EP2121899A1 - Procédé de production de cadavérine par fermentation - Google Patents

Procédé de production de cadavérine par fermentation

Info

Publication number
EP2121899A1
EP2121899A1 EP08707853A EP08707853A EP2121899A1 EP 2121899 A1 EP2121899 A1 EP 2121899A1 EP 08707853 A EP08707853 A EP 08707853A EP 08707853 A EP08707853 A EP 08707853A EP 2121899 A1 EP2121899 A1 EP 2121899A1
Authority
EP
European Patent Office
Prior art keywords
gene
microorganisms
coding
lysine
cadaverine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08707853A
Other languages
German (de)
English (en)
Inventor
Stefan Verseck
Harald HÄGER
Andreas Karau
Lothar Eggeling
Hermann Sahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP2121899A1 publication Critical patent/EP2121899A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines

Definitions

  • the invention relates to recombinant microorganisms in which polynucleotides encoding lysine decarboxylase are amplified, and cadaverine (1, 5-diaminopentane) is produced by fermentation using the same, preference being given to C source, renewable raw materials, such as e.g. Glucose, sucrose, molasses, etc. are used.
  • Polyamides are an important group of polymers that make up a range of specialty plastics for the automotive, sports and lifestyle industries.
  • Diamines are important monomeric constituents of these polyamides. Together with dicarboxylic acids they condense to a variety of polymers, the chain lengths of the diamines and dicarboxylic determine the properties of the plastics.
  • diamines have been chemically synthesized via the intermediate of dicarboxylic acids from petroleum-based raw materials (Albrecht, Klaus et al., Plastics, Winnacker-Kuechler: Chemical Engineering (5th Edition) (2005), 5 465-819), or by chemical decarboxylation of amino acids (Suyama, Kaneo, The Decarboxylation of Amino Acids (4), Yakugaku Zasshi, (1965), Vol. 85 (6), 513-533). In the face of rising oil prices, a rapid switch to the synthesis of diamines is from renewable sources
  • a cadaverine producer can be produced by introducing an optionally heterologous gene coding for a lysine decarboxylase.
  • Organisms capable of producing cadaverine have previously been described (Tabor, Herbert, Hafner, Edmund W, Tabor, Celia White, Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterizing two genes controlling lysine decarboxylase Kamios Yoshiyuki Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer (Bioscience, 1980), 144 (3), 952-6, Takatsuka Yumiko , biotechnology, and biochemistry (2004), 68 (1), 1-19).
  • E. coli strains carrying a plasmid for overexpression of the host lysine decarboxylase This E. coli strain forms cadaverine in an increased amount after overexpression of its own cadA gene (JP 2002-223770).
  • these organisms were used as whole cell catalysts for the conversion of externally supplied lysine (JP 2002-223771, JP 2004-000114, EP 1482055), the decarboxylase also being present at the cell surface of E. coli can be presented (JP 2004-208646).
  • Another method is the conversion of lysine HCL using the isolated cadA enzyme to cadaverine (JP 2005-060447).
  • the inventors have set themselves the task of providing new processes for the fermentative production of cadaverine from renewable raw materials. Description of the invention
  • the invention relates to cadaverine-forming recombinant microorganisms having a high L-Lysintiter, in which there are polynucleotides coding for lysine decarboxylase in comparison with microorganisms which do not change with respect to this enzyme and which function as parent strain.
  • the label "with a high lysine titer" expresses that the parent strains are preferably L-lysine producers, which differ from the parent strains, such as wild-type strains, in that they produce L-lysine on an increased scale and in the Cell or in the surrounding fermentation medium
  • the titer is measured in mass / volume (g / l).
  • Methods of mutagenesis, selection and mutant selection are used to eliminate the control mechanisms and to improve the performance characteristics of these microorganisms.
  • strains are obtained which are resistant to antimetabolites, e.g. the lysine analogue S- (2-aminoethyl) cysteine or the valine analogue 2-thiazolalanine and chemical compounds for example L-amino acids such as L-lysine or L-valine.
  • Suitable polynucleotides which can code for lysine decarboxylase from strains of eg Escherichia coli, Bacillus halodurans, Bacillus cereus, Bacillus subtilis, Bacillus thuringensis, Burkholderia ambifaria, Burkholderia vietnamensia, Burkholderia cenocepatia, Chromobacterium violaceum, Selenomonas ruminantium, Vibrio cholerae, Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pilosus, Eikenalla corrodens, acidaminophilum Eubacterium, Francisella tulariensis, Geobacillus kaustophilus, Salmonella typhi, Salmonella typhimurium, Hafnia alvei, Neisseria meningitidis, Thermoplasma acidophilum, Plasmodium falciparum, Kine
  • Lysine decarboxylase-encoding polynucleotides are preferably derived from Escherichia coli SEQ ID NO: 1. This is available in internationally available databases, e.g. available from the National Library of Medicine and the National Institute of Health (NIH) of the United States of America, under the accession number NC 007946. The same sequence is also freely available at the Institut Pasteur (France) on the colibri web server under the number b4131 or the cadA. The same sequence is also freely available through the web server ExPasy maintained by the Swiss Institute of Bioinformatics under the number P0A9H4 or the cadA gene.
  • cadaverine is also supported by additionally producing a polynucleotide encoding a protein called cadaverine / lysine antiporter, preferably from Escherichia coli, in the cadaverine-producing recombinant cell (SEQ ID NO: 3; TC 2.A.3.2.2) overexpressed, which facilitates the transport of said compound from the cell into the medium.
  • cadaverine / lysine antiporters are derived from strains of, for example, Escherichia coli, Thermoplasma acidophilum, or Vibrio cholerae.
  • transporters that naturally export cadaverine or related diamines, or those who mutate gain this ability to export cadaverine or related diamines can be used.
  • the invention also includes the overexpression of endogenous transgene genes of C. glutamicum which encode proteins that catalyze the export of cadaverine.
  • the invention implies that preferably no competing lysine or arginine export occurs in cadaverine producing strains, i. H. that the corresponding export genes or export functions are weakened or switched off.
  • the invention relates to recombinant microorganisms, in particular coryneform bacteria, which contain the polynucleotides which code for the proteins mentioned amplified.
  • the nucleotide sequences coding for the lysine decarboxylase and / or the lysine / cadaverine antiporter are preferably amplified, in particular overexpressed.
  • Preferred microorganisms are from the families Enterobacteriaceae, in particular the genus Escherichia, Bacillus and in particular from the species E. coli and B. subtilis, wherein the cadaverine production-promoting lysine decarboxylase may be of endogenous or exogenous origin.
  • the overexpressed polynucleotides encoding the lysine decarboxylase and / or lysine / cadaverine antiporter recombinant microorganisms of the present invention can be derived from microorganisms of various families or genera.
  • microorganisms of the invention Due to the overexpression of said genes, individually or together, these microorganisms produce cadaverine to a greater extent compared to microorganisms in which these genes are not overexpressed.
  • the recombinant microorganisms of the invention are formed by recombinant genetic engineering techniques known to those skilled in the art.
  • the vectors carrying the said genes are introduced into the cells by conventional means.
  • the invention also relates to vectors, in particular plasmids, which contain the polynucleotides used according to the invention and optionally replicate in the bacteria.
  • the invention also relates to the recombinant microorganisms which have been transformed with said vectors.
  • the two polynucleotides may be under the action of a single or two promoters.
  • amplification in this context describes the increase in the intracellular activity or concentration of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by the copy number of the gene (s) of the ORF or ORFs are increased by at least one (1) copy, a functionally linked to a strong promoter to the gene, or a gene or allele or ORF encoding a corresponding enzyme or protein having a high activity and optionally combining these measures.
  • lac, tac and trp are called strong promoters.
  • An open reading frame is a segment of a nucleotide sequence which can encode or encode a protein or polypeptide or ribonucleic acid, according to the state of the art Technique no function can be assigned. After assigning a function to the relevant section of the nucleotide sequence is generally spoken of a gene. Alleles are generally understood as alternative forms of a given gene. The forms are characterized by differences in the nucleotide sequence.
  • the gene product is generally referred to as that of a nucleotide sequence, i. an ORF, a gene or an allele encoded protein or the encoded ribonucleic acid.
  • the activity or concentration of the corresponding protein is generally increased by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%. , Up to 1000% or 2000% based on the wild-type protein or on the activity or concentration of the protein increased in the non-recombinant for the corresponding enzyme or protein microorganism or parent strain.
  • a non-recombinant microorganism or parent strain is understood to be the microorganism on which the enhancement or overexpression according to the invention is carried out.
  • genes or gene constructs may either be present in different copy number plasmids or be integrated and amplified in the chromosome. Alternatively, overexpression of the genes in question can be achieved by changing the composition of the medium and culture.
  • plasmids that are replicated in coryneform bacteria.
  • Numerous known plasmid vectors such as pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107: 69-74 (1991)) the cryptic plasmids pHM1519, pBLI or pGAl.
  • Other plasmid vectors such.
  • pCG4 US-A 4,489,160
  • pNG2 Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)
  • pAG1 US-A 5,158,891
  • Tauch et al. Journal of Biotechnology 104 (1-3), 27-40 (2003).
  • the method of chromosomal gene amplification can be used to increase the copy number, as described for example by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or amplification of the hom-thrB operon.
  • the complete gene or allele is cloned into a plasmid vector which can replicate in a host (typically E. coli) but not in C. glutamicum.
  • vectors examples include pSUP301 (Simon et al., Bio / Technology 1, 784-791 (1983)), pKl ⁇ mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation , Madison, WI, USA), pCR2.1-TOPO (Shuman, Journal of Biological Chemistry 269: 32678-84 (1994), US-A 5,487,993), pCR® Blunt (Invitrogen, Groningen, The Netherlands, Bernard et al.
  • the plasmid vector containing the gene or allele to be amplified is then converted by conjugation or transformation into the desired strain of C. glutamicum.
  • the method of conjugation is described by Shufer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described by Thierbach et al. (Applied Microbiology and Biotechnology
  • the resulting strain contains at least two copies of the gene or allele in question.
  • the method of tandem amplification as described in WO 03/014330 or the method of amplification by integration to a desired location as described in WO 03/040373 to increase the copy number by at least 1, 2 or 3 can be used ,
  • attenuation or “attenuation” describes the reduction or elimination of the intracellular activity of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by using a weak promoter or a gene or allele used which codes for a corresponding enzyme with a low activity or inactivates the corresponding gene or enzyme or protein and optionally combines these measures.
  • the activity or concentration of the corresponding protein is generally 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein, respectively the activity or concentration of the protein in the initial microorganism lowered.
  • a “starting microorganism” is meant the microorganism in which the attenuation of the corresponding gene is carried out.
  • Coryneform bacteria in which the said polynucleotides coding for the enzyme lysine decarboxylase are amplified, are preferably present in overexpressed form.
  • coryneform bacteria naturally do not contain any polynucleotide encoding this enzyme, the Presence of a copy of a lysine decarboxylase-encoding gene derived from a foreign organism referred to as overexpression.
  • the invention also provides a process for the production of cadaverine in which microorganisms, in particular coryneform bacteria, are transformed with one of said polynucleotides, the fermented recombinant bacteria being fermented in a suitable medium under conditions suitable for the expression of the lysine decarboxylase encoded by said polynucleotide and the cadaverine formed is accumulated and isolated, if appropriate also with further dissolved constituents from the fermentation broth and / or the biomass (> 0 to 100%).
  • the invention particularly relates to a process for the production of cadaverine, in which the following steps are generally carried out:
  • the nucleotide sequence of the E. coli cadA gene is shown in SEQ ID NO: 1.
  • Corynebacterium in particular the species known in the art Corynebacterium glutamicum is mentioned.
  • Corynebacterium glutamicum is mentioned.
  • Microorganisms serve z.
  • Suitable precursors of the strains used according to the invention are known strains of coryneform bacteria which have the ability to produce L-lysine, for example the strains:
  • DSM Type Culture Collection
  • coryneform bacteria with the species name "Brevibacterium flavum”, “Brevibacterium lactofermentum” and “Brevibacterium divaricatum” are categorized as Corynebacterium glutamicum
  • Corynebacterium molassecola also belongs to the species Corynebacterium glutamicum.
  • the microorganisms suitable for the measures according to the invention preferably have the ability to produce L-lysine, to enrich it in the cell or to precipitate it into the nutrient medium surrounding it and to accumulate it there.
  • the strains used have the ability to have> (at least) 1 g / L,> 15 g / L,> 20 g / L or> _ 30 g / L L-lysine in £ (maximum) 120 hours, £ 96 hours ⁇ 48 hours, ⁇ 36 hours, ⁇ 24 hours or ⁇ 12 hours before being transformed with the lysine decarboxylase gene.
  • These may be strains produced by mutagenesis and selection, by recombinant DNA techniques or by a combination of both.
  • mutagenesis classical in vivo mutagenesis methods using mutagenic substances such as N-methyl-N'-nitro-N-nitrosoguanidine or ultraviolet light may be used. Further, for in vitro mutagenesis, methods such as hydroxylamine treatment (Miller, JH: A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Col. Spring Harbor Laboratory Press, Col.
  • the cadA gene described in the prior art is amplified from isolated total DNA of a wild-type strain by means of the polymerase chain reaction, optionally cloned into suitable plasmid vectors, and then subjected to the mutagenesis method.
  • kits such as the "QuikChange Site-Directed Mutagenesis Kit” by Stratagene (La Jolla, USA, described by Papworth et al., Strategies 9 (3), 3-4 (1996)) ) available. Suitable cadA alleles are then read out by the methods described above and examined.
  • the invention relates to a strain for the fermentative production of cadaverine, preferably coryneforms
  • Bacteria in particular Corynebacterium glutamicum, which has at least one heterologously expressed gene coding for a lysine decarboxylase, preferably cadA from E. coli.
  • the preferred lysine decarboxylase allele or gene may be obtained by the method of gene replacement, as described in Schwarzer and Pühler (Bio / Technology 9, 84-87 (1991)) or Peters-Wendisch et al. (Microbiology 144 The corresponding lysine decarboxylase allele is hereby incorporated into a non-replicative for C.
  • glutamicum vector such as pKl ⁇ mobsacB or pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462 -65 (1992)) or pCR® Blunt (Invitrogen, Groningen, The Netherlands; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), and then cloned by transformation or conjugation into the desired host of After homologous recombination by means of a first integration-causing cross-over event and a suitable second excision-causing cross-over event in the target gene or in the Target sequence achieves the incorporation of the mutation.
  • lysine decarboxylase genes or alleles used according to the invention may be advantageous for the production of cadaverine, in addition to the expression of the lysine decarboxylase genes or alleles used according to the invention to simultaneously amplify one or more enzymes of lysine biosynthesis, in particular overexpress.
  • the use of endogenous genes is generally preferred.
  • endogenous genes or “endogenous nucleotide sequences” is meant the genes or nucleotide sequences and alleles present in the population of a species.
  • enhancement in this context describes the enhancement of the intracellular activity or concentration of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by increasing the copy number of the gene (s), a strong promoter used or a gene or allele is used which codes for a corresponding enzyme or protein with a high activity and optionally combines these measures.
  • a dapA gene coding for a dihydrodipicolinate synthase such as, for example, the wild-type dapA gene of Corynebacterium glutamicum described in EP 0 197 335.
  • a gene coding for a glucose-6-phosphate dehydrogenase such as, for example, the wild-type zwf gene of Corynebacterium glutamicum described in JP-A-09224661 and EP-A-1108790.
  • Amino acid sequence is replaced by L-threonine or in which the L-glycine at position 321 is replaced by L-serine.
  • a pyc gene coding for a pyruvate carboxylase such as, for example, the wild-type pyc gene of Corynebacterium glutamicum described in DE-A-198 31 609 and EP 1108790.
  • a lysC FBR allele encoding a feedback-resistant aspartate kinase variant is a lysC FBR allele encoding a feedback-resistant aspartate kinase variant.
  • lysC FBR alleles have been described in the art which code for aspartate kinase variants which have amino acid exchanges compared to the wild-type protein.
  • the coding region of the wild-type lysC gene of Corynebacterium glutamicum corresponds to accession number AX756575 of the NCBI database.
  • lysC FBR alleles are preferred: lysC A279T (exchange of alanine at position 279 of the encoded aspartate kinase protein for threonine), lysC A279V (replacement of alanine at position 279 of the encoded aspartate kinase protein for valine), lysC S301F (replacement of serine at position 301 of the encoded aspartate kinase protein against phenylalanine), lysC T308I (exchange of threonine at position 308 of the encoded aspartate kinase protein for isoleucine), lysC S301Y (replacement of serine at position 308 of the encoded aspartate kinase protein for tyrosine), lysC G345D (replacement of glycine at position 345 of the encoded
  • Aspartate kinase protein to glycine lysC T311I (exchange of threonine at position 311 of the encoded aspartate kinase protein for isoleucine), lysC S381F (replacement of serine at position 381 of the encoded aspartate kinase protein for phenylalanine), lysC S317A (replacement of serine at position 317 of the encoded aspartate kinase protein against Alanine) and lysC T380I (exchange of threonine at position 380 of the encoded aspartate kinase protein for isoleucine).
  • lysC FBR allele lysC T311I exchange of threonine at position 311 of the encoded aspartate kinase protein for isoleucine
  • a lysC FBR allele containing at least one substitution selected from the group A279T exchange of alanine at position 279 of the encoded aspartate kinase protein for threonine
  • S317A replacement of serine at position 317 of the encoded aspartate kinase protein against alanine
  • a lysE gene coding for a lysine export protein such as, for example, the lysE gene of the wild-type Corynebacterium glutamicum described in DE-A-195 48 222, is attenuated or eliminated.
  • a gene ddh coding for a diaminopimelate dehydrogenase such as, for example, the wild-type ddh gene Corynebacterium glutamicum described in EP 1 108 790.
  • the zwal protein-encoding gene of wild-type Corynebacterium glutamicum (US 6,632,644).
  • cadaverine-producing microorganisms of the genus Escherichia are claimed in which simultaneously one or more of the genes from E. coli, selected from the group
  • microorganisms according to the invention can be used continuously or discontinuously in the batch process
  • the culture medium to be used must suitably satisfy the requirements of the respective strains. Descriptions of culture media of various microorganisms are in the
  • sugars and carbohydrates such as e.g. Glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower oil, peanut oil and coconut fat, fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol and organic acids such as acetic acid are used. These substances can be used individually or as a mixture.
  • organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used.
  • the nitrogen sources can be used singly or as a mixture.
  • phosphorus source can phosphoric acid
  • the culture medium must further contain salts of metals, such as magnesium sulfate or iron sulfate, necessary for growth.
  • essential growth factors such as amino acids and vitamins can be used in addition to the above-mentioned substances.
  • suitable precursors can be added to the culture medium.
  • the mentioned Feedstocks may be added to the culture as a one-time batch or fed in a suitable manner during the cultivation.
  • basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid are suitably used.
  • antifoams such as, for example, fatty acid polyglycol esters
  • suitable selective substances such as antibiotics
  • oxygen or oxygen-containing gas mixtures such as air, are introduced into the culture.
  • the temperature of the culture is normally from 20 0 C to 45 ° C and preferably 25 ° C to 40 0 C. The culture is continued until a maximum is formed at cadaverine, or the yield or productivity reaches a desired optimum value Has. This goal is usually reached within 10 hours to 160 hours.
  • the cadaverine prepared in this way is then collected, then preferably isolated and optionally purified.
  • cadaverine and L-amino acids such as L-lysine are known in the art.
  • the analysis may be as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190) described by anion exchange chromatography followed by ninhydrin derivatization, or it can be done by reversed phase HPLC, as in Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).
  • the inventive method is used for improved fermentative production of cadaverine by use high lysine titer microorganisms in which a lysine decarboxylase gene and / or a protein termed lysine / cadaverine antiporter are overexpressed.
  • DNA amplifications were performed with the SAWADY Pwo DNA polymerase (Peqlab Biotechnologie, Erlangen, Germany) or Platinum Pfx DNA polymerase (Invitrogen, Düsseldorf, Germany). Unless otherwise stated, the polymerases were used according to the manufacturer's instructions. Oligonucleotides for PCR amplifications and the introduction of restriction sites were obtained from MWG-Biotech (Ebersberg, Germany). Constructed strains were detected by colony PCR with the Taq polymerase READYMIX (Sigma, Taufkirchen, Germany), as well as
  • Plasmid preparations DNA fragments were purified and recovered with the MinElute Gel Extraction Kit (Quiagen, Hilden, Germany) according to the manufacturer's instructions. Plasmid DNA was isolated using the Qiaprep spin Miniprep kit (Quiagen, Hilden, Germany). All plasmids were constructed by restriction analysis followed by sequencing
  • pEKEx2cadA For the construction of pEKEx2cadA, the vector pEKEx2 was used (Kleinertz et al., 1991 Gene 102: 93), which allows transcription of cloned genes under control of the isopropyl-beta-D-thiogalactopyranoside (IPTG) inducible tac promoter and the lac repressor system (laclq)
  • IPTG isopropyl-beta-D-thiogalactopyranoside
  • laclq lac repressor system
  • the 2.2 kb DNA fragment coding for the cadA gene was amplified by means of the following oligonucleotides and DNA from Escherichia coli DH5 as template.
  • the PCR amplificate was phosphorylated with polynucleotide kinase (Roche, Basel, Switzerland) and blunt end cloned into the SmaI site of the vector pUC18 (Yanisch-Perron et al., 1985, Gene 33: 103-19). The identity and correctness of the insert was confirmed by sequencing. Subsequently, the 2.2 kb fragment was isolated from the pUC18 derivative as a Sall-BamHI fragment and ligated with the Sall-BamHI cut vector pEKEx2. Restriction digests were used to select the desired plasmids and one of them designated pEKEx2cadA.
  • pEKEx2cadBA For the construction of pEKEx2cadBA, the vector pEKEx2 was used (Kleinertz et al., 1991 Gene 102: 93), which allows transcription of cloned genes under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG) inducible tac promoter and the lac repressor system (laclq) , The 3.6 kb DNA fragment coding for the cadB and the cadA gene was amplified by means of the following oligonucleotides and DNA from Escherichia coli DH5 as a template.
  • IPTG isopropyl-beta-D-thiogalactopyranoside
  • laclq lac repressor system
  • the PCR amplificate was phosphorylated with polynucleotide kinase (Roche, Basel, Switzerland) and blunt end cloned into the SmaI site of the vector pUC18 (Yanisch-Perron et al., 1985, Gene 33: 103-19). The identity and correctness of the insert was confirmed by sequencing. Subsequently, the 3. kB fragment was isolated from the pUC18 derivative as a BamHI fragment and ligated with the BamHI-cut vector pEKEx2, and the desired plasmids were selected by means of restriction digestions, and one of them was designated pEKEx2cadBA.
  • Competent cells of Corynebacterium glutamicum DM1800 were prepared as described by Tauch et al. (Curr Microbiol. (2002) 45: 362-367).
  • DNA of pEKEx2, pEKEx2cadA, and pEKEx2cadBA was introduced by electroporation, and transformants on brain-heart agar from Merck (Darmstadt, Germany) supplemented with 50 mg / l kanamycin (FEMS Microbiol Lett., 1989, 53: 299-303). Plasmid DNA was isolated from transformants and characterized by restriction digestion. In this way, C. glutamicum pEKEx2, C. glutamicum pEKEx2cadA, and C. glutamicum pEKEx2cadBA were obtained.
  • strain C. glutamicum DM1800 is characterized by the properties (in comparison to the wild-type C. glutamicum ATCC 13032): mutations in the alleles pyc P458S
  • C. glutamicum DM1800 strains were grown on CGIII complex medium (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) containing 25 mg / 1 kanamycin at 30 ° C. overnight. The cells were then harvested by centrifugation at 6000 rpm for 5 minutes each, resuspended, taken up in 0.9% NaCl, recentrifuged, and finally taken up in 0.9% NaCl.
  • CGIII complex medium Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group
  • the minimal medium CGXII 4% glucose, 25 mg / l kanamycin (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) was inoculated with this cell suspension. Subsequently, the cells were incubated at 30 ° C. At least two independent fermentations were ever carried out. After 47 hours samples were taken for amino acid and cadaverine determination. The determination was carried out by means of high pressure liquid chromatography (J Chromat (1983) 266: 471-482). The result of the fermentation is shown in Table 1. Thus, the use of the engineered and described strains provides a method to facilitate microbial cadaverine formation from sugars.
  • Table 1 Accumulation of cadaverine in the culture supernatant of recombinant strains of Corynebacterium glutamicum DM1800.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne des micro-organismes recombinants, dans lesquels des polynucléotides codant pour la lysine décarboxylase sont amplifiés et au moyen desquels la cadavérine (1,5-diaminopentane) est produite par fermentation, les matières premières de préférence renouvelables utilisées comme source de carbone étant p. ex. le glucose, le saccharose, la mélasse, etc.
EP08707853A 2007-02-01 2008-01-10 Procédé de production de cadavérine par fermentation Withdrawn EP2121899A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005072A DE102007005072A1 (de) 2007-02-01 2007-02-01 Verfahren zur fermentativen Herstellung von Cadaverin
PCT/EP2008/050222 WO2008092720A1 (fr) 2007-02-01 2008-01-10 Procédé de production de cadavérine par fermentation

Publications (1)

Publication Number Publication Date
EP2121899A1 true EP2121899A1 (fr) 2009-11-25

Family

ID=39333053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08707853A Withdrawn EP2121899A1 (fr) 2007-02-01 2008-01-10 Procédé de production de cadavérine par fermentation

Country Status (8)

Country Link
US (1) US20110039313A1 (fr)
EP (1) EP2121899A1 (fr)
JP (1) JP2010517519A (fr)
CN (1) CN101240258A (fr)
CA (1) CA2670074A1 (fr)
DE (1) DE102007005072A1 (fr)
MX (1) MX2009005666A (fr)
WO (1) WO2008092720A1 (fr)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025821A1 (de) * 2006-06-02 2007-12-06 Degussa Gmbh Ein Enzym zur Herstellung von Mehylmalonatsemialdehyd oder Malonatsemialdehyd
DE102007052463A1 (de) * 2007-11-02 2009-05-07 Evonik Degussa Gmbh Fermentative Gewinnung von Aceton aus erneuerbaren Rohstoffen mittels neuen Stoffwechselweges
EP2235194B1 (fr) * 2008-01-23 2011-07-20 Basf Se Procédé de production fermentative de 1,5-diaminopentane
DE102008002715A1 (de) * 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-Hydroxyisobuttersäure produzierende rekombinante Zelle
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
MY153590A (en) 2008-12-12 2015-02-26 Celexion Llc Biological synthesis of difunctional alkanes from alpha ketoacids
DE102009000592A1 (de) 2009-02-04 2010-08-05 Evonik Degussa Gmbh Verfahren zur Herstellung von Aminogruppen tragenden, multizyklischen Ringsystemen
DE102009009580A1 (de) 2009-02-19 2010-08-26 Evonik Degussa Gmbh Verfahren zur Herstellung freier Säuren aus ihren Salzen
US8404465B2 (en) 2009-03-11 2013-03-26 Celexion, Llc Biological synthesis of 6-aminocaproic acid from carbohydrate feedstocks
DE102009046626A1 (de) 2009-11-11 2011-05-12 Evonik Degussa Gmbh Candida tropicalis Zellen und deren Verwendung
DE102009046623A1 (de) 2009-11-11 2011-05-12 Evonik Röhm Gmbh Verwendung eines zu einem MeaB-Protein homologen Proteins zur Erhöhung der enzymatischen Aktivität einer 3-Hydroxycarbonsäure-CoA-Mutase
DE102010014680A1 (de) 2009-11-18 2011-08-18 Evonik Degussa GmbH, 45128 Zellen, Nukleinsäuren, Enzyme und deren Verwendung sowie Verfahren zur Herstellung von Sophorolipiden
DE112010004851T5 (de) 2009-12-17 2012-09-20 Basf Se Verfahren und rekombinante Mikroorganismen für die Herstellung von Cadaverin
BR112012021070B1 (pt) 2010-02-23 2020-02-27 Toray Industries Inc. Método para produzir cadaverina
DE102010015807A1 (de) 2010-04-20 2011-10-20 Evonik Degussa Gmbh Biokatalytisches Oxidationsverfahren mit alkL-Genprodukt
DE102011004465A1 (de) 2010-09-10 2012-03-15 Evonik Degussa Gmbh Verfahren zur direkten Aminierung sekundärer Alkohole mit Ammoniak zu primären Aminen
KR20130135859A (ko) * 2010-12-08 2013-12-11 도레이 카부시키가이샤 카다베린의 제조 방법
DE102011075162A1 (de) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Verfahren zur homogen-katalysierte, hochselektiven direkten Aminierung von primären Alkoholen mit Ammoniak zu primären Aminen bei hohem Volumenverhältnis von Flüssig- zu Gasphase und/oder hohen Drücken
US8999681B2 (en) 2010-12-08 2015-04-07 Toray Industries, Inc. Method for producing cadaverine
WO2012113475A1 (fr) 2011-02-21 2012-08-30 Evonik Degussa Gmbh Procédé pour l'amination directe d'alcools avec de l'ammoniaque en amines primaires au moyen d'un système catalytique au xantphos
CN103492553B (zh) * 2011-02-22 2018-06-12 巴斯夫欧洲公司 用于生产尸胺的方法和重组微生物
RU2014106109A (ru) 2011-07-20 2015-08-27 Эвоник Дегусса Гмбх Окисление и аминирование первичных спиртов
DE102011084518A1 (de) 2011-10-14 2013-04-18 Evonik Industries Ag Verwendung einer Mehrschichtfolie mit Polyamid- und Polyesterschichten fürdie Herstellung photovoltaischer Module
EP2602328A1 (fr) 2011-12-05 2013-06-12 Evonik Industries AG Procédé d'oxydation d'alcanes en utilisant d'une alcane 1-mono-oxygénase AlkB
CN102424811A (zh) * 2011-12-13 2012-04-25 天津科技大学 一种产尸胺工程菌
WO2013093737A1 (fr) 2011-12-22 2013-06-27 Basf Se Procédés et microorganismes recombinants pour la production de produits chimiques fins
EP2607479A1 (fr) 2011-12-22 2013-06-26 Evonik Industries AG Production bio-technologique d'alcools et dérivés associés
EP2631298A1 (fr) 2012-02-22 2013-08-28 Evonik Industries AG Procédé biotechnologique et procédé de production de butanol et d'acide butyrique
EP2639308A1 (fr) 2012-03-12 2013-09-18 Evonik Industries AG Omega-oxydation et -amination enzymatique d'acides gras
EP2647696A1 (fr) 2012-04-02 2013-10-09 Evonik Degussa GmbH Procédé de fabrication aérobie d'alanine ou d'une liaison établie sous consommation d'alanine
KR102139454B1 (ko) 2012-07-03 2020-08-03 가오 가부시키가이샤 유용미생물 및 목적물질의 제조방법
US9558667B2 (en) 2012-07-09 2017-01-31 Elwha Llc Systems and methods for cooperative collision detection
WO2014028026A1 (fr) 2012-08-17 2014-02-20 Celexion, Llc Synthèse biologique d'hexanes et de pentanes difonctionnels à partir de charges de glucides
US9776632B2 (en) 2013-07-31 2017-10-03 Elwha Llc Systems and methods for adaptive vehicle sensing systems
WO2015196430A1 (fr) * 2014-06-26 2015-12-30 Cathay R&D Center Co., Ltd. Expression de polypeptides impliqués dans la décarboxylation de la lysine, procédés et applications de celle-ci
CN105316270B (zh) * 2014-06-27 2019-01-29 宁夏伊品生物科技股份有限公司 一种催化生产1,5-戊二胺的工程菌及其应用
US10400257B2 (en) 2014-10-09 2019-09-03 Cathay R&D Center Co., Ltd Expression of recombinant tetracycline efflux pumps for the production of lysine or lysine-derived products, and methods and applications thereof
KR20160085602A (ko) 2015-01-08 2016-07-18 광운대학교 산학협력단 재조합 미생물을 이용한 라이신 탈탄산효소의 제조방법
WO2016123745A1 (fr) * 2015-02-03 2016-08-11 上海凯赛生物技术研发中心有限公司 Cellule immobilisée et procédé de préparation correspondant
KR20160097691A (ko) 2015-02-09 2016-08-18 씨제이제일제당 (주) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
CN105441497B (zh) * 2015-12-29 2020-07-14 天津科技大学 一种利用微生物发酵和微生物转化偶联生产尸胺的方法
EP3497226A4 (fr) 2016-08-15 2020-07-01 Cathay Biotech Inc. Contrôle de la dispersion de biofilm pour la production d'acides aminés ou de produits dérivés d'acides aminés
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
ES2977386T3 (es) * 2016-12-21 2024-08-22 Fertinagro Biotech Sl Método de obtención de poliaminas a partir de un material de proteína
US11078473B2 (en) * 2016-12-30 2021-08-03 Cathay Biotech Inc. Lysine decarboxylases having modifications at titratable amino acids
EP3562837A4 (fr) * 2016-12-30 2020-12-30 Cathay Biotech Inc. Enzymes de lysine décarboxylase modifiées
WO2019006723A1 (fr) * 2017-07-06 2019-01-10 Cathay R&D Center Co., Ltd. Expression hétérologue de lysine décarboxylase thermophile et ses utilisations
KR102011394B1 (ko) * 2017-07-19 2019-10-22 씨제이제일제당 주식회사 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019104518A1 (fr) * 2017-11-29 2019-06-06 Cathay R & D Center Co., Ltd. Réduction de l'accumulation d'imines/énamines pour la production d'acides aminés ou de produits dérivés d'acides aminés
CN108342337B (zh) * 2017-12-31 2020-06-16 湖南豫园生物科技股份有限公司 一种哈夫尼菌yybio-001及其制备方法、应用和菌剂
KR102127996B1 (ko) * 2018-10-25 2020-06-29 대상 주식회사 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법
WO2020112497A1 (fr) * 2018-11-30 2020-06-04 Zymergen Inc. Voies de biosynthèse modifiées pour la production de 1,5-diaminopentane par fermentation
CN111117940B (zh) * 2019-12-04 2022-06-28 天津大学 一种高产戊二胺的大肠杆菌工程菌与方法
WO2023222515A1 (fr) 2022-05-18 2023-11-23 Evonik Operations Gmbh Production biotechnologique de bisucabérines, desferrioxamines et analogues de celles-ci
WO2023222510A1 (fr) 2022-05-18 2023-11-23 Evonik Operations Gmbh Production biotechnologique de desferrioxamines et analogues de celles-ci
WO2023222505A1 (fr) 2022-05-18 2023-11-23 Evonik Operations Gmbh Production biotechnologique de monomères de bisucabérines, desferrioxamines et d'analogues de celles-ci

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
GB2165546B (en) 1984-08-21 1989-05-17 Asahi Chemical Ind A plasmid containing a gene for tetracycline resistance and dna fragments derived therefrom
JPH0655149B2 (ja) 1985-03-12 1994-07-27 協和醗酵工業株式会社 L―リジンの製造法
US5250434A (en) 1987-03-27 1993-10-05 Ajinomoto Co., Inc. Microorganisms for production of glutamic acid
GB2223754B (en) 1988-09-12 1992-07-22 Degussa Dna encoding phosphoenolpyruvate carboxylase
DE3943117A1 (de) 1989-12-27 1991-07-04 Forschungszentrum Juelich Gmbh Verfahren zur fermentativen herstellung von aminosaeure, insbesondere l-lysin, dafuer geeignete mikroorganismen und rekombinante dna
JP2990735B2 (ja) 1990-04-20 1999-12-13 味の素株式会社 L―リジンの発酵的製造法
DE69133389T2 (de) 1990-09-27 2005-06-02 Invitrogen Corp., Carlsbad Direkte Klonierung von PCR amplifizierten Nukleinsäuren
AU703308B2 (en) 1994-12-09 1999-03-25 Ajinomoto Co., Inc. Novel lysine decarboxylase gene and method of producing L-lysine
DE19548222A1 (de) 1995-12-22 1997-06-26 Forschungszentrum Juelich Gmbh Verfahren zur mikrobiellen Herstellung von Aminosäuren durch gesteigerte Aktivität von Exportcarriern
JPH09224661A (ja) 1996-02-23 1997-09-02 Mitsubishi Chem Corp グルコース−6−リン酸デヒドロゲナーゼおよびそれをコードするdna
DE19831609B4 (de) 1997-10-04 2009-11-12 Evonik Degussa Gmbh Verfahren zur Herstellung von Aminosäuren der Aspartat- und/oder Glutamatfamilie und im Verfahren einsetzbare Mittel
DE19931317A1 (de) * 1999-07-07 2001-01-11 Degussa L-Lysin produzierende coryneforme Bakterien und Verfahren zur Herstellung von L-Lysin
DE19907347A1 (de) * 1999-02-20 2000-08-24 Degussa Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
KR100878334B1 (ko) 1999-06-25 2009-01-14 백광산업 주식회사 대사 경로 단백질을 코딩하는 코리네박테리움 글루타미쿰유전자
US6861246B2 (en) * 1999-07-07 2005-03-01 Degussa Ag L-lysine-producing corynebacteria and process for the preparation of lysine
US20020086371A1 (en) * 1999-07-07 2002-07-04 Degussa-Huls Aktiengesellschaft L-lysine-producing corynebacteria and process for the preparation of L-lysine
US20060014259A9 (en) * 1999-07-09 2006-01-19 Kevin Burke Process for the preparation of L-amino acids with amplification of the zwf gene
DE19959328A1 (de) 1999-12-09 2001-06-13 Degussa Neue für das zwa1-Gen codierende Nukleotidsequenzen
DE19959329A1 (de) * 1999-12-09 2001-06-13 Degussa Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
US20050112733A1 (en) * 2000-03-20 2005-05-26 Degussa Ag Process for the preparation of L-amino acids with amplification of the zwf gene
US20030175911A1 (en) 2000-03-20 2003-09-18 Stephen Hans Process for the preparation of L-amino acids with amplification of the zwf gene
PT1325135E (pt) 2000-10-13 2005-03-31 Archer Daniels Midland Co Gene da carboxilase do piruvato de corynebacterium resistente a retroacao
JP2002223771A (ja) 2001-02-01 2002-08-13 Toray Ind Inc カダベリンの製造方法
JP5553394B2 (ja) 2001-02-01 2014-07-16 東レ株式会社 カダベリンの製造方法
DE10112992A1 (de) * 2001-03-17 2002-09-26 Degussa Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
AU2002325923A1 (en) 2001-08-06 2003-05-19 Degussa Ag Production of l-lysine by genetically modified corynebacterium glutamicum strains
AU2002355462A1 (en) 2001-08-06 2003-02-24 Degussa Ag Coryneform bacteria which produce chemical compounds ii
JP4196620B2 (ja) 2002-04-08 2008-12-17 東レ株式会社 ポリアミド原料用カダベリンの製造方法
JP4356320B2 (ja) 2003-01-08 2009-11-04 東レ株式会社 カダベリン・ジカルボン酸塩およびポリアミドの製造方法
JP2004222569A (ja) * 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
EP1482055B1 (fr) 2003-05-26 2006-03-01 Ajinomoto Co., Inc. Méthode pour la préparation de carboxylate de cadaverine et son utilisation pour la production de nylon
JP2005060447A (ja) 2003-08-19 2005-03-10 Toray Ind Inc ポリアミド樹脂
DE10344739A1 (de) * 2003-09-26 2005-04-14 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10359661A1 (de) 2003-12-18 2005-07-28 Basf Ag Genvarianten die für Proteine aus dem Stoffwechselweg von Feinchemikalien codieren
DE102005047596A1 (de) * 2005-10-05 2007-04-12 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
HUE030521T2 (en) * 2006-03-30 2017-05-29 Basf Se A method for producing cadaverine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008092720A1 *

Also Published As

Publication number Publication date
WO2008092720A1 (fr) 2008-08-07
CA2670074A1 (fr) 2008-08-07
DE102007005072A1 (de) 2008-08-07
MX2009005666A (es) 2009-06-15
US20110039313A1 (en) 2011-02-17
CN101240258A (zh) 2008-08-13
JP2010517519A (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
EP2121899A1 (fr) Procédé de production de cadavérine par fermentation
EP2041276B1 (fr) Procédé de production de l-aminoacides au moyen du gène glta codant citrate synthase
EP2354235B1 (fr) Méthode de production d'acides aminés L par fermentation au moyen de bactéries corynéformes
WO2011124477A2 (fr) Procédé de production par fermentation de l-ornithine
EP1029919B1 (fr) Procédé de production de L-aminoacides par fermentation de bactéries coryneformes
DE102004013503A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1574582A1 (fr) Procedé de production de L-aminoacides au moyen de bactèries coryneformes
EP1136559B1 (fr) Séquences nucléotidiques codant pour le gène dapC et procédé pour la préparation de L-lysine
EP2089525B1 (fr) Allèles du gène oxyr de bactéries corynéformes
DE60218215T2 (de) Allele des siga gens aus coryneformen bakterien
WO2005083082A1 (fr) Procede de production d'acides l-amines a l'aide de bacteries coryneformes recombinantes avec regulateur asur a activite reduite
DE102004009454A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von rekombinanten Mikroorganismen
DE60312592T2 (de) Verfahren zur Herstellung von L-Lysin unter Verwendung Coryneformer Bakterien die ein attenuiertes Malat Enzym-gen enthalten
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
DE10144493A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coyneformer Bakterien
DE10162730A1 (de) Allele des glk-Gens aus coryneformen Bakterien
DE10210527A1 (de) Allele des aceA-Gens aus coryneformen Bakterien
DE10344739A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10001101A1 (de) Neue für das ptsH-Gen codierende Nukleotidsequenzen
DE19958159A1 (de) Neue für das glk-Gen codierende Nukleotidsequenzen
EP1103613A1 (fr) Séquences nucléotidiques codantes pour le gène pfk
DE10163167A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren und Verwendung coryneformer Bakterien
DE19958160A1 (de) Neue für das gpm-Gen codierende Nukleotidsequenzen
DE10162650A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1090993A1 (fr) Séquences nucléotides codantes pour le gene lrp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120306