EP2119803A1 - Plaque d'acier épaisse de haute résistance et son procédé de fabrication - Google Patents

Plaque d'acier épaisse de haute résistance et son procédé de fabrication Download PDF

Info

Publication number
EP2119803A1
EP2119803A1 EP08721186A EP08721186A EP2119803A1 EP 2119803 A1 EP2119803 A1 EP 2119803A1 EP 08721186 A EP08721186 A EP 08721186A EP 08721186 A EP08721186 A EP 08721186A EP 2119803 A1 EP2119803 A1 EP 2119803A1
Authority
EP
European Patent Office
Prior art keywords
iso
domains
orientation
steel
arrestability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08721186A
Other languages
German (de)
English (en)
Other versions
EP2119803A4 (fr
Inventor
Hiroyuki Shirahata
Masaaki Fujioka
Akihiko Kojima
Yoichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of EP2119803A1 publication Critical patent/EP2119803A1/fr
Publication of EP2119803A4 publication Critical patent/EP2119803A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength thick steel plate (hereafter also referred to as a high-strength high-arrest thick steel plate or a high-arrest steel plate) excellent ability to arrest propagation of brittle cracks (hereafter referred to as arrestability) and method of producing the same.
  • a steel plate according to the present invention may be applied in weld constructions such as shipbuilding, buildings, bridges, tanks, and offshore structures.
  • the steel plate according to the present invention may also be worked to steel pipes, steel columns or the like, and may be distributed in the form of a secondary product.
  • Priority is claimed on Japanese Patent Application, No. 2007-54279 filed on March 5, 2007 , the content of which is incorporated herein by reference.
  • Patent Reference 1 Japanese Unexamined Patent Application, First Publication, No. H02-1293189 ) describes a method (i) of refining the crystal grain size. In this method, steel is subjected to rolling with a reduction of 50% or more at a non-recrystallization region at a temperature of not lower than Ar 3 temperature, and is subsequently subjected to rolling with a reduction of 30 to 50% at two-phase region at 700 to 750°C.
  • Patent Reference 2 Japanese Examined Patent Application, Second Publication No. H06-004903
  • Patent Reference 3 Japanese Unexamined Patent Application, First Publication No. 2003-221619
  • Patent Reference 1 is directed to steel used in low-temperature conditions, where the steel has relatively low strength because of its microstructure mainly composed of ferrite, and the plate thickness is up to about 20 mm. Therefore, if the method is applied to a thick plate with a thickness of 50 mm or more, as designated by the present invention, it is difficult to ensure a sufficient reduction (reduction ratio) in terms of slab thickness. In addition, there is another problem in that prolonged stand-by time before reaching the process temperature reduces the productivity of the steel. In addition, it is difficult to ensure a yield strength of 390MPa or more by the method described in this reference.
  • Patent References 2 and 3 Application of the method described in Patent References 2 and 3 to a production of a thick member having a plate thickness of 50 mm or more, as designated in the present invention, also causes problems. Even though a similar microstructure is obtained, it is difficult to ensure arrestability. The effect of refined ferrite in the surface portion is relatively reduced. Further, the production process itself includes a problem in that thermal control along the plate thickness is further made difficult, and it is impossible to avoid increasing the reduction during the recuperation process, thereby largely disturbing the productivity.
  • Patent Reference 5 If the invention described in Patent Reference 5 is applied to a thick plate, efficiency of rolling is extremely reduced. Thus, such a method is not applicable in industrial production.
  • an object of the present invention is to provide a thick high-strength steel plate having excellent brittle crack propagation arrestability that is sufficient as a steel for large construction, and to provide a production method that enables industrially stable and effective production of the same steel plate.
  • the present invention concerns a thick high-strength steel plate having excellent brittle crack propagation arrestability and a method of producing the same that solve the above-described problems, and includes below-described aspects.
  • the basic structural unit dominating the toughness of bainite steel is not prior-austenite grain size, but the size of a region of a so-called packet or block (With respect to a packet and block, see Non-Patent Reference: Matsuda, Inoue, Mimura, and Okamura, "Toughness and effective grain size of low-alloy heat-treated high-tensile steel", Proc. of Int. Symp. on Towered Improved Ductility and Toughness. Climax Molybdenum Co., Kyoto (1971), p47 ).
  • the toughness is improved as the region has small size.
  • the inventors firstly produced steel plate of 50 mm in plate thickness under various conditions using a steel slab not containing Ni, worked the steel plates to test pieces of 500mm square each notched to a depth of 29 mm, and subjected the test specimens to a temperature-gradient type ESSO test so as to evaluate the arrestability in accordance with the method described in WES 3003. After that, by observing the fracture surface of the test specimens using a scanning electron microscope, and measured the unit (fracture facet size) of cleavage surface surrounded by the fracture portion called a tear-ridge, and confirmed its good correlation with arrestability.
  • FIG. 1 shows an example of the examination. Analysis was carried out on representative points in iso-orientation domains were analyzed based on the orientation map obtained by EBSP. Cubes constituted of ⁇ 100 ⁇ planes (that are regarded as cleavage plane) and the direction of crack propagation assuming that the crack propagates along the ⁇ 100 ⁇ planes were shown in FIG. 1 .
  • the numbers in FIG. 1 denote the angles (crack propagation deviation angles) required to make closest ⁇ 001> axes to coincident with each other, that is, the angles required to make ⁇ 100 ⁇ planes perpendicular to the T-direction coincident with each other by allowing their rotation.
  • orientation of crack propagation appears to change where the crack-propagation deviation angle was 20° or more as shown in (a), (b), (c), and (f).
  • the boundary of the above-described critical conditions actually constituted the boundaries of the fracture facet size.
  • crack-propagation does not change its direction in small-sized domains even when the deviation angle is more than 20°C.
  • Such phenomenon is considered to correspond to wraparound of the crack and ductile fracture surface.
  • Such phenomenon is observed in the domains having a circle equivalent diameter smaller than 8 ⁇ m.
  • apparent boundaries were not constituted by such small domains.
  • the existent domains smaller than 8 ⁇ m may be united to any of the adjacent grains on both sides, and the domain boundaries of iso-crack propagation resisting domain may be determined by examining the deviation angles between the two adjacent domains.
  • the effective grain size can be estimated by excluding the grains smaller than 8 ⁇ m from the result of EBSP analysis, determining the boundaries of domains that show crack-propagation deviation angle of not smaller than 20°, and calculating the mean circle equivalent diameter of domains surrounded by the boundaries.
  • the inventors also examined the influence of microstructural factors other than effective grain size on the arrestability, since it was confirmed that steel plates of fine effective grain size occasionally showed insufficient arrestability.
  • arrestability was also affected by the size of cementite included in the bainite. As shown in FIG. 5 , arrestability is reduced where the mean circle equivalent diameter of cementite exceeds 0.5 ⁇ m. It can be estimated that fine cementites generate microcracks in their grain boundaries in the matrix before propagation of the main crack, thereby decreasing the stress state in the tip of the crack. On the other hand, where the cementite is coarsened, like as pearlite, the cementite acts as an origin for causing the brittle fracture to occur, thereby decreasing the arrestability.
  • the reheating temperature of a slab was controlled to be 950 to 1150°C. Where the reheating temperature is lower than 950°C, homogenization of the alloying elements is insufficient, thereby causing inhomogeneous properties. Where the reheating temperature exceeds 1150°C, the grain sizes of austenite are coarsened. Therefore, there is a possibility that it is difficult to obtain a fine microstructure in the final state.
  • the subsequent rough rolling must be performed at a temperature of 900°C or more with a cumulative reduction of 30% or more. If the above-described conditions are not satisfied, recrystallization of austenite grains does not proceed sufficiently, resulting in mixed grain microstructure which may cause inhomogeneous properties.
  • the following finish-rolling is the most important process for refining the effective grain size that dominates the arrestability.
  • the finish-rolling is performed at a temperature of not lower than Ar 3 (a temperature at which formation of ferrite from austenite starts during cooling of steel) and not higher than the below described T(°C) with a cumulative reduction of 40% or more.
  • T 37 ⁇ Ni + 810 ⁇ 1.1 - t / 500 , where [Ni] denotes Ni content (in mass %) and t denotes a plate thickness (mm).
  • the steel plate After the completion of finish-rolling, the steel plate is subjected to accelerated cooling from the temperature of not lower than Ar 3 to a temperature of 500°C or less with a cooling rate of 8°C/s or more.
  • the starting temperature of cooling is lower than Ar 3
  • the fraction of coarse ferrite in the surface portions exceeds 10%, thereby deteriorating the arrestability.
  • the cooling rate is less than 8°C/s, or where the finish temperature of cooling is higher than 500°C, sufficient strength is not obtained.
  • arrestability is reduced by insufficient refinement of effective grain size, coarsening of cementite that could contribute the improvement of arrestability, or by generation of pearlite exceeding 5%.
  • a tempering treatment may be performed at a temperature of 300 to 600°C so as to control the strength and toughness of the steel plate. Where the tempering temperature is less than 300°C, ductility and toughness are not improved sufficiently. Where the tempering temperature exceeds 600°C, arrestability is reduced by coarsening of cementite.
  • C is an element that contributes to generation of cementite and preventing coarsening of microstructure.
  • carbon is an inevitable element for enhancing the strength of steel at low cost. Therefore, carbon is added in an amount of 0.01 % or more.
  • too much addition of carbon makes it difficult to assure a HAZ (Heat Affected Zone) toughness in the time of large heat input welding, and easily coarsens cementite. Therefore, the upper limit of carbon content is controlled to be 0.14%.
  • Si silicon is an inexpensive deoxidizing element and is added in an amount of 0.03% or more for solid solution-strengthening of matrix.
  • a silicon content exceeding 0.5% deteriorates weldability and HAZ toughness. Therefore, the upper limit of silicon content is controlled to be 0.5%.
  • Mn manganese
  • the upper limit of manganese content is controlled to be 2.0%.
  • the content of P (phosphorus) and S (sulfur) are preferably controlled to be as low as possible, large cost is required to reduce the content of P and S industrially. Therefore, the upper limits are controlled to be 0.02% for P and 0.01 % for S.
  • Ni nickel
  • the content of Ni is controlled to be not more than 4.0% since increasing amounts of Ni result in increasing costs of a slab.
  • Nb niobium
  • Nb is an element that contributes to refining of microstructure, transformation strengthening, and precipitation strengthening, and is effective for ensuring the strength of the matrix. Therefore, Nb is added in an amount of 0.005% or more.
  • the upper limit ofNb is controlled to be 0.050%.
  • Ti titanium
  • Ti titanium
  • the upper limit of Ti is controlled to be 0.050%.
  • Al is an important deoxidizing element and is added in an amount of 0.002% or more.
  • the upper limit of aluminum is controlled to be 0.10%.
  • N nitrogen
  • Ti titanium
  • nitrides that improves HAZ toughness. Therefore, N is added in an amount of 0.0010% or more.
  • excessive addition ofN generates brittleness by soluble N. Therefore, the amount ofNi is controlled to be 0.0080% or less.
  • Optional additional elements are limited for the below described reason.
  • Cu copper
  • Cr chromium
  • Mo mobdenum
  • V vanadium
  • V vanadium
  • its upper limit is controlled to be 0.10% since an addition of V exceeding 0.10% reduces HAZ toughness.
  • B (boron) is an element for improving hardenability and is effective for enhancing the strength of steel by addition thereof in an appropriate amount. On the other hand, excessive addition of B deteriorates weldability. Therefore, boron content is controlled to be 0.0002 to 0.0030%.
  • Mg magnesium
  • Ca calcium
  • REM is controlled to be in a range of 0.0005 to 0.010%.
  • REM denotes a rare earth element (rare earth metal) such as La, Ce, or the like.
  • Ceq C + Mn / 6 + Cu + Ni / 15 + Cr + Mo + V / 5 , where [symbol of element] denotes a content (in mass %) of the element. That is, where X denotes the symbol of an element, [X] denotes the content (in mass %) of the element X.
  • Steel plates each having a thickness of 50 to 80 mm were produced in accordance with the production method shown in Tables 2 and 3 using slabs each having a composition shown in Table 1.
  • the microstructure, base-metal strength, and arrestability of the steel plates are shown in Tables 4 and 5.
  • Fraction of surface coarse ferrite surface coarse a fraction
  • Fraction of pearlite was measured based on an optical micrograph of a T-sections obtained from a portion of 5 mm depth from the plates surface, a portion of 1/4 plate thickness, and central portion of the plate thickness.
  • Replica samples were obtained from the above-described three portions along the plate thickness.
  • Steel plates No. 1 to 22 as Examples according to the present invention had chemical compositions within a predetermined range and were produced under predetermined conditions. Therefore, each of the plates had sufficient strength as a steel of YP: 390 to 460MPa class, and had satisfactory arrestability.
  • the chemical composition or production condition was outside the predetermined range of the present invention. As a result, arrestability was reduced in each case.
  • the finish-rolling temperatures were lower than Ar 3 , and coarse ferrite was generated in large amounts in the surface portions, resulting in reduction of arrestability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
EP08721186.8A 2007-03-05 2008-03-03 Plaque d'acier épaisse de haute résistance et son procédé de fabrication Withdrawn EP2119803A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007054279 2007-03-05
PCT/JP2008/053766 WO2008108333A1 (fr) 2007-03-05 2008-03-03 Plaque d'acier épaisse de haute résistance et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP2119803A1 true EP2119803A1 (fr) 2009-11-18
EP2119803A4 EP2119803A4 (fr) 2016-07-20

Family

ID=39738210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08721186.8A Withdrawn EP2119803A4 (fr) 2007-03-05 2008-03-03 Plaque d'acier épaisse de haute résistance et son procédé de fabrication

Country Status (7)

Country Link
EP (1) EP2119803A4 (fr)
JP (1) JP4309946B2 (fr)
KR (1) KR101024709B1 (fr)
CN (1) CN101622370B (fr)
BR (1) BRPI0808347B1 (fr)
TW (1) TWI335355B (fr)
WO (1) WO2008108333A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698442A1 (fr) * 2011-04-13 2014-02-19 Nippon Steel & Sumitomo Metal Corporation Feuille d'acier laminé à froid à haute résistance ayant une excellente aptitude au façonnage local et son procédé de fabrication
EP2860276A4 (fr) * 2013-08-13 2015-12-30 Nippon Steel & Sumitomo Metal Corp Plaque d'acier
US9719151B2 (en) 2012-02-17 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Steel sheet, plated steel sheet, and method for producing the same
EP3239330A4 (fr) * 2014-12-24 2017-11-08 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et procédé de production s'y rapportant
EP3239331A4 (fr) * 2014-12-24 2017-11-08 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et son procédé de production
EP3239332A4 (fr) * 2014-12-24 2017-11-22 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et procédé de production s'y rapportant
CN107406951A (zh) * 2015-03-31 2017-11-28 杰富意钢铁株式会社 高强度/高韧性钢板及其制造方法
US10640841B2 (en) 2015-03-31 2020-05-05 Jfe Steel Corporation High-strength, high-toughness steel plate and method for producing the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082676A1 (fr) * 2009-01-14 2010-07-22 新日本製鐵株式会社 Structure de soudage dotée d'une excellente résistance à la propagation de fissure par fragilité
TW201036746A (en) * 2009-01-14 2010-10-16 Nippon Steel Corp Weld dtructure having brittle fracture arresting characterstics
JP5470904B2 (ja) * 2009-02-25 2014-04-16 Jfeスチール株式会社 TSが570MPa以上、全伸びが25%以上、ΔK=15MPa√mでの疲労き裂伝播速度8.75x10−9m/cycle以下の、全伸びと疲労き裂伝播抵抗性に優れた板厚20mm以下の厚鋼板の製造方法
CN102459656B (zh) 2009-06-11 2013-08-14 新日本制铁株式会社 大线能量焊接热影响区韧性优异的厚壁高强度钢板的制造方法
BR112012007753B1 (pt) * 2009-10-08 2021-11-16 Nippon Steel Corporation Tubo de aço de alta resistência. chapa de aço para tubo de aço de alta resistência, e processos para produção dos mesmos
JP5423309B2 (ja) * 2009-10-21 2014-02-19 新日鐵住金株式会社 海洋構造物用厚鋼板およびその製造方法
CN101701326B (zh) * 2009-10-28 2011-07-20 南京钢铁股份有限公司 一种厚规格高强高韧船板钢及其生产方法
WO2012008056A1 (fr) * 2010-07-14 2012-01-19 新日本製鐵株式会社 Structure soudée résistante à la propagation des craquelures fragiles
JP5029749B2 (ja) * 2010-09-17 2012-09-19 Jfeスチール株式会社 曲げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2012188747A (ja) * 2011-02-24 2012-10-04 Kobe Steel Ltd 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物
CN102691006B (zh) * 2011-03-23 2013-12-25 宝山钢铁股份有限公司 抗高回火参数sr脆化的低温镍钢及其制造方法
KR101278004B1 (ko) * 2011-06-28 2013-06-27 현대제철 주식회사 고강도 강판 및 그 제조방법
KR101273936B1 (ko) * 2011-08-12 2013-06-11 한국과학기술연구원 내산화성 페라이트계 스테인리스강, 그 제조 방법 및 이를 사용한 연료 전지 접속자
CN102560250A (zh) * 2011-11-25 2012-07-11 宝山钢铁股份有限公司 一种超低碳贝氏体钢板及其制造方法
JP5838801B2 (ja) * 2011-12-27 2016-01-06 Jfeスチール株式会社 厚鋼板及び厚鋼板の製造方法
KR101357543B1 (ko) * 2012-01-31 2014-02-05 현대제철 주식회사 고성형 열연강판의 제조 방법
KR101728362B1 (ko) * 2012-08-06 2017-04-19 제이에프이 스틸 가부시키가이샤 장대 취성 균열 전파 정지 성능이 우수한 후강판의 제조 방법 및 후강판
BR112015020815B1 (pt) * 2013-03-26 2021-06-29 Jfe Steel Corporation Chapa de aço grossa de alta resistência para soldagem de elevado aporte de calor com excelente capacidade de interrupção de ruptura frágil e método para fabricação da mesma
KR101320222B1 (ko) * 2013-04-30 2013-10-21 현대제철 주식회사 고강도 강판 및 그 제조방법
TWI498174B (zh) * 2013-05-01 2015-09-01 China Steel Corp Method for Reducing Surface Defects of High Hardness Steel
KR101657827B1 (ko) * 2014-12-24 2016-09-20 주식회사 포스코 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
JP6766642B2 (ja) * 2016-02-25 2020-10-14 日本製鉄株式会社 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP6682967B2 (ja) * 2016-04-06 2020-04-15 日本製鉄株式会社 厚鋼板およびその製造方法
JP6911575B2 (ja) * 2016-06-30 2021-07-28 日本製鉄株式会社 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP6776826B2 (ja) * 2016-11-11 2020-10-28 日本製鉄株式会社 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP6988836B2 (ja) * 2019-01-28 2022-01-05 Jfeスチール株式会社 超低降伏比高張力厚鋼板およびその製造方法
JP7330862B2 (ja) * 2019-11-01 2023-08-22 株式会社神戸製鋼所 母材と継手の低温靭性に優れた高張力鋼板およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947323A (ja) 1982-09-10 1984-03-17 Nippon Steel Corp 溶接部靭性および脆性破壊伝播停止特性の優れた高張力鋼の製造法
JPH064903B2 (ja) 1985-04-09 1994-01-19 新日本製鐵株式会社 脆性き裂伝播停止特性の優れた厚鋼板およびその製造法
JP3376195B2 (ja) * 1995-12-26 2003-02-10 川崎製鉄株式会社 板内均質性に優れかつ脆性亀裂伝播停止特性と溶接性を兼ね備えた高張力厚鋼板の製造方法
JP3718348B2 (ja) * 1998-07-31 2005-11-24 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法
JP3775279B2 (ja) * 2000-12-15 2006-05-17 Jfeスチール株式会社 塑性変形後の脆性き裂伝播停止特性ならびに疲労き裂伝播特性に優れた構造用鋼材およびその製造方法
JP2003221619A (ja) 2002-01-31 2003-08-08 Kobe Steel Ltd アレスト特性および延性破壊特性に優れた厚鋼板の製造方法
JP3869747B2 (ja) * 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP2005097694A (ja) * 2003-09-26 2005-04-14 Jfe Steel Kk 脆性亀裂伝播停止性能に優れた非調質高強度厚鋼板の製造方法
JP4670371B2 (ja) * 2004-01-30 2011-04-13 Jfeスチール株式会社 板厚方向の強度均一性および耐疲労亀裂伝播特性に優れた鋼材の製造方法
JP4687122B2 (ja) * 2004-01-30 2011-05-25 Jfeスチール株式会社 板厚方向の強度均一性および耐疲労亀裂伝播特性に優れた鋼材の製造方法
CN100350065C (zh) * 2004-12-08 2007-11-21 鞍钢股份有限公司 高抗拉强度低碳贝氏体厚钢板及其生产方法
JP4696615B2 (ja) * 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
JP4679300B2 (ja) 2005-08-24 2011-04-27 花王株式会社 吸収性物品の吸収体
JP2009293189A (ja) 2008-06-02 2009-12-17 Tokai Rika Co Ltd シリンダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008108333A1 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698442A1 (fr) * 2011-04-13 2014-02-19 Nippon Steel & Sumitomo Metal Corporation Feuille d'acier laminé à froid à haute résistance ayant une excellente aptitude au façonnage local et son procédé de fabrication
EP2698442A4 (fr) * 2011-04-13 2015-01-28 Nippon Steel & Sumitomo Metal Corp Feuille d'acier laminé à froid à haute résistance ayant une excellente aptitude au façonnage local et son procédé de fabrication
US9719151B2 (en) 2012-02-17 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Steel sheet, plated steel sheet, and method for producing the same
EP2860276A4 (fr) * 2013-08-13 2015-12-30 Nippon Steel & Sumitomo Metal Corp Plaque d'acier
EP3239332A4 (fr) * 2014-12-24 2017-11-22 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et procédé de production s'y rapportant
EP3239331A4 (fr) * 2014-12-24 2017-11-08 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et son procédé de production
EP3239330A4 (fr) * 2014-12-24 2017-11-08 Posco Acier à haute résistance ayant une excellente résistance à la propagation de fissures fragiles et procédé de production s'y rapportant
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
US10883159B2 (en) 2014-12-24 2021-01-05 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
CN107406951A (zh) * 2015-03-31 2017-11-28 杰富意钢铁株式会社 高强度/高韧性钢板及其制造方法
EP3279351A4 (fr) * 2015-03-31 2018-03-07 JFE Steel Corporation Tôle d'acier laminée à chaud à résistance et ténacité élevées et son procédé de fabrication
CN107406951B (zh) * 2015-03-31 2019-09-24 杰富意钢铁株式会社 高强度和高韧性钢板及其制造方法
US10544478B2 (en) 2015-03-31 2020-01-28 Jfe Steel Corporation High-strength, high-toughness steel plate, and method for producing the same
US10640841B2 (en) 2015-03-31 2020-05-05 Jfe Steel Corporation High-strength, high-toughness steel plate and method for producing the same

Also Published As

Publication number Publication date
TWI335355B (en) 2011-01-01
KR101024709B1 (ko) 2011-03-24
TW200844240A (en) 2008-11-16
BRPI0808347A2 (pt) 2014-07-29
CN101622370A (zh) 2010-01-06
EP2119803A4 (fr) 2016-07-20
KR20090110384A (ko) 2009-10-21
JP2008248382A (ja) 2008-10-16
CN101622370B (zh) 2011-07-13
WO2008108333A1 (fr) 2008-09-12
BRPI0808347B1 (pt) 2017-07-04
JP4309946B2 (ja) 2009-08-05

Similar Documents

Publication Publication Date Title
EP2119803A1 (fr) Plaque d'acier épaisse de haute résistance et son procédé de fabrication
EP2949772B1 (fr) Tôle d'acier laminée à chaud et son procédé de fabrication
EP2272994B1 (fr) Acier ayant une résistance à la traction élevée et son procédé de fabrication
EP2309014B1 (fr) Tôles d'acier épaisses laminées à chaud présentant une résistance élevée à la traction et une excellente résistance à basse température, et procédé de production de celles-ci
EP2224028B1 (fr) Plaques d'acier pour pipelines et tubes d'acier
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
EP3686304A1 (fr) Tube en acier et tôle en acier
KR101635008B1 (ko) 용접 열영향부 ctod 특성이 우수한 후육 고장력강 및 그의 제조 방법
WO2013089156A1 (fr) Acier à section en h à haute résistance présentant une excellente résistance au choc à basse température, et son procédé de fabrication
WO2020003499A1 (fr) Tuyau d'acier et tôle d'acier
EP2792761B1 (fr) Poutre en double t en acier de grande épaisseur à haute résistance
EP1870484A1 (fr) Tôle d'acier à haute résistance et procédé pour la production de celle-ci et tuyau en acier à haute résistance
KR20190077470A (ko) 고 Mn 강판 및 그 제조 방법
JP2007119850A (ja) 低温靭性に優れた耐摩耗鋼板およびその製造方法
EP3633057B1 (fr) Tôle d'acier et procédé de production de celle-ci
EP2990498A1 (fr) Poutre d'acier en forme de h et procédé de production de celle-ci
JP7127753B2 (ja) 鋼板およびその製造方法
EP3425080B1 (fr) Profilé d'acier en h pour basses températures et son procédé de fabrication
EP4089196A1 (fr) Matériau en acier, son procédé de fabrication et réservoir
JP6421907B1 (ja) 圧延h形鋼及びその製造方法
EP2860276B1 (fr) Plaque d'acier
JP7127752B2 (ja) 鋼板およびその製造方法
JP4354754B2 (ja) 母材靭性およびhaz靭性に優れた高張力鋼板
EP4029962A1 (fr) Tôle d'acier laminée à chaud pour tuyau en acier électrosoudé et son procédé de production, tuyau en acier électrosoudé et son procédé de production, canalisation et structure d'immeuble
EP4116453A1 (fr) Tube en acier, et plaque en acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160616

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20160610BHEP

Ipc: C21D 8/02 20060101ALI20160610BHEP

Ipc: C21D 9/46 20060101ALI20160610BHEP

Ipc: C22C 38/00 20060101AFI20160610BHEP

Ipc: C21D 6/00 20060101ALI20160610BHEP

17Q First examination report despatched

Effective date: 20180104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181009