EP2083977B1 - Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core - Google Patents

Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core Download PDF

Info

Publication number
EP2083977B1
EP2083977B1 EP07846564A EP07846564A EP2083977B1 EP 2083977 B1 EP2083977 B1 EP 2083977B1 EP 07846564 A EP07846564 A EP 07846564A EP 07846564 A EP07846564 A EP 07846564A EP 2083977 B1 EP2083977 B1 EP 2083977B1
Authority
EP
European Patent Office
Prior art keywords
formwork
elements
vertical
core
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07846564A
Other languages
German (de)
French (fr)
Other versions
EP2083977A2 (en
Inventor
Andreas Reymann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Ratec Maschinenentwicklungs und Verwaltungs GmbH
Original Assignee
Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Ratec Maschinenentwicklungs und Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ratec Maschinenentwicklungs- und Verwaltungs-GmbH, Ratec Maschinenentwicklungs und Verwaltungs GmbH filed Critical Ratec Maschinenentwicklungs- und Verwaltungs-GmbH
Priority to EP07846564A priority Critical patent/EP2083977B1/en
Publication of EP2083977A2 publication Critical patent/EP2083977A2/en
Application granted granted Critical
Publication of EP2083977B1 publication Critical patent/EP2083977B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/22Moulds for making units for prefabricated buildings, i.e. units each comprising an important section of at least two limiting planes of a room or space, e.g. cells; Moulds for making prefabricated stair units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0002Auxiliary parts or elements of the mould
    • B28B7/0008Venting channels, e.g. to avoid vacuum during demoulding or allowing air to escape during feeding, pressing or moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/28Cores; Mandrels
    • B28B7/30Cores; Mandrels adjustable, collapsible, or expanding
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/02Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for rooms as a whole by which walls and floors are cast simultaneously, whole storeys, or whole buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0472Details of connection of the hose to the formwork, e.g. inlets

Definitions

  • the present invention relates to a formwork system for concreting concrete parts and room modules comprising an outer formwork and a formwork core.
  • the outer formwork has a formwork floor, two longitudinal walls and two end walls. The end walls are arranged between the longitudinal walls at their front ends.
  • the shuttering core is cuboid and can be used in the outer formwork.
  • so-called formwork cores are used for the shaping of prefabricated parts, in particular in the preparation of contiguous prefabricated parts, in which at least one bottom part and one side part are connected to one another.
  • An upwardly open external formwork comprising a bottom, two longitudinal walls and two arranged at the front ends of the longitudinal walls end walls, serves as an outer boundary for the walls or building parts to be created.
  • a formwork core is used whose dimensions are slightly smaller than the inner dimensions of the outer formwork.
  • the distance between the walls of the outer formwork and the formwork core corresponds to the width of the side wall to be concreted
  • the distance of the bottom of the formwork core from the formwork floor of the outer formwork corresponds to the thickness of the floor to be concreted.
  • the formwork core is supported on the outer formwork. Parts with complex geometries, such as For example, room modules with floor and side walls or partially closed rooms, can be produced in a concreting process.
  • the inner formwork core can be easily removed from the finished concrete part after the setting process of the concrete, it must be able to reduce its outer dimensions.
  • a manufacturing method using a so-called shrink core for molding is known, which can reduce its outer dimensions after the setting process of the concrete, so that a simple removal is possible.
  • a complex, many mechanical and hydraulic components comprehensive hydraulics is arranged within the core, with the side walls translationally, ie parallel, can be moved inwards.
  • four L-shaped corner pieces are provided, which can slip past each other, so that the corner parts are moved inward.
  • a formwork core according to the preamble of claim 1 in which the side walls can be moved parallel inwards, is also from the FR 2 310 454 known.
  • the formwork core on an inner core are hinged to the four side walls and four corner elements. Lifting the inner core causes the sidewalls to move inward.
  • a prefabricated concrete floor element is present, on which the side walls are concreted.
  • this device is only partially suitable to produce exposed concrete parts in high quality.
  • the present object is achieved with a formwork system having the feature according to claim 1.
  • the present object is also achieved by a method with the features of claim 13 and with the features of claim 14.
  • preferred embodiments of the formwork system according to the invention are defined, which can be used individually or in combination.
  • the formwork system according to the invention for concreting precast concrete elements and room modules comprises an outer formwork and a formwork core.
  • the outer formwork has a formwork floor, two longitudinal walls and two end walls. The end walls are arranged between the longitudinal walls at their front ends, so that there is a cavity-forming, open to the top cuboid structure.
  • the formwork core is used for concreting an upwardly open space module in the outer formwork. The resulting between the outer formwork and the formwork core cavity is filled with concrete.
  • the shuttering core itself forms a cuboid with a horizontal element formed as a base and with a cover element and with at least four vertical elements, two of which are designed as end elements and two as side elements.
  • Each of the vertical elements is coupled to each of the two horizontal elements and movably connected.
  • Each end element is thus coupled to both the cover element and with the bottom of the formwork core.
  • a coupling mechanism is provided, which is designed such that a vertical movement of a horizontal element (bottom or cover element) outwardly causes a movement of the vertical elements in the inward direction, that the distance between the opposing vertical elements is reduced.
  • a lifting of the cover element thus causes the vertical elements to move inwards. The distance between the two end elements and the distance between the two side elements is thereby reduced.
  • the outer formwork and the formwork core can be removed from the concrete part.
  • the formwork core in its dimensions, at least in its horizontal dimensions, shrunk.
  • shrink core By automatically varying the distances of the vertical elements to one another by lifting the cover element, the dimensions are reduced in a simple manner. Thus, it is not necessary to dismantle the formwork core.
  • the coupling mechanism comprises a plurality of pivot levers. At least one pivot lever is arranged between a vertical element and a horizontal element.
  • the pivot lever is articulated to both the horizontal element and on the vertical element.
  • the pivot lever may consist of a connecting piece or a molded part which is fastened between the two pivot points on the vertical element or the horizontal element.
  • a movement of the vertical elements can be generated inwardly such that the movement has a rotational component.
  • a horizontal element is moved outwardly, the edge regions of the vertical elements adjacent to the moving horizontal element are moved towards one another.
  • the pivot lever thus performs a rotational movement. This can take place around one of the bearing points on the vertical element or on the horizontal element. However, pivoting about another within or outside the pivot lever lying (virtual) pivot point is possible.
  • the movement of the pivoting lever caused by moving the horizontal element outwards causes the moving horizontal element to move adjacent edge regions of the two opposing vertical elements are moved towards each other. The distance between these edges opposite edges, however, remains unchanged.
  • the vertical elements are therefore tilted inwards.
  • the tipping of the elements has the advantage that the vertical elements do not have to be solved simultaneously over the entire surface of the concrete element concrete. Rather, a piecewise release by pivoting or tilting of the vertical elements inward is possible.
  • the applied forces to separate the vertical elements of the concrete element are small. The risk of flaking due to the release of the vertical elements is greatly reduced, so that the production of exposed concrete walls is reliably possible.
  • the vertical elements are made of shuttering panels.
  • the weight of the formwork core is reduced, the transport and handling of the formwork core are facilitated.
  • the end elements of the formwork core are formed as end panels; the side elements as side panels.
  • the thickness of the formwork panels is low in relation to their height and length.
  • the ratio of the thickness to the height is ⁇ 1%, so that the thickness of the shuttering panels is significantly less than 2.5 cm with a vertical extension of the vertical element of 2.50 m.
  • Thickness is understood to mean the dimension in the direction of the surface normal of the formwork panel, that is to say the extent perpendicular to the height and length of the panel.
  • the horizontal elements are formed as formwork panels.
  • the formwork panels are reinforced with a supporting structure.
  • the support structure includes panel-like reinforcing elements, which are advantageously and particularly preferably designed as horizontal ribs and vertical ribs.
  • the ribs are each perpendicular to the formwork panel or to the inside. In this way, very rigid and torsionally rigid formwork elements can be produced, but their weight is significantly lower than a comparatively rigid formwork element made of solid material.
  • the pivot levers of the coupling mechanism can be attached to the support structure of the formwork panels of the vertical elements as well as the horizontal elements be.
  • a pivoting of the horizontal elements relative to the vertical elements is significantly simplified due to the relatively thin formwork panels.
  • the construction of the coupling mechanism can thereby be quite simple. Nevertheless, an exact movement and positioning of the individual panels to each other is possible.
  • the vertical elements each have an edge at their upper and lower edge regions, which extends horizontally in the direction of the adjacent horizontal element.
  • the edge of the vertical elements flush with the adjacent horizontal element, when the formwork core is arranged in its concreting, so all elements are connected to each other such that a formwork introduced into the outer formwork core can be used for concreting.
  • At least one corner element is included which is arranged between two adjacent vertical elements and couples the two vertical elements to one another via a coupling element. Between a front element and a side member of the formwork core so a coupling element is arranged such that the end element is coupled to the side member.
  • the corner element is designed such that a movement of the vertical elements inward, in particular a tilting of the vertical elements, is made possible.
  • the corner element is also movable inwards and can be easily solved by the precast concrete to be concreted.
  • the corner element is designed as a corner panel and has stiffening elements on its inner side.
  • the reinforcing elements of the vertical elements in particular the horizontal ribs of the end elements and the side elements, overlap each other at the corner regions. They also overlap the stiffening part of the corner element.
  • the coupling element of the corner element may be formed as a vertically extending guide rod. Corresponding guide recesses are arranged in the stiffening elements and the reinforcing elements such that the guide rod extends through the guide recesses. This way will be through the coupling element, the corner elements guided by the adjacent vertical elements.
  • the guide recess is formed in the horizontally arranged stiffening elements of the corner element as a slot in which the coupling element can be performed.
  • the stiffening element is wedge-shaped axisymmetric to the bisector of the corner element.
  • the slot is then also oriented in the direction of the axis bisector.
  • the guide recess in the horizontal ribs of the vertical elements is preferably a bore which is slightly larger than the guide rod. In this way, in a tilting and movement of the vertical elements inwardly the corner element only then (inwardly) moves when the coupling element abuts the one end of the longitudinal groove and thus entrains the corner element.
  • the corner elements are moved by the vertical elements.
  • at least one horizontal stiffening element of the corner element above a horizontal rib of a vertical element is arranged such that a lifting of the vertical elements causes a lifting of the corner element.
  • the arranged below the stiffening elements of the corner element horizontal ribs support the corner element such that the corner element follows the vertical elements. Their movement, however, is delayed by the coupling mechanism.
  • the corner elements therefore represent path-controlled elements that are controlled by the displacement path of the vertical elements, that is, their movement is controlled by the movement of the vertical elements.
  • the corner elements are caster-oriented, that is, they do not move until after the vertical elements have moved. When so-called spreading, so if the distance of the vertical elements is increased, the corner elements are flow-oriented.
  • the formwork system according to the invention with an outer formwork and a formwork core variable in its outer dimensions has a multiplicity of advantages that result from the operations resulting from this formwork core divide resulting from the resulting with this formwork core concreting processes.
  • the formwork system according to the invention enables the production of monolithic concrete parts, in particular precast concrete components, which have a bottom and one or more side parts. Due to the movement of the formwork core, the precast concrete parts can be produced in the installed position, that is, in the position as they are later used in the assembly of a house consisting of precast concrete parts. This has advantages in terms of the resulting end product as well as the efficiency of the production.
  • the space required is considerably smaller compared to production methods in which the precast concrete component is produced in the reverse installed position.
  • a turning device for the component is not provided.
  • the wage bill is also lower because no additional staff has to be used for the turning process.
  • the biggest advantage in the manufacturing process is that early removal work on the concrete part is possible. Directly after the shuttering process (partial heating / curing) can begin with the finishing work. It is not necessary to wait until the concrete part has completely hardened and the required strength for the turning process of the component is given.
  • the production time of a finished precast concrete part is significantly reduced.
  • the monolithic structure which can be produced with the formwork system according to the invention has the advantage that no assembly stage is necessary in the production sequence, in which the concrete individual parts have to be assembled.
  • the following advantages can be achieved with the formwork system according to the invention: Due to the monolithic nature of the component, fewer steel inserts are necessary for reinforcement. At the same time, a higher stability of the overall system is achieved. Expensive built-in parts for connecting various elements, as they are necessary, for example, in concrete prefabricated, eliminated. The monolithic nature of the concrete part reduces the expense of finishing work, such as piping or cable strands. These can be arranged and placed directly during manufacture, ie before the concrete flows into the formwork system. A later connection is not necessary. Between the individual walls or the walls and the floor no joints and thus no leaks.
  • the concrete element can remain on a so-called circulation pallet, from the concreting phase to delivery.
  • High Abhebelasten be applied only at the end of production on the concrete part. Therefore, a lower reinforcement is necessary.
  • the revolving pallet itself allows earlier stripping, since the release of the formwork sets the required strength for the concrete and not the lifting of the concrete element on the bottom formwork and thus the pressure and tensile forces occurring during lifting.
  • the device according to the invention is explained below by way of example in the production of a room module with side walls and a monolithic floor.
  • Fig. 1 is an inventive formwork system 1 with an outer formwork 2 and a formwork core 3 to see during the process of insertion of the formwork core 3 in the outer formwork 2.
  • the outer formwork 2 has two longitudinal walls 4, two end walls 5 and a shuttering bottom 6.
  • the longitudinal walls 4 and the end walls 5 are reinforced by a supporting structure 7, the horizontal ribs 8 and vertical ribs 9 includes.
  • the formwork core 3 comprises two horizontal elements 10, which are formed as a bottom 11 (not shown) and cover element 12.
  • Four vertical elements 13 are formed as end elements 14 and side elements 15.
  • On the cover element 12 a plurality of Quertragtraversen 16 are arranged at which a hoist, not shown, the formwork core 3 lifts and moves.
  • guide pins 17 are provided on the Quertragtraversen, which are inserted into corresponding positioning receptacles 18 in the longitudinal walls 4.
  • the formwork core 3 is positioned with equidistant spacing in the outer formwork 2.
  • FIG. 1 the shuttering core 3 is shown in its transport position, in which the vertical elements 13, the horizontal elements 10 and the corner elements 19 are coupled together and connected via coupling mechanisms, not shown here. Nevertheless, the elements are not flush with each other, but are spaced apart.
  • FIG. 2 The formwork core 3 is shown here in its concreting position, in which the corner elements 19, the vertical elements 13 and the horizontal elements 10 abut each other, so that a flush, one-piece outer skin of the formwork core 3 results.
  • the cavity 20 formed between the formwork core 3 and the outer formwork 2 is then filled with concrete in a next step, whereby a prefabricated concrete element designed as a room module is produced.
  • the method of filling the cavity 20 is in FIG EP 06 023 710 whose contents become the content of this application by referencing.
  • the Quertragtraversen 16 are based on the outer formwork 2 from. As a result, the formwork core 3 is held in position. The formwork core 3 thus floats practically in the outer formwork 2, so that the bottom of the formwork core 3 is spaced from the formwork floor 6 of the outer formwork 2. Additional spacer elements between the two floors can be provided; however, they are not essential.
  • the formwork core must have within a mechanism, with which the two opposing horizontal elements can be moved against each other. By the mechanism, the distance can be reduced or spread, so that the vertical elements of the formwork core 3 are spread or shrunk in accordance with the coupling mechanism.
  • Fig. 3 shows the formwork core 3 is in its transport position when lifting out of the outer formwork 2. After completion of the setting process of the precast concrete formwork core 3 from its concreting in the Transport position moves, with its horizontal outer dimensions, ie the distances between the vertical elements 13, are reduced.
  • Fig. 3 can be seen by way of example that 3 openings are provided in the cover element 12 of the formwork core. Through these openings, the interior of the formwork core 3 is accessible. It can be used, for example, to fix in the space between the outer formwork 2 and formwork core 3 arranged before filling the concrete empty cans for sockets or conduits in their position again or change.
  • the completely removed formwork core 3 is in Fig. 4 shown.
  • a room module 21 remains in the outer formwork 2.
  • the room module 21 After removal of the outer formwork 2, that is, after the dismantling of the longitudinal walls 4 and the end walls 5, the room module 21 remains standing on the formwork floor 6 of the outer formwork 2, Fig. 5 , The room module 21 is in its installed position. Further work on the room module can now be made, although the concrete is not completely cured because no forces occur, in particular no levers or rotational forces, as they are necessary when turning the precast concrete in the manufacturing process in reverse mounting position. Both the formwork core 3 and the outer walls 4, 5 of the outer formwork 2 can now be used for the production of another precast concrete part. Only the shuttering floor 6 is blocked by the new precast concrete part. On the formwork floor 6, however, the precast concrete part can be moved within the assembly hall in a position for processing and curing.
  • the manufacturing process of a precast concrete part and in particular the shrinkage of the formwork core 3 is based on the FIGS. 6 to 10 explained in more detail, showing the shuttering core 3 in schematic cross section and other details.
  • Fig. 6a the shuttering core 3 is shown in the outer formwork 2 in its concreting position.
  • the bottom 11 of the formwork core 3 is mounted on two supports 22, so that between the shuttering floor 6 and the bottom 11 of the desired Distance can be generated.
  • the thickness of the bottom of the precast concrete element is adjustable.
  • the vertical elements 13 in their upper edge region 23 and in their lower edge region 24 each have an edge piece 25 or 26 which extends in the horizontal direction.
  • the vertical elements 13 have a U-shaped contour, in which the two legs are aligned horizontally.
  • reinforcing elements 28 are arranged, which are formed as horizontal ribs 29 and vertical ribs 30.
  • the horizontal ribs 29 and the vertical ribs 30 correspond to the horizontal ribs 8 and the vertical ribs 9 of the outer formwork second
  • the formed as a side member 15 vertical element 13 is coupled via a coupling mechanism 31 with the bottom 11 and with the cover member 12.
  • the coupling mechanism 31 comprises a plurality of pivoting levers 32, which are rotatably connected to the vertical ribs 30 at the upper and lower edge regions 23, 24 of the side elements 15.
  • the pivot levers 32 have a first pivot bearing 33 with a first bearing axis 34, which is connected to a reinforcing rib 30 a of a horizontal element 10.
  • the pivot lever 32 is mounted on a vertical rib 30 of a vertical element 13.
  • the orientation angle ⁇ defines the angular position of the pivot lever 32 at the bottom 11, the orientation angle ⁇ , the angle of the pivot lever 32, which are mounted on the cover element 12.
  • the orientation angles ⁇ , ⁇ are the same.
  • the two angles ⁇ and ⁇ are each relatively small, preferably the angles are between 1 ° and 5 °.
  • a particular embodiment of a pivot lever 32 is shown.
  • This pivot lever 32 additionally has a stop pin 37 which, in the concreting position of the shuttering core 3 presses against a vertical rib 30 of the vertical element 13.
  • a connecting rod 38 extends through the pivot lever 32 therethrough.
  • Several parallel pivot lever 32 can be coupled together, see. Fig. 11a , The torsional stiffness of the entire formwork core 3 is increased.
  • FIGS. 7a to 7d show the formwork core 3 at the beginning of the kinematic shrinkage process, after the cover element 12 has been raised slightly by a hoist, not shown here.
  • the formwork core 3 is located in the room module 21.
  • the pivot lever 32 which are mounted on the cover element 12, were pivoted by the lifting of the cover element 12, so that the orientation angle ⁇ is now significantly greater than the orientation angle ⁇ of the pivot lever 32 mounted on the bottom 11
  • the two side elements 15 tilt inwards, so that the distances of the opposite upper edge regions 23, 24 of the side elements 15 are reduced.
  • the side members 15 are inclined inwardly by the tilt angle ⁇ .
  • Fig. 8 shows the formwork core 3 in a later process step in which the cover element 12 has been moved further upwards.
  • the two side elements 15 are now also moved upward, so that the lower pivot lever 32 have performed a pivoting movement.
  • the orientation angle ⁇ is now increased, but smaller than the orientation angle ⁇ .
  • the inclination of the side members 15 is reduced.
  • the FIGS. 9a to 9d The alignment angle ⁇ of the lower pivot lever 32 corresponds to the alignment angle ⁇ of the upper pivot lever 32.
  • the side elements 15 are vertically aligned. At the same time they were raised. The side elements 15 are completely detached from the room module 21.
  • the shuttering core 3 has been moved from its concreting position to its transport position.
  • the so-called shrinking process is finished.
  • the shuttering core 3 can be removed from the room module 21 upwards ( Fig. 10 ).
  • the shrinkage process explained here in two-dimensional terms is a three-dimensional shrinkage process in which a collision of the vertical elements 13 relative to one another has to be avoided. Due to the corner elements 19, this is made possible because each corner element 19 is of its geometric basic structure a three-dimensional structure which extends at least functionally over all three dimension axes.
  • the corner element 19 has the task of closing resulting gaps from the necessary displacement paths of the side elements 15, the end elements 14 and the horizontal elements 10 for the "spread" concreting position. This is achieved in that the corner element 19 during the movement of the formwork core 3 from the concreting position in the transport position and vice versa weglauf led forward or.
  • a tracking-controlled corner element 19 will be described by way of example.
  • the lead-controlled corner element is constructed mechanically identical in a figurative sense.
  • the corner element 19 is in detail in the FIGS. 11a to 11c shown.
  • Fig. 11a shows the formwork core 3 according to the invention in a cutaway view, so that the arranged on the inside 27 reinforcing elements 28 are clearly visible.
  • the reinforcing elements 28, which are formed as horizontal ribs 29 and vertical ribs 30, are present on all side walls as well as the bottom 11 and the cover element 12, not shown here.
  • the corner element 19 has on its inner side horizontally extending stiffening elements 39.
  • the corner element 19 is likewise designed as a corner panel.
  • the stiffening elements 39 have a substantially square base surface with an extending in the direction bisector guide extension 40 having a guide recess 41 which also extends along the bisector.
  • the stiffening elements 39 overlap with the horizontal ribs 29 of the vertical elements 13.
  • guide recesses 42 are arranged, which correspond to the guide recesses 41.
  • a guide rod 43 extends through the guide recesses 41, 42 such that the corner elements 19 are guided by the vertical elements 13.
  • At least two stiffening elements 39 one in the lower and one in the upper region of the corner element 19, additionally have two guide arms 44 extending at 90 ° to each other and extending parallel to the vertical elements.
  • the guide arms 44 support the guide rod 43 and cooperate with this. This ensures that the corner elements 19 are moved forward or curb-controlled with or from the vertical elements 13.
  • the corner elements 19 have an upper and lower edge 45 which extends horizontally.
  • the edge 45 is essentially wedge-shaped. It also has a guide recess 41 through which the guide rod 43 extends.
  • the shape of the edge 45 corresponds to the shape of the edge pieces 25, 26 of the vertical elements, so that in the concreting position of the formwork core 3, a circumferential, flush edge of the formwork core is formed.
  • the edge pieces 25, 26 have at their lateral ends in each case a chamfer, which correspond to the edge pieces 45 of the corner elements.
  • the cover element 12 and the bottom 11 are designed such that that they are framed by the edge pieces 25 and 45 or 26 and 45 and terminate flush with them in the concreting position.
  • FIGS. 12a to 12d show a detailed drawing of the corner element 19 during the removal of the formwork core 13 from a ready-concreted room module 21st
  • the vertical elements 13 move inwards and detach at the upper edge 23 from the room module 21.
  • the vertical elements are lifted slightly, as in FIG Fig. 12b clearly shown.
  • the vertical elements 13 overlap with the corner element 19, so that the vertical elements 13 undercut the corner elements 19 at the outer corners.
  • the vertical elements 13 are moved further upwards after they are no longer tilted, but again vertically aligned.
  • the corner elements 19 are also slightly raised in this movement step, since the horizontal ribs 29 are arranged below the stiffening elements 39, Fig. 12c ,
  • the lifting of the vertical elements 13 thereby also causes a lifting of the corner member 19.
  • the caster-controlled corner element 19 is also moved inwards and detached from the room module 21 completely.
  • the formwork core 3 is now freely movable in the room module 21 and can be removed upwards, Fig. 12d ,
  • the formwork core 3 since the formwork core 3 according to the invention hollow inside and through openings in the cover element 12 is walkable, such a construction can be arranged in the interior of the formwork core and possibly even be operated mechanically or manually by the operator inside the formwork core.
  • the pressing apart of the horizontal elements can be caused by a push-pull member. Examples include spindles, hydraulic cylinders or a pliers mechanism.
  • the spreading and shrinking is independent of the lifting and lowering of the formwork body from the precast concrete or in the outer formwork possible.
  • the bottom 11 of the formwork core 3 can be moved downwards, for example by spreading the two opposing horizontal elements 10.
  • the formwork core 3 can then be moved out of the room module downwards, so that it is also possible to place corresponding room modules with ceiling To produce soil.
  • the principle of spreading and shrinking of the formwork core remains.
  • FIGS. 13a to 13c show different ways of designing the precast concrete, resulting from the construction of the formwork core 3 according to the invention.
  • a vertical element 13 is shown, on the outside of which a structured plastic matrix 49 is applied.
  • a negative impression of the plastic matrix is produced.
  • structured surfaces can be created, for example, natural stone replica and / or slip-resistant floors or the like.
  • Fig. 13b shows a vertical element 13 with a holder 46 for a window element 47, which is to be firmly cast into the room module 21.
  • a window member 47 is introduced, which is fixed by the holder 46.
  • the concrete flows around the window member 47 around, so that a window-like recess or an opening in the room module is formed.
  • Fig. 13c shows a vertical element 13 in a recess body 48 which is to be recessed in the precast concrete part. Due to the design of the recess body 48, almost any recesses in the prefabricated component, for example for recessed luminaires and mirrors, for shelves and the like, can be formed. This principle of the recess body can also be applied to the floor 11 in order to realize, for example, floor slopes in bathrooms. By means of a suitable recess body, for example, a shower tray can be molded directly into the floor in the area of the bathroom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

Disclosed is a formwork system (1) for concreting room modules (21) and prefabricated concrete parts, comprising a formwork shell (2) and a formwork core (3). The formwork shell encompasses a formwork bottom (6), two longitudinal walls (4), and two front walls (5) that are arranged at the front ends of the longitudinal walls. The formwork core can be inserted into the formwork shell and comprises a horizontal element (10) that is designed as a bottom (11) and a horizontal element (10) which is designed as a covering element (12). Two front elements (14) and two lateral elements (15) are designed as vertical elements (13). The horizontal elements (10) and the vertical elements (13) are disposed such that a cuboidal hollow interior is formed within the formwork core (3). The front elements (14) and the lateral elements (15) are each coupled and movably connected to the bottom (11) and the covering element (12). A coupling mechanism (31) is designed such that a vertical outward movement of a horizontal element (10) causes the vertical elements (13) to be moved inward, thus reducing the distance between the opposite front elements (14) and the opposite lateral elements (15).

Description

Die vorliegende Erfindung betrifft ein Schalungssystem zum Betonieren von Betonteilen und Raummodulen umfassend eine Außenschalung und einen Schalungskern. Die Außenschalung hat einen Schalungsboden, zwei Längswände und zwei Stirnwände. Die Stirnwände sind zwischen den Längswänden an deren Stirnenden angeordnet. Der Schalungskern ist quaderförmig ausgebildet und kann in die Außenschalung eingesetzt werden.The present invention relates to a formwork system for concreting concrete parts and room modules comprising an outer formwork and a formwork core. The outer formwork has a formwork floor, two longitudinal walls and two end walls. The end walls are arranged between the longitudinal walls at their front ends. The shuttering core is cuboid and can be used in the outer formwork.

Im Betonbau werden zur Formgebung von Fertigteilen, insbesondere bei der Erstellung von zusammenhängenden Fertigteilen, bei denen mindestens ein Bodenteil und ein Seitenteil miteinander verbunden sind, so genannte Schalungskerne zur Formgebung verwendet. Eine nach oben hin offene Außenschalung, die einen Boden, zwei Längswände und zwei an den Stirnenden der Längswände angeordnete Stirnwände umfasst, dient als äußere Begrenzung für die zu erstellenden Wände bzw. Gebäudeteile. In die Außenschalung wird ein Schalungskern eingesetzt, dessen Ausmaße wenig kleiner als die Innenmaße der Außenschalung sind. Der Abstand zwischen den Wänden der Außenschalung und des Schalungskerns entspricht der Breite der zu betonierenden Seitenwand, der Abstand des Bodens des Schalungskerns vom Schalungsboden der Außenschalung entspricht der Dicke des zu betonierenden Bodens. Dazu stützt sich der Schalungskern an der Außenschalung ab. Teile mit komplexen Geometrien, wie beispielsweise Raummodule mit Boden und Seitenwänden oder teilgeschlossene Räume, lassen sich in einem Betoniervorgang herstellen.In concrete construction, so-called formwork cores are used for the shaping of prefabricated parts, in particular in the preparation of contiguous prefabricated parts, in which at least one bottom part and one side part are connected to one another. An upwardly open external formwork comprising a bottom, two longitudinal walls and two arranged at the front ends of the longitudinal walls end walls, serves as an outer boundary for the walls or building parts to be created. In the outer formwork, a formwork core is used whose dimensions are slightly smaller than the inner dimensions of the outer formwork. The distance between the walls of the outer formwork and the formwork core corresponds to the width of the side wall to be concreted, the distance of the bottom of the formwork core from the formwork floor of the outer formwork corresponds to the thickness of the floor to be concreted. For this purpose, the formwork core is supported on the outer formwork. Parts with complex geometries, such as For example, room modules with floor and side walls or partially closed rooms, can be produced in a concreting process.

Bei den bekannten Betonierverfahren zur Herstellung von Raummodulen wird das Fertigteil in umgekehrter Einbaulage, also auf dem Kopf stehend, betoniert und muss nach dem Erhärten gedreht werden. Dies erfordert eine aufwändige teuere Wendemechanik und viel Platz. Der Schalungskern wird auf einer Bodenplatte angeordnet. Um den Schalungskern herum wird eine Außenschalung zugebaut. Der Zwischenraum zwischen Schalungskern und Außenschalung wird dann mit Beton gefüllt. Nach dem Aushärteprozess des Betons wird die Außenschalung wieder abgebaut. Das hergestellte Betonfertigteil wird nach dem vollständigen Aushärten nach oben entnommen. Nachteilig bei diesem Verfahren ist jedoch, dass das hergestellte Formelement aus seiner Herstellungsposition in die Einbaulage gedreht werden muss. Dabei treten hohe Kräfte auf, die zu Rissen in den Betonteilen führen können.In the known concreting process for the production of room modules, the finished part in reverse mounting position, ie standing upside down, concreted and must be rotated after hardening. This requires a complex expensive turning mechanism and a lot of space. The shuttering core is placed on a base plate. Around the formwork core around an outer formwork is zugebaut. The space between the formwork core and the outer formwork is then filled with concrete. After the hardening process of the concrete, the outer formwork is dismantled again. The manufactured precast concrete is removed after complete curing upwards. A disadvantage of this method, however, is that the molded element produced must be rotated from its production position into the installation position. This high forces occur, which can lead to cracks in the concrete parts.

Damit der innere Schalungskern nach dem Abbindeprozess des Betons einfach aus dem gefertigten Betonteil entnommen werden kann, muss er seine Außenmaße verringern können. Im Stand der Technik ist ein Herstellungsverfahren unter Verwendung eines so genannten Schrumpfkerns zur Formgebung bekannt, der nach dem Abbindeprozess des Betons seine Außenmaße verringern kann, so dass eine einfache Entnahme ermöglicht wird. Zur Verringerung der Außenmaße des Schalungskerns ist innerhalb des Kerns eine aufwändige, viele mechanische und hydraulische Komponenten umfassende Hydraulik angeordnet, mit der die Seitenwände translatorisch, also parallel, nach innen verschoben werden können. Um dies zu ermöglichen, sind jeweils vier L-förmige Eckteile vorgesehen, die aneinander vorbei rutschen können, so dass die Eckteile nach innen bewegt werden. Nachteilig ist bei diesem System neben der Hydraulik mit mehreren Zylindern, dass die Eckteile, die parallel zu den Seitenwänden verschoben werden, mit ihrer gesamten an dem Betonteil anliegenden Außenseite gleichzeitig von dem Betonteil entfernt werden. Hierdurch kommt es zu Abrissen des Betons und zu einer Beschädigung der frisch betonierten Teile. Darüber hinaus ist ein derartiges System sehr schwer, teuer und fehleranfällig. Eine formschlüssige Formgebung ist nur eingeschränkt möglich. Sichtbetonteile können nicht in ausreichender Qualität hergestellt werden.So that the inner formwork core can be easily removed from the finished concrete part after the setting process of the concrete, it must be able to reduce its outer dimensions. In the prior art, a manufacturing method using a so-called shrink core for molding is known, which can reduce its outer dimensions after the setting process of the concrete, so that a simple removal is possible. To reduce the outer dimensions of the formwork core, a complex, many mechanical and hydraulic components comprehensive hydraulics is arranged within the core, with the side walls translationally, ie parallel, can be moved inwards. To make this possible, four L-shaped corner pieces are provided, which can slip past each other, so that the corner parts are moved inward. A disadvantage of this system, in addition to the hydraulic with multiple cylinders, that the corner parts that are moved parallel to the side walls, with their entire voltage applied to the concrete part outside are removed simultaneously from the concrete part. This leads to demolition of the concrete and damage to the freshly concreted parts. Moreover, such a system is very heavy, expensive and error prone. A form-fitting design is limited. Fair-faced concrete parts can not be produced in sufficient quality.

Die Verwendung eines Schalungskerns gemäß dem Oberbegriff des Anspruchs 1 bei dem die Seitenwände parallel nach innen bewegt werden können, ist auch aus der FR 2 310 454 bekannt. Dazu weist der Schalungskern einen Innenkern auf, an dem vier Seitenwände und vier Eckelemente angelenkt sind. Ein Anheben des Innenkerns lässt die Seitenwände nach innen wandern. Ein derartiges System setzt jedoch stets voraus, dass ein vorgefertigtes Betonbodenelement vorhanden ist, auf dem die Seitenwände aufbetoniert werden. Darüber hinaus ist diese Vorrichtung nur bedingt geeignet, um Sichtbetonteile in hoher Qualität zu fertigen.The use of a formwork core according to the preamble of claim 1 in which the side walls can be moved parallel inwards, is also from the FR 2 310 454 known. For this purpose, the formwork core on an inner core, are hinged to the four side walls and four corner elements. Lifting the inner core causes the sidewalls to move inward. However, such a system always requires that a prefabricated concrete floor element is present, on which the side walls are concreted. In addition, this device is only partially suitable to produce exposed concrete parts in high quality.

Es ist somit Aufgabe der vorliegenden Erfindung, ein Schalungssystem mit einer Außenschalung und einem Schalungskern vorzuschlagen, bei dem Betonfertigteile und Raummodule in ihrer Einbaulage und mit hoher Qualität der sichtbaren Flächen als einstückige Fertigelement hergestellt werden können und welches ein einfaches und sicheres Entfernen des Schalungskerns ermöglicht, ohne die Seitenwände der Betonteile zu beschädigen.It is therefore an object of the present invention to propose a formwork system with an outer formwork and a formwork core, in which precast concrete elements and room modules can be produced in their installed position and high quality of the visible surfaces as one-piece finished element and which allows a simple and safe removal of the formwork core, without damaging the side walls of the concrete parts.

Die vorliegende Aufgabe mit einem Schalungssystem mit dem Merkmal gemäß Anspruch 1 gelöst. Die vorliegende Aufgabe wird auch durch ein Verfahren mit den Merkmalen des Anspruchs 13 und mit den Merkmalen des Anspruchs 14 gelöst. In den abhängigen Unteransprüchen sind bevorzugte Ausgestaltungen des erfindungsgemäßen Schalungssystems definiert, die einzeln oder in Kombination verwendet werden können.The present object is achieved with a formwork system having the feature according to claim 1. The present object is also achieved by a method with the features of claim 13 and with the features of claim 14. In the dependent subclaims preferred embodiments of the formwork system according to the invention are defined, which can be used individually or in combination.

Das erfindungsgemäße Schalungssystem zum Betonieren von Betonfertigteilen und Raummodulen umfasst eine Außenschalung und einen Schalungskern. Die Außenschalung hat einen Schalungsboden, zwei Längswände und zwei Stirnwände. Die Stirnwände sind zwischen den Längswänden an deren Stirnenden angeordnet, so dass sich ein einen Hohlraum bildendes, zur Oberseite geöffnetes quaderförmiges Gebilde ergibt. Der Schalungskern wird zum Betonieren eines nach oben offenen Raummoduls in die Außenschalung eingesetzt. Der zwischen der Außenschalung und dem Schalungskern entstehende Hohlraum wird mit Beton gefüllt. Der Schalungskern selbst bildet einen Quader mit einem als Boden und mit einem als Deckelement ausgebildeten Horizontalelement sowie mit wenigstens vier Vertikalelementen, von denen zwei als Stirnelemente und zwei als Seitenelemente ausgebildet sind. Jedes der Vertikalelemente ist mit jeweils den beiden Horizontalelementen gekoppelt und bewegbar verbunden. Jedes Stirnelement ist also sowohl mit dem Deckelement als auch mit dem Boden des Schalungskerns gekoppelt. Dazu ist ein Kopplungsmechanismus vorgesehen, der derart ausgebildet ist, dass ein vertikales Bewegen eines Horizontalelements (Boden bzw. Deckelement) nach außen eine Bewegung der Vertikalelemente so in Richtung nach innen bewirkt, dass der Abstand zwischen den sich gegenüberliegenden Vertikalelementen verringert wird. Ein Anheben des Deckelements führt also dazu, dass sich die Vertikalelemente nach innen bewegen. Der Abstand zwischen den beiden Stirnelementen sowie der Abstand zwischen den beiden Seitenelementen wird dadurch verringert.The formwork system according to the invention for concreting precast concrete elements and room modules comprises an outer formwork and a formwork core. The outer formwork has a formwork floor, two longitudinal walls and two end walls. The end walls are arranged between the longitudinal walls at their front ends, so that there is a cavity-forming, open to the top cuboid structure. The formwork core is used for concreting an upwardly open space module in the outer formwork. The resulting between the outer formwork and the formwork core cavity is filled with concrete. The shuttering core itself forms a cuboid with a horizontal element formed as a base and with a cover element and with at least four vertical elements, two of which are designed as end elements and two as side elements. Each of the vertical elements is coupled to each of the two horizontal elements and movably connected. Each end element is thus coupled to both the cover element and with the bottom of the formwork core. For this purpose, a coupling mechanism is provided, which is designed such that a vertical movement of a horizontal element (bottom or cover element) outwardly causes a movement of the vertical elements in the inward direction, that the distance between the opposing vertical elements is reduced. A lifting of the cover element thus causes the vertical elements to move inwards. The distance between the two end elements and the distance between the two side elements is thereby reduced.

Beim Betonieren eines Raummoduls kann bereits nach dem teilweisen Aushärten des Betons mit dem Ausschalen begonnen werden. Sobald der Abbindeprozess des Betons abgeschlossen ist, können die Außenschalung und der Schalungskern von dem Betonteil entfernt werden. Um das Ausschalen zu verbessern und die Entnahme des Schalungskerns aus dem Betonteil zu vereinfachen, wird der Schalungskern in seinen Abmessungen, zumindest in seinen Horizontalabmessungen, geschrumpft. Aus diesen Gründen wird ein derartiger Schalungskern auch als Schrumpfkern bezeichnet. Durch das automatische Variieren der Abstände der Vertikalelemente zueinander durch das Anheben des Deckelements werden die Ausmaße auf einfache Weise verringert. Damit ist es nicht notwendig, den Schalungskern zu demontieren.When concreting a room module can be started after the partial curing of the concrete with stripping. Once the setting process of the concrete is completed, the outer formwork and the formwork core can be removed from the concrete part. In order to improve the stripping and to facilitate the removal of the formwork core from the concrete part, the formwork core in its dimensions, at least in its horizontal dimensions, shrunk. For these reasons, such formwork core is also referred to as a shrink core. By automatically varying the distances of the vertical elements to one another by lifting the cover element, the dimensions are reduced in a simple manner. Thus, it is not necessary to dismantle the formwork core.

In einer bevorzugten Ausführungsform umfasst der Kopplungsmechanismus eine Mehrzahl von Schwenkhebeln. Mindestens ein Schwenkhebel ist zwischen einem Vertikalelement und einem Horizontalelement angeordnet. Somit können die Vertikalelemente gegenüber den Horizontalelementen verschwenkt werden. Der Schwenkhebel ist sowohl an dem Horizontalelement als auch an dem Vertikalelement angelenkt. Beispielsweise kann der Schwenkhebel aus einem Verbindungsstück oder einem Formteil bestehen, dass zwischen den beiden Drehpunkten an dem Vertikalelement bzw. dem Horizontalelement befestigt ist. Vorteilhafterweise lässt sich eine Bewegung der Vertikalelemente nach innen derart erzeugen, dass die Bewegung eine Drehkomponente aufweist. Beim vertikalen Bewegen eines Horizontalelements nach außen werden die dem bewegten Horizontalelement benachbarten Randbereiche der Vertikalelemente aufeinander zu bewegt. Der Schwenkhebel führt also eine Drehbewegung durch. Diese kann um einen der Lagerpunkte an dem Vertikalelement oder an dem Horizontalelement stattfinden. Allerdings ist auch ein Verschwenken um einen anderen innerhalb oder außerhalb des Schwenkhebels liegenden (virtuellen) Drehpunkt möglich.In a preferred embodiment, the coupling mechanism comprises a plurality of pivot levers. At least one pivot lever is arranged between a vertical element and a horizontal element. Thus, the vertical elements can be pivoted relative to the horizontal elements. The pivot lever is articulated to both the horizontal element and on the vertical element. For example, the pivot lever may consist of a connecting piece or a molded part which is fastened between the two pivot points on the vertical element or the horizontal element. Advantageously, a movement of the vertical elements can be generated inwardly such that the movement has a rotational component. When a horizontal element is moved outwardly, the edge regions of the vertical elements adjacent to the moving horizontal element are moved towards one another. The pivot lever thus performs a rotational movement. This can take place around one of the bearing points on the vertical element or on the horizontal element. However, pivoting about another within or outside the pivot lever lying (virtual) pivot point is possible.

Die durch das Bewegen des Horizontalelements nach außen hervorgerufene Bewegung des Schwenkhebels führt dazu, dass die dem bewegten Horizontalelement benachbarten Randbereiche der zwei gegenüberliegenden Vertikalelemente aufeinander zu bewegt werden. Der Abstand der diesen Rändern gegenüberliegenden Ränder bleibt dagegen unverändert. Die Vertikalelemente werden also nach innen gekippt. Das Abkippen der Elemente hat den Vorteil, dass die Vertikalelemente nicht über die gesamte Fläche gleichzeitig von dem betonierten Betonelement gelöst werden müssen. Vielmehr ist ein stückweises Lösen durch das Verschwenken bzw. Kippen der Vertikalelemente nach innen möglich. Die aufzubringenden Kräfte, um die Vertikalelemente von dem Betonelement zu trennen, sind gering. Die Gefahr von Abplatzungen aufgrund des Lösens der Vertikalelemente verringert sich stark, so dass die Herstellung von Sichtbetonwänden zuverlässig ermöglicht wird.The movement of the pivoting lever caused by moving the horizontal element outwards causes the moving horizontal element to move adjacent edge regions of the two opposing vertical elements are moved towards each other. The distance between these edges opposite edges, however, remains unchanged. The vertical elements are therefore tilted inwards. The tipping of the elements has the advantage that the vertical elements do not have to be solved simultaneously over the entire surface of the concrete element concrete. Rather, a piecewise release by pivoting or tilting of the vertical elements inward is possible. The applied forces to separate the vertical elements of the concrete element are small. The risk of flaking due to the release of the vertical elements is greatly reduced, so that the production of exposed concrete walls is reliably possible.

Es ist vorteilhaft, wenn wenigstens die Vertikalelemente aus Schalungstafeln hergestellt sind. Das Gewicht des Schalungskerns wird verringert, der Transport und die Handhabung (Handling) des Schalungskerns werden erleichtert. Die Stirnelemente des Schalungskerns sind als Stirntafeln ausgebildet; die Seitenelemente als Seitentafeln. Die Dicke der Schalungstafeln ist im Verhältnis zu deren Höhe und Länge gering. Vorzugsweise ist das Verhältnis der Dicke zur Höhe < 1%, so dass die Dicke der Schalungstafeln bei einer Vertikalausdehnung des Vertikalelements von 2,50 m deutlich unter 2,5 cm liegt. Als Dicke wird dabei die Dimension in Richtung der Flächennormale der Schalungstafel verstanden, also die Ausdehnung senkrecht zur Höhe und Länge der Tafel. Bevorzugt sind auch die Horizontalelemente als Schalungstafeln ausgebildet.It is advantageous if at least the vertical elements are made of shuttering panels. The weight of the formwork core is reduced, the transport and handling of the formwork core are facilitated. The end elements of the formwork core are formed as end panels; the side elements as side panels. The thickness of the formwork panels is low in relation to their height and length. Preferably, the ratio of the thickness to the height is <1%, so that the thickness of the shuttering panels is significantly less than 2.5 cm with a vertical extension of the vertical element of 2.50 m. Thickness is understood to mean the dimension in the direction of the surface normal of the formwork panel, that is to say the extent perpendicular to the height and length of the panel. Preferably, the horizontal elements are formed as formwork panels.

In einer bevorzugten Ausführungsform sind die Schalungstafeln mit einer Tragkonstruktion verstärkt. Die Tragkonstruktion schließt tafelartige Verstärkungselemente ein, die vorteilhafterweise und besonders bevorzugt als Horizontalrippen und Vertikalrippen ausgebildet sind. Die Rippen stehen jeweils senkrecht zur Schalungstafel bzw. zu deren Innenseite. Auf diese Weise lassen sich sehr biegungssteife und verwindungssteife Schalungselemente herstellen, deren Gewicht jedoch deutlich geringer ist als ein vergleichbar steifes Schalungselement aus Vollmaterial.In a preferred embodiment, the formwork panels are reinforced with a supporting structure. The support structure includes panel-like reinforcing elements, which are advantageously and particularly preferably designed as horizontal ribs and vertical ribs. The ribs are each perpendicular to the formwork panel or to the inside. In this way, very rigid and torsionally rigid formwork elements can be produced, but their weight is significantly lower than a comparatively rigid formwork element made of solid material.

Die Schwenkhebel des Kopplungsmechanismus können an der Tragkonstruktion der Schalungstafeln der Vertikalelemente wie auch der Horizontalelemente befestigt sein. Ein Verschwenken der Horizontalelemente gegenüber den Vertikalelementen ist aufgrund der relativ dünnen Schalungstafeln deutlich vereinfacht. Die Konstruktion des Kopplungsmechanismus kann dadurch recht einfach sein. Dennoch ist eine exakte Bewegung und Positionierung der einzelnen Tafeln zueinander möglich.The pivot levers of the coupling mechanism can be attached to the support structure of the formwork panels of the vertical elements as well as the horizontal elements be. A pivoting of the horizontal elements relative to the vertical elements is significantly simplified due to the relatively thin formwork panels. The construction of the coupling mechanism can thereby be quite simple. Nevertheless, an exact movement and positioning of the individual panels to each other is possible.

In einer bevorzugten Ausführungsform weisen die Vertikalelemente an ihren oberen und unteren Randbereichen jeweils einen Rand auf, der sich horizontal in Richtung auf das benachbarte Horizontalelement zu erstreckt. Vorzugsweise schließt der Rand der Vertikalelemente mit dem benachbarten Horizontalelement bündig ab, wenn der Schalungskern in seiner Betonierposition angeordnet ist, also alle Elemente miteinander derart verbunden sind, dass ein in die Außenschalung eingebrachter Schalungskern zum Betonieren verwendet werden kann.In a preferred embodiment, the vertical elements each have an edge at their upper and lower edge regions, which extends horizontally in the direction of the adjacent horizontal element. Preferably, the edge of the vertical elements flush with the adjacent horizontal element, when the formwork core is arranged in its concreting, so all elements are connected to each other such that a formwork introduced into the outer formwork core can be used for concreting.

Um den Schrumpfungsprozess des Schalungskerns (Reduzierung der Abstände der Vertikalelemente) zu verbessern, ist in einer bevorzugten Ausführungsform des Schalungskerns wenigstens ein Eckelement umfasst, das zwischen zwei benachbarten Vertikalelementen angeordnet ist und über ein Kopplungselement die beiden Vertikalelemente miteinander koppelt. Zwischen einem Stirnelement und einem Seitenelement des Schalungskerns ist also ein Kopplungselement derart angeordnet, dass das Stirnelement mit dem Seitenelement gekoppelt ist. Das Eckelement ist derart ausgebildet, dass eine Bewegung der Vertikalelemente nach innen, insbesondere ein Kippen der Vertikalelemente, ermöglicht wird. Darüber hinaus ist das Eckelement ebenfalls nach innen bewegbar und lässt sich von dem zu betonierenden Betonfertigteil einfach lösen.In order to improve the shrinkage process of the formwork core (reduction of the distances between the vertical elements), in a preferred embodiment of the formwork core at least one corner element is included which is arranged between two adjacent vertical elements and couples the two vertical elements to one another via a coupling element. Between a front element and a side member of the formwork core so a coupling element is arranged such that the end element is coupled to the side member. The corner element is designed such that a movement of the vertical elements inward, in particular a tilting of the vertical elements, is made possible. In addition, the corner element is also movable inwards and can be easily solved by the precast concrete to be concreted.

Bevorzugt ist das Eckelement als Ecktafel ausgebildet und weist an seiner Innenseite Versteifungselemente auf. Die Verstärkungselemente der Vertikalelemente, insbesondere die Horizontalrippen der Stirnelemente und der Seitenelemente, überlappen einander an den Eckbereichen. Sie überlappen dabei auch das Versteifungsteil des Eckelements. Das Kopplungselement des Eckelements kann als sich vertikal erstreckende Führungsstange ausgebildet sein. In den Versteifungselementen und den Verstärkungselementen sind korrespondierende Führungsausnehmungen derart angeordnet, dass sich die Führungsstange durch die Führungsausnehmungen hindurch erstreckt. Auf diese Weise werden durch das Kopplungselement die Eckelemente von den benachbarten Vertikalelementen geführt.Preferably, the corner element is designed as a corner panel and has stiffening elements on its inner side. The reinforcing elements of the vertical elements, in particular the horizontal ribs of the end elements and the side elements, overlap each other at the corner regions. They also overlap the stiffening part of the corner element. The coupling element of the corner element may be formed as a vertically extending guide rod. Corresponding guide recesses are arranged in the stiffening elements and the reinforcing elements such that the guide rod extends through the guide recesses. This way will be through the coupling element, the corner elements guided by the adjacent vertical elements.

Vorzugsweise ist die Führungsausnehmung in den horizontal angeordneten Versteifungselementen des Eckelements als Langloch ausgebildet, in dem das Kopplungselement geführt werden kann. Besonders bevorzugt ist das Versteifungselement keilförmig achsensymmetrisch zur Winkelhalbierenden des Eckelements. Das Langloch ist dann ebenfalls in Richtung der Achsenhalbierenden orientiert. Die Führungsausnehmung in den Horizontalrippen der Vertikalelemente ist vorzugsweise eine Bohrung, die etwas größer als die Führungsstange ist. Auf diese Weise wird bei einem Kippen und Bewegung der Vertikalelemente nach innen das Eckelement erst dann (nach innen) bewegt, wenn das Kopplungselement an dem einen Ende der Längsnut anschlägt und so das Eckelement mitnimmt.Preferably, the guide recess is formed in the horizontally arranged stiffening elements of the corner element as a slot in which the coupling element can be performed. Particularly preferably, the stiffening element is wedge-shaped axisymmetric to the bisector of the corner element. The slot is then also oriented in the direction of the axis bisector. The guide recess in the horizontal ribs of the vertical elements is preferably a bore which is slightly larger than the guide rod. In this way, in a tilting and movement of the vertical elements inwardly the corner element only then (inwardly) moves when the coupling element abuts the one end of the longitudinal groove and thus entrains the corner element.

Bei der Entnahme des Schalungskerns aus der Außenschalung werden die Eckelemente von den Vertikalelementen bewegt. Bevorzugt ist deshalb wenigstens ein horizontales Versteifungselement des Eckelements oberhalb einer Horizontalrippe eines Vertikalelements derart angeordnet, dass ein Anheben der Vertikalelemente ein Heben des Eckelements bewirkt. Bei einem Anheben des Deckelements folgen die Vertikalelemente nach dem Einkippen des oberen und schon während des späteren Einkippen des unteren Randes der Vertikalbewegung nach oben. Die unterhalb der Versteifungselemente des Eckelements angeordneten Horizontalrippen stützen das Eckelement derart, dass das Eckelement den Vertikalelementen folgt. Ihre Bewegung ist jedoch durch den Kopplungsmechanismus verzögert. Die Eckelemente stellen deshalb weggesteuerte Elemente dar, die über den Verschiebeweg bzw. Bewegungsweg der Vertikalelemente gesteuert werden, das heißt, ihre Bewegung wird durch die Bewegung der Vertikalelemente kontrolliert. Während des Schrumpfens sind die Eckelemente nachlauforientiert, das heißt, sie bewegen sich erst, nachdem sich die Vertikalelemente bewegt haben. Beim so genannten Spreizen, also wenn der Abstand der Vertikalelemente vergrößert wird, sind die Eckelemente vorlauforientiert.When removing the formwork core from the outer formwork, the corner elements are moved by the vertical elements. Preferably, therefore, at least one horizontal stiffening element of the corner element above a horizontal rib of a vertical element is arranged such that a lifting of the vertical elements causes a lifting of the corner element. When the cover element is raised, the vertical elements follow the tilting of the upper and, during the subsequent tilting in of the lower edge, the vertical movement upward. The arranged below the stiffening elements of the corner element horizontal ribs support the corner element such that the corner element follows the vertical elements. Their movement, however, is delayed by the coupling mechanism. The corner elements therefore represent path-controlled elements that are controlled by the displacement path of the vertical elements, that is, their movement is controlled by the movement of the vertical elements. During shrinkage, the corner elements are caster-oriented, that is, they do not move until after the vertical elements have moved. When so-called spreading, so if the distance of the vertical elements is increased, the corner elements are flow-oriented.

Das erfindungsgemäße Schalungssystem mit einer Außenschalung und einem in seinen Außenmaßen veränderlichen Schalungskern weist eine Vielzahl von Vorteilen auf, die aus den sich mit diesem Schalungskern ergebenden Abläufen teilen auf, die aus den sich mit diesem Schalungskern ergebenden Abläufen des Betonierens resultieren. Das erfindungsgemäße Schalungssystem ermöglicht die Herstellung von monolithischen Betonteilen, insbesondere von Betonfertigbauteilen, die über einen Boden und ein oder mehrere Seitenteile verfügen. Aufgrund des Bewegens des Schalungskerns können die Betonfertigteile in Einbaulage produziert werden, das heißt in der Position, wie sie später beim Zusammenbau eines aus Betonfertigteilen bestehenden Hauses verwendet werden. Dies hat Vorteile im Hinblick auf das entstehende Endprodukt wie auch auf die Effizienz der Produktion.The formwork system according to the invention with an outer formwork and a formwork core variable in its outer dimensions has a multiplicity of advantages that result from the operations resulting from this formwork core divide resulting from the resulting with this formwork core concreting processes. The formwork system according to the invention enables the production of monolithic concrete parts, in particular precast concrete components, which have a bottom and one or more side parts. Due to the movement of the formwork core, the precast concrete parts can be produced in the installed position, that is, in the position as they are later used in the assembly of a house consisting of precast concrete parts. This has advantages in terms of the resulting end product as well as the efficiency of the production.

In Bezug auf den Fertigungsablauf ergibt sich ein deutlich geringerer Platzbedarf im Vergleich zu Herstellungsverfahren, bei denen das Betonfertigbauteil in umgekehrter Einbaulage hergestellt wird. Eine Wendeeinrichtung für das Bauteil ist nicht vorzusehen. Ebenfalls geringer ist der Lohnaufwand, da kein zusätzliches Personal für den Wendevorgang eingesetzt werden muss. Bei der Herstellung ergibt sich eine deutlich geringere Fehlerquote, beispielsweise bei der Platzierung von Einbauteilen, da es zu keiner Seitenverwechslung kommen kann, wie sie bei auf dem Kopf stehenden Produktionen möglich ist. Der größte Vorteil beim Herstellungsprozess ist, dass frühzeitige Ausbauarbeiten am Betonteil möglich sind. Direkt nach dem Ausschalungsprozess (Teilheizung/Aushärtung) kann mit den Ausbauarbeiten begonnen werden. Es muss nicht gewartet werden, bis das Betonteil völlig ausgehärtet ist und die erforderliche Festigkeit für den Drehprozess des Bauteils gegeben ist. Die Produktionszeit eines ausgebauten Betonfertigteils wird deutlich verringert. Die monolithische Struktur, die mit dem erfindungsgemäßen Schalungssystem herstellbar ist, weist den Vorteil auf, dass keine Zusammenbaustufe im Fertigungsablauf notwendig ist, bei der die Betoneinzelteile zusammengebaut werden müssen.With regard to the production process, the space required is considerably smaller compared to production methods in which the precast concrete component is produced in the reverse installed position. A turning device for the component is not provided. The wage bill is also lower because no additional staff has to be used for the turning process. In the production results in a much lower error rate, for example, in the placement of built-in components, since there can be no side confusion, as is possible in upside down productions. The biggest advantage in the manufacturing process is that early removal work on the concrete part is possible. Directly after the shuttering process (partial heating / curing) can begin with the finishing work. It is not necessary to wait until the concrete part has completely hardened and the required strength for the turning process of the component is given. The production time of a finished precast concrete part is significantly reduced. The monolithic structure which can be produced with the formwork system according to the invention has the advantage that no assembly stage is necessary in the production sequence, in which the concrete individual parts have to be assembled.

In Bezug auf das herzustellende Bauteil lassen sich mit dem erfindungsgemäßen Schalungssystem folgende Vorteile erzielen: Aufgrund der monolithischen Beschaffenheit des Bauteils sind weniger Stahleinlagen zur Bewehrung notwendig. Gleichzeitig, wird eine höhere Stabilität des Gesamtsystems erzielt. Teure Einbauteile zur Verbindung verschiedener Elemente, wie sie beispielsweise im Betonteilfertigbau notwendig sind, entfallen. Die monolithische Beschaffenheit des Betonteils verringert den Aufwand für die Ausbauarbeiten, wie Rohrleitungen oder Kabelstränge. Diese können direkt bei der Herstellung angeordnet und platziert werden, also vor dem Einfließen des Betons in das Schalungssystem. Eine spätere Verbindung ist nicht notwendig. Zwischen den einzelnen Wänden bzw. den Wänden und dem Boden entstehen keine Fugen und somit auch keine Undichtigkeiten.With regard to the component to be produced, the following advantages can be achieved with the formwork system according to the invention: Due to the monolithic nature of the component, fewer steel inserts are necessary for reinforcement. At the same time, a higher stability of the overall system is achieved. Expensive built-in parts for connecting various elements, as they are necessary, for example, in concrete prefabricated, eliminated. The monolithic nature of the concrete part reduces the expense of finishing work, such as piping or cable strands. These can be arranged and placed directly during manufacture, ie before the concrete flows into the formwork system. A later connection is not necessary. Between the individual walls or the walls and the floor no joints and thus no leaks.

Da auf ein Wenden des Bauteils verzichtet werden kann, weil es bereits in Einbaulage hergestellt ist, sind keine zusätzlichen "Wendebewehrungen" und weitere Lastaufnahmemittel erforderlich. Die Herstellung in Einbaulage ermöglicht deshalb eine Produktion von Raum- und Bauteilen im Umlaufbetrieb.Since it can be dispensed with a turning of the component, because it is already made in the installed position, no additional "turning reinforcements" and other load handling devices are required. The production in installation position therefore allows a production of space and components in circulation mode.

Während des Herstellungsprozesses kann das Betonelement auf einer so genannten Umlaufpalette stehen bleiben, und zwar von der Betonierphase an bis zur Auslieferung. Hohe Abhebelasten werden erst am Ende der Produktion auf das Betonteil aufgebracht. Deshalb ist eine geringere Bewehrung notwendig. Die Umlaufpalette selbst ermöglicht ein früheres Ausschalen, da das Lösen der Schalung die erforderliche Festigkeit für den Beton vorgibt und nicht das Abheben des Betonelements an der Bodenschalung und damit die beim Anheben auftretenden Druck- und Zugkräfte.During the manufacturing process, the concrete element can remain on a so-called circulation pallet, from the concreting phase to delivery. High Abhebelasten be applied only at the end of production on the concrete part. Therefore, a lower reinforcement is necessary. The revolving pallet itself allows earlier stripping, since the release of the formwork sets the required strength for the concrete and not the lifting of the concrete element on the bottom formwork and thus the pressure and tensile forces occurring during lifting.

Bevorzugte Ausführungsbeispiele werden anhand der beigefügten Figuren ohne Einschränkung der Allgemeinheit im Detail beschrieben. Die in den Figuren dargestellten Merkmale und Besonderheiten können einzeln und in Kombination verwendet werden, um weitere bevorzugte Ausgestaltungen des erfindungsgemäßen Gegenstands zu schaffen. Es zeigen:

Figuren 1 bis 5
ein Schalungssystem mit einer Außenschalung und einem Schalungskern zur Herstellung eines Betonfertigteils in jeweils perspektivischer Ansicht;
Figuren 6a bis 6d
eine schematische Schnittzeichnung durch das Schalungssystem gemäß Fig. 2 vor dem Einfüllen des Betons;
Figuren 7 bis 10
eine Schnittzeichnung durch das Betonfertigteil mit Schalungskern während der Entnahme des Schalungskerns;
Figuren 11a bis 11c
eine schematische Detailansicht eines teilweise aufgeschnittenen Schalungskerns;
Figuren 12a bis 12d
eine Detailzeichnung einer Ecke des Schalungskerns während der Herausnahme aus dem Betonfertigteil; und
Figuren 13a bis 13c
verschiedene Ausführungen eines Seitenelements des Schalungskerns.
Preferred embodiments will be described in detail with reference to the accompanying figures without limiting the generality. The features and features illustrated in the figures may be used individually and in combination to provide further preferred embodiments of the subject invention. Show it:
FIGS. 1 to 5
a formwork system with an outer formwork and a formwork core for producing a precast concrete in each perspective view;
FIGS. 6a to 6d
a schematic sectional drawing through the formwork system according to Fig. 2 before filling the concrete;
FIGS. 7 to 10
a sectional view through the precast concrete element with formwork core during removal of the formwork core;
FIGS. 11a to 11c
a schematic detail view of a partially cut formwork core;
FIGS. 12a to 12d
a detailed drawing of a corner of the formwork core during removal from the precast concrete part; and
FIGS. 13a to 13c
different versions of a side element of the formwork core.

Die erfindungsgemäße Vorrichtung wird im Folgenden beispielhaft bei der Herstellung eines Raummoduls mit Seitenwänden und einem monolithischen Boden erläutert.The device according to the invention is explained below by way of example in the production of a room module with side walls and a monolithic floor.

In Fig. 1 ist ein erfindungsgemäßes Schalungssystem 1 mit einer Außenschalung 2 und einem Schalungskern 3 während des Vorgangs des Einsetzens des Schalungskerns 3 in die Außenschalung 2 zu sehen. Die Außenschalung 2 weist zwei Längswände 4, zwei Stirnwände 5 und einen Schalungsboden 6 auf. Die Längswände 4 und die Stirnwände 5 sind durch eine Tragkonstruktion 7 verstärkt, die Horizontalrippen 8 und Vertikalrippen 9 einschließt.In Fig. 1 is an inventive formwork system 1 with an outer formwork 2 and a formwork core 3 to see during the process of insertion of the formwork core 3 in the outer formwork 2. The outer formwork 2 has two longitudinal walls 4, two end walls 5 and a shuttering bottom 6. The longitudinal walls 4 and the end walls 5 are reinforced by a supporting structure 7, the horizontal ribs 8 and vertical ribs 9 includes.

Der Schalungskern 3 umfasst zwei Horizontalelemente 10, die als Boden 11 (nicht dargestellt) und Deckelement 12 ausgebildet sind. Vier Vertikalelemente 13 sind als Stirnelemente 14 und Seitenelemente 15 ausgebildet. An dem Deckelement 12 sind mehrere Quertragtraversen 16 angeordnet, an denen ein nicht dargestelltes Hebezeug den Schalungskern 3 anhebt und bewegt.The formwork core 3 comprises two horizontal elements 10, which are formed as a bottom 11 (not shown) and cover element 12. Four vertical elements 13 are formed as end elements 14 and side elements 15. On the cover element 12 a plurality of Quertragtraversen 16 are arranged at which a hoist, not shown, the formwork core 3 lifts and moves.

Zur exakten Positionierung des Schalungskerns 3 in der Außenschalung 2 sind an den Quertragtraversen 16 Führungsbolzen 17 vorgesehen, die in korrespondierende Positionieraufnahmen 18 in den Längswänden 4 eingeführt werden. Der Schalungskern 3 wird mit äquidistantem Abstand in der Außenschalung 2 positioniert.For exact positioning of the formwork core 3 in the outer formwork 2 16 guide pins 17 are provided on the Quertragtraversen, which are inserted into corresponding positioning receptacles 18 in the longitudinal walls 4. The formwork core 3 is positioned with equidistant spacing in the outer formwork 2.

An den Ecken des Schalungskerns 3 sind vier Eckelemente 19 angeordnet, die jeweils mit einem Seitenelement 15 und einem Stirnelement 14 gekoppelt sind. In Fig. 1 ist der Schalungskern 3 in seiner Transportposition dargestellt, bei der die Vertikalelemente 13, die Horizontalelemente 10 und die Eckelemente 19 miteinander gekoppelt und über hier nicht dargestellte Kopplungsmechanismen verbunden sind. Dennoch liegen die Elemente nicht bündig aneinander, sondern sind voneinander beabstandet.At the corners of the formwork core 3, four corner elements 19 are arranged, which are each coupled to a side member 15 and a front element 14. In Fig. 1 the shuttering core 3 is shown in its transport position, in which the vertical elements 13, the horizontal elements 10 and the corner elements 19 are coupled together and connected via coupling mechanisms, not shown here. Nevertheless, the elements are not flush with each other, but are spaced apart.

Fig. 2 zeigt das Schalungssystem 1 mit vollständig in der Außenschalung 2 eingesetztem Schalungskern 3. Der Schalungskern 3 ist hier in seiner Betonierposition gezeigt, in der die Eckelemente 19, die Vertikalelemente 13 und die Horizontalelemente 10 aneinander anliegen, so dass sich eine bündige, einstückige Außenhaut des Schalungskerns 3 ergibt. Der zwischen dem Schalungskern 3 und der Außenschalung 2 gebildete Hohlraum 20 wird nun in einem nächsten Schritt mit Beton gefüllt, wodurch ein als Raummodul ausgebildetes Betonfertigteil hergestellt wird. Das Verfahren zum Füllen des Hohlraums 20 ist in EP 06 023 710 beschrieben, deren Inhalt durch Referenzierung zum Inhalt dieser Anmeldung wird. Fig. 2 The formwork core 3 is shown here in its concreting position, in which the corner elements 19, the vertical elements 13 and the horizontal elements 10 abut each other, so that a flush, one-piece outer skin of the formwork core 3 results. The cavity 20 formed between the formwork core 3 and the outer formwork 2 is then filled with concrete in a next step, whereby a prefabricated concrete element designed as a room module is produced. The method of filling the cavity 20 is in FIG EP 06 023 710 whose contents become the content of this application by referencing.

Die Quertragtraversen 16 stützen sich auf der Außenschalung 2 ab. Hierdurch wird der Schalungskern 3 in seiner Position gehalten. Der Schalungskern 3 schwebt damit praktisch in der Außenschalung 2, so dass der Boden des Schalungskerns 3 vom Schalungsboden 6 der Außenschalung 2 beabstandet ist. Zusätzliche Distanzelemente zwischen den beiden Böden können vorgesehen werden; sie sind jedoch nicht zwingend notwendig.The Quertragtraversen 16 are based on the outer formwork 2 from. As a result, the formwork core 3 is held in position. The formwork core 3 thus floats practically in the outer formwork 2, so that the bottom of the formwork core 3 is spaced from the formwork floor 6 of the outer formwork 2. Additional spacer elements between the two floors can be provided; however, they are not essential.

Werden keine Distanzelemente am Boden eingesetzt, so muss der Schalungskern innerhalb über eine Mechanik verfügen, mit der die beiden gegenüber liegenden Horizontalelemente gegeneinander bewegt werden können. Durch die Mechanik lässt sich der Abstand verringern oder spreizen, so dass die Vertikalelemente des Schalungskerns 3 entsprechend des Kopplungsmechanismus gespreizt bzw. geschrumpft werden.If no spacer elements are used on the ground, then the formwork core must have within a mechanism, with which the two opposing horizontal elements can be moved against each other. By the mechanism, the distance can be reduced or spread, so that the vertical elements of the formwork core 3 are spread or shrunk in accordance with the coupling mechanism.

Fig. 3 zeigt den Schalungskern 3 ist in seiner Transportposition beim Herausheben aus der Außenschalung 2. Nach Beendigung des Abbindeprozesses des Betonfertigteils wird der Schalungskern 3 aus seiner Betonierposition in die Transportposition bewegt, wobei seine horizontalen Außenmaße, also die Abstände zwischen den Vertikalelementen 13, verringert sind. Fig. 3 shows the formwork core 3 is in its transport position when lifting out of the outer formwork 2. After completion of the setting process of the precast concrete formwork core 3 from its concreting in the Transport position moves, with its horizontal outer dimensions, ie the distances between the vertical elements 13, are reduced.

In Fig. 3 ist beispielhaft zu erkennen, dass im Deckelement 12 des Schalungskerns 3 Öffnungen vorgesehen sind. Durch diese Öffnungen wird der Innenraum des Schalungskerns 3 zugänglich. Er kann beispielsweise benutzt werden, um in dem Zwischenraum zwischen Außenschalung 2 und Schalungskern 3 vor dem Einfüllen des Betons angeordnete Leerdosen für Steckdosen oder Leerrohre in ihrer Position nochmals zu fixieren oder zu verändern.In Fig. 3 can be seen by way of example that 3 openings are provided in the cover element 12 of the formwork core. Through these openings, the interior of the formwork core 3 is accessible. It can be used, for example, to fix in the space between the outer formwork 2 and formwork core 3 arranged before filling the concrete empty cans for sockets or conduits in their position again or change.

Der vollständig entnommene Schalungskern 3 ist in Fig. 4 dargestellt. Ein Raummodul 21 bleibt in der Außenschalung 2 stehen.The completely removed formwork core 3 is in Fig. 4 shown. A room module 21 remains in the outer formwork 2.

Nach Entfernen der Außenschalung 2, also nach dem Abbau der Längswände 4 und der Stirnwände 5, bleibt das Raummodul 21 auf dem Schalungsboden 6 der Außenschalung 2 stehen, Fig. 5. Das Raummodul 21 befindet sich in seiner Einbaulage. Weitere Arbeiten an dem Raummodul können nun vorgenommen werden, obwohl der Beton nicht vollständig ausgehärtet ist, da keine Kräfte auftreten, insbesondere keine Hebel oder Drehkräfte, wie sie beim Wenden des Betonfertigteils beim Herstellungsprozess in umgekehrter Einbaulage notwendig sind. Sowohl der Schalungskern 3 als auch die Außenwände 4, 5 der Außenschalung 2 können nun für die Herstellung eines weiteren Betonfertigteils verwendet werden. Lediglich der Schalungsboden 6 wird durch das neue Betonfertigteil blockiert. Auf dem Schalungsboden 6 kann das Betonfertigteil jedoch innerhalb der Montagehalle in eine Position zur Bearbeitung und zur Aushärtung bewegt werden.After removal of the outer formwork 2, that is, after the dismantling of the longitudinal walls 4 and the end walls 5, the room module 21 remains standing on the formwork floor 6 of the outer formwork 2, Fig. 5 , The room module 21 is in its installed position. Further work on the room module can now be made, although the concrete is not completely cured because no forces occur, in particular no levers or rotational forces, as they are necessary when turning the precast concrete in the manufacturing process in reverse mounting position. Both the formwork core 3 and the outer walls 4, 5 of the outer formwork 2 can now be used for the production of another precast concrete part. Only the shuttering floor 6 is blocked by the new precast concrete part. On the formwork floor 6, however, the precast concrete part can be moved within the assembly hall in a position for processing and curing.

Der Herstellungsprozess eines Betonfertigteils und insbesondere das Schrumpfen des Schalungskerns 3 wird anhand der Figuren 6 bis 10 näher erläutert, die den Schalungskern 3 im schematischen Querschnitt sowie weitere Details zeigen.The manufacturing process of a precast concrete part and in particular the shrinkage of the formwork core 3 is based on the FIGS. 6 to 10 explained in more detail, showing the shuttering core 3 in schematic cross section and other details.

In Fig. 6a ist der Schalungskern 3 in der Außenschalung 2 in seiner Betonierposition gezeigt. Der Boden 11 des Schalungskerns 3 ist auf zwei Stützen 22 gelagert, so dass zwischen dem Schalungsboden 6 und dem Boden 11 der gewünschte Abstand erzeugt werden kann. Über den Abstand ist die Dicke des Bodens des Betonfertigteils einstellbar.In Fig. 6a the shuttering core 3 is shown in the outer formwork 2 in its concreting position. The bottom 11 of the formwork core 3 is mounted on two supports 22, so that between the shuttering floor 6 and the bottom 11 of the desired Distance can be generated. About the distance, the thickness of the bottom of the precast concrete element is adjustable.

Deutlich zu erkennen ist in den Figuren 6a bis 6d, dass die Vertikalelemente 13 in ihrem oberen Randbereich 23 und in ihrem unteren Randbereich 24 jeweils ein Randstück 25 bzw. 26 aufweisen, das sich in horizontale Richtung erstreckt. Die Vertikalelemente 13 haben eine U-förmige Kontur, bei der die beiden Schenkel horizontal ausgerichtet sind.Clearly visible in the FIGS. 6a to 6d in that the vertical elements 13 in their upper edge region 23 and in their lower edge region 24 each have an edge piece 25 or 26 which extends in the horizontal direction. The vertical elements 13 have a U-shaped contour, in which the two legs are aligned horizontally.

An einer Innenseite 27 der Vertikalelemente 13 sind Verstärkungselemente 28 angeordnet, die als Horizontalrippen 29 und Vertikalrippen 30 ausgebildet sind. Die Horizontalrippen 29 bzw. die Vertikalrippen 30 entsprechen den Horizontalrippen 8 bzw. den Vertikalrippen 9 der Außenschalung 2.On an inner side 27 of the vertical elements 13 reinforcing elements 28 are arranged, which are formed as horizontal ribs 29 and vertical ribs 30. The horizontal ribs 29 and the vertical ribs 30 correspond to the horizontal ribs 8 and the vertical ribs 9 of the outer formwork second

Das als Seitenelement 15 ausgebildete Vertikalelement 13 ist über einen Kopplungsmechanismus 31 mit dem Boden 11 bzw. mit dem Deckelement 12 gekoppelt. Der Kopplungsmechanismus 31 umfasst eine Mehrzahl von Schwenkhebeln 32, die am oberen und unteren Randbereich 23, 24 der Seitenelemente 15 mit den Vertikalrippen 30 drehbar verbunden sind. Die Schwenkhebel 32 weisen ein erstes Drehlager 33 mit einer ersten Lagerachse 34 auf, die mit einer Verstärkungsrippe 30a eines Horizontalelements 10 verbunden ist. An einem zweiten Drehlager 35 mit einer zweiten Lagerachse 36 ist der Schwenkhebel 32 an eine Vertikalrippe 30 eines Vertikalelements 13 gelagert.The formed as a side member 15 vertical element 13 is coupled via a coupling mechanism 31 with the bottom 11 and with the cover member 12. The coupling mechanism 31 comprises a plurality of pivoting levers 32, which are rotatably connected to the vertical ribs 30 at the upper and lower edge regions 23, 24 of the side elements 15. The pivot levers 32 have a first pivot bearing 33 with a first bearing axis 34, which is connected to a reinforcing rib 30 a of a horizontal element 10. At a second pivot bearing 35 with a second bearing axis 36, the pivot lever 32 is mounted on a vertical rib 30 of a vertical element 13.

Der Winkel einer gedachten Verbindungslinie durch das erste Drehlager 33 und das zweite Drehlager 35 gegenüber der Horizontalen wird als Ausrichtungswinkel α bzw. β bezeichnet. Der Ausrichtungswinkel α definiert die Winkelstellung der Schwenkhebel 32 am Boden 11, der Ausrichtungswinkel β den Winkel der Schwenkhebel 32, die am Deckelement 12 gelagert sind.The angle of an imaginary connecting line through the first pivot bearing 33 and the second pivot bearing 35 with respect to the horizontal is referred to as the orientation angle α or β. The orientation angle α defines the angular position of the pivot lever 32 at the bottom 11, the orientation angle β, the angle of the pivot lever 32, which are mounted on the cover element 12.

In der Betonierposition des Schalungskerns 3 sind die Ausrichtungswinkel α, β gleich. Die beiden Winkel α und β sind jeweils relativ klein, bevorzugt liegen die Winkel zwischen 1° und 5°. In den Figuren 6c und 6d ist eine besondere Ausgestaltung eines Schwenkhebels 32 gezeigt. Dieser Schwenkhebel 32 weist zusätzlich einen Anschlagbolzen 37 auf, der in der Betonierposition des Schalungskerns 3 gegen eine Vertikalrippe 30 des Vertikalelements 13 drückt. Damit wird der Drehwinkel bzw. Schwenkwinkel des Schwenkhebels 32 begrenzt. Eine Verbindungsstange 38 erstreckt sich durch den Schwenkhebel 32 hindurch. Mehrere parallel angeordnete Schwenkhebel 32 lassen sich so miteinander koppeln, vgl. Fig. 11a. Die Verwindungssteifigkeit des gesamten Schalungskerns 3 wird erhöht.In the concreting position of the formwork core 3, the orientation angles α, β are the same. The two angles α and β are each relatively small, preferably the angles are between 1 ° and 5 °. In the FIGS. 6c and 6d a particular embodiment of a pivot lever 32 is shown. This pivot lever 32 additionally has a stop pin 37 which, in the concreting position of the shuttering core 3 presses against a vertical rib 30 of the vertical element 13. Thus, the angle of rotation or pivot angle of the pivot lever 32 is limited. A connecting rod 38 extends through the pivot lever 32 therethrough. Several parallel pivot lever 32 can be coupled together, see. Fig. 11a , The torsional stiffness of the entire formwork core 3 is increased.

Während des Schrumpfungsprozesses des Schalungskerns 3 wird dieser von seiner Betonierposition in seine Transportposition bewegt. Die Figuren 7a bis 7d zeigen den Schalungskern 3 zu Beginn des kinematischen Schrumpfungsprozesses, nachdem das Deckelement 12 von einem hier nicht dargestellten Hebezeug etwas angehoben worden ist. Der Schalungskern 3 befindet sich in dem Raummodul 21. Die Schwenkhebel 32, die am Deckelement 12 gelagert sind, wurden durch das Anheben des Deckelementes 12 verschwenkt, so dass der Ausrichtungswinkel β nun deutlich größer ist als der Ausrichtungswinkel α der am Boden 11 gelagerten Schwenkhebel 32. Gleichzeitig kippen die beiden Seitenelemente 15 nach innen, so dass die Abstände der gegenüber liegenden oberen Randbereiche 23, 24 der Seitenelemente 15 verringert werden. Die Seitenelemente 15 sind um den Kippwinkel γ nach innen geneigt.During the shrinkage process of the formwork core 3, this is moved from its concreting position to its transport position. The FIGS. 7a to 7d show the formwork core 3 at the beginning of the kinematic shrinkage process, after the cover element 12 has been raised slightly by a hoist, not shown here. The formwork core 3 is located in the room module 21. The pivot lever 32, which are mounted on the cover element 12, were pivoted by the lifting of the cover element 12, so that the orientation angle β is now significantly greater than the orientation angle α of the pivot lever 32 mounted on the bottom 11 At the same time, the two side elements 15 tilt inwards, so that the distances of the opposite upper edge regions 23, 24 of the side elements 15 are reduced. The side members 15 are inclined inwardly by the tilt angle γ.

Als Folge der Verbindung mit den Adhäsionskräften und dem Eigengewicht der Seitenelemente 15 reißen sie im oberen Randbereich 23 von dem Raummodul 21 ab. Ein V-förmiger Spalt bildet sich zwischen dem Raummodul 21 und den Vertikalelementen 13.As a result of the connection with the adhesion forces and the dead weight of the side elements 15, they tear off the room module 21 in the upper edge region 23. A V-shaped gap is formed between the space module 21 and the vertical elements 13.

Fig. 8 zeigt den Schalungskern 3 in einem späteren Prozessschritt, in dem das Deckelement 12 weiter nach oben bewegt worden ist. Die beiden Seitenelemente 15 sind nun ebenfalls nach oben bewegt, so dass die unteren Schwenkhebel 32 eine Schwenkbewegung ausgeführt haben. Der Ausrichtungswinkel α ist nun vergrößert, aber kleiner als der Ausrichtungswinkel β. Die Neigung der Seitenelemente 15 ist verringert. Fig. 8 shows the formwork core 3 in a later process step in which the cover element 12 has been moved further upwards. The two side elements 15 are now also moved upward, so that the lower pivot lever 32 have performed a pivoting movement. The orientation angle α is now increased, but smaller than the orientation angle β. The inclination of the side members 15 is reduced.

Die Figuren 9a bis 9d zeigen den Schalungskern 3 bei einem weiteren Anheben des Deckelements 12. Der Ausrichtungswinkel α der unteren Schwenkhebel 32 entspricht dem Ausrichtungswinkel β der oberen Schwenkhebel 32. Die Seitenelemente 15 sind vertikal ausgerichtet. Gleichzeitig wurden sie angehoben. Die Seitenelemente 15 sind vollständig von dem Raummodul 21 gelöst.The FIGS. 9a to 9d The alignment angle α of the lower pivot lever 32 corresponds to the alignment angle β of the upper pivot lever 32. The side elements 15 are vertically aligned. At the same time they were raised. The side elements 15 are completely detached from the room module 21.

Somit ist der Schalungskern 3 aus seiner Betonierposition in seine Transportposition bewegt worden. Der so genannte Schrumpfungsvorgang ist beendet. Der Schalungskern 3 kann aus dem Raummodul 21 nach oben entnommen werden (Fig. 10).Thus, the shuttering core 3 has been moved from its concreting position to its transport position. The so-called shrinking process is finished. The shuttering core 3 can be removed from the room module 21 upwards ( Fig. 10 ).

Im Falle des Einsetzens des Schalungskerns 3 in die Außenschalung 2 wird der in den Figuren 6 bis 10 beschriebene Ablauf in umgekehrter Reihenfolge durchlaufen. Zuerst setzt der Boden 11 auf dem Schalungsboden 6 auf. Dann werden die Seitenelemente 15 im unteren Randbereich 24 nach außen gedrückt, so dass die Seitenelemente 15 geneigt werden. Anschließend wird der obere Randbereich 23 nach außen geneigt, so dass die Seitenelemente 15 gerade und vertikal ausgerichtet sind, bis das Deckelement 12 so weit nach unten bewegt wird, dass alle Teile des Schalungskerns 3 bündig miteinander verbunden sind.In the case of the insertion of the formwork core 3 in the outer formwork 2 is in the FIGS. 6 to 10 go through the described procedure in reverse order. First, the floor 11 sets on the shuttering floor 6. Then, the side members 15 in the lower edge portion 24 are pushed outward, so that the side members 15 are inclined. Subsequently, the upper edge portion 23 is inclined outwardly, so that the side members 15 are aligned straight and vertical until the cover member 12 is moved so far down that all parts of the formwork core 3 are flush with each other.

Der hier im Zweidimensionalen erläuterte Schrumpfungsprozess ist jedoch ein dreidimensionaler Schrumpfungsprozess, bei dem eine Kollision der Vertikalelemente 13 zueinander vermieden werden muss. Aufgrund der Eckelemente 19 wird dies ermöglicht, da jedes Eckelement 19 von seiner geometrischen Grundstruktur ein dreidimensionales Gebilde ist, das sich zumindest funktional über alle drei Dimensionsachsen erstreckt. Das Eckelement 19 hat die Aufgabe, entstehende Lücken aus den notwendigen Verschiebewegen der Seitenelemente 15, der Stirnelemente 14 und der Horizontalelemente 10 für die "gespreizte" Betonierposition zu schließen. Dies wird dadurch erreicht, dass das Eckelement 19 während des Bewegens des Schalungskerns 3 von der Betonierposition in die Transportposition und umgekehrt weggesteuert nach- bzw. vorläuft. Im Rahmen der Erfindung wurde festgestellt, dass die Wahl für ein vor- bzw. nachlaufgesteuertes Eckelement 19 abhängig ist von der Einbaulage des Schalungskerns 3 und von den geometrischen Anforderungen an das Betonfertigteil. Im Folgenden wird beispielhaft ein nachlaufgesteuertes Eckelement 19 beschrieben. Das vorlaufgesteuerte Eckelement ist im übertragenen Sinne mechanisch identisch aufgebaut. Das Eckelement 19 ist im Detail in den Figuren 11a bis 11c dargestellt. Fig. 11a zeigt den erfindungsgemäßen Schalungskern 3 in einer aufgeschnittenen Ansicht, so dass die an der Innenseite 27 angeordneten Verstärkungselemente 28 deutlich sichtbar sind. Die Verstärkungselemente 28, die als Horizontalrippen 29 und Vertikalrippen 30 ausgebildet sind, sind an allen Seitenwänden sowie dem Boden 11 und dem hier nicht dargestellten Deckelement 12 vorhanden. Das Eckelement 19 weist an seiner Innenseite sich horizontal erstreckende Versteifungselemente 39 auf. Das Eckelement 19 ist ebenfalls als Ecktafel ausgebildet. Die Versteifungselemente 39 haben eine im Wesentlichen quadratische Grundfläche mit einem sich in Richtung der Winkelhalbierenden erstreckenden Führungsfortsatz 40, der eine Führungsausnehmung 41 aufweist, die sich ebenfalls entlang der Winkelhalbierenden erstreckt. Die Versteifungselemente 39 überlappen mit den Horizontalrippen 29 der Vertikalelemente 13. In dem überlappenden Teil der Horizontalrippen 29 sind Führungsausnehmungen 42 angeordnet, die mit den Führungsausnehmungen 41 korrespondieren. Eine Führungsstange 43 erstreckt sich durch die Führungsausnehmungen 41, 42 derart, dass die Eckelemente 19 von den Vertikalelementen 13 geführt werden.However, the shrinkage process explained here in two-dimensional terms is a three-dimensional shrinkage process in which a collision of the vertical elements 13 relative to one another has to be avoided. Due to the corner elements 19, this is made possible because each corner element 19 is of its geometric basic structure a three-dimensional structure which extends at least functionally over all three dimension axes. The corner element 19 has the task of closing resulting gaps from the necessary displacement paths of the side elements 15, the end elements 14 and the horizontal elements 10 for the "spread" concreting position. This is achieved in that the corner element 19 during the movement of the formwork core 3 from the concreting position in the transport position and vice versa weglauf led forward or. In the context of the invention it has been found that the choice for a pre- or post-driven corner element 19 is dependent on the installation position of the formwork core 3 and the geometric requirements of the precast concrete part. In the following, a tracking-controlled corner element 19 will be described by way of example. The lead-controlled corner element is constructed mechanically identical in a figurative sense. The corner element 19 is in detail in the FIGS. 11a to 11c shown. Fig. 11a shows the formwork core 3 according to the invention in a cutaway view, so that the arranged on the inside 27 reinforcing elements 28 are clearly visible. The reinforcing elements 28, which are formed as horizontal ribs 29 and vertical ribs 30, are present on all side walls as well as the bottom 11 and the cover element 12, not shown here. The corner element 19 has on its inner side horizontally extending stiffening elements 39. The corner element 19 is likewise designed as a corner panel. The stiffening elements 39 have a substantially square base surface with an extending in the direction bisector guide extension 40 having a guide recess 41 which also extends along the bisector. The stiffening elements 39 overlap with the horizontal ribs 29 of the vertical elements 13. In the overlapping part of the horizontal ribs 29 guide recesses 42 are arranged, which correspond to the guide recesses 41. A guide rod 43 extends through the guide recesses 41, 42 such that the corner elements 19 are guided by the vertical elements 13.

Wenigstens zwei Versteifungselemente 39, eins im unteren und eins im oberen Bereich des Eckelements 19, weisen zusätzlich zwei sich parallel zu den Vertikalelementen erstreckende im 90°-Winkel zueinander angeordnete Führungsarme 44 auf. Die Führungsarme 44 unterstützen die Führungsstange 43 und wirken mit dieser zusammen. Hierdurch wird gewährleistet, dass die Eckelemente 19 vor- bzw. nachlaufgesteuert mit bzw. von den Vertikalelementen 13 bewegt werden.At least two stiffening elements 39, one in the lower and one in the upper region of the corner element 19, additionally have two guide arms 44 extending at 90 ° to each other and extending parallel to the vertical elements. The guide arms 44 support the guide rod 43 and cooperate with this. This ensures that the corner elements 19 are moved forward or curb-controlled with or from the vertical elements 13.

Die Eckelemente 19 weisen einen oberen und unteren Rand 45 auf, der sich horizontal erstreckt. Der Rand 45 ist im Wesentlichen keilförmig ausgebildet. Er weist ebenfalls eine Führungsausnehmung 41 auf, durch die sich die Führungsstange 43 erstreckt. Die Form des Rands 45 korrespondiert mit der Form der Randstücke 25, 26 der Vertikalelemente, so dass in der Betonierposition des Schalungskerns 3 ein umlaufender, bündig abgeschlossener Rand des Schalungskerns entsteht. Die Randstücke 25, 26 weisen an ihren seitlichen Enden jeweils eine Abschrägung auf, die mit den Randstücken 45 der Eckelemente korrespondieren. Das Deckelement 12 und der Boden 11 sind derart ausgebildet, dass sie von den Randstücken 25 und 45 bzw. 26 und 45 umrahmt werden und mit diesen in der Betonierposition bündig abschließen.The corner elements 19 have an upper and lower edge 45 which extends horizontally. The edge 45 is essentially wedge-shaped. It also has a guide recess 41 through which the guide rod 43 extends. The shape of the edge 45 corresponds to the shape of the edge pieces 25, 26 of the vertical elements, so that in the concreting position of the formwork core 3, a circumferential, flush edge of the formwork core is formed. The edge pieces 25, 26 have at their lateral ends in each case a chamfer, which correspond to the edge pieces 45 of the corner elements. The cover element 12 and the bottom 11 are designed such that that they are framed by the edge pieces 25 and 45 or 26 and 45 and terminate flush with them in the concreting position.

Die Figuren 12a bis 12d zeigen eine Detailzeichnung des Eckelements 19 bei der Entnahme des Schalungskerns 13 aus einem fertig betonierten Raummodul 21.The FIGS. 12a to 12d show a detailed drawing of the corner element 19 during the removal of the formwork core 13 from a ready-concreted room module 21st

In der Betonierposition des Schalungskerns 3 schließen die Eckelemente 19 mit den Vertikalelementen 13 bündig ab, Fig. 12a.In the concreting position of the formwork core 3, the corner elements 19 are flush with the vertical elements 13, Fig. 12a ,

Sobald das Deckelement 12 leicht angehoben wird, bewegen sich die Vertikalelemente 13 nach innen und lösen sich am oberen Rand 23 von dem Raummodul 21. Dabei werden die Vertikalelemente leicht angehoben, wie in Fig. 12b deutlich gezeigt ist. Die Vertikalelemente 13 überschneiden sich dabei mit dem Eckelement 19, so dass die Vertikalelemente 13 die Eckelemente 19 an den Außenecken hinterschneiden. Bei einem weiteren Anheben des Deckelements 12 werden die Vertikalelemente 13 weiter nach oben bewegt, nachdem sie nicht mehr gekippt, sondern wieder vertikal ausgerichtet sind. Die Eckelemente 19 sind in diesem Bewegungsschritt ebenfalls leicht angehoben, da die Horizontalrippen 29 unter den Versteifungselementen 39 angeordnet sind, Fig. 12c. Das Anheben der Vertikalelemente 13 bewirkt dadurch ebenfalls ein Anheben des Eckelements 19. Bei einem noch weiteren Anheben des Deckelements 12 wird das nachlaufgesteuerte Eckelement 19 ebenfalls nach innen bewegt und löst sich von dem Raummodul 21 vollständig ab. Der Schalungskern 3 ist nun frei beweglich in dem Raummodul 21 positioniert und kann nach oben entnommen werden, Fig. 12d.As soon as the cover element 12 is lifted slightly, the vertical elements 13 move inwards and detach at the upper edge 23 from the room module 21. The vertical elements are lifted slightly, as in FIG Fig. 12b clearly shown. The vertical elements 13 overlap with the corner element 19, so that the vertical elements 13 undercut the corner elements 19 at the outer corners. In a further lifting of the cover member 12, the vertical elements 13 are moved further upwards after they are no longer tilted, but again vertically aligned. The corner elements 19 are also slightly raised in this movement step, since the horizontal ribs 29 are arranged below the stiffening elements 39, Fig. 12c , The lifting of the vertical elements 13 thereby also causes a lifting of the corner member 19. In a further raising of the cover member 12, the caster-controlled corner element 19 is also moved inwards and detached from the room module 21 completely. The formwork core 3 is now freely movable in the room module 21 and can be removed upwards, Fig. 12d ,

Bei dem hier beschriebenen Schrumpfungsprozess des Schalungskerns 3, also bei dem Übergang von der Betonierposition in die Transportposition des Schalungskerns 3, wurde stets davon ausgegangen, dass ein Hebezeug das Deckelement 12 nach oben anhebt. Dem Fachmann ist klar, dass es hierbei nicht auf das Anheben des Deckelements 12 ankommt, sondern auf eine Vergrößerung des Abstands zwischen dem Deckelement 12 und dem Boden 11. Diese Vergrößerung des Abstands kann beispielsweise auch durch eine Spreizkonstruktion bewerkstelligt werden, die im Inneren des Schalungskerns 3 angeordnet ist. Diese Spreizkonstruktion kann z.B. aus Hydraulikstempeln bestehen. Da der erfindungsgemäße Schalungskern 3 innen hohl und durch Öffnungen im Deckelement 12 begehbar ist, kann eine derartige Konstruktion im Inneren des Schalungskerns angeordnet werden und gegebenenfalls sogar mechanisch bzw. manuell vom Bedienpersonal im Inneren des Schalungskerns bedient werden. Neben einer Hebemechanik kann das Auseinanderdrücken der Horizontalelemente durch ein Druck-Zug-Glied hervorgerufen werden. Beispiele hierfür sind Spindeln, Hydraulikzylinder oder eine Zangenmechanik. In diesem Fall ist der Spreiz- und Schrumpfvorgang unabhängig von dem Hebe- und Senkvorgang des Schalungskörpers aus dem Betonfertigteil bzw. in die Außenschalung möglich. Neben dem bisher Beschriebenen ist es selbstverständlich auch möglich, ein Raummodul zu erstellen, das nur aus Wänden und einer Decke besteht. In diesem Fall kann der Boden 11 des Schalungskerns 3 nach unten bewegt werden, beispielsweise durch Spreizung der beiden gegenüber liegenden Horizontalelemente 10. Der Schalungskern 3 kann dann aus dem Raummodul nach unten herausbewegt werden, so dass es auch möglich ist, entsprechende Raummodule mit Decke statt Boden herzustellen. Das Prinzip des Spreizens und Schrumpfens des Schalungskerns bleibt jedoch erhalten.In the shrinkage process of the formwork core 3 described here, ie in the transition from the concreting position to the transport position of the formwork core 3, it was always assumed that a hoist lifts the cover element 12 upwards. It is clear to those skilled in the art that it does not depend on the lifting of the cover element 12, but on an increase in the distance between the cover element 12 and the bottom 11. This increase in the distance can for example be accomplished by a Spreizkonstruktion that inside the formwork core 3 is arranged. This expansion construction may for example consist of Hydraulikstempeln. Since the formwork core 3 according to the invention hollow inside and through openings in the cover element 12 is walkable, such a construction can be arranged in the interior of the formwork core and possibly even be operated mechanically or manually by the operator inside the formwork core. In addition to a lifting mechanism, the pressing apart of the horizontal elements can be caused by a push-pull member. Examples include spindles, hydraulic cylinders or a pliers mechanism. In this case, the spreading and shrinking is independent of the lifting and lowering of the formwork body from the precast concrete or in the outer formwork possible. In addition to the previously described, it is of course also possible to create a room module that consists only of walls and a ceiling. In this case, the bottom 11 of the formwork core 3 can be moved downwards, for example by spreading the two opposing horizontal elements 10. The formwork core 3 can then be moved out of the room module downwards, so that it is also possible to place corresponding room modules with ceiling To produce soil. However, the principle of spreading and shrinking of the formwork core remains.

Die Figuren 13a bis 13c zeigen verschiedene Möglichkeiten der Gestaltung des Betonfertigteils, die sich aufgrund der Konstruktion des erfindungsgemäßen Schalungskerns 3 ergeben.The FIGS. 13a to 13c show different ways of designing the precast concrete, resulting from the construction of the formwork core 3 according to the invention.

In Fig. 13a ist ein Vertikalelement 13 dargestellt, an dessen Außenseite eine strukturierte Kunststoffmatrize 49 aufgebracht ist. In dem zu fertigenden Fertigbetonteil wird ein Negativabdruck der Kunststoffmatrize erzeugt. Neben Sichtbetonflächen können so auch strukturierte Oberflächen geschaffen werden, beispielsweise zur Natursteinnachbildung und/oder rutschhemmende Böden oder Ähnliches.In Fig. 13a a vertical element 13 is shown, on the outside of which a structured plastic matrix 49 is applied. In the ready-mixed concrete part to be produced, a negative impression of the plastic matrix is produced. In addition to exposed concrete surfaces so structured surfaces can be created, for example, natural stone replica and / or slip-resistant floors or the like.

Fig. 13b zeigt ein Vertikalelement 13 mit einer Halterung 46 für ein Fensterelement 47, das in das Raummodul 21 fest eingegossen werden soll. In den Zwischenraum zwischen Außenschalung 2 und Schalungskern 3 wird ein Fensterelement 47 eingebracht, das von der Halterung 46 fixiert wird. Während des Füllens des Zwischenraums zwischen der Außenschalung 2 und dem Schalungskern 3 fließt der Beton um das Fensterelement 47 herum, so dass eine fensterartige Aussparung bzw. ein Durchbruch in dem Raummodul entsteht. Fig. 13b shows a vertical element 13 with a holder 46 for a window element 47, which is to be firmly cast into the room module 21. In the space between the outer formwork 2 and formwork core 3, a window member 47 is introduced, which is fixed by the holder 46. During filling the space between the outer formwork 2 and the formwork core 3, the concrete flows around the window member 47 around, so that a window-like recess or an opening in the room module is formed.

Fig. 13c zeigt ein Vertikalelement 13 in einem Aussparungskörper 48, der in dem Betonfertigteil ausgespart werden soll. Durch die Gestaltung des Aussparungskörpers 48 lassen sich nahezu beliebige Aussparungen im Fertigbauteil, beispielsweise für eingelassene Leuchten und Spiegel, für Ablagen und Ähnliches, formen. Dieses Prinzip des Aussparungskörpers lässt sich auch an dem Boden 11 anwenden, um beispielsweise Bodengefälle in Bädern zu realisieren. Durch einen geeigneten Aussparungskörper kann beispielsweise im Bereich des Badezimmers direkt eine Duschwanne im Boden eingeformt werden. Fig. 13c shows a vertical element 13 in a recess body 48 which is to be recessed in the precast concrete part. Due to the design of the recess body 48, almost any recesses in the prefabricated component, for example for recessed luminaires and mirrors, for shelves and the like, can be formed. This principle of the recess body can also be applied to the floor 11 in order to realize, for example, floor slopes in bathrooms. By means of a suitable recess body, for example, a shower tray can be molded directly into the floor in the area of the bathroom.

Claims (14)

  1. Formwork system for producing prefabricated concrete parts and space modules, comprising a formwork shell (2) and a formwork core (3), wherein
    the formwork shell (2) comprises a formwork bottom (6), two longitudinal walls (4) and two end walls (5) and the end walls (5) are arranged between the longitudinal walls (4) at the ends thereof;
    the formwork core (3) is designed for insertion into the formwork shell (2), and comprises:
    - a horizontal element (10) constructed as a bottom (11) and a horizontal element (10) constructed as a top element (12) and
    - two vertical elements (13) constructed as end elements (14) and two vertical elements (13) constructed as side elements (15), which are arranged such that a cuboidal hollow interior is formed, and
    - a coupling mechanism (31),
    wherein
    - the end elements (14) and the side elements (15) are in each case coupled with and movably connected to the bottom (11) and the top element (12); and
    - the coupling mechanism (31) is configured such that a vertical outwards movement of a horizontal element (10) effects an inwards movement of the vertical elements (13) such that the distance between the opposing vertical elements (13) is reduced.
  2. Formwork system according to claim 1, characterised in that the coupling mechanism (31) comprises a plurality of pivot levers (32), wherein at least one pivot lever (32) is arranged between a vertical element (13) and a horizontal element (10).
  3. Formwork system according to claim 1 or claim 2, characterised in that a vertical outwards movement of a horizontal element (10) effects the inwards movement of the vertical elements (13), which movement comprises a rotational component such that edge zones (23), which are adjacent to the first horizontal element (10), of two opposing vertical elements (13) are moved towards one another, while the distance of the edge zones (24), which are adjacent to the second horizontal element (10), of two opposing vertical elements (13) remains unchanged.
  4. Formwork system according to any one of the preceding claims, characterised in that the end elements (14) of the formwork core (3) are formed as end plates from formwork plates and the side elements (15) of the formwork core (3) are likewise formed as side plates from formwork plates, the thickness of which is small relative to the height and length thereof, preferably in a ratio relative to height of < 1%.
  5. Formwork system according to claim 4, characterised in that the formwork plates are reinforced with a supporting structure, which preferably includes plate-like reinforcing elements (28) which particularly preferably are constructed as horizontal ribs (29) and vertical ribs (30).
  6. Formwork system according to any one of the preceding claims, characterised in that the end elements (14) and the side elements (15) each comprise an upper edge piece (25) and a lower edge piece (26) which extend horizontally towards the adjacent horizontal element (10).
  7. Formwork system according to any one of the preceding claims, characterised in that the formwork core (3) comprises at least one corner element (19) which is arranged between an end element (14) and a side element (15) and is coupled via a coupling element with the one end element (14) and the one side element (15).
  8. Formwork system according to claim 7, characterised in that
    - the corner element (19) is a corner plate with bracing elements (39) arranged on the inner side,
    - the reinforcing elements (28) of the one end element (14) and of the one side element (15) at least partially overlap with the reinforcing elements (28),
    - the coupling element is a vertically extending guide rod (43), and
    - corresponding guide recesses (41, 42) are arranged in the bracing elements (39) and in the parts of the reinforcing elements (28) which overlap the bracing elements, through which guide recesses (41, 42) the guide rod (43) extends.
  9. Formwork system according to claim 8, characterised in that the guide recess (41) in the horizontal bracing elements (39) of the corner element (19) is a longitudinal groove, in which the guide rod (43) of the corner element (19) is guided.
  10. Formwork system according to any one of claims 7 to 9, characterised in that at least one horizontal bracing element (39) of the corner element (19) is arranged above a horizontal rib (29) of the side element (15) and a horizontal rib (29) of the end element (14) in such a manner that, on vertical movement of the end element (14) and of the side element (15), the corner element (19) is moved in the same direction.
  11. Formwork system according to any one of the preceding claims, characterised in that the outer side of the side elements (15) and of the end elements (14) is smooth.
  12. Formwork system according to any one of claims 1 to 10, characterised in that the outer sides of the end elements (14) and of the side elements (15) comprise an outwardly extending recess body (48) in order to produce a corresponding recess in the concrete part or space module (21) which is to be concreted.
  13. Method for removing a formwork core (3) from a formwork shell (2), in particular from a formwork shell (2) of a formwork system according to claims 1 to 12, wherein the formwork shell (2) comprises a formwork bottom (6), two longitudinal walls (4) and two end walls (5), and the formwork core (3) comprises two opposing horizontal elements (10) and four vertical elements (13), such that the formwork core (3) has the shape of a cuboid,
    wherein the formwork core (3) comprises a coupling mechanism (31) such that the vertical elements (13) are movably coupled with the horizontal elements (10),
    comprising:
    vertical upwards movement of a horizontal element (10) which is constructed as a top element (12), whereby the following steps are carried out by means of the coupling mechanism (31):
    - movement of the vertical elements (13) such that the vertical elements (13) are tilted inwards at the edge zone (23) which is adjacent to the top element (12);
    - movement of the vertical elements (13) such that, the vertical elements (13) are tilted inwards at the edge zones (24) positioned opposite to the top element (12), until the vertical elements (13) are oriented parallel, wherein during the second tilt movement the vertical elements (13) are moved in the direction of movement of the top element (12);
    - movement of the horizontal element (10) which is constructed as a bottom (11) and is positioned opposite to the top element (12) towards the top element (12) by means of the vertical movement of the vertical elements (13) which are coupled via the coupling mechanism (31) with the bottom (11);
    - complete removal of the formwork core (3) from the formwork shell (2).
  14. Method for inserting a formwork core (3) into a formwork shell (2), in particular into a formwork shell (2) of a formwork system according to claims 1 to 12, wherein the formwork shell (2) includes a formwork bottom (6), two longitudinal walls (4) and two end walls (5), and the formwork core (3) comprises two opposing horizontal elements (10) and four vertical elements (13), such that the formwork core (3) has the shape of a cuboid,
    wherein the formwork core (3) comprises a coupling mechanism (31) such that the vertical elements (13) are movably coupled with the horizontal elements (10),
    comprising:
    vertical downwards movement of the formwork core (3) until a horizontal element (10) constructed as a bottom (11) rests on supports (22) which are arranged on the formwork bottom (6) of the formwork shell (2),
    wherein the movement of the formwork core (3) is effected by the downwards movement of the horizontal element (10) constructed as a top element (12), whereby the following steps are carried out by means of the coupling mechanism (31):
    - movement of the vertical elements (13) such that the vertical elements (13) are tilted outwards at the edge zones (24) positioned opposite to the top element (12), wherein during the tilt movement the vertical elements (13) are moved in the direction of movement of the top element (12) until they are flush with the bottom (11);
    - movement of the vertical elements (13) such that the vertical elements (13) are tilted outwards at the edge zone (23) which is adjacent to the top element (12) until the vertical elements (13) are oriented parallel;
    - downwards movement of the top element (12) until it is flush with the vertical elements (13), whereby the formwork core (3) is completely spread.
EP07846564A 2006-11-15 2007-11-13 Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core Not-in-force EP2083977B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07846564A EP2083977B1 (en) 2006-11-15 2007-11-13 Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP06023710.4A EP1923185B1 (en) 2006-11-15 2006-11-15 Method and installation for forming a single-piece prefabricated element made of concrete
DE102007019406A DE102007019406A1 (en) 2006-11-15 2007-04-23 Formwork system for concreting prefabricated elements with an external formwork and a formwork core
PCT/EP2007/009799 WO2008058702A2 (en) 2006-11-15 2007-11-13 Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core
EP07846564A EP2083977B1 (en) 2006-11-15 2007-11-13 Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core

Publications (2)

Publication Number Publication Date
EP2083977A2 EP2083977A2 (en) 2009-08-05
EP2083977B1 true EP2083977B1 (en) 2012-08-01

Family

ID=37944756

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06023710.4A Not-in-force EP1923185B1 (en) 2006-11-15 2006-11-15 Method and installation for forming a single-piece prefabricated element made of concrete
EP07846564A Not-in-force EP2083977B1 (en) 2006-11-15 2007-11-13 Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06023710.4A Not-in-force EP1923185B1 (en) 2006-11-15 2006-11-15 Method and installation for forming a single-piece prefabricated element made of concrete

Country Status (3)

Country Link
EP (2) EP1923185B1 (en)
DE (1) DE102007019406A1 (en)
WO (1) WO2008058702A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572198A1 (en) 2018-05-24 2019-11-27 RATEC Maschinenentwicklungs- und Verwaltungs-GmbH Formwork core for a formwork system for the concreting of a bell body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019383B4 (en) 2007-04-23 2009-01-08 Ratec Maschinenentwicklungs- Und Verwaltungs-Gmbh Battery mold for the vertical production of flat precast concrete elements
NL2001814C2 (en) * 2008-07-16 2010-01-22 1 2 3 Huis B V Housing element manufacturing method for building i.e. apartment complex, involves extending vertical wall section from floor section to outside, and forming housing element with vertical and horizontal wall sections and floor section
AT507554B1 (en) 2008-12-22 2010-06-15 Betonwerk Rieder Gmbh FORMWORK FOR VERTICAL MANUFACTURING OF FLAT REPRODUCTIVE PARTS
DE102012106997B4 (en) * 2012-07-31 2016-01-28 GHP Global Home Projekts UG (haftungsbeschränkt) Device for producing a room cell in monolithic design
DE102016120047B4 (en) * 2016-10-20 2018-05-03 Dmf Deutsche Modulhaus Fabrik Gmbh Device and method for the integral production of a three side elements and a floor element and / or a ceiling element having room module
AT521553B1 (en) * 2018-08-03 2023-02-15 Sdo Zt Gmbh Method and formwork for manufacturing a slab, and slab
CN108995022B (en) * 2018-09-11 2020-08-07 成都建工工业化建筑有限公司 Machining die for prefabricated exterior wall component
CN110303577B (en) * 2019-08-01 2024-04-16 长沙远大住宅工业安徽有限公司 Prefabricated bay window production die and assembling or disassembling method
RU205206U1 (en) * 2020-07-23 2021-07-02 Открытое акционерное общество "Дзержинский экспериментально-механический завод" PLANT FOR MANUFACTURING VOLUME CONSTRUCTION CONCRETE CONCRETE BLOCKS
CN112123522B (en) * 2020-08-10 2021-08-17 江苏广友节能建材科技有限公司 V-shaped groove mold for light partition board
US11739526B2 (en) * 2020-11-10 2023-08-29 Forma Technologies Inc. Composite concrete structure formwork and method of fabrication
CN115781888B (en) * 2022-11-24 2024-02-20 黄骅市华悦商砼有限公司 Splicing structure of concrete prefabricated parts and construction method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574905A (en) * 1967-01-16 1971-04-13 Kao Jing Hong Device for successively building concrete structures
US3853452A (en) * 1972-05-22 1974-12-10 E Delmonte Molding machine
US4059376A (en) * 1973-11-24 1977-11-22 Yasuro Ito Apparatus for moulding hydraulic cement or the like material
FR2310454A1 (en) 1975-05-05 1976-12-03 Jarrige Henri Retractable core for moulding walls - consists of four side planks, angle-pieces and centre beam joined by links
FR2619047A1 (en) 1987-08-07 1989-02-10 Stratime Cappello Systemes Sar Device for injecting polymer concrete into a mould, in order to enable it to be filled
GB8902841D0 (en) 1989-02-09 1989-03-30 Williams Design Engineering Method and apparatus for moulding a fluid settable material
US5169652A (en) * 1991-08-20 1992-12-08 Del Monte Ernest J Molding machine
US5573348A (en) * 1991-09-11 1996-11-12 Morgan; J. P. Pat Structural members
US6086349A (en) * 1992-05-26 2000-07-11 Del Monte; Ernest J. Variable wall concrete molding machine
US6395213B1 (en) 1999-06-24 2002-05-28 Alma L. Staskiewicz Apparatus and method for producing cast concrete articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572198A1 (en) 2018-05-24 2019-11-27 RATEC Maschinenentwicklungs- und Verwaltungs-GmbH Formwork core for a formwork system for the concreting of a bell body

Also Published As

Publication number Publication date
WO2008058702A3 (en) 2008-07-31
EP2083977A2 (en) 2009-08-05
EP1923185B1 (en) 2014-08-27
DE102007019406A1 (en) 2008-05-29
EP1923185A1 (en) 2008-05-21
WO2008058702A2 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
EP2083977B1 (en) Formwork system for concreting prefabricated parts, comprising a formwork shell and a formwork core
EP3147094B1 (en) Formwork mould for wall panel
EP3572198B1 (en) Formwork core for a formwork system for the concreting of a bell body
EP3439840B1 (en) Formwork device
DE60038254T2 (en) MODULAR CURVED FORMWORK WITH VARIABLE RADIUS
EP2910687B1 (en) Device and method for the fabrication of a tunnel having multiple tunnel sections
DE10219896C1 (en) Shuttering system for apertured concrete body has adjustable aperture shuttering supported between inner and outer shutterings
EP2136977B1 (en) Battery mould for the vertical production of flat prefabricated concrete parts
DE2918652A1 (en) METHOD AND SHUTTERING FOR THE PRODUCTION OF MONOLITHIC REINFORCED CONCRETE CELLS, IN PARTICULAR OF PRE-FABRIC GARAGES
EP0148363B1 (en) Method to manufacture a building staircase or a staircase element, shuttering for carrying out this method
WO2014020009A1 (en) Device for producing a monolithic room module
AT389842B (en) SHUTTERING DEVICE FOR PRODUCING FINISHED GARAGES
EP4051472B1 (en) Formwork device
EP3529020B1 (en) Apparatus and method for the one-piece production of a room module having three side elements and a floor element and/or a ceiling element.
DE3037580C2 (en) Plant for the production of space cells open on one side made of reinforced concrete or the like.
WO2021110888A1 (en) Formwork
DE3435081C2 (en)
DE4123685C2 (en) Room cell formwork
EP1121232B1 (en) Method and apparatus for manufacturing wall elements
DE202023102444U1 (en) Mobile forming tool for cast-in-place integral pipe trenches
DE2808644A1 (en) MACHINE FOR PASTING CONCRETE ELEMENTS
DE2756596C2 (en) Method for producing a prefabricated part from reinforced concrete, in particular a room cell, and device for carrying out the method
DE19848510A1 (en) Shuttering for steel reinforced concrete room cells has middle shuttering part, adjustable side shuttering bodies, horizontal covering surface and vertical sides
DE2438663A1 (en) PROCESS AND DEVICE FOR THE PRODUCTION OF SPATIAL STRUCTURES
DE2100193A1 (en) Device for shuttering a prefabricated garage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090512

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091013

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F16K 3/00 20060101ALI20111004BHEP

Ipc: B28B 1/24 20060101ALI20111004BHEP

Ipc: B28B 21/38 20060101ALI20111004BHEP

Ipc: B28B 7/22 20060101AFI20111004BHEP

Ipc: B28B 7/30 20060101ALI20111004BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 568420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007010317

Country of ref document: DE

Effective date: 20120927

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20130503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007010317

Country of ref document: DE

Effective date: 20130503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 568420

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131126

Year of fee payment: 7

Ref country code: FR

Payment date: 20131119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131121

Year of fee payment: 7

Ref country code: NL

Payment date: 20131120

Year of fee payment: 7

Ref country code: IT

Payment date: 20131126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007010317

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113