EP2066991B1 - Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement - Google Patents

Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement Download PDF

Info

Publication number
EP2066991B1
EP2066991B1 EP07803233.1A EP07803233A EP2066991B1 EP 2066991 B1 EP2066991 B1 EP 2066991B1 EP 07803233 A EP07803233 A EP 07803233A EP 2066991 B1 EP2066991 B1 EP 2066991B1
Authority
EP
European Patent Office
Prior art keywords
heat pipe
parts
connection element
pipeline
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07803233.1A
Other languages
German (de)
English (en)
Other versions
EP2066991A1 (fr
Inventor
Marijn Pieter Oomen
Peter Van Hasselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2066991A1 publication Critical patent/EP2066991A1/fr
Application granted granted Critical
Publication of EP2066991B1 publication Critical patent/EP2066991B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • a refrigeration system with the above features for example, from the DE 36 21 562 A1 out.
  • Cooling systems eg cooling systems for superconducting magnets
  • a liquid refrigerant eg helium
  • a temperature of typically 4.2 K can be used.
  • large quantities of the corresponding refrigerant are necessary.
  • the superconducting magnet there is also the possibility that it loses its superconducting properties, for example by exceeding a critical current for the corresponding superconducting material or a critical magnetic field. In such a case, the superconducting material quickly generates a large amount of heat. The resulting heat leads in a bath cooling to a boiling of the refrigerant within the cryostat. Large amounts of gaseous refrigerant leads to a rapid increase in pressure within the cryostat.
  • cooling systems are designed without a refrigerant bath.
  • Such cooling systems can do without any refrigerant.
  • the cooling capacity is introduced in this case only by solid-state heat conduction in the areas to be cooled.
  • the areas to be cooled may be replaced by a so-called solid state cryobus of e.g. Copper connected to a chiller.
  • Another possibility is to connect the areas to be cooled and the chiller to a closed piping system in which a small amount of refrigerant circulates.
  • the advantage of such cooling systems without a refrigerant bath continues to be that they are easier to adapt to moving loads to be cooled as cooling systems, which have a refrigerant bath.
  • Cooling systems without a refrigerant bath are therefore particularly suitable for superconducting magnets of a so-called gantry, as used in ion beam therapy for combating cancer.
  • the cooling capacity can be provided in the cooling systems described above typically a chiller with a cold head in particular a Stirling cooler available.
  • a superconducting magnet in which a cold head with its second stage is directly mechanically and thermally connected to the support structure of a superconducting magnet winding, goes, for example, from US 5,396,206 out.
  • the necessary cooling capacity is introduced directly into the superconducting magnet windings in the aforementioned superconducting magnet by solid-state heat conduction. If, however, a cold head has to be replaced, for example, for maintenance purposes, the abovementioned cooling device for a superconducting magnet has a decisive technical problem.
  • During the exchange process may freeze air or other gases on the cryogenic contact surface, in this case the superconductive winding support structure. Ice formed at these points leads to a poor thermal connection of the subsequently re-used cold head with the support structure of the winding.
  • the freezing of ambient gases at the cryogenic contact surfaces can be avoided by purposely flooding the space around these contact surfaces with gas.
  • this is expensive and leads to a large consumption of purge gas or vaporized refrigerant for this purpose.
  • EP 0 696 380 B1 discloses a superconducting magnet with a cryogen-free refrigeration system.
  • the disclosed refrigeration system has a thermal bus of good thermal conductivity material such as copper, which is connected to the superconducting magnet.
  • the thermal bus can still be connected to two cold heads.
  • the two cold heads are arranged symmetrically to the thermal bus. They can each be approached from opposite sides to the thermal bus. In this way one or both cold heads can be brought into thermal contact with the thermal bus.
  • the cooling capacity is introduced in accordance with one or both cold heads in the thermal bus.
  • DE 102 11 568 B4 discloses a refrigeration system with two cold heads, which are connected via a piping system in which a refrigerant is circulatory according to a thermosiphon effect, connected to the parts to be cooled of a device.
  • the piping system has a branch. At the ends of the branches there is a respective refrigerant space, which is connected to a cold head. Liquid refrigerant decreases, starting from one of these refrigerant chambers, gravity driven to the parts of the device to be cooled, at which the heat transfer takes place. Gaseous refrigerant in the piping system in turn rises to the two cold heads, where it is reliquefied.
  • Such a cycle of the refrigerant may take place in the piping system both in the case where only one cold head is operating and in the case where both cold heads are operating.
  • the refrigeration system is dimensioned in such a way that a single cold head applies the cooling capacity necessary for the parts of the device to be cooled, another cold head can be exchanged during operation of the refrigeration system.
  • the piping system between the branch and the refrigerant spaces, which are each connected to a cold head made of poor thermal conductivity material. In this way, the losses can be limited by solid-state heat conduction.
  • gaseous refrigerant is always added to the Climb to the point where there is no or a disconnected cold head. Thus, although the losses can be limited by solid-state heat conduction, but not the losses caused by circulating refrigerant.
  • the refrigerating machine comprises a vacuum housing accommodating the vessel, a radiation shield arranged between the vessel and the housing, a cooling apparatus for cooling at least one shield and the vessel and a heat-conducting coupling arranged between the cooling apparatus and at least one shield and the vessel Production and interruption of heat transfer between these parts.
  • a cryogenic cooling device for cooling an object in a vacuum container.
  • the cooling device comprises a hot and a cold section, which are separated by a cold cylinder.
  • a heat transfer device is arranged in each case. A heat exchange between the heat transfer means via a substance, as long as it is present in gaseous form.
  • Object of the present invention is to provide a refrigeration system in which the parts to be cooled means of a device with a heat pipe in which a liquid is circulated by a thermosiphon effect, are connected to a heat sink, wherein the parts to be cooled of a device without a Mechanical separation should be largely thermally decoupled from the heat sink.
  • This object is achieved with the measures specified in claim 1.
  • the present invention is based on the following considerations: The heat exchange between the heat sink and the parts of a device to be cooled takes place essentially by the liquid which can be circulated in the heat pipe according to a thermosiphon effect. For thermal separation of the heat sink from the parts to be cooled of the device, the heat pipe can be pumped off via a pipe connected to its interior.
  • the heat pipe should be made of a poor thermal conductivity material at the same time. By these measures, the thermal connection between the heat sink and the parts to be cooled of the device is reduced to a defined by the solid state heat conductivity of the heat pipe low level.
  • the refrigeration system should contain at least one hot connection element, which is thermally connected to parts of a device to be cooled, and a cold connection element, which is thermally connected to a heat sink containing.
  • a heat pipe made of poorly heat-conducting material should be connected at a first end to the hot connection element and at a second end to be mechanically detachable with the cold connection element.
  • the interior of the heat pipe should be at least partially filled with a liquid which can be circulated according to a thermosiphon effect.
  • the refrigeration system should include a pipeline having a first end to the interior is connected to the heat pipe and is configured such that at least parts of the pipeline are geodetically higher than the liquid level.
  • the liquid should be able to be pumped out of the heat pipe via the pipeline.
  • the refrigeration system according to the invention should be rotatable about an axis which runs substantially parallel to an axis of symmetry of the heat pipe.
  • the heat pipe should continue to have a larger cross-section in a first region which is connected to the warm connection element than in a second region which is connected to the cold connection element.
  • the parts of the heat pipe which connect the first and the second region to one another should be designed such that in the second region condensed refrigerant can pass unimpeded under the influence of gravity to the first region.
  • a refrigeration system with the aforementioned features should be particularly advantageous for movable, in this case rotatably arranged to be cooled parts of a device used.
  • the thermal contact when reinserting the heat sink will turn out much better than in the case in which there is significant ice formation at the contact surfaces. Furthermore, the cryogenic region in which the parts of the device to be cooled, due to the thermal decoupling, is prevented from penetrating into this region heat flows. In this way, even when replacing the heat sink to be cooled parts of a device at the desired low temperature.
  • the thermal contact between the chiller and the parts to be cooled of the device is ensured at any time with a rotation of the parts to be cooled of a device.
  • a refrigeration system can be specified, which allows even with a single heat sink use, without heating the parts to be cooled is necessary to exchange the heat sink or wait or remove temporarily.
  • the refrigeration system according to the invention is particularly suitable for devices in the field of superconducting technology.
  • FIG. 1 shows the schematic structure of a refrigeration system 100.
  • a cryostat 108 are the parts to be cooled 102 of a device.
  • the device parts to be cooled 102 may be, for example, the magnet windings of a superconducting magnet or other parts of the superconducting technique.
  • a heat shield 112 is mounted to enhance thermal isolation.
  • the cooling capacity for the parts to be cooled 102 of the device is provided by a refrigerator 109, such as a cold head or a Stirling cooler.
  • a cold head can be used, which operates on the Gifford-McMahon principle.
  • Such Two-stage chiller can according to the present embodiment with its first stage 111 thermally connected to the heat shield 112.
  • the connection between the first stage 111 of the refrigerator 109 and the heat shield 112 may preferably be a releasable mechanical connection, such as a screw or clamp connection, which simultaneously ensures good thermal contact of the components.
  • the second stage 110 of the refrigeration machine 109 represents the actual heat sink 104 of the refrigeration system 100.
  • the second stage 110 of the refrigerator 109 is thermally connected to a cold connection element 103.
  • the corresponding connection may preferably be a screw connection. That is, the refrigerator 109 is detachably screwed with its second stage 110 in the cold connection element 103. Any other mechanical connection which is releasable and at the same time ensures good thermal contact between the second stage 110 of the refrigerator 109 and the cold connection element 103 is also for the in FIG. 1 illustrated embodiment suitable.
  • the connecting elements 101 and 103 may be part of the parts 102 to be cooled of a device or the heat sink 104. They can continue to be integrated into the corresponding components or permanently connected to them.
  • the chiller 109 is partially located in a separately evacuable maintenance room 113. This maintenance room 113 is separated from the rest of the evacuatable space of the cryostat 108.
  • the cold connection element 103 is connected to a heat pipe 105 with good thermal conductivity and preferably also mechanically.
  • the heat pipe 105 is connected to a warm connection element 101. This compound is also designed to conduct heat well and may preferably also be a mechanical connection.
  • the warm connection element 101 is in turn connected to a good heat-conducting with the parts to be cooled 102 of a device.
  • a liquid 106 which can circulate in the heat pipe 105 in accordance with a thermosiphon effect.
  • the heat pipe 105 itself, however, consists of a poorly heat-conducting material.
  • the heat pipe 105 If the heat pipe 105 is completely filled with the liquid, it can assume a lower density in the upper cold region of the heat pipe 105 than in the lower, warmer region of the heat pipe 105. Due to the density differences of the liquid 106, a circulation can occur in the heat pipe 105 adjust according to the so-called. Thermosiphon effect, which causes a heat transfer from the parts to be cooled 102 of the device to the heat sink 104.
  • the heat pipe 105 may be only partially filled with a liquid 106.
  • a circulation of the liquid 106 can be set in two different phases, for example liquid-gaseous. Accordingly, gaseous liquid is liquefied in the portion of the heat pipe 105 which is in thermal contact with the cold joint 103. Condensed liquid 106 moves gravity driven into the in FIG. 1 shown below portion of the heat pipe 105, which is in thermal contact with the hot connector 101. In this part of the heat pipe 105, the liquid 106 delivers the cooling capacity to the hot connector 101 (and thus also to the parts of the device 102 to be cooled), whereupon gaseous liquid 106 rises again into the upper part of the heat pipe.
  • the cold connector 103 acts as a condenser and the hot connector acts as an evaporator. In this way, a good thermal connection between the refrigerator 109 and its second stage 110 and the parts to be cooled 102 of a device can be ensured.
  • the necessity may arise that a refrigeration machine 109 must be replaced, for example, for maintenance work or due to a defect.
  • the liquid 106 which is located within the heat pipe 105, is pumped out via a pipe 107 leading to the outside. It is sufficient in many cases, the liquid 106 for the most part pump out of the heat pipe 105; but it can also be completely removed from the heat pipe 105. By removing the liquid 106 from the heat pipe 105, the thermal conductivity of the heat pipe 105 is significantly reduced.
  • a heat conduction takes place in the following only as a result of solid-state heat conduction via the material of the heat pipe 105.
  • the heat pipe 105 made of a poor thermal conductivity material such as stainless steel, the thermal conduction between the connecting elements 101, 103 can be reduced to a minimum.
  • materials for the heat pipe 105 in addition to stainless steel and various plastics, ceramics or other low temperature suitable materials can be used.
  • Another measure for minimizing the heat conduction is to make the heat pipe 105 particularly thin-walled and / or with small geometrical dimensions.
  • the maintenance room 113 can be ventilated. Due to the ambient air flowing into the maintenance space 113, the cold connection element 103 and the previously cold parts of the chiller 109 begin to heat up.
  • the maintenance room 113 can also be flooded with a special purge gas, such as dried air, nitrogen or helium.
  • the refrigerator 109 can be removed from the refrigeration system 100.
  • the previously deep-cold connection element 103 is thermally decoupled from the remaining still very cold parts, in particular the warm connection element 101 and the parts 102 to be cooled of a device and will therefore heat up quickly to a temperature close to room temperature.
  • Superconducting magnet windings are particularly suitable for irradiation systems, as used in particle therapy, e.g. to fight cancer.
  • Such superconducting magnet windings are preferably mounted in a so-called gantry, which is rotatable about a fixed axis.
  • FIG. 2 shows an embodiment of the generally designated 100 refrigeration system, wherein the entire refrigeration system 100, including the parts to be cooled 102 are arranged rotatably about an axis A.
  • the refrigeration system 100 are the parts to be cooled 102 in a cryostat 108, which additionally has a heat shield 112.
  • the refrigerator 109 is preferably designed rotationally symmetrical with respect to a further axis B.
  • the refrigerator 109 is housed in a maintenance room 113, which is evacuated separately from the cryostat 108.
  • the first stage 111 of the refrigerator 109 is connected to the heat shield 112, the second stage 104 of the refrigerator 109 is connected to the cold connector 103.
  • the heat pipe 105 is located with a first part 202 in thermal, preferably also mechanical connection with the cold connection element 103. Another part 201 of the heat pipe 105 is in thermal, preferably also mechanical contact with the warm connection element 101 Heat pipe 105 has a smaller cross section than the second part 201 of the heat pipe 105.
  • the part 203 of the heat pipe 105 which connects the first part 202 and the second part 201 of the heat pipe 105, is configured in such a way that condensed liquid 106 can pass unhindered from the first region 202 into the second region 201 due to gravity ,
  • the entire heat pipe 105 may preferably have the shape of a truncated cone closed on both sides. Such a heat pipe 105 may further be connected to the refrigerator 109 so that the axis of symmetry of the truncated cone coincides with the axis B.
  • a pipe 107 is connected to the heat pipe 105.
  • the pipeline 107 has such a shape that any liquid 106 entering the pipeline 107 from the heat pipe 105 can not pass unhindered to the outer part of the pipeline 107 that is in communication with the cryostat 108.
  • the pipeline 107 has a part 204 bent in the direction of the axis A.
  • the liquid 106 can be pumped out of the heat pipe 105 through the pipe 107. In this way, a thermal separation between the parts to be cooled 102 of a device and the heat sink 104 is achieved.
  • the working space 113 is aerated after the liquid 106 has been pumped off.
  • the parts of the working space 113 which are arranged between the mounting flange of the first stage 111 of the refrigerator with the heat shield 112 and the condenser 103, can be designed to be flexible.
  • a flexible configuration can be done for example by means of a bellows.
  • the condenser 103 can be moved along the axis B due to a flexible configuration of the heat pipe 105 be.
  • the heat pipe 105 may also have a bellows for this purpose.
  • FIG. 3 shows a further embodiment of a generally designated 100 refrigeration system.
  • refrigeration system 100 is opposite to those in FIG. 2 shown is extended to an additional cooling system.
  • a refrigerant space 301 is in thermal, preferably also in mechanical contact with the cold connection element 103.
  • This refrigerant space 301 can be filled by a feed line 302 from a geodetically higher location.
  • a same or similar refrigerant can be used as it is used for the heat pipe 105. Usable are, for example, helium, neon or nitrogen.
  • a piping system 303 is connected, which is connected over a large area with the parts to be cooled 102 of a device.
  • evaporating refrigerant can escape via an exhaust pipe 304 from the piping system 303. In this way, an overpressure in the piping system 303 is avoided.
  • the auxiliary cooling device may e.g. be used so that the parts to be cooled 102 of a device first with nitrogen, which is inexpensive and readily available, are pre-cooled before using the chiller 109, the parts to be cooled 102 are cooled to even lower temperatures.
  • the additional cooling device it is technically necessary to stop the refrigeration system 100 in its possible rotation about the axis A or at least to move it so slowly that in the pipeline system 303, a gravity-driven refrigerant circuit, which is based on a thermosiphon effect, can set ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Claims (14)

  1. Installation (100) frigorifique comprenant au moins
    a. un élément (101) de liaison chaud, qui est relié thermiquement à des parties (102) à refroidir d'un dispositif,
    b. un élément (103) de liaison froid, qui est relié thermiquement à un puits (104) de chaleur,
    c. un caloduc (105) en matériau mauvais conducteur de la chaleur, qui, à une première extrémité à l'élément (101) de liaison chaud et à une deuxième extrémité, est relié, de manière amovible mécaniquement, à l'élément (103) de liaison froid et dont l'intérieur est empli, au moins en partie, d'un liquide (106) pouvant circuler suivant un effet de thermosiphon et
    d. une canalisation (107), qui communique à une première extrémité avec l'intérieur du caloduc (105) et qui est conformée de manière à ce qu'au moins des parties de la canalisation (107) soient géodésiquement plus hautes que le niveau du liquide,
    e. dans lequel, pour une séparation thermique des éléments (101, 103) de liaison, le liquide (106) peut être pompé par la canalisation (107),
    caractérisée en ce que
    f. il est prévu une possibilité de tourner autour d'un axe (A), qui est sensiblement parallèle à un axe (B) de symétrie du caloduc (105) et
    g. le caloduc (105 a, dans une première région (201), qui est reliée à l'élément (101) de liaison chaud, une section transversale plus grande que dans une deuxième région (202), qui est reliée à l'élément (103) de liaison froid et les parties (203) du caloduc, qui relient la première (201) et la deuxième régions (202) entre elles, sont conformées de manière à ce que du fluide (106) réfrigérant, condensé dans la deuxième région (202), puisse, sous l'influence de la force de la gravité, arriver sans obstacle dans la première région (201).
  2. Installation (100) frigorifique suivant la revendication 1, caractérisée en ce que les parties à refroidir du dispositif (102) sont disposées dans un cryostat (108) pouvant être mis sous vide et en ce que la deuxième extrémité de la canalisation (107) est en dehors du cryostat (108).
  3. Installation (100) frigorifique suivant la revendication 2, caractérisée en ce qu'il y a une machine (109) frigorifique à plusieurs étage, ayant un premier étage (111) et un deuxième étage (110), le puits (104) de chaleur étant constitué par le deuxième étage (110) et le premier étage (111) est relié, d'une manière amovible mécaniquement, à un bouclier (112) thermique disposé à l'intérieur du cryostat (108).
  4. Installation (100) frigorifique suivant la revendication 3, caractérisée en ce qu'au moins des parties de la machine (109) frigorifique sont mises, de manière remplaçable, dans un espace (113) d'entretien, séparé du cryostat (108) pouvant être mis sous vide et pouvant être mis sous vide.
  5. Installation (100) frigorifique suivant l'une des revendications précédentes, caractérisée en ce que le liquide (106) se présente sous la forme d'un mélange à deux phases.
  6. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que la canalisation (107) est reliée, à ses extrémités proches de l'axe (B) de symétrie du caloduc (105), au caloduc (105) et au côté extérieur du cryostat (108) et la canalisation (107) a, dans la direction dans laquelle elle s'étend, au moins une région (204) intermédiaire proche de l'axe (A).
  7. Installation frigorifique suivant la revendication 6, caractérisée en ce que la région (204) intermédiaire a, dans la région dans laquelle s'étend la canalisation (107), une courbure en forme de V dans la direction de l'axe (A).
  8. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que le caloduc (105) est constitué sensiblement sous la forme d'un tronc de cône.
  9. Installation frigorifique suivant l'une des revendications précédentes, caractérisée par un système de refroidissement supplémentaire, comprenant
    a. un espace (301) de fluide réfrigérant relié à l'élément (103) de liaison froid,
    b. un conduit (302) d'entrée, par lequel l'espace (301) pour du fluide réfrigérant peut être rempli d'un deuxième fluide réfrigérant provenant d'un emplacement plus haut géodésiquement à l'extérieur du cryostat (108),
    c. un système (303) de canalisation, qui est relié, suivant une grande surface thermiquement, aux parties à refroidir du dispositif (102) et dans lequel le deuxième fluide réfrigérant peut circuler en raison d'un effet de thermosiphon et
    d. un conduit (304) d'évacuation des gaz, par lequel du deuxième fluide réfrigérant gazeux peut se dégager du système (303) de canalisation.
  10. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que les éléments (101, 103) de liaison sont en un matériau bon conducteur de la chaleur, en étant de préférence en cuivre.
  11. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que le caloduc (105) est en un matériau ayant une conductibilité thermique plus petite que celle du cuivre, en étant de préférence en acier fin.
  12. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que le dispositif comporte des parties supraconductrices.
  13. Installation frigorifique suivant l'une des revendications précédentes, caractérisée en ce que le dispositif est une installation à portique pour la radiothérapie.
  14. Installation frigorifique suivant la revendication 13, caractérisée en ce que les parties (102) à refroidir sont des aimants, de préférence des aimants supraconducteurs de déviation d'un faisceau de particules.
EP07803233.1A 2006-09-29 2007-09-05 Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement Not-in-force EP2066991B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006046688A DE102006046688B3 (de) 2006-09-29 2006-09-29 Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
PCT/EP2007/059269 WO2008040609A1 (fr) 2006-09-29 2007-09-05 Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement

Publications (2)

Publication Number Publication Date
EP2066991A1 EP2066991A1 (fr) 2009-06-10
EP2066991B1 true EP2066991B1 (fr) 2017-08-16

Family

ID=38830953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803233.1A Not-in-force EP2066991B1 (fr) 2006-09-29 2007-09-05 Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement

Country Status (7)

Country Link
US (1) US20090293504A1 (fr)
EP (1) EP2066991B1 (fr)
KR (1) KR101422231B1 (fr)
CN (1) CN101523136A (fr)
DE (1) DE102006046688B3 (fr)
ES (1) ES2647681T3 (fr)
WO (1) WO2008040609A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2389977A3 (fr) 2005-11-18 2012-01-25 Still River Systems, Inc. Radiothérapie à particules chargées
DE102008009878A1 (de) * 2008-02-19 2009-06-25 Siemens Aktiengesellschaft Vorrichtung zur Kühlung einer supraleitenden Magnetspule
US9234691B2 (en) * 2010-03-11 2016-01-12 Quantum Design International, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
US8332004B2 (en) * 2010-12-23 2012-12-11 General Electric Company System and method for magnetization of rare-earth permanent magnets
DE102011002622A1 (de) 2011-01-13 2012-07-19 Siemens Aktiengesellschaft Kühleinrichtung für einen Supraleiter und supraleitende Synchronmaschine
DE102011082352A1 (de) 2011-09-08 2013-03-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Kühlen einer Einrichtung
ES2675349T3 (es) * 2012-03-06 2018-07-10 Tesla Engineering Limited Criostatos con varias orientaciones
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
DE102012223366A1 (de) 2012-12-17 2014-06-18 Siemens Aktiengesellschaft Supraleitende Spuleneinrichtung mit Spulenwicklung und Kontakten
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
JP6276033B2 (ja) * 2013-01-15 2018-02-07 株式会社神戸製鋼所 極低温装置及び被冷却体に対する冷凍機の接続及び切り離し方法
GB2513351B (en) * 2013-04-24 2015-08-05 Siemens Plc Refrigerator Mounting Assembly for Cryogenic Refrigerator
WO2014173809A1 (fr) * 2013-04-24 2014-10-30 Siemens Plc Ensemble comprenant un réfrigérateur cryogénique à deux étages et un système de fixation associé
GB201400201D0 (en) * 2014-01-07 2014-02-26 Siemens Plc Exchange of a cold head in a superconducting magnet system
US9879924B2 (en) * 2014-01-24 2018-01-30 Hamilton Sundstrand Space Systems International, Inc. Heat switch radiators for variable rate heat rejection
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CN105627610B (zh) * 2016-03-15 2018-02-06 北京美尔斯通科技发展股份有限公司 一种基于固氮的高温超导制冷设备
CN108444130A (zh) * 2018-04-09 2018-08-24 杨厚成 一种强化换热的冷端装置
CN108922725B (zh) * 2018-08-16 2020-05-15 西南交通大学 一种承力超导磁体用固氮低温容器
TWI702369B (zh) * 2019-05-22 2020-08-21 淡江大學 史特靈冷凍機及其密封結構
CN111895703B (zh) * 2019-09-30 2022-05-17 日照华斯特林科技有限公司 一种便携式制冷系统
JP2021134951A (ja) * 2020-02-25 2021-09-13 住友重機械工業株式会社 極低温冷凍機および極低温システム
CN115218606B (zh) * 2022-07-25 2023-08-25 北京中科富海低温科技有限公司 一种低温恒温装置及温度控制方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1168797A (en) * 1965-12-09 1969-10-29 Nat Res Dev Cyclopropane Carboxylic Acid Derivatives and their use as Insecticides
US3430455A (en) * 1967-04-17 1969-03-04 500 Inc Thermal switch for cryogenic apparatus
US3717201A (en) * 1971-04-30 1973-02-20 Cryogenic Technology Inc Cryogenic thermal switch
DE2326077C2 (de) * 1972-05-25 1985-12-12 National Research Development Corp., London Ungesättigte Cyclopropancarbonsäuren und deren Derivate, deren Herstellung und diese enthaltende Insektizide
EG11383A (en) * 1972-07-11 1979-03-31 Sumitomo Chemical Co Novel composition for controlling nixious insects and process for preparing thereof
US4220591A (en) * 1975-11-26 1980-09-02 Commonwealth Scientific And Industrial Research Organization Insecticidal esters
JPS5324019A (en) * 1976-08-18 1978-03-06 Sumitomo Chem Co Ltd Inspecticide comprising optically active isomer of alpha-cyano-3-phenoxybenzyl-2-(4-chlorophenyl)-isovalerate as an effective component
SE441179B (sv) * 1976-09-21 1985-09-16 Roussel Uclaf Nya cyklopropankarboxylsyror med polyhalogenerad substituent, sett for framstellning derav samt anvendning derav i pesticidkompositioner
US4183948A (en) * 1977-01-24 1980-01-15 Imperial Chemical Industries Limited Halogenated esters
DE2709264C3 (de) * 1977-03-03 1982-01-21 Bayer Ag, 5090 Leverkusen Substituierte Phenoxybenzyloxycarbonylderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide und Akarizide sowie neue Zwischenprodukte
US4402973A (en) * 1980-10-02 1983-09-06 Fmc Corporation Insecticidal (1,1'-biphenyl)-3-ylmethyl esters
US4260633A (en) * 1980-04-21 1981-04-07 Zoecon Corporation Pesticidal esters of amino acids
US4397864A (en) * 1980-05-02 1983-08-09 Mitsuitoatsu Chemicals Inc. 2-Arylpropyl ether or thioether derivatives and insecticidal and acaricidal agents containing said derivatives
CA1162561A (fr) * 1981-05-26 1984-02-21 Derek A. Wood Preparation de cyclopropane-carboxylates de cyanobenzyle
DE3344046A1 (de) * 1983-12-06 1985-06-20 Brown, Boveri & Cie Ag, 6800 Mannheim Kuehlsystem fuer indirekt gekuehlte supraleitende magnete
DE3681465D1 (fr) * 1985-02-04 1991-10-24 Nihon Bayer Agrochem K.K., Tokio/Tokyo, Jp
DE3522629A1 (de) * 1985-06-25 1987-01-08 Bayer Ag Verfahren zur herstellung bestimmter enantiomerenpaare von permethrinsaeure-(alpha)-cyano-3-phenoxy-4-fluor-benzyl -ester
US4689970A (en) * 1985-06-29 1987-09-01 Kabushiki Kaisha Toshiba Cryogenic apparatus
JPS62185383A (ja) * 1986-02-12 1987-08-13 Toshiba Corp 極低温容器
JPH0717621B2 (ja) * 1986-03-07 1995-03-01 日本バイエルアグロケム株式会社 新規ヘテロ環式化合物
US4782094A (en) * 1986-03-14 1988-11-01 Mitsui Toatsu Chemicals, Inc. Difluorobromomethoxyphenyl derivative and miticide comprising said derivative as active ingredient
DE3856183T2 (de) * 1987-08-01 1998-11-05 Takeda Chemical Industries Ltd Zwischenprodukte, ihre Herstellung und Verwendung zur Herstellung alpha-ungesättigter Amine
IE960442L (en) * 1988-12-27 1990-06-27 Takeda Chemical Industries Ltd Guanidine derivatives, their production and insecticides
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
US5434181A (en) * 1993-10-26 1995-07-18 Mitsui Toatsu Chemicals, Inc. Furanyl insecticide
US5430423A (en) * 1994-02-25 1995-07-04 General Electric Company Superconducting magnet having a retractable cryocooler sleeve assembly
US5396206A (en) * 1994-03-14 1995-03-07 General Electric Company Superconducting lead assembly for a cryocooler-cooled superconducting magnet
JP3265139B2 (ja) 1994-10-28 2002-03-11 株式会社東芝 極低温装置
US6376943B1 (en) * 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
JP3843186B2 (ja) * 1998-11-10 2006-11-08 住友重機械工業株式会社 極低温冷凍機のオーバーホール装置およびオーバーホ−ル方法
US6489701B1 (en) * 1999-10-12 2002-12-03 American Superconductor Corporation Superconducting rotating machines
DE10039964A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung
US6441003B1 (en) * 2000-10-04 2002-08-27 Bayer Corporation Process for the application of systemic pesticides to asexual plant propagules
DE10057664A1 (de) * 2000-11-21 2002-05-29 Siemens Ag Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit
DE10102653A1 (de) * 2001-01-20 2002-07-25 Bosch Gmbh Robert Wärmeschalter sowie System und Verwendung hierzu
DE10129855A1 (de) * 2001-06-21 2003-01-02 Bayer Ag Suspensionskonzentrate auf Ölbasis
DE10211568B4 (de) * 2002-03-15 2004-01-29 Siemens Ag Kälteanlage für zu kühlende Teile einer Einrichtung
GB0217607D0 (en) * 2002-07-30 2002-09-11 Oxford Instr Superconductivity Refrigeration method and system
JP4040626B2 (ja) * 2002-12-16 2008-01-30 住友重機械工業株式会社 冷凍機の取付方法及び装置
DE10303307B4 (de) * 2003-01-28 2010-12-30 Siemens Ag Maschine mit einem Rotor und einer supraleltenden Rotorwicklung
DE10321463A1 (de) * 2003-05-13 2004-12-16 Siemens Ag Supraleitende Maschineneinrichtung mit einer supraleitenden Wicklung und einer Thermosyphon-Kühlung
JP2005274113A (ja) * 2004-03-25 2005-10-06 Aruaaramu:Kk 温度可変試料室製作の方法と装置
US20080051457A1 (en) * 2004-08-23 2008-02-28 Hayami Nakao Optically Active Phthalamide Derivative, Agricultural or Horticultural Insecticide, and Method of Using the Same
US7994664B2 (en) * 2004-12-10 2011-08-09 General Electric Company System and method for cooling a superconducting rotary machine
DE102004060832B3 (de) * 2004-12-17 2006-06-14 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
GB0523161D0 (en) * 2005-11-14 2005-12-21 Oxford Instr Superconductivity Cooling apparatus
US9640308B2 (en) * 2008-10-14 2017-05-02 General Electric Company High temperature superconducting magnet
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
US9234691B2 (en) * 2010-03-11 2016-01-12 Quantum Design International, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20090077800A (ko) 2009-07-15
KR101422231B1 (ko) 2014-07-22
ES2647681T3 (es) 2017-12-26
US20090293504A1 (en) 2009-12-03
DE102006046688B3 (de) 2008-01-24
WO2008040609A1 (fr) 2008-04-10
EP2066991A1 (fr) 2009-06-10
CN101523136A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
EP2066991B1 (fr) Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement
EP1504458B1 (fr) Dispositif de supraconductivite comportant un aimant supraconducteur et une unite de refroidissement
DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
EP1628109B1 (fr) Dispositif de cryostat
EP1336236B1 (fr) Dispositif supraconducteur muni d'une tete de refroidissement d'une unite de refroidissement, thermiquement couplee a un enroulement supraconducteur rotatif
DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
DE10297837B4 (de) Verfahren zum Befestigen einer Kühlmaschine und Befestigungsvorrichtung dafür
DE102015215919B4 (de) Verfahren und Vorrichtung zur Vorkühlung eines Kryostaten
EP3282270B1 (fr) Appareil rmn pourvu d'un système d'aimants supraconducteurs et composants formant sondes refroidis
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
EP2606494B1 (fr) Système et procédé de refroidissement d'une machine supraconductrice
EP0301117B1 (fr) Dispositif de lyophilisation
WO2006082194A1 (fr) Installation motrice a refroidissement par thermosiphon de son enroulement rotorique supraconductrice
DE19914778A1 (de) Supraleitende Magnetvorrichtung
EP1504516B1 (fr) Dispositif de supraconductivite a unite de refroidissement dotee d'une tete de refroidissement thermiquement couplee a une bobine supraconductrice rotative
DE102005004858A1 (de) Maschineneinrichtung mit Thermosyphon-Kühlung ihrer supraleitenden Rotorwicklung
DE1903643A1 (de) Verfahren zum Kuehlen eines Verbrauchers,der aus einem teilweise stabilisierten Supraleitungsmagneten besteht
EP1742234B1 (fr) Ensemble de cryostat horizontal en surfusion
EP3611528A1 (fr) Dispositif cryostat pourvu de système de bobines magnétiques supraconducteur à ancrage thermique de la structure de fixation
DE102005002361B3 (de) Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
DE10339048A1 (de) Tieftemperaturkühlsystem für Supraleiter
WO2003079522A1 (fr) Dispositif supraconducteur comprenant une tete a froid d'une unite de refroidissement a effet thermosiphon, cette tete a froid etant thermiquement reliee a un enroulement supraconducteur rotatif
EP2721619B1 (fr) Dispositif et procédé pour refroidir un équipement
DE3408138A1 (de) Kryogenische magnetsysteme
EP1485660A1 (fr) Installation frigorifique con ue pour les pieces d'un dispositif qui necessitent un refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090826

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015820

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2647681

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170905

26N No opposition filed

Effective date: 20180517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170905

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 919464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180911

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200921

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015820

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201118

Year of fee payment: 14

Ref country code: IT

Payment date: 20200924

Year of fee payment: 14

Ref country code: ES

Payment date: 20201217

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906