3. If the ratio A: C falls short of the preferred range in the composition according to the invention, although sufficient inorganic conversion of the metallic surface can take place, the layer deposits with respect to copper are generally above 100 mg / m 2 . In extreme cases, that is, when the preferred ratio is well below the titanium and / or zirconium-based conversion is largely suppressed and wipeable coatings of amorphous metallic copper are the result.
  • those agents according to the invention are preferred in which the ratio A: C of the total number of atoms of the elements titanium and / or zirconium the component (A) to the total number of copper atoms of component (C) does not exceed values for which, after contacting the agent with an iron surface, preferably with a carbon steel surface at a treatment time of 90 s and a treatment temperature of 30 0 C on this one layer of less than 20 mg / m 2 based on the elements of component (A) selected from titanium and / or zirconium or more than 100 mg / m 2 based on the element copper of component (C) results ,
  • Water-soluble compounds according to the invention corresponding to components (A) - (D) are characterized by being themselves in chemical equilibrium in aqueous solution with ionic species containing the respective named elements or with ionic species of the named elements themselves.
  • the resulting in the aqueous solution chemical equilibrium between ionic species and undissociated water-soluble compound according to the components (A) - (D) must be qualitatively detectable by conventional methods, i. the ionic species must be present in the aqueous phase as such at least in an analytically determinable amount.
  • water-dispersible compounds of the invention corresponding to component (D) are characterized solely by their ionogenic structure and contain at least one of the respective named elements according to component (D) as an ionic constituent in an inorganic matrix.
  • the proportion of the ionic species in the aqueous phase is predetermined by the solubility product of the water-dispersible compound.
  • Preferred water-soluble compounds of component (A) are compounds which dissociate in aqueous solution into anions of fluorocomplexes of the elements titanium and / or zirconium. Such preferred compounds are, for example, H 2 ZrF 6 , K 2 ZrF 6 , Na 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and the analogous titanium compounds. Such fluorine-containing compounds according to component (A) are simultaneously inventive water-soluble compounds according to component (B) and vice versa. Also fluorine-free compounds of the elements titanium and / or zirconium can be used according to the invention as water-soluble compounds according to component (A), for example (NH 4 ) 2 Zr (OH) 2 (CO 3) 2 or TiO (SO 4 ).
  • Preferred water-soluble compounds of component (B) which serve as a source of fluoride ions are, in addition to the fluorometallates already mentioned, hydrogen fluoride, alkali fluorides, ammonium fluoride and / or ammonium bifluoride.
  • Preferred water-soluble compounds of component (C) which release copper ions are all water-soluble copper salts containing no chloride ions. Particular preference is given to copper sulfate, copper nitrate and copper acetate.
  • Water-soluble compounds of component (D) which release metal ions but do not provide a source of fluoride ions containing at least one metal atom selected from the group consisting of calcium, magnesium, aluminum, boron, zinc, iron, manganese and / or tungsten are preferably those which release only calcium, aluminum, and / or iron ions, more preferably only those which release aluminum and / or iron ions and in particular those which release exclusively aluminum ions.
  • component (D) these include all water-soluble salts of the aforementioned metals according to component (D), which contain neither fluoride nor chloride ions.
  • typical compounds according to component (D) may be mentioned here: calcium citrate, magnesium sulfate, aluminum nitrate, alkali borates, boric acid, zinc acetate, zinc sulfate, iron (III) nitrate, iron (II) sulfate, manganese (II) sulfate, ammonium tungstates (VI ).
  • Preferred water-dispersible compounds of component (D) are compounds based on silicates containing aluminum, more preferably compounds of aluminum silicates with a ratio of aluminum to silicon atoms of at least 1: 3.
  • aluminum silicates are the Molar formula (Na, K) x (Ca, Mg) i -x Al2 -x Si2 + ⁇ 8 (where 0 ⁇ x ⁇ 1), wherein the compound is preferably a zeolite with respect to their crystal morphology.
  • chromium-free compositions according to the invention in which the total content of fluorine atoms corresponding to component (B) is limited to 3 g / l, preferably to 2 g / l and more preferably to 1 g / l.
  • Higher levels of fluorine are uneconomical because of the then considerable amounts of compounds according to component (D) which are also present and increase the operating costs of the conversion baths due to inevitable additional regenerative and reprocessing measures.
  • the present invention is further characterized in that the chromium-free agent is not an additional polymeric agent for effective passivating treatment Must contain connections.
  • organic polymers such as derivatives of polyacrylates, polyvinyl alcohols, polyvinylphenols, polyvinylpyrrolidones or block copolymers consisting of structural units of the aforementioned polymers may be useful for the stability of compositions of the invention containing water-dispersible compounds according to component (D). It is therefore preferred that the total content of organic polymers in the composition according to the invention is less than 50 ppm, preferably less than 10 ppm and more preferably less than 1 ppm. In a specific embodiment, the agent according to the invention contains no organic polymer.
  • a proportion of phosphate anions in the composition according to the invention generally results in the treatment of metallic surfaces to phosphate-containing conversion layers containing a high proportion of bonded metal cations of the respective pickled substrate, especially zinc and iron cations.
  • passive layers also have anti-corrosive properties, but are significantly different from titanium and / or zirconium-based conversion layers based on phosphate-free compositions of the invention.
  • the agent according to the invention therefore contains less than 5 ppm and particularly preferably no oxo anions of phosphorus.
  • the pH of the agent according to the invention is preferably not less than 2.5, more preferably not less than 3.5, but wherein a pH of preferred Wise 5, more preferably 4.5 is not exceeded.
  • the pH is adjusted to the said acidic range by using, as component (A) or component (B), the fluoro-complexes of the elements titanium and / or zirconium at least partially in the form of an acid.
  • it can also be adjusted by another acid, for example nitric acid and sulfuric acid.
  • the pH may be adjusted accordingly by the addition of alkali metal hydroxides or carbonates, ammonia or organic amines.
  • a buffer system which has at least one protolysis equilibrium with a pK value in the range from 2.5 to 5 is additionally contained for adjusting the total acid content.
  • a buffer system for said pH range an acetic acid / acetate buffer is particularly suitable.
  • Another suitable buffer system based on potassium hydrogen phthalate.
  • An increase in the total acid content by the addition of a buffer system increases the stability of the agent according to the invention and facilitates the pH fixation of the agent.
  • the adjustment of the agent according to the invention to a defined pH value is necessary when using it, for example as a dip bath in a continuous process for the corrosion-protective treatment of metallic components for a constant quality of the conversion layer. It is found that such a buffer capacity is sufficient, at which the pH of the agent according to the invention in the preferred pH range of 2.5 to 5.5 at an entry of a VaI acid or alkali per liter of solution is preferably no more changed as 0.2 units.
  • the aqueous treatment solution may contain compounds which are used in the layer-forming phosphating as so-called “accelerators.” These accelerators have the property of trapping hydrogen atoms which are formed during the pickling attack of the acid on the metal surface. This reaction, also referred to as “depolarization”, facilitates the attack of the acidic treatment solution on the metal surface and thereby accelerates the formation of the corrosion protection layer.
  • accelerators in the respective preferred concentration ranges is given below:
  • the agent of the present invention can be prepared on-site by dissolving said components (A) - (D) in water and adjusting the pH.
  • this procedure is unusual in practice.
  • aqueous concentrates are usually provided, from which the ready-to-use chromium-free agent is prepared on site by dilution with water and, if necessary, adjusting the pH.
  • an aqueous concentrate which when diluted with water includes an acidic, chromium-free, by a factor of about 10 to about 100, more preferably a factor in the range of about 20 to about 50 and, if necessary, after adjusting the pH.
  • aqueous solution according to the above description of the invention also forms the subject of the present invention.
  • the present invention relates to a process for the anticorrosive conversion treatment of metallic surfaces, wherein the cleaned metallic surface is brought into contact with the aqueous chromium-free agent according to the invention.
  • the temperature of the composition according to the invention is preferably in the range from 15 to 60 ° C., in particular in the range from 25 to 50 ° C.
  • the necessary duration of treatment is a convection in the bath system which is typical for the composition of the metallic component to be treated
  • the contact time with the chromium-free agent is preferably at least 30 seconds, more preferably at least 1 minute, but should preferably not exceed 10 minutes, more preferably 5 minutes. After this contact is preferably rinsed with water, especially with demineralized water.
  • the metal surfaces to be treated are previously freed of oil and grease residues in a cleaning step. At the same time a reproducible metal surface is produced, which ensures a consistent layer quality after the conversion treatment with the agent according to the invention.
  • This is preferably an alkaline cleaning with commercially available products known to the person skilled in the art.
  • AIs metallic surface surfaces of iron, steel, galvanized and alloy-iron and steel which are obtainable for example under the commercial name Galfan ®, Galvalume ®, ® galvannealed within the meaning of the present invention.
  • the metallic surfaces which can be pretreated with the agent according to the invention to protect against corrosion also include aluminum and zinc as well as the respective alloys having an aluminum or zinc alloy content of at least 50 at.%.
  • the metallic surface treated in the process according to the invention is preferably a "bare" metal surface.
  • “Bright” metal surfaces are understood to be metal surfaces which do not yet carry a corrosion-protecting coating.
  • the method according to the invention is the first or only treatment step which produces a corrosion protection layer, which in turn can serve as the basis for a subsequent coating. It is therefore not a post-treatment of a previously generated corrosion protection layer such as a phosphate layer.
  • the metal surface is dried after contact with the chromium-free agent and before coating with a dip paint, for example a cathodic electrodeposition paint.
  • a dip paint for example a cathodic electrodeposition paint.
  • unintentional drying may occur during system downtime when the treated metal surface, such as an automobile body or part thereof, is in the air between the bath containing the agent of the invention and the dip bath.
  • this unintentional drying is harmless.
  • immersion paint refers to those aqueous dispersions of organic polymers which are applied to the metal surface in the immersion process both without external current, ie self-deposited, and those in which coating with the paint from the aqueous phase takes place by applying an external voltage source.
  • the present invention comprises a metallic substrate which has been treated with the agent according to the invention in accordance with the method described above, the surface of the metallic substrate having a titanium and / or zirconium deposit of preferably not less than 20 mg / m 2 and preferably not more than 150 mg / m 2 .
  • those metallic substrates are preferred in which the coating layer based on copper does not exceed 100 mg / m 2 , preferably 80 mg / m 2 , but at least 10 mg / m 2 of copper deposited.
  • conversion-treated metallic materials, components and composite structures are used in the manufacture of semi-finished products, in automotive production in body construction, in shipbuilding, in construction and in the field of architecture as well as for the production of white goods and electronic housings.
  • aqueous chromium-free composition according to the invention and the corresponding process sequence for the conversion treatment of metallic surfaces were tested on cold rolled steel test sheets (CRS ST1405, Sidca or MBS 25, Chemetall).
  • the sequence of processes for the treatment according to the invention of the sample sheets is reproduced.
  • the sheets were first cleaned alkaline at 60 ° C. for 5 minutes and degreased.
  • surfactant-containing mixtures of commercially available products of Anmeldehn were used: mixture containing 3% Ridoline ® 1574A and 0.3% Ridosol ® 1270th Then followed by a rinse with hot water followed by another rinse with deionized water (K ⁇ 1 ⁇ Scm "1 ), before the cold-rolled steel sheets were treated with a chromium-free agent at 30 0 C for 90 sec.
  • the freshly treated steel sheets were subjected to a "hot water test.”
  • the homogeneity of the conversion coating is checked and evaluated after treatment with the composition according to the invention.
  • the freshly treated steel sheets were first blown dry, then immediately dipped at 20 0 C for 30 sec in process water and then dried in air.
  • service water is the water which has a predetermined range of values for specific characteristics selected from the conductivity, the pH, the chloride and nitrate ion content and the copper content.
  • domestic hot water for use in the "domestic water test" according to the invention must comply with the requirements of EU Directive 98/83 / EC, whereby in particular the chemical parameters for the process water listed in the following table are binding for the performance of the "domestic water test". are.
  • Red rust refers to the red-appearing corrosion products of iron, typically iron oxide.
  • the formation of red rust occurs almost instantaneously on exposure of iron in a humid atmosphere.
  • a thin process water film on a surface of iron is sufficient to initiate the formation of red rust.
  • the formation of red rust comes to a standstill in a dry atmosphere, so that a good assessment of the homogeneity of a corrosion-protective conversion layer formation on iron surfaces via the induced formation of red rust is possible. If the steel surface treated with the chromium-free agent yields a homogeneous, closed conversion layer, the formation of red rust is minimal or invisible to the human eye. Conversely, in the "process water test" macroscopic defects are formed Insufficient layer formation or clearly visible on too thin passive layers Red rust.
  • Table 1 shows chromium-free zirconium-based anticorrosive pretreatment agents for metal surfaces applied to cold-rolled steel according to the method described above.
  • a further aspect of the present invention is the total fluoride content relative to the fraction of "fluoride scavenger” (component D) which, according to the invention, must not fall below a certain value.
  • compositions according to the invention in which the molar ratio A: C varies between 1: 14 and 37: 1 are superior to copper-free agents (VB7) for conversion treatment, as long as the total content of zirconium (component A) is sufficient on average to undergo conversion the surface at optimally adjusted molar ratio D: B of "fluoride scavenger” to cause fluorine content (VB6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

La présente invention concerne un agent aqueux exempt de chrome, basé sur des composés solubles dans l'eau de titane et/ou de zirconium ainsi que sur une source d'ions fluorure, d'ions cuivre et d'ions métalliques sélectionnés dans l'ensemble constitué du calcium, du magnésium, de l'aluminium, du bore, du zinc, du fer, du manganèse et/ou du tungstène, ainsi qu'un procédé de traitement de conversion de surfaces métalliques en vue de les protéger de la corrosion. L'agent aqueux exempt de chrome convient pour le traitement de différents matériaux métalliques assemblés en structures composites, entre autres d'acier ou d'acier galvanisé ou galvanisé par alliage, ainsi que de toutes les combinaisons de ces matériaux. Par ailleurs, des surfaces d'aluminium et de ses alliages peuvent recevoir un traitement de protection contre la corrosion à l'aide de l'agent selon l'invention. Le traitement de protection contre la corrosion est conçu surtout comme prétraitement avant une peinture par immersion. L'invention comprend en outre un substrat métallique qui a été traité dans une succession prédéterminée d'étapes à l'aide de l'agent exempt de chrome selon l'invention, ainsi que son utilisation, en particulier dans la fabrication de carrosseries d'automobiles.
EP09721282.3A 2008-03-17 2009-03-17 Passivation optimisée à base de ti-zr de surfaces métalliques Revoked EP2255026B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09721282T PL2255026T3 (pl) 2008-03-17 2009-03-17 Zoptymalizowane pasywowanie na bazie-Ti/Zr dla powierzchni metalowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008014465A DE102008014465B4 (de) 2008-03-17 2008-03-17 Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung
PCT/EP2009/053109 WO2009115504A1 (fr) 2008-03-17 2009-03-17 Passivation optimisée à base de ti-zr de surfaces métalliques

Publications (2)

Publication Number Publication Date
EP2255026A1 true EP2255026A1 (fr) 2010-12-01
EP2255026B1 EP2255026B1 (fr) 2015-05-06

Family

ID=40739996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09721282.3A Revoked EP2255026B1 (fr) 2008-03-17 2009-03-17 Passivation optimisée à base de ti-zr de surfaces métalliques

Country Status (11)

Country Link
US (1) US8815021B2 (fr)
EP (1) EP2255026B1 (fr)
JP (1) JP5854834B2 (fr)
KR (1) KR101596293B1 (fr)
CN (1) CN102066612B (fr)
AU (1) AU2009226945B2 (fr)
DE (1) DE102008014465B4 (fr)
ES (1) ES2544430T3 (fr)
HU (1) HUE027024T2 (fr)
PL (1) PL2255026T3 (fr)
WO (1) WO2009115504A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400337B2 (en) 2012-08-29 2019-09-03 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951362B2 (en) * 2009-10-08 2015-02-10 Ppg Industries Ohio, Inc. Replenishing compositions and methods of replenishing pretreatment compositions
DE102009047522A1 (de) * 2009-12-04 2011-06-09 Henkel Ag & Co. Kgaa Mehrstufiges Vorbehandlungsverfahren für metallische Bauteile mit Zink- und Eisenoberflächen
WO2011090691A2 (fr) 2009-12-28 2011-07-28 Henkel Ag & Co. Kgaa Composition de prétraitement d'un métal contenant du zirconium, du cuivre, du zinc et un nitrate, et revêtements correspondants appliqués sur des substrats métalliques
JP5861249B2 (ja) * 2010-09-15 2016-02-16 Jfeスチール株式会社 容器用鋼板の製造方法
KR20130126658A (ko) 2010-12-07 2013-11-20 니혼 파커라이징 가부시키가이샤 지르코늄, 구리 및 금속 킬레이트화제를 함유하는 금속 전처리 조성물 및 금속 기판 상의 관련 코팅
US9284460B2 (en) 2010-12-07 2016-03-15 Henkel Ag & Co. Kgaa Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
US20120183806A1 (en) 2011-01-17 2012-07-19 Ppg Industries, Inc. Pretreatment Compositions and Methods For Coating A Metal Substrate
US8852357B2 (en) 2011-09-30 2014-10-07 Ppg Industries Ohio, Inc Rheology modified pretreatment compositions and associated methods of use
ES2686538T3 (es) 2012-08-29 2018-10-18 Ppg Industries Ohio, Inc. Composiciones de pretratamiento de zirconio que contienen molibdeno, métodos asociados para tratar sustratos metálicos y sustratos metálicos revestidos relacionados
DE102012021241A1 (de) 2012-10-29 2014-04-30 Airbus Operations Gmbh Zusammensetzung für die lokale Applikation von chemischen Konversionsschichten
CN103866306B (zh) * 2012-12-11 2016-06-01 苏州禾川化学技术服务有限公司 一种新型、环保高分子陶化液及其制备方法
PT2743376T (pt) 2012-12-11 2018-01-24 Thyssenkrupp Steel Europe Ag Agente aquoso e método de revestimento para o tratamento de proteção contra a corrosão de substratos metálicos
CN103060788B (zh) * 2013-01-31 2015-10-28 宝山钢铁股份有限公司 一种燃油箱用单面电镀锌无铬表面处理钢板及表面处理剂
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
CA2908660A1 (fr) 2013-05-28 2014-12-04 Basf Coatings Gmbh Procede de revetement de substrats electriquement conducteurs par peinture au trempe avec retraitement du revetement au moyen d'une composition sol-gel aqueuse avant son durcissement
US10208213B2 (en) 2013-08-12 2019-02-19 Basf Coatings Gmbh Dip-coating composition for electroconductive substrates, comprising a sol-gel composition
CN105579614A (zh) 2013-09-30 2016-05-11 巴斯夫涂料有限公司 通过用水性溶胶-凝胶组合物后处理涂层而自泳涂覆金属基材的方法
EP3071656B1 (fr) 2013-11-18 2019-05-22 BASF Coatings GmbH Composition aqueuse de revêtement pour le revêtement par vernis à immersion de substrats électriquement conducteurs contenant du bismuth présent sous forme dissoute et non dissoute
JP6325124B2 (ja) 2013-11-18 2018-05-16 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 溶解のビスマスを含む導電性基材のための水性ディップコーティング組成物
WO2015070933A1 (fr) 2013-11-18 2015-05-21 Basf Coatings Gmbh Procédé permettant de revêtir des substrats métalliques d'une couche de conversion et d'une couche sol-gel
ES2662574T3 (es) 2013-11-18 2018-04-09 Henkel Ag & Co. Kgaa Procedimiento de dos pasos para el revestimiento con laca de inmersión de sustratos eléctricamente conductores usando una composición que contiene Bi(III)
US20160289465A1 (en) 2013-11-19 2016-10-06 Basf Coatings Gmbh Aqueous dip-coating composition for electroconductive substrates, comprising magnesium oxide
EP3071652B1 (fr) 2013-11-19 2017-12-13 BASF Coatings GmbH Composition de revêtement aqueuse pour peinture par immersion de substrats électroconducteurs, contenant de l'oxyde d'aluminium
CA2929899A1 (fr) 2013-12-10 2015-06-18 Basf Coatings Gmbh Composition aqueuse de revetement pour le revetement de laquage par trempage de substrats electroconducteurs, contenant du bismuth et un compose phosphore bloque par une amine
JP6530885B2 (ja) * 2013-12-18 2019-06-12 東洋製罐株式会社 表面処理鋼板、有機樹脂被覆金属容器、及び表面処理鋼板の製造方法
JP5900705B2 (ja) * 2014-01-31 2016-04-06 Jfeスチール株式会社 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法およびクロムフリー張力被膜付き方向性電磁鋼板の製造方法
PL3143064T3 (pl) 2014-05-14 2021-07-12 Akzo Nobel Coatings International B.V. Wodna dyspersja co najmniej dwóch żywic polimerowych i zawierająca ją wodna kompozycja powłoki do naniesienia warstwy lakieru nawierzchniowego
ES2654893T3 (es) 2014-12-12 2018-02-15 Henkel Ag & Co. Kgaa Control de proceso optimizado en el pretratamiento de metal anticorrosión a base de baños que contienen fluoruro
DE102015100968A1 (de) * 2015-01-23 2016-07-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Herstellung einer Kraftfahrzeugkarosserie in Mischbauweise
CN109689933A (zh) 2016-08-24 2019-04-26 Ppg工业俄亥俄公司 用于处理金属基材的碱性组合物
WO2019074068A1 (fr) * 2017-10-12 2019-04-18 日本パーカライジング株式会社 Agent de traitement de surface, procédé de production de matériau d'alliage d'aluminium pour canettes, ledit matériau d'alliage d'aluminium comportant un film de revêtement traité en surface, et corps de canette d'alliage d'aluminium et couvercle de canette utilisant celui-ci
DE102018209553A1 (de) 2018-06-14 2019-12-19 Voestalpine Stahl Gmbh Verfahren zur herstellung von lackbeschichteten elektrobändern und lackbeschichtetes elektroband
WO2020148412A1 (fr) 2019-01-18 2020-07-23 Constellium Neuf-Brisach Traitement continu de surface de bobines constituées de feuilles d'alliages d'aluminium
FR3091880B1 (fr) 2019-01-18 2022-08-12 Constellium Neuf Brisach Traitement de surface en continu des bobines réalisées à partir de tôles d’alliages d’aluminium
CN113728060A (zh) 2019-04-15 2021-11-30 巴斯夫涂料有限公司 用于浸涂导电基材的包含铋和锂的水性涂料组合物
CN115003721A (zh) 2020-01-24 2022-09-02 巴斯夫涂料有限公司 包含含硅烷的交联剂的水性电泳涂料

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1710743A (en) * 1926-04-16 1929-04-30 Pacz Aladar Surface treating aluminum articles
DE764929C (de) * 1938-11-09 1954-04-05 Bosch Gmbh Robert Verfahren zum Erzeugen von fluoridhaltigen Schutzschichten auf Werkstuecken aus Magnesium und seinen Legierungen
DE1933013C3 (de) 1969-06-28 1978-09-21 Gerhard Collardin Gmbh, 5000 Koeln Verfahren zur Erzeugung von Schutzschichten auf Aluminium, Eisen und Zink mittels komplexe Fluoride enthaltender Lösungen
US4643778A (en) 1982-08-26 1987-02-17 Amchem Products Composition and process for treating steel
AU4295885A (en) * 1984-05-04 1985-11-28 Amchem Products Inc. Metal treatment
KR100292447B1 (ko) 1991-08-30 2001-06-01 웨인 씨. 제쉬크 금속 기판 표면상의 보호용 변성 코팅 형성 방법
DE4317217A1 (de) 1993-05-24 1994-12-01 Henkel Kgaa Chromfreie Konversionsbehandlung von Aluminium
DE10010758A1 (de) 2000-03-04 2001-09-06 Henkel Kgaa Korrosionsschutzverfahren für Metalloberflächen
JP4099307B2 (ja) 2000-04-20 2008-06-11 日本ペイント株式会社 アルミニウム用ノンクロム防錆処理剤、防錆処理方法および防錆処理されたアルミニウム製品
DE50109902D1 (de) 2000-10-11 2006-06-29 Chemetall Gmbh Verfahren zur beschichtung von metallischen oberflächen mit einer wässerigen zusammensetzung, die wässerige zusammensetzung und verwendung der beschichteten substrate
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
US6764553B2 (en) 2001-09-14 2004-07-20 Henkel Corporation Conversion coating compositions
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
JP4205939B2 (ja) 2002-12-13 2009-01-07 日本パーカライジング株式会社 金属の表面処理方法
JP4989842B2 (ja) 2002-12-24 2012-08-01 日本ペイント株式会社 塗装前処理方法
CA2454029A1 (fr) 2002-12-24 2004-06-24 Nippon Paint Co., Ltd. Agent de revetement par conversion chimique et metal a surface traitee
JP4187162B2 (ja) 2002-12-24 2008-11-26 日本ペイント株式会社 化成処理剤及び表面処理金属
EP1592824B1 (fr) 2003-01-10 2017-03-08 Henkel AG & Co. KGaA Composition de revetement
US7063735B2 (en) 2003-01-10 2006-06-20 Henkel Kommanditgesellschaft Auf Aktien Coating composition
JP4402991B2 (ja) * 2004-03-18 2010-01-20 日本パーカライジング株式会社 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
US7641981B2 (en) * 2005-03-16 2010-01-05 Nihon Parkerizing Co., Ltd. Surface treated metal material
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
CN101395300B (zh) 2006-03-01 2011-10-05 日本油漆株式会社 金属表面处理用组成物、金属表面处理方法、以及金属材料
JPWO2007100017A1 (ja) 2006-03-01 2009-07-23 日本ペイント株式会社 金属表面処理用組成物、金属表面処理方法、及び金属材料
JP2008174832A (ja) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd カチオン電着塗装用金属表面処理液
JP5571277B2 (ja) 2007-04-13 2014-08-13 日本パーカライジング株式会社 亜鉛系金属材料用表面処理液および亜鉛系金属材料の表面処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009115504A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400337B2 (en) 2012-08-29 2019-09-03 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates

Also Published As

Publication number Publication date
EP2255026B1 (fr) 2015-05-06
JP2011514448A (ja) 2011-05-06
WO2009115504A1 (fr) 2009-09-24
US20110041957A1 (en) 2011-02-24
KR101596293B1 (ko) 2016-02-22
HUE027024T2 (en) 2016-08-29
AU2009226945B2 (en) 2013-09-12
DE102008014465B4 (de) 2010-05-12
DE102008014465A1 (de) 2009-09-24
ES2544430T3 (es) 2015-08-31
JP5854834B2 (ja) 2016-02-09
KR20110004384A (ko) 2011-01-13
PL2255026T3 (pl) 2015-10-30
CN102066612B (zh) 2013-11-13
CN102066612A (zh) 2011-05-18
US8815021B2 (en) 2014-08-26
AU2009226945A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2255026B1 (fr) Passivation optimisée à base de ti-zr de surfaces métalliques
DE102005059314B4 (de) Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
EP2507408B1 (fr) Procédé de prétraitement à étapes multiples pour des composants métalliques présentant des surfaces en zinc et en fer
EP1254279B1 (fr) Anticorrosif et procede de protection contre la corrosion destine a des surfaces metalliques
WO2008055726A1 (fr) Solution de phosphatage à base de zr/ti utilisée pour passiver des surfaces composites métalliques
WO2012000894A1 (fr) Procédé de phosphatation sélective d'une construction métallique composite
EP1114202A1 (fr) Procede pour la phosphatation, le rin age ulterieur et le trempage electrophoretique cathodique
WO2003002781A1 (fr) Agent et procede de protection anticorrosion pour surfaces metalliques
WO1998008999A1 (fr) Solution aqueuse et procede de phosphatation de surfaces metalliques
EP1208247A1 (fr) Procede de traitement contre la corrosion ou de traitement posterieur de surfaces metalliques
WO1998013534A2 (fr) Procede pour la phosphatation d'un feuillard d'acier
WO1999014397A1 (fr) Procede de phosphatation d'un feuillard d'acier
WO2016193004A1 (fr) Conditionnement avant un traitement par conversion de surfaces métalliques
EP1155163B1 (fr) Procede pour la phosphatisation de surfaces en zinc ou en aluminium
WO1997014821A1 (fr) Ajustement du poids de couche dans des systemes de phosphatation acceleres a l'hydroxylamine
WO1997016581A2 (fr) Phosphatation au zinc, a l'aide d'une solution sans manganese et a faible teneur en nitrate
WO2001014613A2 (fr) Catalyseur pour la phosphatation de surfaces metalliques
WO2001016397A1 (fr) Procede de phosphatation au zinc faisant intervenir des epoxydes
EP3303652A1 (fr) Produit de prélavage contenant une amine quaternaire de conditionnement avant un traitement de conversion
WO1998048076A1 (fr) Procede de phosphatation accelere avec de l'hydroxylamine et du chlorate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 13/20 20060101ALI20141112BHEP

Ipc: C23C 22/34 20060101AFI20141112BHEP

INTG Intention to grant announced

Effective date: 20141216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 725768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010999

Country of ref document: DE

Effective date: 20150618

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2544430

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150831

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 19239

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009010999

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: PPG INDUSTRIES, INC.

Effective date: 20160205

Opponent name: CHEMETALL GMBH

Effective date: 20160205

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E027024

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 725768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160317

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180321

Year of fee payment: 10

Ref country code: RO

Payment date: 20180223

Year of fee payment: 10

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180315

Year of fee payment: 10

Ref country code: HU

Payment date: 20180314

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190318

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CHEMETALL GMBH

Effective date: 20160205

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PPG INDUSTRIES, INC.

Effective date: 20160205

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CHEMETALL GMBH

Effective date: 20160205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CHEMETALL GMBH

Effective date: 20160205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502009010999

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502009010999

Country of ref document: DE

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230309

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230314

Year of fee payment: 15

Ref country code: SE

Payment date: 20230314

Year of fee payment: 15

Ref country code: PL

Payment date: 20230310

Year of fee payment: 15

Ref country code: GB

Payment date: 20230321

Year of fee payment: 15

Ref country code: DE

Payment date: 20230321

Year of fee payment: 15

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 19239

Country of ref document: SK

Effective date: 20230214

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

27W Patent revoked

Effective date: 20230214

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20230214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 15

Ref country code: ES

Payment date: 20230529

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 725768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214