EP2178565A1 - COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs - Google Patents

COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs

Info

Publication number
EP2178565A1
EP2178565A1 EP08786481A EP08786481A EP2178565A1 EP 2178565 A1 EP2178565 A1 EP 2178565A1 EP 08786481 A EP08786481 A EP 08786481A EP 08786481 A EP08786481 A EP 08786481A EP 2178565 A1 EP2178565 A1 EP 2178565A1
Authority
EP
European Patent Office
Prior art keywords
bmp
group
polymer
complex according
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08786481A
Other languages
German (de)
English (en)
Inventor
Gérard Soula
Olivier Soula
Rémi SOULA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adocia SAS
Original Assignee
Adocia SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adocia SAS filed Critical Adocia SAS
Publication of EP2178565A1 publication Critical patent/EP2178565A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1875Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates

Definitions

  • the present invention relates to the formation of novel water-soluble complexes between an amphiphilic polymer and an osteogenic protein belonging to the family of Bone Morphogenetic Proteins, BMPs, physically and chemically stable complexes and thereby improving the physical and chemical stability of BMPs, at the both in vitro and in vivo.
  • BMPs Bone Morphogenetic Proteins
  • OPs Osteogenic Proteins
  • BMPs are expressed as propeptides which, after post-translational processing, have a length of between 104 and 139 residues. They have a great homology of sequences between them and have similar three-dimensional structures. In particular, they have 6 cysteine residues involved in intramolecular disulfide bonds forming a "cysteine knot" (Scheufler C. 2004 J. Mol Biol 1999, 287, 103, Schlunegger MP, J. Mol Biol 1993, 231, 445). Some of them have a 7 th cysteine also involved in an intermolecular disulfide bridge responsible for dimer formation (Scheufler C. Mol Biol 2004 J. 1999; 287:... 103).
  • BMPs In their active form, BMPs assemble into homodimers or even heterodimers as described by Israel et al. (Israel Dl, Growth Factors, 1996, 13 (3-4), 291). Dimeric BMPs interact with BMPR transmembrane receptors (Mundy et al., Growth Factors, 2004, 22 (4), 233). This recognition is at the origin of a cascade of intracellular signaling involving Smad proteins in particular resulting in the activation or repression of target genes. BMPs, with the exception of BMPs 1 and 3, play a direct and indirect role in the differentiation of mesenchymal cells causing their differentiation into osteoblasts (Cheng H., J. Bone and Joint Surgery, 2003,
  • recombinant human BMPs and in particular rhBMP-2 and rhBMP-7, have clearly demonstrated an ability to induce bone formation in vivo in humans and have been approved for certain medical applications.
  • recombinant human BMP-2 dibotermin alfa according to the international nonproprietary name, is formulated in products sold under the name Infuse ® in the US and InductOs ® in Europe. This product is prescribed in the fusion of the lumbar vertebrae and the bone regeneration of the tibia for so-called non-union fractures.
  • the surgical procedure consists first of all, to soak a collagen sponge with a solution of rhBMP-2, then to place the sponge in a hollow cage, LT Cage, previously implanted between the vertebrae.
  • OP-1 Implant Human recombinant BMP-7, eptotermin alpha according to the international nonproprietary name, has the same therapeutic indications as BMP-2 and is the basis of two products: OP-1 Implant for open fractures of the tibia and OP-1 Putty for the fusion of the lumbar vertebrae.
  • OP-1 Implant consists of a powder containing rhBMP-7 and collagen to be taken up in 0.9% saline solution. The paste obtained is then applied to the fracture during a surgical procedure.
  • OP-1 Putty comes in the form of two powders: one containing rhBMP-7 and collagen, the other carboxymethylcellulose (CMC). During surgery, CMC is reconstituted with 0.9% saline and mixed with rhBMP-7 and collagen. The paste thus obtained is applied to the site to be treated.
  • CMC carboxymethylcellulose
  • BMPs are distinguished by their high hydrophobicity and their ability to aggregate, which leads to a very low solubility at physiological pH.
  • BMP-2 these properties have been documented in the studies that have been used in its clinical development. It is poorly soluble in physiological conditions and tends to aggregate (Schmoekel, 2004 J. Orthop.Res.2004, 22 (2), 376, Friess, W., Drug Delivery Systems Based on Collagen, Shaker Verlag, Thesis Aachen Germany 1999, Schwartz DH, Thesis Kunststoff Germany 2005).
  • Abbatiello and Porter Protein Sci., 1997, 6, Suppl 2 99 have shown that BMP-2 in a low ionic strength buffer becomes increasingly insoluble as pH increases beyond 4.5.
  • the precipitation of the protein is observed for a pH greater than 6.5 but also at lower pH in the presence of chloride and / or sulfate ions (pH 5.8 at 50 mM NaCl, and pH 5.5 at 5 mM Na2SO4). has been shown by Friess (Friess, W., Drug Delivery Systems Based on Collagen, Shaker Verlag, Thesis Aachen Germany 1999). The formulation of BMP-2 under physiological conditions is therefore a problem in its own right.
  • the product InFUSE ® had to be formulated at acid pH (acetic acid buffer, pH 4) and in the presence of a surfactant, polysorbate 80 to ensure the solubility and physical stability of rhBMP-2.
  • BMP very large BMP
  • This large amount of BMP to administer involves having to work at high concentrations of BMP in solution, of the order of 1.5 mg / ml. At these concentrations, BMPs aggregate very easily and are therefore not physically stable.
  • the solutions used use acidic buffers and surfactants. From the point of view of the therapeutic application, the use of an acidic solution containing surfactants is problematic.
  • heparin and heparan sulphates are well known for stabilizing growth factors including BMPs since these polysaccharides are endogenous stabilizing molecules (Ruppert et al., J. Biochem 1996, 237, 295). .
  • heparin and heparan sulphates have a very high anti-coagulant and anti-complementary activity and can not therefore be used in a pharmaceutical composition.
  • Hubbell has described a protein grafting approach that involves creating a chemical bond between the protein and a vector to stabilize it in a fibrin-like matrix. This binding is established through an enzyme cleavable fusion protein. This path, reported in the publication Biotechno. Bioeng. 2005, 89, 3, 253, actually helps to physically stabilize the protein by preventing aggregation. However, this route leads to the use of a BMP-2 analogue that has not yet demonstrated its therapeutic efficacy and safety.
  • amphiphilic peptides for the vectorization of growth factors, and in particular BMP-2.
  • These amphiphilic peptides consist of a terminal alkyl chain, a hydrophilic peptide sequence and an epitope allowing adhesion of BMP-2.
  • These peptides are organized in solution to form stick-type macromolecular structures in which the hydrophobic groups are clustered in the core.
  • the amino acids at the periphery make it possible to bring compatibility with the water and the adhesion of the protein.
  • these peptides present an immunological risk because of their complex primary structure.
  • Takaoka et al. have focused on the vectorization of BMP for bone regeneration applications in US6258382. These authors have developed new polymers based on lactic acid and / or glycolic, p-dioxanone, polyethylene glycol to control the release of these proteins. However, these authors do not address any problems related to this growth factor, in terms of physical or chemical stability. In addition, these polymers are not soluble in water but adsorb water to form gels. These polymers, on the other hand, are soluble in organic medium and are solubilized in acetone. The preparation of the polymer-BMP-2 formulation therefore requires the use of an organic solvent, which represents a risk of denaturation of the protein (Nature Biotechnology, 2001, 19, 332).
  • Wyeth discloses hyaluronans modified with a hydrophobic group, benzyl alcohol, for the vectorization of BMPs.
  • the level of hydrophobic group is between 50 and 100% so that the polymer is not soluble in water but can adsorb water.
  • these hygroscopic polymers can not form a water-soluble complex with the protein making it possible to solve the stability problems of the BMPs.
  • Formulations of the same type are also described in EP1454640 in the name of Fidia and Genetics Institute, however the described formulations do not form no complexes, the exemplified polysaccharides are insoluble in water and comprise more than 50% hydrophobic ester groups.
  • Brodbeck et al. use PLAGA for vectorization of BMPs. These polymers are insoluble in water and therefore can not form a water-soluble complex with the protein.
  • the objective of the authors is, contrary to the plaintiff, to insolubilize, in aqueous medium, the BMP in a solid consisting of PLAGA which again requires the use of an organic solvent which represents a risk of denaturation of the protein.
  • CM carboxymethyl
  • B benzylamide
  • S sulfonate
  • the galenic formulation of such proteins intended for bone reconstruction must necessarily meet the requirements of safety of the excipients and to reach these requirements, it is essential to use compounds that are biocompatible but also to limit the amount relative to active ingredient.
  • BMPs selected from the group consisting of BMP-2 (Dibotermine-alpha), BMP-4, BMP-7 (Eptotermin -alpha), BMP-14 and GDF-5 are not satisfactorily resolved.
  • the present invention makes it possible to form a stable water-soluble complex between osteogenic proteins and a biocompatible amphiphilic polymer with a mass / BMP mass ratio of less than 700.
  • This complex makes it possible:
  • This water-soluble complex is formed in a totally aqueous medium without resorting to the use of organic solvent.
  • the present invention therefore relates to a water-soluble, physically and chemically stable, amphiphilic-BMP polymer complex characterized in that:
  • amphiphilic polymers consist of a hydrophilic polysaccharide backbone functionalized with hydrophobic substituents and hydrophilic groups according to the following general formula I:
  • R, R ' identical or different, represent a bond or a chain comprising between 1 and 18 carbons, optionally branched and / or unsaturated comprising one or more heteroatoms, such as O, N and / or S,
  • F, F ' which are identical or different, represent an ester, a thioester, an amide, a carbonate, a carbamate, an ether, a thioether or an amine,
  • X represents a hydrophilic group chosen from the group consisting of carboxylates, sulphates, sulphonates, phosphates, phosphonates,
  • Y represents a hydrophilic group chosen from the group consisting of sulphates, sulphonates and phosphates of phosphonates,
  • Hy represents a hydrophobic group selected from the group consisting of: linear or branched C8 to C30 alkyls, optionally unsaturated and / or containing one or more heteroatoms, such as O, N or S. alkylaryls or linear arylalkyls or branched C8 to C18, optionally unsaturated and / or optionally containing one or more heteroatoms, such as O, N or S. o optionally unsaturated C8 to C30 polycycles, and / or optionally containing one or more heteroatoms, such as O, N or S, o excluding benzylamine. • n and o are between 1 and 3,
  • H represents the mole fraction of hydrophobic unit with respect to a saccharide unit of between 0.01 and 0.5
  • X represents the mole fraction of hydrophilic groups with respect to a saccharide unit, between 0 and 2.0.
  • Y represents the mole fraction of hydrophilic groups relative to a saccharide unit, between 0 and 0.5.
  • ⁇ * BMP is selected from the group of therapeutically active BMPs (Bone Morphogenetic Proteins),
  • the polymer / BMP mass ratio is less than or equal to 700.
  • the polysaccharide is chosen from polysaccharides of general formula I, as defined above, in which X represents a carboxylate.
  • the polysaccharide according to the invention is characterized in that the group R is chosen from the following groups:
  • it relates to a complex characterized in that the polymer / BMP mass ratio is less than or equal to 600. In one embodiment, it relates to a complex characterized in that the polymer / BMP mass ratio is less than or equal to 500.
  • the concentration of therapeutic BMP is about 1.5 mg / ml in solution.
  • compositions comprising 1.0 g / ml of amphiphilic polymer are obtained. From such polymer concentrations, the formulations have a physicochemical behavior which is no longer suitable for pharmaceutical application, for example in terms of viscosity.
  • BMP is chosen from the group consisting of BMP-2 (Dibotermin-alpha), BMP-4, BMP-7 (eptotermin alpha), BMP-14 and GDF-5. .
  • the substituents of the amphiphilic polymers are distributed in a controlled or statistical manner.
  • the polymers having a controlled distribution of substituents there may be mentioned, for example, alternating block copolymers and copolymers.
  • the invention also relates to an amphiphilic polymer-BMP complex characterized in that the polymer is chosen from polymers whose substituents are randomly distributed.
  • the polysaccharides are selected from the group consisting of hyaluronans, alginates, chitosans, galacturonans, chondroitin sulfate, dextrans, celluloses.
  • the group of celluloses consists of celluloses functionalized with acids such as carboxymethylcellulose.
  • the group of dextrans consists of dextrans functionalized with acids such as carboxymethyldextran.
  • the polysaccharides are selected from the group consisting of hyaluronans, alginates, chitosans.
  • R CH 2 COOH or H, Carboxymethyl Dextran
  • the polysaccharide may have an average degree of polymerization m of between 10 and 10,000.
  • it has an average degree of polymerization m of between 10 and 1000.
  • it has an average degree of polymerization m of between 10 and 500.
  • the invention also relates to an amphiphilic polymer-BMP complex characterized in that the hydrophobic group Hy is chosen from the group consisting of hydrophobic amino acids of natural origin, chosen from the group consisting of tryptophan, tyrosine, phenylalanine, leucine or isoleucine or their derivatives alcohols, esters, decarboxylates or amides.
  • the hydrophobic group Hy is chosen from the group consisting of hydrophobic amino acids of natural origin, chosen from the group consisting of tryptophan, tyrosine, phenylalanine, leucine or isoleucine or their derivatives alcohols, esters, decarboxylates or amides.
  • the invention also relates to an amphiphilic polymer-BMP complex characterized in that the hydrophobic group Hy is tryptophan or an ester or amide derivative of tryptophan.
  • Tryptophan derivatives include tryptophanol, tryptophanamide and 2-indole-ethylamine.
  • amphiphilic-BMP polymer complex according to the invention is reversible.
  • the polymers used are synthesized according to the techniques known to those skilled in the art or purchased from suppliers such as, for example, Sigma-Aldrich, NOF Corp. or CarboMer Inc.
  • the BMPs are chosen from recombinant human BMPs, obtained according to the techniques known to those skilled in the art or purchased from suppliers such as, for example, Research Diagnostic Inc. (USA).
  • BMP is a very hydrophobic growth factor. At physiological pH, the hydrophobicity of this protein leads to aggregation followed by precipitation.
  • the amphiphilic polymer-BMP complexes according to the invention make it possible to physically stabilize this protein in solution at physiological pH.
  • physical or chemical degradation is meant any event of a physical nature, such as aggregation, or chemical, such as proteolysis, leading to a decrease in the biological activity of the protein.
  • the physical or chemical stabilization of the protein is understood to mean the action of maintaining the biological activity of the protein.
  • the stability of the complex is followed by measuring the stability of the BMP.
  • a test for the detection of the amphiphilic polymer-BMP complex by gel coelectrophoresis "A thermal stability test of the BMP in the presence of cells in the amphiphilic-BMP polymer complex carried out at 37 ° C. and at neutral pH; and a physical stabilization test of the BMP in said complex at physiological pH.
  • the test for the detection of the amphiphilic-BMP polymer complex by coelectrophoresis is based on the displacement of ions under the effect of an electric field.
  • the anionic complexes migrate towards the anode and the cationic complexes move towards the cathode.
  • the proteins are transferred by capillarity onto a PVDF membrane and revealed by an antibody specific for the protein recognized by a second antibody coupled to peroxidase.
  • the protein alone does not migrate, the protein complexed with the amphiphilic polymer migrates towards the anode or the cathode as a function of the overall charge of the complex.
  • the thermal stability test of the BMP in the presence of cells is carried out at 37 ° C. - neutral pH and consists in depositing a solution of BMP in a culture medium containing C2C12 myoblasts.
  • the concentration of BMP in solution is determined by ELISA after the deposition (J2) and after 5 days of culture (J7).
  • the biological activity of BMP is evaluated by assaying the activity of alkaline phosphatase produced between D2 and D7 during the differentiation of myoblasts into osteoblasts.
  • the physical stabilization test of a BMP at physiological pH is based on the physiological pH of a protein solution by exchange of the original buffer of the protein, generally at acidic pH, with a solution of
  • the amphiphilic-BMP polymer complex according to the invention is formed by the aqueous solution of a BMP and an amphiphilic polymer at physiological pH in the absence of any organic solvent capable of denaturing. the protein.
  • the formation of the amphiphilic polymer-BMP complex is spontaneous and does not involve a covalent bond between the BMP and the amphiphilic polymer. This association is by weak bonds which are essentially hydrophobic interactions and ionic interactions. This complex formation does not require any organic solvent.
  • One of the problems solved by the invention is an increased stabilization of the protein and therefore the maintenance of the biological activity in vitro and in vivo.
  • This biological activity can be evaluated by various tests demonstrating the ability of a BMP to differentiate myoblasts into osteoblasts.
  • This differentiation can be measured by:
  • the invention also relates to a therapeutic composition characterized in that it comprises an amphiphilic polymer-BMP complex according to the invention.
  • composition that can be used in human or veterinary medicine.
  • the pharmaceutical composition according to the invention is preferably a composition with local application which may be in the form of a solute, a gel, a cream, a lyophilisate, a powder or a paste .
  • composition according to the invention when in the form of a paste, it is for example obtained from products such as carboxymethylcelluloses (CMC), tricalcium phospate and collagen.
  • CMC carboxymethylcelluloses
  • tricalcium phospate and collagen.
  • excipients may be used in this invention to adjust the formulation parameters such as a pH adjusting buffer, an isotonicity adjusting agent, preservatives such as methyl parahydroxybenzoate, propyl parahydroxybenzoate, m-cresol, or phenol or an antioxidant such as L-lysine hydrochloride.
  • the therapeutic composition is characterized in that it allows an administration of approximately 1.5 mg / ml of BMP.
  • the present invention also relates to the use of an amphiphilic polymer-BMP complex according to the invention for the preparation of a therapeutic composition intended to induce bone formation in vivo.
  • This amphiphilic polymer is synthesized from a carboxymethyl-dextran having a degree of carboxymethyl substitution per saccharide unit of 1.0 and an average molar mass of 60 kg / mol.
  • the ethyl ester of tryptophan is grafted onto the acids of this polymer according to a conventional method of organic solvent coupling employing ethyl chloroformate and N-methyl morpholine.
  • the polymer is purified by ultrafiltration.
  • the final polymer is characterized by: x a degree of substitution at TrpOEt per saccharide unit of 0.45, determined by 1 H NMR in D 2 O / NaOD.
  • This amphiphilic polymer is obtained by basic hydrolysis of PA 1. 1N sodium hydroxide (3.79 ml) is added to an aqueous solution of amphiphilic polymer 1 (64 ml at 31 mg / ml) to reach pH 12.7. The resulting solution is stirred overnight at room temperature. The polymer is purified by dialysis against water (NaCl 0.9% and H 2 O). The final polymer is characterized by: x a degree of substitution in TrpONa per saccharide unit of 0.45, determined by 1 H NMR in D 2 O / NaOD.
  • This amphiphilic polymer is synthesized according to Example 1 from a carboxymethyl dextran having a degree of carboxymethyl substitution per saccharide unit of 1.0 and an average molecular weight of 60 kg / mol.
  • the final polymer is characterized by: x a degree of substitution in PheOEt per saccharide unit of 0.45, determined by 1 H NMR in D 2 O / NaOD.
  • This amphiphilic polymer is synthesized according to Example 1 from a carboxymethyl dextran having a degree of carboxymethyl substitution per saccharide unit of 1.0 and an average molecular weight of 60 kg / mol.
  • the final polymer is characterized by: x a degree of substitution in TyrOMe per saccharide unit of 0.45, determined by 1 H NMR in D 2 O / NaOD.
  • This amphiphilic polymer is synthesized from a dextransuccinic acid having a degree of substitution of succinic acid per saccharide unit of 1.0 and an average molar mass of 70 kg / mol obtained according to the article by (Sanchez-Chaves, Manuel et al. , Polymer 1998, 39 (13), 2751-2757.).
  • the ethyl ester of tryptophan is grafted onto the acids of this polymer according to a conventional method of organic solvent coupling employing ethyl chloroformate and N-methyl morpholine. After dilution of the reaction medium in water and adjusting the pH to 7 by adding 1N NaOH, the polymer is purified by ultrafiltration.
  • the final polymer is characterized by: x a degree of substitution at TrpOEt per saccharide unit of 0.45, determined by 1 H NMR in D 2 O / NaOD.
  • This amphiphilic polymer is synthesized according to Example 1 from a carboxymethyl dextran having a degree of carboxymethyl substitution per saccharide unit of 1.0 and an average molecular weight of 60 kg / mol.
  • the final polymer is characterized by
  • the BMP-2 / PA solution is diluted to 20 th in migration buffer (tris-acetate solution at pH 7). 2 ⁇ l of the diluted solution are then added to 8 ⁇ l of water and 7 ⁇ l of loading buffer (glycerol, tris-acetate and bromophenol blue in water). These 17 .mu.l containing 10 ng of BMP-2 and 5 .mu.g of PA are deposited in a well of a 0.8% agarose gel. The electrophoresis tank is closed and the generator is set at 30V. The migration lasts 1 hour.
  • migration buffer tris-acetate solution at pH 7
  • loading buffer glycerol, tris-acetate and bromophenol blue in water
  • the gel is transferred to a PVDF membrane placed on the anode under an electric field (20 minutes, 15V, Bio-Rad Trans-Blot SD).
  • the membrane is saturated with skimmed milk for 1 hour at room temperature and then incubated with primary antibodies of BMP-2 (overnight at 4 ° C) and finally incubated with secondary antibodies, Rabbit anti goat HRP (1 hour at room temperature). ambient).
  • the revelation is by reaction of HRP on Opti-4CN. Revelation is stopped when the staining is sufficient since the reaction product absorbs in the visible.
  • BMP-2 forms a complex with PA
  • the complex is detected as a single spot 0.7 cm from the deposit (migration to the anode).
  • BMP-2 is alone or does not complex with PA, it is detected at the depot and therefore has not migrated.
  • Each solution is then diluted 1/10 with a solution of 10 mM PBS at pH 7.4 and 300 mOsm and then reconcentrated by centrifugation on a Microcon cell (YM10, 10 kD, 500 ⁇ l). This operation is repeated twice. At the end of these three washes, each solution is centrifuged and the concentration of BMP-2 in the supernatant is determined by ELISA assay.
  • Part of the BMP-2 solution at 0.084 mg / ml is not washed to serve as a control.
  • Another part of the BMP-2 solution at 0.084 mg / ml undergoes three cycles of washing against a solution of 1 mM HCl (pH 3). This buffer is known to stabilize BMP-2 but is not compatible with a pharmaceutical application.
  • the ELISA assay of the BMP-2 solution that has not been washed gives a BMP-2 concentration of 83.4 ⁇ g / ml. This value corresponds to 100% of BMP-2.
  • concentrations determined by ELISA of the other solutions after the three washes against PBS are related to this value of the unwashed BMP-2.
  • the percentages of BMP-2 found are summarized in the following table.
  • APs capable of forming a complex with BMP-2 render BMP-2 stable at physiological pH.
  • BMP-2 is no longer present in solution at physiological pH.
  • the protein is no longer present in solution. Stability and biological activity of BMP-2 in the presence of Amphiphilic Polymer in culture medium at 37 ° C. and at physiological pH
  • the C2C12 cells are inoculated (7000 cells / well) in 96-well culture plates containing DMEM at 10% FCS and 1% ATB and are then incubated for 24 hours.
  • the medium is replaced by DMEM at 2% FCS and 1% ATB for 24 hours.
  • the medium is replaced by DMEM at 2% FCS and 1% ATB supplemented with a solution of BMP-2 alone (0.3 ⁇ g / ml) or a solution of the BMP-2 / PA 1 complex (0.3 / 150 ⁇ g / ml). ml, ratio 1/500).
  • the complex is prepared by dilution of BMP-2 and PA separately in DMEM at 2% FCS and 1% ATB.
  • the protein / PA 1 mixture is allowed to stand for 1 h before deposition.
  • the cells are washed twice with PBS and then lysed with 50 ⁇ l of lysis buffer and undergo 3 cycles of freezing (-80 ° C.) / thawing (37 ° C.).
  • the enzymatic activity of alkaline phosphatase is measured in the lysates on a substrate, p-nitrophenyl phosphate which absorbs at 405 nm. This activity is reduced to the amount of protein measured by microBCA and is therefore expressed in nmol pnP / min. ⁇ g of protein.
  • BMP-2 is stabilized by the complex under living conditions beyond 5 days whereas it is not stable alone over such a period.
  • BMP-2 As the activity of BMP-2 is revealed by a slow process of cell differentiation, the BMP-2 complex is more active in vitro than BMP-2 alone.
  • thermolysin represents 25% of the protein (mass / mass).
  • the revelation is done by means of a westem-blot made from an SDS-15 gel. 7 .mu.l of each sample (containing 65 ng of BMP-2) are mixed with 7 .mu.l of Laemli loading buffer containing SDS. The samples are then denatured for 10 min at 95 ° C. and then deposited on SDS-15% gel. As a control, equivalent amounts of BMP-2 (65 ng) and Thermolysin (16.25 ng) are also deposited on the gel. The electrophoresis tank is closed and the generator is set at 125V. The migration lasts 1 hour 15. After migration, the gel is transferred to a PVDF membrane by a BioRad transfer system for 1 h at 100 volts.
  • the membrane is then saturated with skimmed milk for 1 hour at room temperature and then incubated with primary anti-BMP-2 antibodies (overnight at 4 ° C) and finally incubated with secondary antibodies coupled to HRP (1 hour at ambient temperature).
  • the revelation is by reaction of the HRP on Opti-4CN. Revelation is stopped when the staining is sufficient since the reaction product absorbs in the visible.
  • BMP-2 has an isoelectric point of 8.5, which means that, at a physiological pH of 7.4, BMP-2 is close to its minimum solubility. This can be demonstrated by an experiment to neutralize an acid solution of BM P-2.
  • a clear solution of BMP-2 at 1, 5 mg / ml is prepared in acid buffer (Infuse buffer, pH 4.5). This solution is neutralized by addition of a phosphate buffer to reach a pH of 7.4 (final BMP-2 concentration of 1.2 mg / mL). At pH 7.4, BMP-2 precipitated and the aggregates formed are visible. Neutralization led to a suspension.
  • a clear solution of BMP-2 at 1, 5 mg / ml is prepared in acid buffer (Infuse buffer, pH 4.5). To this solution is added lyophilized PA2 to reach a PA2 concentration of 75 mg / mL. This BMP-2 / PA2 complex solution is then neutralized by adding a phosphate buffer to reach a pH of 7.4 (final concentration of BMP-2 of 1.2 mg / mL and 60 mg / mL of PA2). . At pH 7.4, BMP-2 is fully soluble and no aggregates are visible. The solubility of BMP-2 at physiological pH in the form of BMP-2 / PA2 complex is therefore greatly increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Rheumatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

L'invention concerne un complexe polymère amphiphile-BMP, stable physiquement et chimiquement, soluble dans l'eau, caractérisé en ce que: les polymères amphiphiles sont constitués d'un squelette polysaccharide hydrophile fonctionnalisé par des substituants hydrophobes et des groupements hydrophiles la BMP est choisie dans le groupe des BMP (Bone morphogenetic Proteins) thérapeutiquement actives, le ratio massique polymère/BMP est inférieur ou égal à 700. L'invention concerne également le procédé de préparation du complexe polymère amphiphile-BMP en milieu aqueux et en absence de solvant organique susceptible de dénaturer la protéine. L'invention comprend également les compositions thérapeutiques de complexe polymère amphiphile-BMP selon l'invention.

Description

COMPLEXES ENTRE UN POLYMERE AMPHIPHILE ET UNE PROTEINE OSTEOGENIQUE APPARTENANT A LA FAMILLE DES BMPS
La présente invention concerne la formation de complexes originaux hydrosolubles entre un polymère amphiphile et une protéine ostéogénique appartenant à la famille des Bone Morphogenetic Proteins, BMPs, complexes stables physiquement et chimiquement et qui de ce fait améliorent la stabilité physique et chimique des BMPs, à la fois in vitro et in vivo.
Les Bone Morphogenetic Proteins (BMPs) sont des facteurs de croissance impliqués dans les mécanismes d'ostéoinduction. Les BMPs appelées également Osteogenic Proteins (OPs) ont été initialement caractérisées par Urist en 1965 (Urist MR. Science 1965; 150, 893). Ces protéines isolées à partir d'os cortical ont la capacité d'induire la formation d'os chez un grand nombre d'animaux (Urist MR. Science 1965; 150, 893).
Les BMPs sont exprimées sous forme de propeptides qui, après maturation post-traductionnelle, ont une longueur comprise entre 104 et 139 résidus. Elles possèdent une grande homologie de séquences entre elles et ont des structures tridimensionnelles similaires. En particulier, elles possèdent 6 résidus cystéine impliqués dans des ponts disulfure intramoléculaires formant un « cystéine knot » (Scheufler C. 2004 J. Mol. Biol. 1999; 287, 103 ; Schlunegger MP, J. Mol. Biol. 1993; 231 , 445). Certaines d'entre elles possèdent une 7e cystéine impliquée également dans un pont disulfure intermoléculaire à l'origine de la formation du dimère (Scheufler C. 2004 J. Mol. Biol. 1999; 287:103.).
Sous leur forme active, les BMPs s'assemblent en homodimères, voire en hétérodimères comme cela a été décrit par Israël et al. (Israël Dl, Growth Factors. 1996; 13(3-4), 291 ). Les BMPs dimériques interagissent avec les récepteurs transmembranaires de type BMPR (Mundy et al. Growth Factors, 2004, 22 (4), 233). Cette reconnaissance est à l'origine d'une cascade de signalisation intracellulaire impliquant notamment les protéines Smad aboutissant ainsi à l'activation ou à la répression des gènes cibles. Les BMPs, à l'exception des BMP 1 et 3, jouent un rôle direct et indirect sur la différenciation des cellules mésenchymateuses provoquant leur différenciation en ostéoblastes (Cheng H., J. Bone and Joint Surgery, 2003,
85A 1544-1552). Elles possèdent en outre des propriétés de chimiotactisme et induisent la prolifération, la différentiation et l'angiogénèse.
Certaines BMPs recombinantes humaines et notamment la rhBMP-2 et la rhBMP-7 ont clairement montré une capacité à induire la formation d'os in vivo chez l'homme et ont été approuvées pour certaines applications médicales. Ainsi, la BMP-2 recombinante humaine, dibotermine alfa selon la dénomination commune internationale, est formulée dans les produits commercialisés sous le nom de InFUSE® aux Etats-Unis et de InductOs® en Europe. Ce produit est prescrit dans la fusion des vertèbres lombaires et la régénération osseuse du tibia pour les fractures dites non- union. Dans le cas d'InFUSE® pour la fusion des vertèbres lombaires, l'intervention chirurgicale consiste tout d'abord, à imbiber une éponge de collagène avec une solution de rhBMP-2, puis à placer l'éponge dans une cage creuse, LT Cage, préalablement implantée entre les vertèbres.
La BMP-7 recombinante humaine, eptotermine alpha selon la dénomination commune internationale, a les mêmes indications thérapeutiques que la BMP-2 et constitue la base de deux produits : OP- 1 Implant pour les fractures ouvertes du tibia et OP-1 Putty pour la fusion des vertèbres lombaires. OP- 1 Implant se compose d'une poudre contenant de la rhBMP-7 et du collagène à reprendre dans une solution saline à 0,9%. La pâte obtenue est ensuite appliquée au niveau de la fracture lors d'une intervention chirurgicale. OP-1 Putty se présente sous la forme de deux poudres : l'une contenant la rhBMP-7 et du collagène, l'autre de la carboxyméthylcellulose (CMC). Au cours d'une intervention chirurgicale, la CMC est reconstituée avec une solution saline 0,9% et mélangée avec la rhBMP-7 et le collagène. La pâte ainsi obtenue est appliquée sur le site à traiter.
Parmi toutes les protéines actuellement commercialisées, les
BMPs se singularisent par leur forte hydrophobicité et leur capacité à s'agréger ce qui conduit à une très faible solubilité à pH physiologique. Dans le cas de la BMP-2, ces propriétés ont été documentées dans le cadre des études ayant servies à son développement clinique. Elle est peu soluble en conditions physiologiques et a tendance à s'agréger (Schmoekel, 2004 J. Orthop. Res. 2004; 22(2), 376, Friess, W., Drug Delivery Systems Based on Collagen, Shaker Verlag, Thesis Aachen Germany 1999, Schwartz DH, Thesis Mϋnchen Germany 2005). Ainsi, Abbatiello et Porter (Protein Sci. 1997, 6,Suppl 2 99) ont montré que la BMP-2 dans un tampon de faible force ionique devient de plus en plus insoluble lorsque le pH croît au-delà de 4.5. La précipitation de la protéine est observée pour un pH supérieur à 6,5 mais également à des pH moins élevés en présence d'ions chlorures et/ou sulfates (pH 5.8 à 50 mM NaCI, and pH 5.5 à 5 mM Na2SO4) comme cela a été montré par Friess (Friess, W., Drug Delivery Systems Based on Collagen, Shaker Verlag, Thesis Aachen Germany 1999). La formulation de la BMP-2 en conditions physiologiques est donc un problème à part entière.
Un autre exemple de ce problème d'instabilité physique des BMPs est mis en évidence par Biopharm dans le brevet US2004132653 avec une protéine de la sous-classe de la BMP-14, le GDF-5 pour Growth and Differentiation Factor, aussi appelé MP-52. Les propriétés du GDF-5 sont très similaires à celles de la BMP-2 et il a été constaté une instabilité du lyophilisât qui a tendance à se condenser et à ne pas pouvoir être redissout totalement lors de la reconstitution de la solution. Ces deux phénomènes sont liés à une agrégation irréversible des protéines. Pour répondre à ce problème, le mannitol est ajouté avant lyophilisation et permet ainsi de prévenir ces problèmes à l'état solide. Cependant, le mannitol n'apporte qu'une stabilisation faible in vitro et ne prévient pas l'instabilité physique in vivo.
Compte tenu des contraintes imposées par les propriétés physiques de ces facteurs de croissance, le produit InFUSE® a du être formulé à pH acide (tampon acide acétique, pH 4) et en présence d'un tensio-actif, le polysorbate 80 pour assurer la solubilité et la stabilité physique de la rhBMP-2.
Or, les fabricants de médicaments à base de protéines thérapeutiques sont extrêmement concernés par les problèmes de stabilité physique des protéines. En effet, la formation d'agrégats de BMP peut être à l'origine : • d'une diminution de la quantité des espèces biologiquement actives,
• d'une modification de la bioactivité ou de la vitesse d'absorption,
• d'une réponse immunologique potentielle vis-à-vis de ces agrégats,
• d'une apparence indésirable due à une opalescence du produit,
• d'une obstruction des équipements de filtration et des dispositifs d'injection.
Pour obtenir l'effet thérapeutique souhaité, il est nécessaire d'employer des doses thérapeutiques de BMP très importantes, supérieures d'un facteur 10 000 à la dose physiologique. Ceci est en particulier le cas dans le traitement de la fusion vertébrale avec un produit tel qu'InFUSE® puisque plusieurs milligrammes de rhBMP-2 sont administrés. Cette forte quantité de BMP à administrer implique de devoir travailler à des concentrations élevées de BMP en solution, de l'ordre de 1.5 mg/ml. A ces concentrations, les BMPs s'agrègent très facilement et ne sont donc pas stables physiquement. Les solutions apportées emploient des tampons acides et des tensio-actifs. Or du point de vue de l'application thérapeutique, l'emploi d'une solution acide et contenant des tensio-actifs est problématique.
Plusieurs approches ont été développées pour répondre à ces problèmes de stabilité physique et chimique.
Tout d'abord, l'héparine et les héparanes sulfates sont bien connus pour stabiliser les facteurs de croissance dont les BMPs puisque ces polysaccharides sont des molécules endogènes de stabilisation (Ruppert et al. Eur. J. Biochem. 1996, 237, 295). Cependant, l'héparine et les héparanes sulfates ont une très forte activité anti-coagulante et anti-complémentaire et ne peuvent donc pas être employés dans une composition pharmaceutique.
Hubbell a décrit une approche de greffage de la protéine qui consiste à créer une liaison chimique entre la protéine et un vecteur afin de la stabiliser dans une matrice du type fibrine. Cette liaison est établie par le biais d'une protéine de fusion clivable par les enzymes. Cette voie, rapportée dans la publication Biotechno. Bioeng. 2005, 89, 3, 253, permet effectivement de stabiliser physiquement la protéine en empêchant l'agrégation. Cependant, cette voie conduit à employer un analogue de la BMP-2 qui n'a pas démontré, à ce jour, son efficacité thérapeutique et son innocuité.
Dans le brevet US20050209145, Stupp et al. décrivent des peptides amphiphiles pour la vectorisation de facteurs de croissance, et en particulier de BMP-2. Ces peptides amphiphiles sont constitués d'une chaîne alkyle terminale, d'une séquence peptidique hydrophile et d'un épitope permettant l'adhésion de la BMP-2. Ces peptides s'organisent en solution pour former des structures macromoléculaires de type bâtonnet dans lesquelles les groupements hydrophobes se regroupent au cœur. Les aminoacides en périphérie permettent d'apporter la compatibilité avec l'eau et l'adhésion de la protéine. Cependant, ces peptides présentent un risque immunologique à cause de leur structure primaire complexe.
Takaoka et al. se sont intéressés à la vectorisation de la BMP pour des applications de régénération osseuse dans le brevet US6258382. Ces auteurs ont mis au point de nouveaux polymères à base d'acide lactique et/ou glycolique, de p-dioxanone, de polyéthylène glycolique permettant de contrôler la libération de ces protéines. Cependant, ces auteurs n'adressent aucun des problèmes liés à ce facteur de croissance, en terme de stabilité physique ou chimique. De plus, ces polymères ne sont pas solubles dans l'eau mais adsorbent l'eau pour former des gels. Ces polymères sont en revanche solubles en milieu organique et sont solubilisés dans l'acétone. La préparation de la formulation polymère-BMP-2 nécessite donc l'emploi d'un solvant organique, ce qui représente un risque de dénaturation de la protéine (Nature Biotechnology, 2001 , 19, 332).
Dans le brevet US2005/0287135, Wyeth décrit des hyaluronanes modifiés par un groupement hydrophobe, l'alcool benzylique, pour la vectorisation de BMPs. Dans ces polymères, le taux de groupement hydrophobe est compris entre 50 et 100% de telle sorte que le polymère n'est pas soluble dans l'eau mais peut adsorber de l'eau. Dans ce cas, ces polymères hygroscopiques ne peuvent former un complexe hydrosoluble avec la protéine permettant de résoudre les problèmes de stabilité des BMPs. Des formulations du même type sont également décrites dans EP1454640 au nom de Fidia et Genetics Institute, cependant les formulations décrites ne forment pas de complexes, les polysaccharides exemplifiés ne sont pas solubles dans l'eau et comprennent plus de 50 % de groupe esters hydrophobes.
Dans le brevet NZ530701 , Brodbeck et al. emploient des PLAGA pour la vectorisation de BMPs. Ces polymères sont insolubles dans l'eau et ne peuvent donc pas former de complexe hydrosoluble avec la protéine. L'objectif des auteurs est, à l'inverse de la demanderesse, d'insolubiliser, en milieu aqueux, la BMP dans un solide constitué de PLAGA ce qui là encore requiert l'emploi d'un solvant organique lequel représente un risque de dénaturation de la protéine.
A titre d'exemple, on peut citer les travaux de Blanquaert et al. et Barritault et al. publiés sous le titre « Effects of heparin-like polymers associated with growth factors on osteoblast prolifération and phenotype expression », 1998, J. Biomed. Mater. Res., vol 44, p. 63-72, décrivent l'utilisation de dextrans modifiés par de la benzylamine supposés interagir avec différents facteurs de croissance. Les polymères sont décrits pour avoir une activité thérapeutique par eux-mêmes. Ces auteurs revendiquent également que certains de ces dextrans et plus particulièrement les dextrans subsitués par des groupes carboxyméthyles (CM), benzylamides (B) et sulfonates (S), (composés CMDBS) permettraient de stimuler la reconstruction osseuse sans ajout de facteur de croissance (1995, Bone, 17, 6, 499-506).
Selon une démarche similaire, dans le brevet FR2794649, Blanchat et al. décrivent des dextrans modifiés par de la benzylamine et des sulfates insolubilisés par réticulation des chaînes de polymères à l'aide de triméthylphosphate. Ces éponges en milieu aqueux servent de réservoirs de BMP puisqu'ils sont capables de retenir cette protéine. Les polymères amphiphiles avant réticulation forment des complexes avec la BMP-2 comme démontré dans un essai d'interaction par électrophorèse sur gel. Cependant, les ratios massiques polymére/BMP utilisés sont très élevés, supérieurs à 5 000. Ces ratios élevés sont employés en raison d'une interaction polymère/protéine très faible qui conduit à la dissociation du complexe en solution. D'ailleurs, la stabilisation chimique ou physique de la BMP n'est pas documentée. De tels ratios sont rédibitoires pour le développement d'un produit pharmaceutique. II est également connu que la benzylamine peut présenter une certaine toxicité et peut nuire à la biocompatibilité des polymères décrits dans les deux brevets cités précédemment.
La formulation galénique de telles protéines destinées à la reconstruction osseuse doit obligatoirement répondre à des impératifs d'innocuité des excipients et pour atteindre ces impératifs, il est indispensable d'utiliser des composés qui soient biocompatibles mais également d'en limiter la quantité par rapport au principe actif.
Ainsi le problème de la mise au point de formulations injectables permettant de solubiliser et de stabiliser les protéines ostéogéniques comme les BMPs choisies dans le groupe constitué par la BMP-2 (Dibotermine-alpha), la BMP-4, la BMP-7 (Eptotermine-alpha), la BMP-14 et le GDF-5 n'est pas résolu de façon satisfaisante.
La présente invention permet de former un complexe hydrosoluble stable entre les protéines ostéogéniques et un polymère amphiphile biocompatible à un ratio massique polymère/BMP inférieur à 700. Ce complexe permet :
• d'éviter l'agrégation des BMPs qui a lieu en raison de leur hydrophobicité à pH physiologique in vitro et in vivo,
• de stabiliser les BMPs en présence de cellules à 37°C.
Ce complexe hydrosoluble est formé en milieu totalement aqueux sans recourir à l'usage de solvant organique.
La présente invention concerne donc un complexe polymère amphiphile-BMP, stable physiquement et chimiquement, soluble dans l'eau, caractérisé en ce que :
<* les polymères amphiphiles sont constitués d'un squelette polysaccharide hydrophile fonctionnalisé par des substituants hydrophobes et des groupements hydrophiles selon la formule générale I, suivante :
R, R' identiques ou différents représentent une liaison ou une chaîne comprenant entre 1 et 18 carbones, éventuellement branchée et/ou insaturée comprenant un ou plusieurs hétéroatomes, tels que O, N ou/et S,
F, F' identiques ou différents représentent un ester, un thioester, un amide, un carbonate, un carbamate, un éther, un thioéther ou une aminé,
X représente un groupement hydrophile choisi dans le groupe constitué des carboxylates, des sulfates, des sulfonates, des phosphates, des phosphonates,
Y représente un groupement hydrophile choisi dans le groupe constitué des sulfates, des sulfonates, des phosphates des phosphonates,
Hy représente un groupement hydrophobe choisi dans le groupe constitué par : o les alkyles linéaires ou ramifiés en C8 à C30, éventuellement insaturés et/ou contenant un ou plusieurs hétéroatomes, tels que O, N ou S. o les alkylaryles ou un arylalkyles linéaires ou ramifiés en C8 à C18, éventuellement insaturés et/ou contenant éventuellement un ou plusieurs hétéroatomes, tels que O, N ou S. o les polycycles en C8 à C30 éventuellement insaturé, et/ou contenant éventuellement un ou plusieurs hétéroatomes, tels que O, N ou S, o à l'exclusion de la benzylamine. • n et o sont compris entre 1 et 3,
• h représente la fraction molaire de motif hydrophobe par rapport à une unité saccharidique comprise entre 0.01 et 0.5
• x représente la fraction molaire de groupements hydrophiles par rapport à une unité saccharidique, comprise entre 0 et 2.0. « y représente la fraction molaire de groupements hydrophiles par rapport à une unité saccharidique, comprise entre 0 et 0.5.
<* la BMP est choisie dans le groupe des BMPs (Bone Morphogenetic Proteins) thérapeutiquement actives,
<* le ratio massique polymère/BMP est inférieur ou égal à 700.
Dans un mode de réalisation, dans le complexe selon l'invention le polysaccharide est choisi parmi les polysaccharides de formule générale I, telle que précédemment définie, dans laquelle y =0.
Dans un mode de réalisation, dans le complexe selon l'invention le polysaccharide est choisi parmi les polysaccharides de formule générale I, telle que précédemment définie, dans laquelle X représente un carboxylate.
Dans un mode de réalisation, dans le complexe selon l'invention le polysaccharide selon l'invention est caractérisé en ce que le groupe R est choisi dans les groupes suivants :
Dans un mode de réalisation, elle concerne un complexe caractérisé en ce que le ratio massique polymère/BMP est inférieur ou égal à 600. Dans un mode de réalisation, elle concerne un complexe caractérisé en ce que le ratio massique polymère/BMP est inférieur ou égal à 500.
La concentration de BMP d'usage thérapeutique est d'environ 1.5 mg/ml en solution. Lorsque le ratio est supérieur à 700, on obtient des compositions comprenant 1.0 g/ml de polymère amphiphile. A partir de telles concentrations en polymère, les formulations ont un comportement physicochimique qui n'est plus adapté à une application pharmaceutique, par exemple au niveau de la viscosité.
Elle concerne un complexe caractérisé en ce que la BMP est choisie dans le groupe constitué par la BMP-2 (Dibotermine-alpha), la BMP-4, la BMP-7 (eptotermine alpha), la BMP-14 et le GDF-5.
Les substituants des polymères amphiphiles sont répartis de façon contrôlée ou statistique. Parmi les polymères ayant une répartition contrôlée des substituants, on peut citer, par exemple, les copolymères à blocs et les copolymères alternés.
Copolymère statistique
* Monomer Monomer Monomer Monomer Monomer Monomer — *
Hydrophobe Hydrophobe Hydrophobe
Copolymère à blocs
* Monomer Monomer Monomer Monomer Monomer Monomer — *
Hydrophobe Hydrophobe Hydrophobe
Copolymère alterné
* Monomer Monomer Monomer Monomer Monomer Monomer — *
Hydrophobe Hydrophobe Hydrophobe Ainsi dans un mode de réalisation, l'invention concerne également un complexe polymère amphiphile-BMP caractérisé en ce que le polymère est choisi parmi les polymères dont les substituants sont répartis de façon statistique.
Dans un mode de réalisation, les polysaccharides sont choisis dans le groupe constitué par les hyaluronanes, les alginates, les chitosans, les galacturonanes, la chondroitin-sulfate, les dextrans, les celluloses.
Le groupe des celluloses est constitué des celluloses fonctionnalisées par des acides comme la carboxyméthylcellulose.
Le groupe des dextrans est constitué des dextrans fonctionnalisés par des acides comme le carboxyméthyldextran.
Dans un mode de réalisation, les polysaccharides sont choisis dans le groupe constitué par les hyaluronanes, les alginates, les chitosans.
Ces différents polysaccharides peuvent être représentés comme suit :
Galacturonane
Hyaluronane
R = H, Dextran
R = CH2COOH ou H, Carboxymethyl Dextran
Alginate
Le polysaccharide peut avoir un degré de polymérisation moyen m compris entre 10 et 10000.
Dans un mode de réalisation, il a un degré de polymérisation moyen m compris entre 10 et 1000.
Dans un autre mode de réalisation, il a un degré de polymérisation moyen m compris entre 10 et 500.
Dans un mode de réalisation, l'invention concerne également un complexe polymère amphiphile-BMP caractérisé en ce que le groupe hydrophobe Hy est choisi dans le groupe constitué par les acides aminés hydrophobes d'origine naturelle, choisis dans le groupe constitué par le tryptophane, la tyrosine, la phénylalanine, la leucine ou l'isoleucine ou leurs dérivés alcools, esters, décarboxylés ou amides.
Dans un mode de réalisation, l'invention concerne également un complexe polymère amphiphile-BMP caractérisé en ce que le groupe hydrophobe Hy est le tryptophane ou un dérivé ester ou amide du tryptophane. Parmi les dérivés du tryptophane, on citera le tryptophanol, le tryptophanamide, le 2-indole-éthylamine.
Dans un mode de réalisation, le complexe polymère amphiphile- BMP selon l'invention est réversible.
Les polymères utilisés sont synthétisés selon les techniques connues de l'Homme de l'art ou achetés auprès de fournisseurs comme par exemple Sigma-AIdrich, NOF Corp. ou CarboMer Inc.
Les BMP sont choisies parmi les BMP recombinantes humaines, obtenues selon les techniques connues de l'Homme de l'art ou achetées auprès de fournisseurs comme par exemple la société Research Diagnostic Inc. (USA).
La BMP est un facteur de croissance très hydrophobe. A pH physiologique, l'hydrophobie de cette protéine conduit à l'agrégation puis à la précipitation. Les complexes polymère amphiphile-BMP selon l'invention permettent de stabiliser physiquement cette protéine en solution à pH physiologique.
On entend par dégradation physique ou chimique tout événement d'ordre physique, tel que l'agrégation, ou chimique, tel que la protéolyse, conduisant à une diminution de l'activité biologique de la protéine.
Parallèlement, on entend par stabilisation physique ou chimique de la protéine l'action de maintien de l'activité biologique de la protéine.
La stabilité du complexe est suivie par la mesure de la stabilité de la BMP.
La stabilisation de la protéine par un polymère amphiphile peut ainsi être mise en évidence, notamment par la mise en œuvre des tests suivants :
• un test de mise en évidence du complexe polymère amphiphile-BMP par coélectrophorèse sur gel « un test de stabilité thermique de la BMP en présence de cellules dans le complexe polymère amphiphile-BMP réalisé à 37°C et à pH neutre • un test de stabilisation physique de la BMP dans ledit complexe à pH physiologique.
Le test de mise en évidence du complexe polymère amphiphile- BMP par coéléctrophorèse est basé sur le déplacement d'ions sous l'effet d'un champ électrique. Les complexes anioniques migrent vers l'anode et les complexes cationiques se déplacent vers la cathode. Après migration, les protéines sont transférées par capillarité sur membrane de PVDF et révélées par un anticorps spécifique de la protéine reconnu par un deuxième anticorps couplé à la peroxidase. La protéine seule ne migre pas, la protéine complexée au polymère amphiphile migre vers l'anode ou la cathode en fonction de la charge globale du complexe.
Le test de stabilité thermique de la BMP en présence de cellules est réalisé à 37°C - pH neutre et consiste à déposer une solution de BMP dans un milieu de culture contenant des myoblastes C2C12. La concentration en BMP en solution est déterminée par dosage ELISA après le dépôt (J2) et au bout de 5 jours de culture (J7). L'activité biologique de la BMP est évaluée par dosage de l'activité de l'alcaline phosphatase produite entre J2 et J7 lors de la différenciation des myoblastes en ostéoblastes.
Le test de stabilisation physique d'une BMP à pH physiologique est basé sur la mise à pH physiologique d'une solution de protéine par échange du tampon d'origine de la protéine, en général à pH acide, par une solution de
PBS à pH 7.4. Trois échanges sont réalisés en maintenant la BMP à concentration constante en fin d'échange. La concentration de la BMP en solution à la fin du processus est déterminée par dosage ELISA après centrifugation. Ce test peut également être réalisé par dilution d'une solution concentrée de BMP-2 avec un tampon fixant le pH à 7,4.
Le complexe polymère amphiphile-BMP selon l'invention est formé par la mise en solution aqueuse d'une BMP et d'un polymère amphiphile à pH physiologique en l'absence de tout solvant organique susceptible de dénaturer la protéine. La formation du complexe polymère amphiphile-BMP est spontanée et n'implique pas de liaison covalente entre la BMP et le polymère amphiphile. Cette association se fait par des liaisons faibles qui sont essentiellement des interactions hydrophobes et des interactions ioniques. Cette formation de complexe ne nécessite aucun solvant organique.
D'autres tests peuvent éventuellement être mis en place pour parfaire la mise en évidence de la formation du complexe polymère amphiphile- BMP selon l'invention.
• un test de maintien de la structure tertiaire de la BMP déterminé par dichroïsme circulaire
• un test de stabilité d'une BMP dans le complexe polymère amphiphile-BMP selon l'invention à pH physiologique sous stress. Le stress peut être un mode d'agitation particulier, la présence de sels, etc. • un test de résistance à des enzymes de protéolyse telle que la thermolysine.
L'un des problèmes résolus par l'invention est une stabilisation accrue de la protéine et donc le maintien de l'activité biologique in vitro et in vivo. Cette activité biologique peut être évaluée par différents tests mettant en évidence la capacité d'une BMP à différencier les myoblastes en ostéoblastes.
Cette différentiation peut être mesurée par :
• le dosage de l'activité de la phosphatase alcaline produite dans une culture de cellules. • la coloration des cellules produisant de la phosphatase alcaline.
• RT-PCR de l'ARN de l'osteocalcine produite dans une culture de cellules.
L'invention concerne également une composition thérapeutique caractérisée en ce qu'elle comprend un complexe polymère amphiphile-BMP selon l'invention.
On entend par composition thérapeutique une composition utilisable en médecine humaine ou vétérinaire. La composition pharmaceutique selon l'invention est de préférence une composition à application locale pouvant se présenter sous la forme d'un soluté, d'un gel, d'une crème, d'un lyophilisât, d'une poudre ou d'une pâte.
La nature des excipients susceptibles d'être formulés avec le complexe polymère amphiphile-BMP selon l'invention est choisie en fonction de sa forme de présentation selon les connaissances générales du galéniste.
Ainsi, lorsque la composition selon l'invention est sous la forme d'une pâte, celle-ci est par exemple obtenue à partir de produits tels que les carboxyméthylcelluloses (CMC), le tricalcium phospate et le collagène.
D'autres excipients peuvent être utilisés dans cette invention afin d'ajuster les paramètres de la formulation comme un tampon pour ajuster le pH, un agent permettant d'ajuster l'isotonicité, des conservateurs comme le parahydroxybenzoate de méthyle, le parahydroxybenzoate de propyle, le m- crésol, ou le phénol ou encore un agent anti-oxydant comme le chlorhydrate de L-lysine.
Selon l'invention, la composition thérapeutique est caractérisée en ce qu'elle permet une administration d'environ 1 ,5 mg/ml de BMP.
La présente invention concerne également l'utilisation d'un complexe polymère amphiphile-BMP selon l'invention pour la préparation d'une composition thérapeutique destinée à induire la formation d'os in-vivo.
Elle concerne également une méthode de traitement thérapeutique à usage humain ou vétérinaire caractérisée en ce qu'elle consiste à administrer au site de traitement une composition thérapeutique comprenant le complexe polymère amphiphile-BMP selon l'invention. Synthèse des Polymères amphiphiles
Exemple 1 : carboxyméthyldextran modifié par l'ester éthylique du tryptophane (PA 1)
Ce polymère amphiphile est synthétisé à partir d'un carboxyméthyldextran ayant un degré de substitution en carboxyméthyl par unité saccharidique de 1.0 et une masse molaire moyenne de 60 kg/mol. L'ester éthylique du tryptophane est greffé sur les acides de ce polymère selon une méthode classique de couplage en solvant organique employant le chloroformiate d'éthyle et la N- MéthylMorpholine. Après dilution du milieu réactionnel dans l'eau et réglage du pH à 7 par ajout de NaOH 1 N, le polymère est purifié par ultrafiltration. Le polymère final est caractérisé par : x un degré de substitution en TrpOEt par unité saccharidique de 0.45, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (méthylcarboxylate) par unité saccharidique de 0.55, déterminé par dosage potentiométrique.
Exemple 2 : carboxyméthyldextran modifié par le tryptophane, sel de sodium (PA 2)
Ce polymère amphiphile est obtenu par hydrolyse basique du PA 1. De la soude 1 N (3.79 ml) est ajoutée à une solution aqueuse du polymère amphiphile 1 (64 ml à 31 mg/ml) pour atteindre pH 12.7. La solution obtenue est agitée une nuit à température ambiante. Le polymère est purifié par dialyse contre de l'eau (NaCI 0.9% et H20). Le polymère final est caractérisé par : x un degré de substitution en TrpONa par unité saccharidique de 0.45, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (méthylcarboxylate, carboxylate du tryptophane) par unité saccharidique de 1.0 déterminé par dosage potentiométrique. Exemple 3 : carboxyméthyldextran modifié par l'ester éthylique de la phénylalanine (PA 3)
Ce polymère amphiphile est synthétisé selon l'exemple 1 à partir d'un carboxyméthyldextran ayant un degré de substitution en carboxyméthyl par unité saccharidique de 1.0 et une masse molaire moyenne de 60 kg/mol. Le polymère final est caractérisé par : x un degré de substitution en PheOEt par unité saccharidique de 0.45, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (méthylcarboxylate) par unité saccharidique de 0.55, déterminé par dosage potentiométrique.
Exemple 4 : carboxyméthyldextran modifié par l'ester méthylique de la tyrosine (PA 4)
Ce polymère amphiphile est synthétisé selon l'exemple 1 à partir d'un carboxyméthyldextran ayant un degré de substitution en carboxyméthyl par unité saccharidique de 1.0 et une masse molaire moyenne de 60 kg/mol. Le polymère final est caractérisé par : x un degré de substitution en TyrOMe par unité saccharidique de 0.45, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (méthylcarboxylate) par unité saccharidique de 0.55, déterminé par dosage potentiométrique.
Exemple 5 : acide dextransuccinique modifié par l'ester éthylique du tryptophane (PA 5)
Ce polymère amphiphile est synthétisé à partir d'un acide dextransuccinique ayant un degré de substitution en acide succinique par unité saccharidique de 1.0 et une masse molaire moyenne de 70 kg/mol obtenu selon l'article de (Sanchez-Chaves, Manuel et al., Polymer 1998, 39 (13), 2751-2757.). L'ester éthylique du tryptophane est greffé sur les acides de ce polymère selon une méthode classique de couplage en solvant organique employant le chloroformiate d'éthyle et la N-MéthylMorpholine. Après dilution du milieu réactionnel dans l'eau et réglage du pH à 7 par ajout de NaOH 1 N, le polymère est purifié par ultrafiltration. Le polymère final est caractérisé par : x un degré de substitution en TrpOEt par unité saccharidique de 0.45, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (succinic carboxylate) par unité saccharidique de 0.55, déterminé par dosage potentiométrique.
Contre-exemple 1 : carboxyméthyldextran modifié par la dodécyiamine (PA 6)
Ce polymère amphiphile est synthétisé selon l'exemple 1 à partir d'un carboxyméthyldextran ayant un degré de substitution en carboxyméthyl par unité saccharidique de 1.0 et une masse molaire moyenne de 60 kg/mol. Le polymère final est caractérisé par
* un degré de substitution en dodécyiamine par unité saccharidique de 0.10, déterminé par RMN 1H dans D2O/NaOD.
* un degré de substitution en carboxylates (méthylcarboxylate) par unité saccharidique de 0.90, déterminé par dosage potentiométrique.
Contre-exemple 2 : carboxyméthyldextran modifié par la benzylamine (PA 7)
Ce polymère amphiphile est décrit dans le brevet FR2794649A, il est caractérisé par :
* un degré de substitution en benzylamine par unité saccharidique de 0.45,
* un degré de substitution en carboxylates (méthylcarboxylate) par unité saccharidique de 0.55.
Affinité de la BMP-2 pour un Polymère Amphiphile par coélectrophorèse
Préparation du complexe BMP-2/Polvmère Amphiphile 5 μl d'une solution de BMP-2 à 0.28 mg/ml dans un tampon H2O / AcN / TFA (64.9 / 35 / 0.1 %) sont ajoutés à 7 μl d'une solution de PA à 100 mg/ml tamponnée à pH 7.4. Cette solution est complétée à 14 μl par une solution de NaCI 0.9%. Cette solution a une concentration en BMP-2 de 0.1 mg/ml et un ratio BMP-2/PA de 1/500. Cette solution est mise sous agitation douce 30 minutes à température ambiante. Mise en évidence du complexe BMP-2/Polvmère Amphiphile La solution de BMP-2 / PA est diluée au 20eme dans du tampon de migration (solution de tris-acétate à pH 7). 2 μl de la solution diluée sont ensuite ajoutés à 8 μl d'eau et 7 μl de tampon de charge (glycérol, tris-acétate et bleu de bromophénol dans de l'eau). Ces 17 μl contenant 10 ng de BMP-2 et 5 μg de PA sont déposés dans un puit d'un gel d'agarose 0.8%. La cuve d'éléctrophorèse est fermée et le générateur est réglé à 30V. La migration dure 1 heure. Après migration, le gel est transféré sur une membrane de PVDF placé sur l'anode sous un champ électrique (20 minutes, 15V, Trans-Blot SD de Bio- Rad). La membrane est saturée avec du lait écrémé pendant 1 heure à température ambiante puis incubée avec des anticorps primaires de la BMP-2 (une nuit à 4°C) et enfin incubée avec des anticorps secondaires, rabbit anti goat HRP (1 heure à température ambiante). La révélation se fait par réaction de l'HRP sur le Opti-4CN. La révélation est stoppée lorsque la coloration est suffisante puisque le produit de la réaction absorbe dans le visible.
Lorsque la BMP-2 forme un complexe avec le PA, le complexe est détecté sous forme d'un spot unique à 0,7 cm du dépôt (migration vers l'anode). Lorsque la BMP-2 est seule ou ne forme pas de complexe avec le PA, elle est détectée à l'endroit du dépôt et n'a donc pas migré.
Les résultats pour les 5 polymères sont résumés dans le tableau suivant.
Stabilité de la BMP-2 en présence de Polymère Amphiphile à pH physiologique
Préparation du complexe BMP-2 / Polymère Amphiphile
A partir d'une solution de BMP-2 à 0.28 mg/ml dans un tampon H2O / AcN / TFA (64.9 / 35 / 0.1 %), sont préparées différentes solutions :
1. une solution de BMP-2 à 0.084 mg/ml obtenue par dilution dans l'eau
2. une solution de BMP-2 / Polymère Amphiphile à 0.084 / 9.8 mg/ml obtenue par dilution de la BMP-2 avec une solution de PA à 14 mg/ml.
Chaque solution est ensuite diluée au 1/10 par une solution de PBS 10 mM à pH 7.4 et 300 mOsm puis reconcentrée par centrifugation sur cellule Microcon (YM10, 10 kD, 500 μl). Cette opération est répétée deux fois. A l'issue de ces trois lavages, chaque solution est centrifugée et la concentration en BMP-2 dans le surnageant est déterminée par dosage ELISA.
Une partie de la solution de BMP-2 à 0.084 mg/ml ne subit aucun lavage afin de servir de contrôle. Une autre partie de la solution de BMP-2 à 0.084 mg/ml subit trois cycles de lavage contre une solution de HCI 1 mM (pH 3). Ce tampon est connu pour stabiliser la BMP-2 mais n'est pas compatible avec une application pharmaceutique.
Le dosage ELISA de la solution de BMP-2 n'ayant subi aucun lavage donne une concentration en BMP-2 de 83.4 μg/ml. Cette valeur correspond à 100% de BMP-2. Les concentrations déterminées par ELISA des autres solutions à l'issue des trois lavages contre du PBS sont rapportées à cette valeur de la BMP-2 non lavée. Les pourcentages de BMP-2 retrouvée sont rassemblés dans le tableau suivant.
Les PA capables de former un complexe avec la BMP-2 rendent la BMP-2 stable à pH physiologique. En absence de PA, la BMP-2 n'est plus présente en solution à pH physiologique. De la même façon, en présence d'un PA qui ne forme pas de complexe avec la BMP-2, la protéine n'est plus présente en solution. Stabilité et activité biologique de la BMP-2 en présence de Polymère Amphiphile en milieu de culture à 37°C et à pH physiologique
A JO, les cellules C2C12 (cellules musculaires de souris) sont ensemencées (7000 cellules/puit) dans des plaques de culture 96 puits contenant du DMEM à 10% SVF et 1 % ATB puis sont mises à l'étuve pendant 24h. A J1 , après adhésion des cellules, le milieu est remplacé par du DMEM à 2% SVF et 1 % ATB pendant 24h. A J2, le milieu est remplacé par du DMEM à 2% SVF et 1 % ATB supplémenté avec une solution de BMP-2 seule (0.3 μg/ml) ou une solution du complexe BMP-2 / PA 1 (0.3 / 150 μg/ml, ratio 1/500). Le complexe est préparé par dilution de la BMP-2 et du PA séparément dans du DMEM à 2% SVF et 1 % ATB. Le mélange protéine / PA 1 est laissé à reposer pendant 1 h avant dépôt.
A J7, soit 5 jours après dépôt, le surnageant est prélevé afin de doser la BMP-2 résiduelle par ELISA.
% BMP-2 dans le surnageant
Dépôt Dépôt + 5 jours
BMP-2 seule 100 2
BMP-2/PA 1 100 41
Après 5 jours au contact des cellules, il reste moins de 5% de BMP-2 seule alors qu'il reste plus de 40% de BMP-2 lorsqu'elle est complexée avec PA 1.
A J7, dans cette même expérience, les cellules sont lavées 2 fois au PBS puis lysées par 50 μl de tampon de lyse et subissent 3 cycles de congélation (- 800C) / décongélation (37°C). L'activité enzymatique de la phosphatase alcaline est mesurée dans les lysats sur un substrat, la p-nitrophényl phosphate qui absorbe à 405 nm. Cette activité est ramenée à la quantité de protéines mesurée par microBCA et est donc exprimée en nmol pnP/min.μg de protéines.
Activité ALP
(nmol pπP /.min.μg protéine)
BMP-2 seule 0 ,9 ± 0,12
BMP-2/PA 1 1 ,7 ± 0,05
La BMP-2 est stabilisée par le complexe dans les conditions du vivant au-delà de 5 jours alors qu'elle n'est pas stable seule sur une telle durée.
L'activité de la BMP-2 se révélant par un processus lent de différentiation cellulaire, le complexe de la BMP-2 est plus actif in vitro que la BMP-2 seule.
Protection par le polymère de la BMP-2 contre la dégradation enzymatique.
Préparation du complexe BMP-2/polymère
19 μl d'une solution de BMP-2 à 0,315 mg/ml dans un tampon acétonitrile TFA sont mélangés à 4,6 μl d'une solution de polymère (PA 2) à 66 mg/ml, à 50 μl de Tris 50 mM pH 7,5, à 60 μl de thermolysine à 25 μg/ml et à 366,4 μl H2O. Une solution similaire mais ne contenant pas de polymère est préparée comme contrôle. Dans ces deux solutions, la thermolysine représente 25% de la protéine (masse/masse).
Cinétique de digestion :
Les solutions de BMP-2 seule et de complexe contenant de la thermolysine sont incubées à 600C pendant 6 heures. Des échantillons de 20 μl sont prélevés à T=O, 20 min, 40 min, 1 h, 2h et 6h. A chaque prélèvement, on ajoute immédiatement 5 μl d'EDTA à 250 mM soit une concentration de 50 mM finale pour inhiber la réaction enzymatique. L'échantillon est ensuite congelé à -200C. Révélation :
La révélation se fait au moyen d'un westem-blot réalisé à partir d'un gel SDS- Page 15%. 7 μl de chaque prélèvement (contenant 65 ng de BMP-2) sont mélangés à 7 μl de tampon de charge Laemli contenant du SDS. Les échantillons sont ensuite dénaturés 10 min à 95°C puis déposés sur le gel SDS-Page 15%. Comme contrôle, des quantités équivalentes de BMP-2 (65 ng) et de Thermolysine (16,25 ng) sont aussi déposés sur le gel. La cuve d'éléctrophorèse est fermée et le générateur est réglé à 125V. La migration dure 1 heure 15. Après migration, le gel est transféré sur une membrane de PVDF par un système de transfert BioRad pendant 1 h à 100 volts. La membrane est ensuite saturée avec du lait écrémé pendant 1 heure à température ambiante puis incubée avec des anticorps primaires anti-BMP-2 (une nuit à 4°C) et enfin incubée avec des anticorps secondaires couplés à l'HRP (1 heure à température ambiante). La révélation se fait par réaction de l'HRP sur le Opti- 4CN. La révélation est stoppée lorsque la coloration est suffisante puisque le produit de la réaction absorbe dans le visible.
Lorsque la BMP-2 est seule, on observe l'apparition d'une bande de poids moléculaire plus faible dès 20 minutes ce qui traduit la dégradation de la protéine par la Thermolysine. En présence de polymère, cette bande n'est pas présente ce qui indique que le polymère protège la protéine contre la dégradation.
Après avoir vérifié que le polymère n'inhibe pas l'action de la thermolysine, il peut être conclu que les résultats obtenus montrent donc que le polymère PA 2 protège bien la BMP-2 contre la dégradation enzymatique.
Solubilisation de la BMP-2 sous forme de complexe dans l'eau à pH physiologique. Solubilité de la BMP-2 à pH physiologique
La BMP-2 a un point isoélectrique de 8,5 ce qui signifie que, au pH physiologique de 7,4, la BMP-2 est proche de son minimum de solubilité. Cela peut être mis en évidence par une expérience de neutralisation d'une solution acide de BM P-2.
Une solution limpide de BMP-2 à 1 ,5 mg/mL est préparée en tampon acide (tampon Infuse, pH 4,5). Cette solution est neutralisée par ajout d'un tampon phospate pour atteindre un pH de 7,4 (concentration finale en BMP-2 de 1 ,2 mg/mL). A pH 7,4, la BMP-2 a précipité et les agrégats formés sont visibles. La neutralisation a conduit à l'obtention d'une suspension.
Solubilité du complexe BMP-2/PA2 à pH physiologique
Une solution limpide de BMP-2 à 1 ,5 mg/mL est préparée en tampon acide (tampon Infuse, pH 4,5). A cette solution est ajouté le PA2 lyophilisé pour atteindre une concentration en PA2 de 75 mg/mL. Cette solution de complexe BMP-2/PA2 est ensuite neutralisée par ajout d'un tampon phosphate pour atteindre un pH de 7,4 (concentration finale en BMP-2 de 1 ,2 mg/mL et de 60 mg/mL en PA2). A pH 7,4, la BMP-2 est entièrement soluble et aucun agrégat n'est visible. La solubilité de la BMP-2 à pH physiologique sous forme de complexe BMP-2/PA2 est donc fortement augmentée.

Claims

REVENDICATIONS
1. Complexe polymère amphiphile-BMP, stable physiquement et chimiquement, soluble dans l'eau, caractérisé en ce que :
*> les polymères amphiphiles sont constitués d'un squelette polysaccharide hydrophile fonctionnalisé par des substituants hydrophobes et des groupements hydrophiles selon la formule générale I suivante :
R, R' identiques ou différents représentent une liaison ou une chaîne comprenant entre 1 et 18 carbones, éventuellement branchée et/ou insaturée comprenant un ou plusieurs hétéroatomes, tels que O, N ou/et S,
F, F' identiques ou différents représentent un ester, un thioester, un amide, un carbonate, un carbamate, un éther, un thioéther ou une aminé,
X représente un groupement hydrophile choisi dans le groupe constitué des carboxylates, des sulfates, des sulfonates, des phosphates, des phosphonates,
Y représente un groupement hydrophile choisi dans le groupe constitué des sulfates, des sulfonates, des phosphates des phosphonates,
Hy représente un groupement hydrophobe choisi dans le groupe constitué par : o les alkyles linéaires ou ramifiés en C8 à C30, éventuellement insaturés et/ou contenant un ou plusieurs hétéroatomes, tels que O, N ou S. o les alkylaryles ou un arylalkyles linéaires ou ramifiés en C8 à C18, éventuellement insaturés et/ou contenant éventuellement un ou plusieurs hétéroatomes, tels que O, N ou S. o les polycycles en C8 à C30 éventuellement insaturé, et/ou contenant éventuellement un ou plusieurs hétéroatomes, tels que O, N ou S, o à l'exclusion de la benzylamine.
• n et o sont compris entre 1 et 3,
• h représente la fraction molaire de motif hydrophobe par rapport à une unité saccharidiquecomprise entre 0.01 et 0.5
• x représente la fraction molaire de groupements hydrophiles par rapport à une unité saccharidique, comprise entre 0 et 2.0.
• y représente la fraction molaire de groupements hydrophiles par rapport à une unité saccharidique, comprise entre 0 et 0.5.
<* la BMP est choisie dans le groupe des BMPs (Bone Morphogenetic Proteins) thérapeutiquement actives,
*> le ratio massique polymère/BMP est inférieur ou égal à 700.
2. Complexe selon la revendication 1 , caractérisé en ce que le polysaccharide est choisi parmi les polysaccharides de formule générale I, dans laquelle y =0.
3. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que le polysaccharide est choisi parmi les polysaccharides de formule générale I, dans laquelle X représente un carboxylate.
4. Complexe selon l'une quelconque des revendications précédentes,, caractérisé en ce que le ratio massique polymère/BMP est inférieur ou égal à 600.
5. Complexe selon l'une quelconque des revendications 1 à 3,, caractérisé en ce que le ratio massique polymère/BMP est inférieur ou égal à
500.
6. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que la BMP est choisie dans le groupe constitué par la BMP-2 (Dibotermine-alpha), la BMP-4, la BMP-7 (Eptotermine alpha), la BMP-14 et la GDF-5.
7. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère est choisi parmi les polymères dont les substituants sont répartis de façon statistique.
8. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que les polysaccharides sont choisis dans le groupe constitué par les hyaluronanes, les alginates, les chitosans, les galacturonanes, la chondroitin-sulfate, les dextrans, les celluloses.
9. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que le groupe des celluloses est constitué des celluloses fonctionnalisées par des acides comme la carboxyméthylcellulose.
10. Complexe selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le groupe des dextrans est constitué des dextrans fonctionnalisés par des acides comme le carboxyméthyldextran.
1 1 . Complexe selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les polysaccharides sont choisis dans le groupe constitué par les hyaluronanes, les alginates, les chitosans.
12. Complexe selon l'une quelconque des revendications précédentes caractérisé en ce que le groupe hydrophobe Hy est choisi dans le groupe constitué par les acides aminés hydrophobes d'origine naturelle, choisis dans le groupe constitué par le tryptophane, la tyrosine, la phénylalanine, la leucine ou l'isoleucine ou leurs dérivés alcools, esters, décarboxylés ou amides.
13. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que le groupe Hydrophobe Hy, est le tryptophane ou un dérivé ester ou amide du tryptophane.
14. Complexe selon l'une quelconque des revendications précédentes caractérisé en ce que la formation du complexe polymère amphiphile-BMP est réversible.
15. Complexe selon l'une quelconque des revendications précédentes caractérisé en ce que la BMP est stable à pH physiologique.
16. Complexe selon l'une quelconque des revendications précédentes, caractérisé en ce que la BMP présente une activité biologique à 37°C et à pH neutre.
17. Procédé de préparation du complexe polymère amphiphile-
BMP selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on prépare ce complexe polymère/BMP en milieu aqueux et en absence de solvant organique susceptible de dénaturer la protéine.
18. Composition thérapeutique caractérisée en ce qu'elle comprend un complexe polymère amphiphile-BMP selon l'une quelconque des revendications 1 à 16.
19. Composition thérapeutique selon la revendication 18, caractérisée en ce qu'elle permet une administration d'environ 1 ,5 mg par ml de BMP.
20. Utilisation d'un complexe polymère amphiphile-BMP selon l'une quelconque des revendications 1 à 16 pour la préparation d'une composition thérapeutique destinée à induire la formation d'os in vivo.
EP08786481A 2007-07-27 2008-07-25 COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs Withdrawn EP2178565A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US95240707P 2007-07-27 2007-07-27
FR0705536A FR2919188B1 (fr) 2007-07-27 2007-07-27 Complexes entre un polymere amphiphile et une proteine osteogenique appartenant a la famille des bmps
PCT/EP2008/059832 WO2009016131A1 (fr) 2007-07-27 2008-07-25 COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs

Publications (1)

Publication Number Publication Date
EP2178565A1 true EP2178565A1 (fr) 2010-04-28

Family

ID=38990010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786481A Withdrawn EP2178565A1 (fr) 2007-07-27 2008-07-25 COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs

Country Status (13)

Country Link
US (1) US8389661B2 (fr)
EP (1) EP2178565A1 (fr)
JP (1) JP2010534708A (fr)
KR (1) KR20100051695A (fr)
CN (1) CN101835493A (fr)
AU (1) AU2008281848A1 (fr)
BR (1) BRPI0813025A2 (fr)
CA (1) CA2694600A1 (fr)
FR (1) FR2919188B1 (fr)
MX (1) MX2010001104A (fr)
RU (1) RU2010107203A (fr)
WO (1) WO2009016131A1 (fr)
ZA (1) ZA201001163B (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914305B1 (fr) * 2007-03-29 2009-07-03 Proteins & Peptides Man Dextran fonctionnalise par des amino-acides hydrophobes.
US20120041079A1 (en) * 2006-09-26 2012-02-16 Adocia Dextran functionalized by hydrophobic amino acids
AU2007234612B2 (en) * 2006-12-14 2013-06-27 Johnson & Johnson Regenerative Therapeutics, Llc Protein stabilization formulations
US7678764B2 (en) 2007-06-29 2010-03-16 Johnson & Johnson Regenerative Therapeutics, Llc Protein formulations for use at elevated temperatures
CN101801405A (zh) 2007-08-07 2010-08-11 先进科技及再生医学有限责任公司 包含于酸性水溶液中的gdf-5的蛋白质配方
AU2009236459B2 (en) * 2008-04-14 2013-07-25 Advanced Technologies And Regenerative Medicine, Llc Liquid buffered GDF-5 formulations
WO2009127940A1 (fr) * 2008-04-14 2009-10-22 Adocia Composition osteogenique comprenant un complexe facteur de croissance/polymere amphiphile un sel soluble de cation e un support organique
EP2288371A1 (fr) * 2008-04-14 2011-03-02 Adocia Composition osteogenique comprenant un facteur de croissance un sel soluble de cation et un support organique
FR2934999B1 (fr) * 2008-08-13 2011-07-29 Adocia Polysaccharides fonctionnalises par des derives du tryptophane
WO2010035122A2 (fr) * 2008-09-26 2010-04-01 Adocia Complexe constitue d'un polysaccharide et d'une hpb
FR2948573B1 (fr) * 2009-07-31 2011-11-18 Adocia Nouvelle forme d'administration de complexes de proteines osteogeniques
US8529933B2 (en) 2009-07-27 2013-09-10 Warsaw Orthopedic, Inc. Biphasic calcium phosphate cement for drug delivery
JP2011030455A (ja) * 2009-07-30 2011-02-17 Uha Mikakuto Co Ltd トリプトファン−ヒアルロン酸食品素材及びトリプトファン高含有ペプチド−ヒアルロン酸食品素材並びにそれらの製造方法
FR2952375A1 (fr) * 2009-11-10 2011-05-13 Adocia Polysaccharides comportant des groupes fonctionnels carboxyles substitues par esterification par un derive d'alcool hydrophobe
FR2956116A1 (fr) * 2010-02-09 2011-08-12 Adocia Complexes polysaccharide/bmp-7 solubles a ph physiologique
US20130143821A1 (en) * 2010-02-04 2013-06-06 University Of Tennessee Research Foundation Hydrophobically-modified hyaluronan and methods of making and using thereof
FR2958647B1 (fr) 2010-04-08 2013-08-23 Adocia Polysaccharides comportant des groupes fonctionnels carboxyles substitues par un derive hydrophobe porte par un spacer au moins trivalent.
CN102834117B (zh) * 2010-02-09 2015-11-25 阿道恰公司 通过至少两个由至少三价的间隔物所携带的疏水基团进行官能化的阴离子多糖
US20130122066A1 (en) * 2010-07-30 2013-05-16 Biopham Gesellschaft Zur Biotechnologischen Entwicklung Von Pharmaka Mbh Drug delivery devices and growth factor formulations for accelerated wound healing
CN101942101A (zh) * 2010-09-02 2011-01-12 四川大学 含疏水烷基侧链的两亲性聚电解质接枝物制备方法
JP2012082180A (ja) * 2010-10-14 2012-04-26 Nagoya Univ 骨再生用自己組織化ペプチドハイドロゲル
EP2741765B9 (fr) * 2011-08-10 2016-09-28 Adocia Solution injectable d'au moins une insuline basale
CN104114155B (zh) 2012-01-09 2019-02-15 阿道恰公司 Ph为7并且至少包含pi为5.8至8.5之基础胰岛素和经取代共聚(氨基酸)的可注射溶液
US9815912B2 (en) * 2012-03-19 2017-11-14 University Of Massachusetts Hydrophilic modification of water insoluble polysaccharide as surface-active agents
US20150314003A2 (en) 2012-08-09 2015-11-05 Adocia Injectable solution at ph 7 comprising at least one basal insulin the isoelectric point of which is between 5.8 and 8.5 and a hydrophobized anionic polymer
JP2016505523A (ja) * 2012-11-13 2016-02-25 アドシア 離散数の糖単位から構成される主骨格から成る置換されたアニオン性化合物
MX360107B (es) 2012-11-13 2018-10-23 Adocia Formulación de acción rápida de insulina que comprende un compuesto aniónico sustituido.
FR3020947B1 (fr) 2014-05-14 2018-08-31 Adocia Composition aqueuse comprenant au moins une proteine et un agent solubilisant, sa preparation et ses utilisations
US9795678B2 (en) 2014-05-14 2017-10-24 Adocia Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound
FR3043557B1 (fr) 2015-11-16 2019-05-31 Adocia Composition a action rapide d'insuline comprenant un citrate substitue
CN105820270A (zh) * 2016-03-30 2016-08-03 中国药科大学 硫酸化透明质酰脂肪烃胺

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808405A (en) 1955-03-11 1957-10-01 Ohio Commw Eng Co Acylated amino acid esters of dextran products and method of making same
DE4136324A1 (de) 1991-11-05 1993-05-13 Hoechst Ag Dextranderivate als adsorptionsmittel fuer gallensaeuren, mit gallensaeuren beladene dextranderivate und verfahren zu deren herstellung sowie deren anwendung als arzneimittel
US6573251B2 (en) 1994-03-30 2003-06-03 Denis Barritault Drug and pharmaceutical composition for the treatment of lesions of the nervous system and fractions enriched in heparan sulfate
DE4433101A1 (de) 1994-09-16 1996-03-21 Bauer Kurt Heinz Prof Dr Wasserlösliche Dextranfettsäureester und ihre Verwendung als Solubilisatoren
CA2192725C (fr) 1995-12-28 2004-04-20 Kenji Tsujihara Derives de la camptothecine
US20040132653A1 (en) 1997-01-30 2004-07-08 Biopharm Gmbh Lyophilized composition of bone morphogenetic factor human MP52
US5977076A (en) 1997-04-14 1999-11-02 Anderson; Byron E. Method and material for inhibiting complement
JP4656725B2 (ja) * 1997-10-03 2011-03-23 プロセリックス・ソルト・レイク・シティ,インコーポレーテッド 逆熱的ゲル化特性を有する生分解性低分子量トリブロックポリ(ラクチド−co−グリコリド)−ポリエチレングリコールコポリマー
FR2772382B1 (fr) 1997-12-11 2000-03-03 Solutions Derives de dextrane, leur procede de preparation et leurs applications comme medicaments a action biologique specifique
US6423345B2 (en) * 1998-04-30 2002-07-23 Acusphere, Inc. Matrices formed of polymer and hydrophobic compounds for use in drug delivery
FR2781485B1 (fr) * 1998-07-21 2003-08-08 Denis Barritault Polymeres biocompatibles leur procede de preparation et les compositions les contenant
JP4548623B2 (ja) 1999-02-24 2010-09-22 多木化学株式会社 生体材料
EP1183010A2 (fr) 1999-06-04 2002-03-06 ALZA Corporation Compositions de gel implantables et procede de fabrication
FR2794649B1 (fr) * 1999-06-11 2003-04-11 Solutions Biomateriau a base d'un derive de dextrane insolubilise et d'un facteur de croissance, son procede de preparation et ses applications
EP1481695A1 (fr) * 1999-10-15 2004-12-01 Genetics Institute, LLC Formulations a base d'acide hyaluronique aux fins de l'administration de proteines osteogenes
ES2225241T3 (es) * 1999-10-15 2005-03-16 Genetics Institute, Llc Formulaciones de acido hialuronico para suministrar proteinas osteogenicas.
AU2002245205B2 (en) * 2000-10-19 2007-07-19 Ecole Polytechnique Federale De Lausanne Block copolymers for multifunctional self-assembled systems
EP1420792A4 (fr) * 2001-08-01 2007-10-10 Smithkline Beecham Corp Produits et excipients pour l'administration de medicaments
AU2003228958C1 (en) * 2002-05-17 2009-01-08 Fidia Advanced Biopolymers, S.R.L. Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
EP1696945B1 (fr) 2003-12-05 2012-01-18 Northwestern University Amphiphiles peptidiques a assemblage automatique et procedes associes d'administration de facteur de croissance
FR2891149B1 (fr) * 2005-09-26 2007-11-30 Biodex Sarl Composition pharmaceutique a action cicatrisante comprenant un derive de dextrane soluble et un facteur de croissance derive des plaquettes.
FR2914305B1 (fr) 2007-03-29 2009-07-03 Proteins & Peptides Man Dextran fonctionnalise par des amino-acides hydrophobes.
AU2007235821A1 (en) * 2006-04-07 2007-10-18 Adocia Bifunctionalized polysaccharides
US20080102128A1 (en) * 2006-07-28 2008-05-01 Flamel Technologies, Inc. Modified-release microparticles based on amphiphilic copolymer and on active principles(s) and pharmaceutical formulations comprising them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009016131A1 *

Also Published As

Publication number Publication date
KR20100051695A (ko) 2010-05-17
FR2919188B1 (fr) 2010-02-26
BRPI0813025A2 (pt) 2017-08-08
AU2008281848A1 (en) 2009-02-05
JP2010534708A (ja) 2010-11-11
MX2010001104A (es) 2010-04-01
CA2694600A1 (fr) 2009-02-05
US8389661B2 (en) 2013-03-05
ZA201001163B (en) 2010-10-27
WO2009016131A1 (fr) 2009-02-05
US20090048412A1 (en) 2009-02-19
RU2010107203A (ru) 2011-09-10
CN101835493A (zh) 2010-09-15
FR2919188A1 (fr) 2009-01-30

Similar Documents

Publication Publication Date Title
WO2009016131A1 (fr) COMPLEXES ENTRE UN POLYMÈRE AMPHIPHILE ET UNE PROTÉINE OSTÉOGÉNIQUE APPARTENANT À LA FAMILLE DES BMPs
Ding et al. Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications
US8691793B2 (en) Modified macromolecules and associated methods of synthesis and use
EP2288370A1 (fr) Composition osteogenique comprenant un complexe facteur de croissance/polymere amphiphile un sel soluble de cation e un support organique
CA2744150A1 (fr) Nouvelle forme d&#39;administration de complexes de proteines osteogeniques
KR101121675B1 (ko) 신규 생체적합물질, 그의 제조방법 및 용도
US20100226985A1 (en) Viscoelastic aqueous gels comprising microspheres
KR20090013179A (ko) 이관능화된 다당류
KR20150111372A (ko) 주사 시술용 보형물
CA2738274A1 (fr) Complexe constitue d&#39;un polysaccharide et d&#39;une hpb
WO2009144578A2 (fr) Composition synergique osteogenique
US20130245246A1 (en) Polysaccharides comprising carboxyl functional groups substituted by a hydrophobic alcohol derivative
JP2017528296A (ja) グリコサミノグリカンおよびタンパク質を含む組成物
FR2933306A1 (fr) Composition osteogenique comprenant un complexe facteur de croissance polysaccharide anionique, un sel soluble de cation et une matrice organique
FR2937863A1 (fr) Composition osteogenique comprenant un complexe facteur de croissance polysaccharide anionique, un sel soluble de cation et un gel
FR2944447A1 (fr) Composition osteogenique comprenant un facteur de croissance un sel soluble de cation et un gel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20101208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOULA, REMI

Inventor name: SOULA, GERARD

Inventor name: SOULA, OLIVIER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170718