JP7127752B2 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
JP7127752B2
JP7127752B2 JP2022505647A JP2022505647A JP7127752B2 JP 7127752 B2 JP7127752 B2 JP 7127752B2 JP 2022505647 A JP2022505647 A JP 2022505647A JP 2022505647 A JP2022505647 A JP 2022505647A JP 7127752 B2 JP7127752 B2 JP 7127752B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022505647A
Other languages
English (en)
Other versions
JPWO2022045351A1 (ja
Inventor
啓介 中井
大貴 今城
真吾 中村
祥晃 新宅
清孝 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2022045351A1 publication Critical patent/JPWO2022045351A1/ja
Application granted granted Critical
Publication of JP7127752B2 publication Critical patent/JP7127752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、鋼板およびその製造方法に関する。
鋼板の用途として、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物が挙げられる(例えば、特許文献1~5参照)。近年、コンテナ船の積載重量増大等のため、溶接構造物の大型化が進められている。これに伴い、鋼板には板厚の厚肉化および高強度化が求められている。加えて、上記のような溶接構造物では、一層の安全性および信頼性の観点から、低温靱性および破壊靱性のさらなる向上が課題になっている。
さらに、溶接構造物には、万が一、脆性き裂が溶接継手箇所に発生した場合でも、脆性き裂を母材で停止させる脆性き裂伝播停止特性(以下、「アレスト性」という。)が求められる。
特開2019-023322号公報 特開2019-023323号公報 特開2019-023324号公報 特開2019-035107号公報 国際公開第2019/069771号
しかしながら、一般的に、強度と低温靱性との間には、いわゆるトレードオフの関係が存在するため、これらを両立することは容易ではなかった。加えて、アレスト性の向上も容易ではなく、重要な課題となっていた。さらに、破壊靱性の向上に関しては、これまでほとんど検討がなされていなかったのが現状である。
本発明は、上記の課題を解決し、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板およびその製造方法を提供することを目的とする。
本発明は、下記の鋼板およびその製造方法を要旨とする。
(1)鋼板の化学組成が、質量%で、
C :0.040~0.160%、
Si:0.01~0.50%、
Mn:0.70~2.50%、
P :0.030%以下、
S :0.020%以下、
Al:0.001~0.100%、
N :0.0010~0.0080%、
Nb:0.003~0.050%、
残部:Feおよび不純物であり、
前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
面積%で、80%以上のベイナイトを含み、かつ、
前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
前記鋼板の圧延方向に対して垂直な面である垂直面の前記表面から1/10tの位置において、{110}面が前記垂直面に対して15°以内の角度をなす領域の面積率が30~60%であり、
前記垂直面の前記表面から1/4tの位置において、{100}面が前記垂直面に対して15°以内の角度をなす領域の面積率が10~40%であり、
前記垂直面の前記表面から1/2tの位置において、{110}面が前記垂直面に対して15°以内の角度をなす領域の面積率が40~70%である、
鋼板。
(2)前記化学組成が、前記Feの一部に代えて、質量%で、
Ti:0.050%以下、
Cu:1.50%以下、
Ni:2.50%以下、
Cr:1.00%以下、
Mo:1.00%以下、
V :0.150%以下、および
B :0.0050%以下、
からなる群から選択される少なくとも1種以上を含有するものである、
上記(1)に記載の鋼板。
(3)前記化学組成が、前記Feの一部に代えて、質量%で、
Mg :0.0100%以下、
Ca :0.0100%以下、および
REM:0.0100%以下、
からなる群から選択される少なくとも1種以上を含有するものである、
上記(1)または(2)に記載の鋼板。
(4)前記化学組成が、前記Feの一部に代えて、質量%で、
Zr:0.0100%以下、および
Te:0.0100%以下、
からなる群から選択される少なくとも1種以上を含有するものである、
上記(1)から(3)までのいずれかに記載の鋼板。
(5)前記化学組成が、前記Feの一部に代えて、質量%で、
W :1.00%以下、および
Sn:0.50%以下、
からなる群から選択される少なくとも1種以上を含有するものである、
上記(1)から(4)までのいずれかに記載の鋼板。
(6)上記(1)から(5)までのいずれか1項に記載の鋼板の製造方法であって、
上記(1)から(5)までのいずれかに記載の化学組成を有する鋼片に対して、加熱工程、粗圧延工程、一次加速冷却工程、仕上圧延工程および二次加速冷却工程を順に施す、鋼板の製造方法において、
前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
前記粗圧延工程は、前記鋼片の表面温度がTrex以上1050℃以下の範囲で実施し、
前記粗圧延工程における累積圧下率を10~75%とし、
前記一次加速冷却工程では、前記鋼片の表面温度がAr以上の範囲で冷却を開始し、500℃以上Ar-30℃以下の範囲で冷却を停止し、かつその間の平均冷却速度が35~100℃/秒となる条件で水冷し、
前記仕上圧延工程は、前記鋼片の表面温度がTrex未満の範囲であり、かつ前記鋼片の厚さ中央部での温度がAr以上Trex未満の範囲で実施し、
前記仕上圧延工程における圧延パス数nを4~15パス、下記(i)式で求められる圧延形状比mの平均値を0.5~1.0、累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
前記仕上圧延工程が完了してから、前記二次加速冷却工程における冷却開始までの時間を50秒以下とし、
前記二次加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
鋼板の製造方法。
=2(R(Hj-1-H))1/2/(Hj-1+H) ・・・(i)
ここで、上記式中のjは1からnまでの自然数(但し、nは圧延パス数)、mはjパス目の圧延形状比、Rはロール半径(mm)、Hj-1はj-1パス後の板厚(mm)、Hはjパス後の板厚(mm)を表す。
また、Arは下記(ii)式で求められ、Trexは下記(iii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(ii)
rex=-91900[Nb*]+9400[Nb*]+770 ・・・(iii)
但し、下記(iv)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
Nb<sol.Nbの場合は、[Nb*]=Nb
とする。
sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N) ・・・(iv)
なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
(7)前記二次加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
上記(6)に記載の鋼板の製造方法。
本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板を得ることが可能になる。
本発明者らは上記課題に対して詳細な検討を行った結果、以下の知見を得るに至った。
上述のように、強度と低温靱性との間には、いわゆるトレードオフの関係が存在する。加えて、本発明者らの検討の結果、強度と破壊靱性との両立も容易でないことが分かった。そこで、まず、本発明者らは高強度化と低温靱性および破壊靱性の向上とを両立する方法について検討を行った。その結果、金属組織をベイナイト主体とすることで高強度化するとともに、ベイナイト組織の微細化および扁平化に加えて、ベイナイトを構成するベイニティックフェライトを微細化することで、低温靱性だけでなく破壊靱性の低下を抑制できることが分かった。
また、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで、ベイナイト組織の微細化および扁平化ならびにベイニティックフェライトの微細化を達成できることを見出した。
次に、アレスト性を改善する方法について検討を行った。その結果、ベイナイト組織の微細化および扁平化ならびにベイニティックフェライトの微細化が、アレスト性の向上にも寄与することが分かった。加えて、鋼板の板厚方向における集合組織を制御することにより、鋼板表面に平行な方向、例えば、圧延方向と垂直または平行な方向のアレスト性を向上させることができることを見出した。
本発明は、上記知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
(A)化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。
C:0.040~0.160%
Cは、鋼板の強度を確保するために0.040%以上含有させる。一方、C含有量が0.160%を超えると、良好な低温靱性および破壊靱性を確保することが困難になるので、Cの含有量は、0.160%以下とする。したがって、C含有量は0.040%以上、好ましくは0.050%以上または0.050%超、より好ましくは0.060%以上または0.075%超である。また、C含有量は0.160%以下、好ましくは0.140%以下、より好ましくは0.120%以下である。
Si:0.01~0.50%
Siは、脱酸元素および強化元素として有効であるので、0.01%以上含有させる。一方、Si含有量が0.50%を超えると、低温靱性および破壊靱性が大きく劣化するので、Si含有量は0.50%以下とする。したがって、Si含有量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上である。また、Si含有量は0.50%以下、好ましくは0.40%以下、より好ましくは0.35%以下、さらに好ましくは0.30%以下である。
Mn:0.70~2.50%
Mnは、鋼板の強度を経済的に確保するために0.70%以上含有させる。一方、Mn含有量が2.50%を超えると、中心偏析が顕著となり、中心偏析が生じた部分の低温靱性および破壊靱性が劣化するので、Mnの含有量は、2.50%以下とする。したがって、Mn含有量は0.70%以上、好ましくは0.90%以上、より好ましくは1.20%以上である。また、Mn含有量は2.50%以下、好ましくは2.00%以下、より好ましくは1.80%以下、さらに好ましくは1.60%以下である。
P:0.030%以下
Pは、不純物として鋼中に存在する元素である。低温靱性および破壊靱性を安定的に確保するために、Pの含有量を0.030%以下とする。好ましくは、0.020%以下、さらに好ましくは、0.015%以下である。下限は0%であるが、P含有量を低減させるためのコストを考慮し、P含有量は0.0001%以上としてもよい。
S:0.020%以下
Sは、不純物として鋼中に存在する元素である。S含有量が0.020%を超えると中心偏析部において延伸したMnSが多量に生成し、低温靱性、破壊靱性および延性が劣化する。このためS含有量を0.020%以下とする。好ましくは0.010%以下である。S含有量は少ないほど好ましいので下限は特に規定しないが、製造コストの観点から、S含有量は0.0001%以上であってもよい。
Al:0.001~0.100%
Alは、一般的には、脱酸元素として、積極的に含有させる元素であり、Al含有量は0.001%以上とする。しかし、Al含有量が過剰になると、粗大なクラスター状のアルミナ(Al)系介在物の形成が助長され、低温靱性および破壊靱性が劣化する。よって、Al含有量は0.100%以下、好ましくは0.050%以下である。
N:0.0010~0.0080%
Nは、Ti窒化物を形成し、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する効果を有するため、0.0010%以上含有させる。しかし、N含有量が0.0080%を超えると、鋼板が脆化するので、Nの含有量は、0.0080%以下とする。したがって、N含有量は0.0010%以上、好ましくは0.0015%以上、より好ましくは0.0020%以上である。また、N含有量は0.0080%以下、好ましくは0.0065%以下、より好ましくは0.0060%以下である。
Nb:0.003~0.050%
Nbは、鋼板の強度および靱性を向上することができる。また、所定のミクロ組織を得るためには、未再結晶オーステナイト域での圧延が必要となるところ、Nbは未再結晶温度域を拡大させるために有効な元素であり、圧延温度を上昇させ、生産性向上にも寄与する。この効果を得るためには、0.003%以上含有させる。ただし、Nbの含有量が0.050%を超えると低温靱性、破壊靱性および溶接性が低下するので、Nbの含有量は、0.050%以下とする。したがって、Nb含有量は0.003%以上、好ましくは0.005%以上、より好ましくは0.008%以上である。また、Nb含有量は0.050%以下、好ましくは0.025%以下、より好ましくは0.018%以下である。
本発明の鋼板の化学組成において、上記の元素に加えて、強度の向上を目的として、さらにTi、Cu、Ni、Cr、Mo、VおよびBからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
Ti:0.050%以下
Tiは、鋼板の強度および靱性を向上する効果を有するため、必要に応じて含有させてもよい。しかしながら、Tiを過剰に含有させると、溶接部を硬化させ著しく靱性を劣化させる。そのため、Ti含有量は0.050%以下、好ましくは0.035%以下、より好ましくは0.020%以下である。上記の効果をより確実に得たい場合は、Ti含有量は、好ましくは0.003%以上、より好ましくは0.006%以上、さらに好ましくは0.010%以上である。
Cu:1.50%以下
Cuは、鋼板の強度および靱性を向上する効果を有するため、必要に応じて含有させてもよい。しかしながら、Cuを過剰に含有させると、合金コスト上昇に見合った性能の改善が見られず、むしろ表面割れの原因となる場合がある。そのため、Cu含有量は1.50%以下、好ましくは1.20%以下、より好ましくは1.00%以下である。上記の効果をより確実に得たい場合は、Cu含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Ni:2.50%以下
Niは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。また、Niは固溶状態において鋼のマトリックス(生地)の靱性を高める効果を有する元素である。しかしながら、Niを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Ni含有量は2.50%以下、好ましくは1.00%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Ni含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Cr:1.00%以下
Crは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Crを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Cr含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Cr含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Mo:1.00%以下
Moは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Moを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Mo含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Mo含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
V:0.150%以下
Vは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、V含有量は0.150%以下、好ましくは0.100%以下、より好ましくは0.070%以下、さらに好ましくは0.050%以下である。上記の効果をより確実に得たい場合は、V含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
B:0.0050%以下
Bは、焼入れ性を高め、鋼板の強度向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Bを過剰に含有させると、低温靱性および破壊靱性が低下する。そのため、B含有量は0.0050%以下、好ましくは0.0040%以下、より好ましくは0.0030%以下である。上記の効果をより確実に得たい場合は、B含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
本発明の鋼板の化学組成において、上記の元素に加えて、介在物の制御を目的として、さらにMg、CaおよびREMからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
Mg:0.0100%以下
Mgは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、Mgを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、Mg含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Mg含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Ca:0.0100%以下
Caは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、Caを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、Ca含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Ca含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
REM:0.0100%以下
REMは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、REMを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、REM含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、REM含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
ここで、本発明において、REMはSc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。
本発明の鋼板の化学組成において、上記の元素に加えて、金属組織の微細化を目的として、さらにZrおよびTeからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
Zr:0.0100%以下
Zrは、鋼板の組織微細化によって靱性向上に寄与する元素である。また、Zrは脱酸元素としても機能する。そのため、必要に応じて含有させてもよい。しかしながら、Zrを過剰に含有させると、低温靱性および破壊靱性が低下する。そのため、Zr含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Zr含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Te:0.0100%以下
Teは、鋼板の組織微細化によって靱性向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Teを過剰に含有させても、上記効果は飽和する。そのため、Te含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Te含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
本発明の鋼板の化学組成において、上記の元素に加えて、耐食性の向上を目的として、さらにWおよびSnからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。
W:1.00%以下
Wは、溶解して酸素酸イオンWO の形でさびに吸着し、さび層中の塩化物イオンの透過を抑制し、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させても、上記効果が飽和するだけでなく、低温靱性および破壊靱性が低下する場合がある。そのため、W含有量は1.00%以下、好ましくは0.75%以下である。上記の効果をより確実に得たい場合は、W含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
Sn:0.50%以下
Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する元素である。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。そのため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させても、上記効果が飽和するだけでなく、鋼板の圧延割れが発生しやすくなる。そのため、Sn含有量は0.50%以下、好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Sn含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。鋼板中にはOも不純物として混入し得るが、O含有量は0.0040%以下であれば許容される。
(B)鋼板の金属組織
本発明の鋼板の金属組織について説明する。なお、以下の説明において「%」は、「面積%」を意味する。また、本発明では、鋼板の厚さをtとした時に、鋼板の圧延方向に垂直な断面(以下、「C断面」ともいう。)における、該鋼板の表面から1/4tの位置を「C断面での1/4t位置」と呼び、鋼板の圧延方向および厚さ方向に平行な断面(以下、「L断面」ともいう。)における、該鋼板の表面から1/4tの位置を「L断面での1/4t位置」と呼ぶこととする。さらに、上記の「圧延方向」は、仕上圧延における圧延方向を意味することとする。
ベイナイト:80%以上
本発明において、金属組織はベイナイトが主体である。具体的には、C断面での1/4t位置におけるベイナイトの面積率を80%以上とすることで、鋼板の強度を確保することが可能となる。ベイナイトの面積率は90%以上であることが好ましい。なお、ベイナイトの面積率に上限を設ける必要はなく、すなわち、ベイナイト単相であってもよい。
なお、残部組織として、フェライト、パーライト、マルテンサイト・オーステナイト混合相(MA相)が混入する場合があるが、これらの合計面積率が20%以下であれば許容される。上記合計面積率は10%以下であるのが好ましい。これらの合計面積率は少ない方が好ましく、下限値は特に限定されるものではない。例えば、上記合計面積率は0%であってもよい。また、0%超であってもよく、1%以上であってもよい。
上述のように、ベイナイトを主体とすることに加えて、ベイナイト組織を微細かつ扁平化し、さらにベイニティックフェライトを微細化することで、鋼板の強度と低温靱性および破壊靱性とを両立し、かつアレスト性を向上させることができる。具体的には、ベイナイト組織が以下の規定を満足する必要がある。
ベイニティックフェライトの平均長さ:10μm以下
C断面での1/4t位置において、ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さを10μm以下とする。ベイナイトを構成するベイニティックフェライトを微細化することで、破壊靱性を確保することが可能となる。ベイニティックフェライトの平均長さは8μm以下であるのが好ましい。
旧オーステナイト粒の厚さ方向における平均長さ:20μm以下
旧オーステナイト粒のアスペクト比の平均:2.5以上
ベイナイト組織の微細化は、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで達成できる。すなわち、ベイナイトの旧オーステナイト粒は圧延方向に伸長した形状となる。そのため、L断面での1/4t位置において、旧オーステナイト粒の厚さ方向における平均長さを20μm以下とし、かつアスペクト比の平均を2.5以上とする。旧オーステナイト粒の厚さ方向における平均長さは15μm以下であるのが好ましい。また、旧オーステナイト粒のアスペクト比の平均は2.5超であるのが好ましく、4.0以上であるのがより好ましい。
ここで、本発明において、金属組織の面積率は以下のように求める。まず、鋼板からC断面での1/4t位置が観察面となるように、試料を採取する。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影する。そして得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求める。
次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求める。
ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSD(Electron Back Scatter Diffraction)を用いたKAM(Kernel Average Misorientation)解析により算出する。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域がベイニティックフェライトである。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とする。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものである。
旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定は、JIS G 0551:2013に準じて行う。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取する。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食する。腐食によって黒色に現出した粒を旧オーステナイト粒とする。
旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影する。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとする。なお、測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とする。
また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求める。そして、その平均値を旧オーステナイト粒のアスペクト比の平均とする。なお、未再結晶域で高圧下率での仕上圧延を施した場合、旧オーステナイト粒は、圧延方向に伸びた形状を示すため、長軸方向は圧延方向となり、短軸方向は板厚方向(いわゆるND方向)となる。
上記の方法で旧オーステナイト粒を十分に現出できない場合は、「鋼のオーステナイト組織の再構築法の高精度化に向けた検討」(畑顕吾、脇田昌幸、藤原知哉、河野佳織、新日鉄住金技報第404号(2016)、p.24~30)に記載される再構築法によって旧オーステナイト粒を特定し、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均を求めることとする。
1/10t位置において{110}面がC断面に対して15°以内の角度をなす領域の面積率:30~60%
1/4t位置において{100}面がC断面に対して15°以内の角度をなす領域の面積率:10~40%
1/2t位置において{110}面がC断面に対して15°以内の角度をなす領域の面積率:40~70%
板厚が厚く高強度の鋼板の場合、集合組織を活用したき裂伝播方向の制御が重要である。鋼板が外部応力を受けた際に、該鋼板に発生する脆性き裂は、{100}面のへき開面に沿って伝播する。したがって、この外部応力と垂直な面に{100}面の集合組織が発達すれば、上記のように結晶粒径を制御したときのアレスト性向上効果が減少してしまうことが判明した。
外部応力は、鋼構造物に外的に付与される応力のことである。脆性き裂は、最も高い外部応力に垂直な方向に発生、伝播する場合が多い。したがって、ここでは、鋼構造物に外的に付与される最も高い応力のことを外部応力と定義する。一般的に外部応力は、鋼板の圧延方向とほぼ平行に付与される。このため、外部応力に対して垂直な面を、鋼板の圧延方向に垂直な面として取り扱うことができる。
C断面の1/2t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率を40~70%になるようにすれば、1/2t位置近傍の脆性き裂は真っ直ぐ伝播せずにき裂が傾斜して伝播することにより、き裂伝播の駆動力を低減できる。
C断面の1/2t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率を40%未満とすると、き裂を傾斜させて伝播させる効果が得られない。一方、上記の面積率が70%を超えると、後述する1/4t位置での抵抗を受けずに、き裂が傾斜したまま伝播することによってアレスト性が低下してしまう。上記の面積率は45%以上であるのが好ましく、65%以下であるのが好ましく、60%以下であるのがより好ましい。
また、1/2t位置以外の板厚部位にも同様の集合組織を発達させると、き裂は傾斜したまま伝播することになり、十分なアレスト性向上効果を発揮できない。そこで、C断面の1/4t位置では、き裂を真っ直ぐ伝播させるために、{100}面がC断面に対して15°以内の角度をなす領域が、面積率で10~40%になるようにする。それにより、1/2t位置の傾斜したき裂伝播が1/2t位置以外の板厚部位にまで伝播することを抑制することができる。
C断面の1/4t位置において、{100}面がC断面に対して15°以内の角度をなす領域の面積率が10%未満では、き裂を真っ直ぐ伝播させる効果が得られない。一方、上記の面積率が40%を超えると、1/2t位置よりも1/4t位置でのき裂伝播が支配的となり、き裂が真っ直ぐ伝播することによってアレスト性が低下してしまう。上記の面積率は13%以上であるのが好ましく、15%以上であるのがより好ましい。また、上記の面積率は37%以下であるのが好ましく、35%以下であるのがより好ましい。
さらに、鋼板の表面近傍でもき裂を傾斜して伝播させるために、C断面の1/10t位置において、{110}面がC断面に対して15°以内の角度をなす領域が、面積率で30~60%になるようにすれば、1/4t位置の真っ直ぐなき裂が表層近傍まで伝播することが抑制できる。
C断面の1/10t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率が30%未満では、き裂を傾斜させて伝播させる効果が得られない。一方、上記の面積率が60%を超えると、1/4t位置での抵抗を受けずに、き裂が傾斜したまま伝播することによってアレスト性が低下してしまう。上記の面積率は35%以上であるのが好ましく、55%以下であるのが好ましく、50%以下であるのがより好ましい。
本発明において、集合組織は、電子線後方散乱回折(EBSD)法により測定する。具体的には、EBSD法により、1/2t位置および1/10t位置では、{110}面がC断面に対して15°以内の角度をなす領域、ならびに1/4t位置では、{100}面がC断面に対して15°以内の角度をなす領域のマップをそれぞれ作成し、その総面積を測定面積で除することによって、それらの面積率を求めることができる。
より詳細に記載すると、EBSD法により、C断面の1/2t位置および1/10t位置において、結晶方位情報を1μmピッチで合計10万点分の測定を行う。これにより各測定点の{110}面が分かり、各測定点の{110}面とC断面のなす角、すなわち各面の法線がなす角度とが15°以内である測定点の数を求め、EBSD法により測定した合計測定数(10万点)で除することによって面積率を求める。
同様に、EBSD法により、C断面の1/4t位置において、結晶方位情報を1μmピッチで合計10万点分の測定を行う。これにより各測定点の{100}面が分かり、各測定点の{100}面とC断面のなす角、すなわち各面の法線がなす角度とが15°以内である測定点の数を求め、EBSD法により測定した合計測定数(10万点)で除することによって面積率を求める。
(C)鋼板の機械的特性
本発明に係る鋼板の機械的特性について、特に制限はないが、本発明に係る鋼板は、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる。具体的には、降伏応力(YS)が460~860MPaで、引張強さ(TS)が570~980MPaであることが好ましい。また、低温靱性の指標となる破面遷移温度(vTrs)が-60℃以下であることが好ましい。さらに、破壊靱性の指標となる-10℃における亀裂先端開口変位(Crack Tip Opening Displacement:CTOD)値が0.50mm以上であることが好ましい。
なお、引張強さ(TS)および降伏応力(YS)は、JIS Z 2241:2011に基づき、板厚中心部から圧延方向と直角の方向に採取した、1B号引張試験片を用いて測定する。詳細には、降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力である。また、破面遷移温度(vTrs)の評価は、JIS Z 2242:2005に準拠し、試験片はVノッチ試験片とし、鋼板の1/4t位置を含むように採取する。さらに、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値を測定する。
さらに、温度勾配型ESSO試験における、-10℃の試験温度での脆性亀裂伝播停止靱性値Kca(以下、「アレスト靱性値Kca-10℃」という。)が、6000N/mm1.5以上であることが好ましく、8000N/mm1.5以上であることがより好ましい。この特性を満足することで、鋼板は優れたアレスト性を有する。
アレスト靱性値Kca-10℃は、NK船級協会 鋼船規則検査要領 K編 付属書 K3.12.2-1.(2016年)の「温度勾配型ESSO試験及び温度勾配型二重引張試験に関する検査要領」に準拠して測定を行う。
また、NRL落重試験における無延性遷移温度(以下、「NDT温度」という。)が、-100℃以下であることが好ましく、-110℃以下であることがより好ましい。この特性を満足することで、鋼板は優れたアレスト性を有する。
NDT温度は、ASTM E208-06で規定された、NRL落重試験法に準拠して試験を行うことで求める。NRL落重試験法について詳しく説明する。まず、鋼板の最表面を含むようにして、ASTM E208に規定されるタイプP3試験片を採取する。タイプP3試験片とは、長さ130mm、幅50mm、厚さ16mmの試験片である。この際、試験片の厚さ方向が鋼板の板厚方向と一致し、試験片の長手方向が鋼板の圧延方向と一致するように採取する。
その後、上記試験片を用いて、ASTM E208-06に準拠したNRL落重試験を実施する。具体的には、まず上記試験片の厚さ方向に垂直な鋼板の最表面上に、試験片の長手方向に平行な方向に延びる溶接ビードを形成する。その際、溶接材料はASTM E208に規定される靱性の低い溶接材料を使用する。溶接ビードの長さは60~70mm、幅は12~16mmの範囲となるよう調整する。そして、溶接ビード上に試験片の幅方向に平行な切欠きを形成する。この時、切欠きの幅は1.5mm以下とし、切欠きの溝底と試験片との距離が1.8~2.0mmの範囲となるよう調整する。
そして、上記試験片の溶接ビードを形成した面を下側に向け、長さ方向の両端部を支持した後、溶接ビードを形成したのと反対側の面に対して、落重による衝撃曲げ荷重を加える。その後、切欠きから発生した脆性き裂が試験片に伝播する状態を調べることで、Break(き裂伝播あり)またはNo Break(き裂伝播なし)を判定する。切欠から発生した脆性き裂が試験片の表面を試験片幅方向に伝播してその端部まで進行した場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合、試験結果はNo Break(き裂伝播なし)と判定される。
上記の落重試験は、2個ずつの試験片を用いて例えば、-100℃の条件から開始して、5℃間隔で試験温度を変化させながら(No Breakの場合は5℃低下、Breakの場合は5℃上昇)、2個の試験片ともにNo Breakが得られた最も低い試験温度から5℃低い温度を無延性遷移温度とする。
(D)鋼板の厚さ
本発明に係る鋼板の厚さについて、特に制限はないが、溶接構造物として用いる場合には、板厚は10~70mmであるのが好ましく、20~60mmであるのがより好ましい。また、本発明における低温靱性および破壊靱性の向上効果は、厚さが50mm未満の場合に顕著に発揮される。
(E)鋼板の製造方法
本発明に係る鋼板の製造条件について特に制限はないが、例えば、上述した化学組成を有する鋼片に対して、以下に示す条件で加熱工程、粗圧延工程、一次加速冷却工程、仕上圧延工程および二次加速冷却工程を順に施すことで、製造することができる。各工程について説明する。
(a)加熱工程
加熱工程は、鋼片の加熱により、オーステナイト相の組織制御に寄与する工程である。加熱工程では、上記の鋼片を950~1080℃の加熱温度まで加熱する。加熱工程は加熱炉で行うとよい。なお、鋼片を950~1080℃に加熱するとは、加熱炉から抽出する際の鋼片の全厚平均温度が、950~1080℃の範囲になるように加熱することであり、本明細書では、この鋼片の全厚平均温度を鋼片の加熱温度と称する。また、全厚平均温度は、加熱炉内の温度、加熱時間、鋼片の表面温度から計算で求めることが可能である。
加熱温度が950℃未満では、オーステナイト化が不十分になるとともに、オーステナイト粒が微細化することにより焼入れ性が低下するため、板厚が厚く、強度が高い鋼板にすることが困難である。さらに、オーステナイト粒の微細化により仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下する。また、加熱温度が1080℃を超えると、オーステナイト粒が粗大化し、最終組織においてベイナイト組織を微細化することが困難になる。好ましい加熱温度の範囲は、1000~1050℃である。
(b)粗圧延工程
粗圧延工程は、鋼片の表面温度がTrex以上1050℃以下の範囲で実施する。すなわち、鋼片の表面温度がTrex以上1050℃以下である状態で粗圧延を開始し、鋼片の表面温度がTrex以上1050℃以下である状態で粗圧延を終了する。粗圧延をTrex以上の範囲で実施することで、オーステナイト粒の再結晶により、微細化が可能となる。また、粗圧延工程は、1050℃以下の範囲で実施する。1050℃超の範囲で粗圧延を行うと、オーステナイトが粗大化し、後述する一次加速冷却工程により表層が過剰に焼入れされて過剰に硬くなる。さらに、後述する仕上圧延工程において表層に十分な歪みを付与することができず、一方で、内部に集中して歪みが導入される。その結果、C断面の1/10t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率は30%未満となる。なお、粗圧延の終了時の表面温度が、粗圧延の開始時の表面温度よりも高い場合がある。これは、粗圧延によって加工発熱が発生した影響、および表面温度よりも内部温度の方が高温であることによる、鋼片の板厚方向の伝熱影響が考えられる。
また、粗圧延における累積圧下率は10~75%の範囲とする。粗圧延における累積圧下率とは、粗圧延開始時の板厚から粗圧延終了後の板厚を引いたものを、粗圧延開始時の板厚で除した値である。粗圧延時の累積圧下率が10%未満では、オーステナイトの再結晶による微細化が困難であるとともに、ポロシティが残存して内部割れが生じ、延性および靱性の劣化が発生する可能性がある。また、累積圧下率が75%を超えると、オーステナイト粒が過度に微細化するため、仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。好ましい累積圧下率は、30~60%である。なお、以下の説明においては、粗圧延を施した後の鋼片を鋼板と呼ぶ。
(c)一次加速冷却工程
一次加速冷却工程では、粗圧延が終了した鋼板を水冷する。一次加速冷却工程では、鋼板の表面温度がAr以上の範囲で冷却を開始し、500℃以上Ar-30℃以下の範囲で冷却を停止し、かつその間の平均冷却速度が35~100℃/秒となる条件で水冷する。
Ar以上の範囲で冷却を開始することで、表層部分だけをフェライト変態させる。その後、後述する仕上圧延を行うことで、表層部分において加工フェライトを生成させ、表層の集合組織を制御することが可能となる。Ar-30℃超の範囲で水冷を終了すると、表層部分に加工フェライトを生成させることができないため、C断面の1/10t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率が30%未満となる。また、500℃未満の範囲で水冷を終了すると、表層部分だけでなく、1/4t位置までフェライト変態が進み、ベイナイト分率が低下する。
さらに、1/10t位置だけでなくC断面の1/4t位置においても、{110}面がC断面に対して15°以内の角度をなす領域の面積率が過剰となる。そのため、C断面の1/4t位置において、{100}面がC断面に対して15°以内の角度をなす領域の面積率が10%未満となる。なお、この際に平均冷却速度を35℃/秒以上とすることで、内部の温度はAr以上となり、鋼板の内部までフェライト変態するのを防止することができる。また、平均冷却速度を100℃/秒以下とすることで、C断面の1/10t位置において、{110}面がC断面に対して15°以内の角度をなす領域の面積率を60%以下とすることができる。
(d)仕上圧延工程
仕上圧延工程は、鋼板の表面温度がTrex未満の範囲であり、かつ鋼板の厚さ中央部での温度がAr以上Trex未満の範囲で実施する。すなわち、一次加速冷却工程の終了後、鋼板の表面温度がTrex未満であり、かつ厚さ中央部での温度がAr以上Trex未満である状態で仕上圧延を開始し、鋼板の表面温度がTrex未満であり、かつ厚さ中央部での温度がAr以上Trex未満である状態で仕上圧延を終了する。なお、厚さ中央部での温度は、雰囲気温度、時間、鋼板の比熱、密度、熱伝導率、加工発熱量、変態発熱量、ロールへの接触抜熱を考慮し、計算で求めることが可能である。
仕上圧延をTrex未満の範囲で実施することで、再結晶させずにオーステナイト粒に歪みを付与することが可能となる。これにより、最終組織におけるベイナイトを微細化することができる。仕上温度を、表面温度がTrex以上の範囲で行うと、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下してしまう。また、1/10t位置において加工フェライトが生成せず、{110}面が鋼板の圧延方向に垂直な面に対して15°以内の角度をなす面の面積率を30%以上とすることができなくなる。
一方、仕上圧延を、厚さ中央部での温度がAr未満の範囲で行うと、加工フェライトが生成し、最終組織においてベイナイト主体の組織とすることができなくなるだけでなく、{110}面がC断面に対して15°以内の角度をなす面の面積率を40%以上とすることができなくなるおそれがある。なお、上述のように、表層部分では加工フェライトが生成してもよいため、仕上圧延での表面温度については、特に下限を設ける必要はない。
また、仕上圧延における圧延パス数nを4~15パスとし、下記(i)式で求められる各パスにおける圧延形状比mの全パスでの平均値を0.5~1.0とする。
=2(R(Hj-1-H))1/2/(Hj-1+H) ・・・(i)
ここで、上記式中のjは1からnまでの自然数(但し、nは圧延パス数)、mはjパス目の圧延形状比、Rはロール半径(mm)、Hj-1はj-1パス後の板厚(mm)、Hはjパス後の板厚(mm)を表す。
圧延パス数nが4パス未満では、圧延形状比mの平均値を1.0以下とすることが困難となる。一方、圧延パス数nが15パスを超えると、生産性が低下する。好ましい圧延パス数nは、5~13パスである。
圧延形状比は、圧延によって鋼板にどのようなひずみ成分が付与されるかを表す指標である。圧延形状比が小さいとせん断ひずみ成分、大きいと圧縮ひずみ成分が多く付与される。すなわち、圧延形状比を変化させることにより、ひずみ成分が変化することとなる。そして、ひずみ成分の変化は、特に1/4t位置の集合組織の形成に大きな影響を及ぼす。そのため、圧延形状比mの平均値を0.5~1.0とする。
圧延形状比mの平均値が0.5未満では、1/4t位置において、圧延のせん断ひずみが支配的となる。その結果、{100}集合組織が発達し、{100}面がC断面に対して15°以内の角度をなす面の面積率を40%以下とすることが困難となる。一方、圧延形状比mの平均値が1.0を超えると、1/4t位置において、圧延の圧縮ひずみが支配的となる。その結果、{110}集合組織が発達するため、{100}面がC断面に対して15°以内の角度をなす面の面積率を10%以上とすることが困難となる。好ましい圧延形状比mの平均値の範囲は、0.6~0.9である。
さらに、仕上圧延における累積圧下率は65~90%の範囲とする。仕上圧延における累積圧下率とは、仕上圧延開始時(粗圧延終了後)の板厚から仕上圧延終了後の板厚を引いたものを、仕上圧延開始時の板厚で除した値である。仕上圧延における累積圧下率を65%以上とすることで、オーステナイト粒に十分な歪みを付与することが可能となる。累積圧下率が65%未満であると、オーステナイト粒への歪の付与が不十分になるとともに、オーステナイト粒の扁平化が促進されず、アスペクト比が低下する。さらに、C断面の1/10t位置における、{110}面がC断面に対して15°以内の角度をなす領域の面積率が60%超となる。また、累積圧下率が90%を超えると、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。さらに、C断面の1/10t位置および1/2t位置における、{110}面がC断面に対して15°以内の角度をなす領域の面積率が低下する。好ましい累積圧下率は、70~80%である。
さらに、仕上圧延におけるパス間時間は15秒以下とする。パス間時間が15秒を超えると加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。パス間時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から3秒以上とすることが好ましい。なお、一般的に仕上圧延はリバース圧延により行われる。仕上圧延におけるパス間時間とは、鋼板が前方に進行しながら圧延ロールにより圧延され、鋼板の後端が圧延ロールから抜けてから、鋼板の進行方向が後方へとリバースし、再度鋼板の後端が圧延ロールに噛み込まれるまでの時間を意味する。
そして、仕上圧延完了から、後述する加速冷却工程における冷却開始までの時間を50秒以下とする。仕上圧延完了から冷却開始までの時間が50秒を超えると、加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。仕上圧延完了から冷却開始までの時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から5秒以上とすることが好ましい。なお、仕上圧延完了から冷却開始までの時間とは、前方へと進行する鋼板の先端が、最終パスにおける圧延ロールを抜けてから、水冷が開始されるまでの時間を意味する。
上記説明において、Arは降温過程でオーステナイト粒からフェライト粒に変態が始まる変態開始温度を意味し、下記(ii)式で求められる。また、Trexは等軸な再結晶粒が生成し成長し得る最低温度である再結晶温度を意味し、下記(iii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(ii)
rex=-91900[Nb*]+9400[Nb*]+770 ・・・(iii)
但し、下記(iv)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
Nb<sol.Nbの場合は、[Nb*]=Nb
とする。
sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N) ・・・(iv)
なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
(e)二次加速冷却工程
二次加速冷却工程では、仕上圧延が終了した鋼板を水冷する。この際、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する。
仕上圧延をAr以上Trex未満の範囲で実施したとしても、その後の復熱によって冷却開始温度がTrex-10℃を超えると、加工によって付与した歪みの回復が促進され、最終組織におけるベイナイトを構成するベイニティックフェライトを十分に微細化することができなくなる。
加えて、5~50℃/秒の平均冷却速度で0~550℃の冷却停止温度まで水冷することで、最終組織をベイナイト主体の組織とすることができる。なお、平均冷却速度および冷却停止温度は、鋼板の化学組成におけるCeqの値に応じて調整し、マルテンサイト変態しない条件とする。
(f)焼戻し工程
二次加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに備えてもよい。焼き戻し工程を行うことで、冷却によって過剰に高くなった転位密度を低減させることができる。なお、二次加速冷却工程における冷却停止温度が高い場合には、自己焼戻し効果が得られるため、焼戻し工程を行わなくてもよい。一方、二次加速冷却工程において、例えば室温程度まで冷却した場合には、焼戻し工程を行うことが好ましい。
以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
表1の化学組成を有する鋼片を用いて、表2および表3の製造条件により板厚10~70mmの鋼板を試作した。
Figure 0007127752000001
Figure 0007127752000002
Figure 0007127752000003
得られた鋼板の金属組織観察を行い、各組織の面積率の測定を行った。具体的には、まず鋼板からC断面での1/4t位置が観察面となるように、試料を採取した。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影し、得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求めた。
次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求めた。
ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSDを用いたKAM解析により算出した。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域をベイニティックフェライトとした。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とした。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものとした。
さらに、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定を、JIS G 0551:2013に準じて行った。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取した。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食し、旧オーステナイト粒を現出させた。
旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影した。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとした。測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とした。
また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求め、その平均値を旧オーステナイト粒のアスペクト比の平均とした。
続いて、集合組織の測定をEBSD法により行った。具体的には、EBSD法により、1/2t位置および1/10t位置では、{110}面がC断面に対して15°以内の角度をなす領域、ならびに1/4t位置では、{100}面がC断面に対して15°以内の角度をなす領域のマップをそれぞれ作成し、その総面積を測定面積で除することによって、それらの面積率を求めた。
より詳細に記載すると、EBSD法により、C断面の1/2t位置および1/10t位置において、結晶方位情報を1μmピッチで合計10万点分の測定を行った。これにより各測定点の{110}面が分かり、各測定点の{110}面とC断面のなす角、すなわち各面の法線がなす角度とが15°以内である測定点の数を求め、EBSD法により測定した合計測定数(10万点)で除することによって面積率を求めた。
同様に、EBSD法により、C断面の1/4t位置において、結晶方位情報を1μmピッチで合計10万点分の測定を行った。これにより各測定点の{100}面が分かり、各測定点の{100}面とC断面のなす角、すなわち各面の法線がなす角度とが15°以内である測定点の数を求め、EBSD法により測定した合計測定数(10万点)で除することによって面積率を求めた。
これらの測定結果を表4に示す。なお、表中においては、フェライトの面積率を「F分率」、パーライトの面積率を「P分率」、ベイナイトの面積率を「B分率」、MA相の面積率を「MA分率」、ベイニティックフェライトの長軸方向の平均長さを「BF長さ」と表記する。また、{110}面がC断面に対して15°以内の角度をなす領域の面積率を「{110}面積率」、{100}面がC断面に対して15°以内の角度をなす領域の面積率を「{100}面積率」と表記する。
Figure 0007127752000004
さらに、引張強さ(TS)および降伏応力(YS)を、JIS Z 2241:2011に基づき測定した。試験片は、板厚中心部から圧延方向に直行する方向(幅方向)を長手方向として採取した、1B号引張試験片を用いて測定した。降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力とした。本実施例では、YSが460MPa以上、かつTSが570MPa以上であるものを、高い強度を有するとした。
また、鋼板の1/4t位置を含むようにVノッチ試験片を採取し、JIS Z 2242:2005に準拠して破面遷移温度(vTrs)の評価を行った。この際、Vノッチ試験片は、ぞれぞれ、試験片の長手方向が鋼板の圧延方向および幅方向に一致するよう、2つずつ採取した。本実施例では、2つの試験片で、いずれもvTrsが-60℃以下であるものを、低温靱性に優れるとした。
そして、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値の測定を行った。試験は3回行い、表には、それらの最小値を記載した。本実施例では、-10℃におけるCTOD値の最小値が0.50mm以上のものを、破壊靱性に優れるとした。
また、NK船級協会 鋼船規則検査要領 K編 付属書 K3.12.2-1.(2016年)の「温度勾配型ESSO試験及び温度勾配型二重引張試験に関する検査要領」に準拠して、アレスト靱性値Kca-10℃の測定を行った。次に、ASTM E208-06で規定された、NRL落重試験法に準拠して試験を行い、NDT温度を求めた。本実施例では、アレスト靱性値Kca-10℃が、6000N/mm1.5以上で、かつNDT温度が-100℃以下のものを、アレスト性に優れるとした。
これらの測定結果を表5に示す。
Figure 0007127752000005
表4および5から分かるように、本発明の規定を満足する本発明例(試験番号1~26)では、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる結果となった。これに対して、比較例(試験番号27~61)では、強度、低温靱性、破壊靱性およびアレスト性の少なくともいずれかが劣化する結果となった。
具体的には、試験番号27はC含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号28はC含有量が低く、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号29はSi含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号30はMn含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号31はMn含有量が低く、強度不足となった。
試験番号32はPおよびSの含有量が過剰であり、試験番号33はAl含有量が過剰であり、試験番号34はN含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号35はN含有量が低く、旧オーステナイト粒が粗大になったため、低温靱性および破壊靱性が劣化した。試験番号36はNb含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号37はNb含有量が低く、BF長さが過剰かつ、旧オーステナイト粒のアスペクト比が小さくなったため、低温靱性および破壊靱性が劣化した。
試験番号38は加熱工程での加熱温度が高く、BF長さおよび旧オーステナイト粒が粗大化し、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号39は加熱温度が低く、ベイナイト面積率が低くなり、旧オーステナイト粒のアスペクト比が低下したため、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号40は粗圧延の終了温度がTrex未満であったため、BF長さおよび旧オーステナイト粒が粗大化し、低温靱性、破壊靱性およびアレスト性が劣化した。
試験番号41は粗圧延の累積圧下率が高いため、旧オーステナイト粒のアスペクト比が低下し、低温靱性、破壊靱性およびアレスト性が劣化した。一方、試験番号42は累積圧下率が低いため、旧オーステナイト粒が粗大化し、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号43は粗圧延の開始温度が高いため、表層部の集合組織を制御できず、アレスト性が劣化した。
試験番号44は一次加速冷却工程での冷却開始温度が低いため、仕上圧延の終了温度もAr未満となり、その結果、ベイナイト面積率が低くなり、BF長さおよび旧オーステナイト粒が粗大化し、さらに、所望の集合組織が得られなかった。そのため、強度不足となるとともに、低温靱性、破壊靱性およびアレスト性が劣化した。
試験番号45は一次加速冷却工程での冷却停止温度が高いため、表層部分に加工フェライトが十分に得られず、アレスト性が劣化した。試験番号46は冷却停止温度が低く、ベイナイト主体の組織とならず、また、所望の集合組織が得られなかったため、強度不足となるとともに、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号47は一次加速冷却工程での冷却速度が高いため、表層部の集合組織を制御できず、アレスト性が劣化した。試験番号48は一次加速冷却工程での冷却速度が低いため、ベイナイト面積率が低くなるとともに、所望の集合組織が得られず、強度不足となり、また低温靱性、破壊靱性およびアレスト性が劣化した。
試験番号49は仕上圧延の開始温度がTrex以上であったため、BF長さが粗大化し、かつ旧オーステナイト粒のアスペクト比が低下し、さらに、表層部の集合組織を制御できず、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号50は仕上圧延の厚さ中央部における終了温度がAr未満であったため、加工フェライトが過剰に生成し、強度不足となるとともに、低温靱性、破壊靱性およびアレスト性が劣化した。
試験番号51は仕上圧延における圧延パス数が少なく、圧延形状比の平均値が高くなったため、所望の集合組織が得られず、アレスト性が劣化した。同様に、試験番号52も圧延形状比の平均値が高くなったため、所望の集合組織が得られず、アレスト性が劣化した。試験番号53は圧延形状比の平均値が低いため、所望の集合組織が得られず、アレスト性が劣化した。
試験番号54は仕上圧延の累積圧下率が高く、旧オーステナイト粒のアスペクト比が低下し、さらに、表層部の集合組織を制御できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号55は累積圧下率が低いため、BF長さが粗大化し、かつ旧オーステナイト粒のアスペクト比が低下し、さらに、所望の集合組織が得られなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号56はパス間時間が長く、試験番号57は仕上圧延完了から冷却開始までの時間が長いため、BF長さが粗大化し、かつ旧オーステナイト粒のアスペクト比が低下し、低温靱性および破壊靱性が劣化した。
試験番号58は加速冷却工程での冷却速度が高いため、MA相が過剰に生成したため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号59は冷却速度が低く、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号60は冷却停止温度が高いため、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号61は冷却開始温度がTrex-10℃を超え、BF長さが粗大化したため、低温靱性は良好であったものの、破壊靱性が劣化する結果となった。
本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板を得ることが可能になる。したがって、本発明に係る鋼板は、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物の素材として好適に用いることができる。

Claims (7)

  1. 鋼板の化学組成が、質量%で、
    C :0.040~0.160%、
    Si:0.01~0.50%、
    Mn:0.70~2.50%、
    P :0.030%以下、
    S :0.020%以下、
    Al:0.001~0.100%、
    N :0.0010~0.0080%、
    Nb:0.003~0.050%、
    残部:Feおよび不純物であり、
    前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
    面積%で、80%以上のベイナイトを含み、かつ、
    前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
    前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
    前記鋼板の圧延方向に対して垂直な面である垂直面の前記表面から1/10tの位置において、{110}面が前記垂直面に対して15°以内の角度をなす領域の面積率が30~60%であり、
    前記垂直面の前記表面から1/4tの位置において、{100}面が前記垂直面に対して15°以内の角度をなす領域の面積率が10~40%であり、
    前記垂直面の前記表面から1/2tの位置において、{110}面が前記垂直面に対して15°以内の角度をなす領域の面積率が40~70%である、
    鋼板。
  2. 前記化学組成が、前記Feの一部に代えて、質量%で、
    Ti:0.050%以下、
    Cu:1.50%以下、
    Ni:2.50%以下、
    Cr:1.00%以下、
    Mo:1.00%以下、
    V :0.150%以下、および
    B :0.0050%以下、
    からなる群から選択される少なくとも1種以上を含有するものである、
    請求項1に記載の鋼板。
  3. 前記化学組成が、前記Feの一部に代えて、質量%で、
    Mg :0.0100%以下、
    Ca :0.0100%以下、および
    REM:0.0100%以下、
    からなる群から選択される少なくとも1種以上を含有するものである、
    請求項1または請求項2に記載の鋼板。
  4. 前記化学組成が、前記Feの一部に代えて、質量%で、
    Zr:0.0100%以下、および
    Te:0.0100%以下、
    からなる群から選択される少なくとも1種以上を含有するものである、
    請求項1から請求項3までのいずれかに記載の鋼板。
  5. 前記化学組成が、前記Feの一部に代えて、質量%で、
    W :1.00%以下、および
    Sn:0.50%以下、
    からなる群から選択される少なくとも1種以上を含有するものである、
    請求項1から請求項4までのいずれかに記載の鋼板。
  6. 請求項1から請求項5までのいずれか1項に記載の鋼板の製造方法であって、
    請求項1から請求項5までのいずれかに記載の化学組成を有する鋼片に対して、加熱工程、粗圧延工程、一次加速冷却工程、仕上圧延工程および二次加速冷却工程を順に施す、鋼板の製造方法において、
    前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
    前記粗圧延工程は、前記鋼片の表面温度がTrex以上1050℃以下である状態で開始し、前記鋼片の表面温度がT rex 以上1050℃以下である状態で終了し、
    前記粗圧延工程における累積圧下率を10~75%とし、
    前記一次加速冷却工程では、前記鋼片の表面温度がAr以上の範囲で冷却を開始し、500℃以上Ar-30℃以下の範囲で冷却を停止し、かつその間の平均冷却速度が35~100℃/秒となる条件で水冷し、
    前記仕上圧延工程は、前記鋼片の表面温度がTrex未満の範囲であり、かつ前記鋼片の厚さ中央部での温度がAr以上Trex未満である状態で開始し、前記鋼片の表面温度がT rex 未満の範囲であり、かつ前記鋼片の厚さ中央部での温度がAr 以上T rex 未満である状態で終了し、
    前記仕上圧延工程における圧延パス数nを4~15パス、下記(i)式で求められる圧延形状比mの平均値を0.5~1.0、累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
    前記仕上圧延工程が完了してから、前記二次加速冷却工程における冷却開始までの時間を50秒以下とし、
    前記二次加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
    鋼板の製造方法。
    =2(R(Hj-1-H))1/2/(Hj-1+H) ・・・(i)
    ここで、上記式中のjは1からnまでの自然数(但し、nは圧延パス数)、mはjパス目の圧延形状比、Rはロール半径(mm)、Hj-1はj-1パス後の板厚(mm)、Hはjパス後の板厚(mm)を表す。
    また、Arは下記(ii)式で求められ、Trexは下記(iii)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
    Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(ii)
    rex=-91900[Nb*]+9400[Nb*]+770 ・・・(iii)
    但し、下記(iv)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
    Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
    Nb<sol.Nbの場合は、[Nb*]=Nb
    とする。
    sol.Nb=(10(-6770/(T+273)+2.26))/(C+12×N/14) ・・・(iv)
    なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
  7. 前記二次加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
    請求項6に記載の鋼板の製造方法。
JP2022505647A 2020-08-31 2021-08-31 鋼板およびその製造方法 Active JP7127752B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020145739 2020-08-31
JP2020145739 2020-08-31
PCT/JP2021/031920 WO2022045351A1 (ja) 2020-08-31 2021-08-31 鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2022045351A1 JPWO2022045351A1 (ja) 2022-03-03
JP7127752B2 true JP7127752B2 (ja) 2022-08-30

Family

ID=80353532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022505647A Active JP7127752B2 (ja) 2020-08-31 2021-08-31 鋼板およびその製造方法

Country Status (4)

Country Link
JP (1) JP7127752B2 (ja)
KR (1) KR20220147125A (ja)
CN (1) CN115362276B (ja)
WO (1) WO2022045351A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116737A1 (ja) * 2022-11-29 2024-06-06 Jfeスチール株式会社 高強度極厚鋼板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072559A1 (ja) 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2018003062A (ja) 2016-06-29 2018-01-11 Jfeスチール株式会社 高強度高加工性熱延鋼板およびその製造方法
JP2018090872A (ja) 2016-12-06 2018-06-14 Jfeスチール株式会社 低降伏比高張力厚鋼板およびその製造方法
JP2020117779A (ja) 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (ja) * 1997-04-28 1998-11-17 Nippon Steel Corp 低温靭性に優れた低降伏比高張力鋼材の製造方法
JP5337412B2 (ja) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 脆性亀裂伝播停止特性に優れた厚鋼板およびその製造方法
KR101271792B1 (ko) * 2010-12-07 2013-06-07 주식회사 포스코 강도 및 충격인성이 우수한 강재 및 그 제조방법
KR101638707B1 (ko) * 2011-07-20 2016-07-11 제이에프이 스틸 가부시키가이샤 저온 인성이 우수한 저항복비 고강도 열연 강판 및 그 제조 방법
JP6926774B2 (ja) 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
JP6926773B2 (ja) 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
JP6926772B2 (ja) 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板
JP6828638B2 (ja) 2017-08-14 2021-02-10 日本製鉄株式会社 鋼板および鋼板の製造方法
WO2019069771A1 (ja) 2017-10-03 2019-04-11 新日鐵住金株式会社 鋼板および鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072559A1 (ja) 2007-12-06 2009-06-11 Nippon Steel Corporation 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP2018003062A (ja) 2016-06-29 2018-01-11 Jfeスチール株式会社 高強度高加工性熱延鋼板およびその製造方法
JP2018090872A (ja) 2016-12-06 2018-06-14 Jfeスチール株式会社 低降伏比高張力厚鋼板およびその製造方法
JP2020117779A (ja) 2019-01-24 2020-08-06 日本製鉄株式会社 鋼板及び鋼板の製造方法

Also Published As

Publication number Publication date
CN115362276A (zh) 2022-11-18
CN115362276B (zh) 2023-11-03
WO2022045351A1 (ja) 2022-03-03
KR20220147125A (ko) 2022-11-02
JPWO2022045351A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
JP5445720B1 (ja) アレスト性に優れた高強度厚鋼板
JP4309946B2 (ja) 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
KR102648171B1 (ko) 강재 및 그 제조 방법
JP6418358B1 (ja) 高Mn鋼板およびその製造方法
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
KR20150122779A (ko) 열연 강판 및 그의 제조 방법
JP7127753B2 (ja) 鋼板およびその製造方法
JP7099653B1 (ja) 鋼板およびその製造方法
WO2014175122A1 (ja) H形鋼及びその製造方法
WO2021020220A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP2013095927A (ja) 靭性に優れた高張力鋼板およびその製造方法
JP7099654B1 (ja) 鋼板およびその製造方法
JP7127752B2 (ja) 鋼板およびその製造方法
JP6981546B2 (ja) 厚鋼板およびその製造方法
JP6776826B2 (ja) 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP2011068952A (ja) アレスト特性に優れた高強度厚肉鋼板
WO2021176590A1 (ja) 鋼管および鋼板
JP7396512B2 (ja) 厚鋼板および厚鋼板の製造方法
JP7127751B2 (ja) 鋼板およびその製造方法
JP7099656B1 (ja) 鋼板およびその製造方法
JP7396322B2 (ja) 鋼板
JP7468814B1 (ja) 高強度極厚鋼板およびその製造方法
CN113226614B (zh) 焊接结构体
JP2024088446A (ja) 鋼板およびその製造方法
WO2024105967A1 (ja) 高強度極厚鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R151 Written notification of patent or utility model registration

Ref document number: 7127752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151