EP2032742A2 - Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc - Google Patents

Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc

Info

Publication number
EP2032742A2
EP2032742A2 EP07726121A EP07726121A EP2032742A2 EP 2032742 A2 EP2032742 A2 EP 2032742A2 EP 07726121 A EP07726121 A EP 07726121A EP 07726121 A EP07726121 A EP 07726121A EP 2032742 A2 EP2032742 A2 EP 2032742A2
Authority
EP
European Patent Office
Prior art keywords
zinc
nickel
electrolyte bath
bath according
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07726121A
Other languages
German (de)
English (en)
Inventor
Heiko Brunner
Lars Kohlmann
Roland Vogel
Konstantin Thom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to EP07726121A priority Critical patent/EP2032742A2/fr
Publication of EP2032742A2 publication Critical patent/EP2032742A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Definitions

  • the present invention relates to an aqueous alkaline galvanic bath without addition of cyanide ions as complexing reagents for the deposition of zinc alloy coatings, in particular zinc-nickel, zinc-iron and zinc-cobalt coatings containing as additives cationic heteroaromatic nitrogen compounds, and a method for depositing bright and even zinc alloy coatings using the bath.
  • Zinc deposits of cyanide, alkaline solution have dominated the industrial market for many years.
  • the ever-increasing legal requirements regarding the disposal of old zinc and zinc alloy electrolyte baths and the associated strict control of the wastewater have led to an increased interest in non-cyanide zinc and zinc alloy baths.
  • Zinc alloying electrolytes are particularly important here.
  • Such metal coatings are used to improve the corrosion properties and to achieve certain optical properties.
  • the amount of nickel in the galvanic zinc-nickel coatings which is useful for improved corrosion protection, is 4 to 18% nickel, with a proportion of 12 to 15% being particularly optimal.
  • Both acidic and alkaline zinc-nickel baths are known in the art.
  • the work "Modern Electroplating” (Ed. M. Schlesinger and M. Paunovic) 4 th edition (2000), John Wiley & Sons, p. 423 ⁇ * 60 gives an overview of technically relevant galvanic baths.
  • Acidic zinc-nickel alloy baths are typically based on inorganic zinc and nickel salts, such as zinc sulfate, zinc chloride, nickel sulfate or nickel chloride, which contain various additives that improve both gloss and grain structure and provide control over the zinc / nickel ratio ,
  • Acidic baths for zinc-nickel alloy deposits generally contain an acid, e.g. Boric acid or sulfuric acid and other additives, e.g. Brighteners, wetting agents etc.
  • a disadvantage of such acidic baths is the strong corrosion effect of the electrolyte on the galvanic plant.
  • the alkaline baths have gained acceptance in practice because they have a better metal distribution and thus better protect the workpiece against corrosion.
  • their nickel installation over a wide current density range is much more uniform, which is accompanied by better corrosion protection.
  • they have a lower cathodic current efficiency, which is between 20 and 50%.
  • Such a bath is described as a zinc-nickel bath in U.S. Patent 3,681,211 which teaches the use of polyethyleneimine to achieve a black coating.
  • an aqueous zinc-nickel solution is adjusted to a pH between 10 and 13 with sodium hydroxide solution.
  • polyethyleneimine complexation of the zinc and in particular the nickel ions is achieved, which are present for example as a zinc hydroxide and nickel hydroxide precipitate in the solution.
  • polyethyleneimines has been widely used since the early seventies of the last century in conjunction with alkaline zinc and zinc alloy baths.
  • Polyethyleneimines which can be used for this purpose are described in US Pat. No. 3,881,211 where they have an average molecular weight of 600 to 100,000 and an often complex and branched structure.
  • US Pat. No. 3,993,548 also describes the use of a high molecular weight polyethyleneimine and quaternary ammonium silicates for the electrodeposition of bright, homogeneous zinc layers.
  • the bath may contain additional brighteners, such as benzyl betaine nicotinate.
  • U.S. Patent 4,877,496 describes aqueous alkaline baths comprising zinc and nickel ions, an alkali metal hydroxide, a metal complexing agent, a primary brightener, and a gloss enhancer.
  • the primary brightener here is a condensation product of an amine, such as ethylenediamine with epihalodrin.
  • the gloss enhancer is at least one aromatic aldehyde.
  • Tertiary brighteners such as tellurium oxide, telluric acid or telluric acid or their salts may also be included in the baths.
  • No. 4,889,602 describes aqueous electrolyte baths which have a pH of more than 11 and comprise zinc and nickel ions and at least one compound from the series aliphatic amines, polymeric aliphatic amines and hydroxyaliphatic carboxylic acids and their salts.
  • US Pat. No. 5,417,840 describes the use of a bath system which mainly contains polyalkyleneimines as complexing reagents and pyridinium betaines, in particular sulfobetaines.
  • DE 198 48 467 C2 describes the use of triethylenetetramine, tetraethylenepentamine or pentaethylene tetramine as a complexing system in combination with N-benzyl nicotinate betaine as primary brightener.
  • Benzylpyridinium compounds have long been known as brighteners for the deposition of zinc layers.
  • Kinzoku Hyomen Gijutsu (1980), 31, pp. 244-248 describes the effect of 3-substituted pyridinium compounds on the texture of the electrodeposited zinc layers
  • U.S. Patent No. 6,652,728 describes the use of N-benzyl pyridinium-3-carboxylate and N, N'-p-xylylene bis (pyridinium-3-carboxylate) as a brightener in combination with cationic polymeric urea derivatives for alkaline zinc and zinc alloy baths, especially zinc-iron baths.
  • the invention is therefore based on the object to develop a galvanic bath for Zinklegie- tion deposits, which allows visually appealing zinc alloy layers.
  • a more homogeneous zinc alloy metal distribution and an optimum zinc / alloy metal ratio should be set.
  • a uniform layer thickness with high gloss and the uniformity of the alloy components in the coating should be maintained over a wide current density range.
  • the invention relates to an aqueous alkaline, cyanide-free electrolyte bath for the deposition of zinc alloy layers on substrate surfaces, comprising the following components:
  • Ri is a substituted or unsubstituted, saturated or unsaturated, aliphatic or araliphatic hydrocarbon radical having 1 to 12 carbon atoms,
  • R 1 ' is a divalent substituted or unsubstituted, saturated or unsaturated, aliphatic or araliphatic hydrocarbon radical having 1 to 12 carbon atoms,
  • X 1 is NR x Ry and X 2 is hydroxyl, OR x or NR x R y , wherein R x and R y may be the same or different and are hydrogen or linear and / or branched alkyl groups having 1 to 12 carbon atoms, and
  • Xi, X 2 and X 3 may be the same or different and represent an alkoxy, or a primary, secondary or tertiary amino group
  • R1, R2 and R3 may be the same or different and represent hydrogen, a C 1 -C 2 - alkyl, C 1 -C 2 -AIkOXyI-, allyl, propargyl or benzyl group and
  • n and m can be the same or different and stand for an integer from 0 to 5.
  • R 1 in formula I is substituted aryl of the following formulas R 1a to RI I:
  • FG is a radical selected from the group consisting of carboxy, ester, sulfonic, carbamoyl, amino, cyano, alkyl, alkoxy, hydroxy, trifluoromethyl, allyl, propargyl, 4 Sulfobutyl, 3-sulfopropyl, 4-carboxybutyl, 3-carboxypropyl, hydrogen and halogens selected from fluoro, chloro and bromo,
  • FG is a radical selected from the group consisting of carboxy, ester, sulfonic acid, carbamoyl, amino, cyano, alkyl, alkoxy, trifluoromethyl radicals, hydrogen and halogens selected from fluoro, chloro and bromo , wherein all rings or individual fused rings may be substituted.
  • the radicals Ri and RT in the formulas I and II are bonded via a methylene group to the pyridinium radical.
  • Preferred araliphatic hydrocarbon radicals are e.g. Benzyl (R1a) and naphthylmethyl (R1b).
  • fluorides, chlorides and bromides can be used as halides.
  • pseudohalides are known per se to those skilled in the art and are described, for example, in the Römpp Lexikon, Chemie, 10th Edition, page 3609.
  • the pseudohalides also include radicals such as e.g. Mesitylate and triflate.
  • Preferred counterions are halides (eg, fluoride, chloride, bromide) and pseudohalides.
  • further components are included in the plating bath to improve the properties of the deposited alloy.
  • these may be, for example, polymers of aliphatic amines and metal complexing agents.
  • the electroplating baths according to the invention contain an inorganic alkaline component, preferably a hydroxide of the alkali metals, and more preferably sodium hydroxide and / or potassium hydroxide, to adjust a pH of at least 10 and preferably at least 11 in the bath.
  • an inorganic alkaline component preferably a hydroxide of the alkali metals, and more preferably sodium hydroxide and / or potassium hydroxide, to adjust a pH of at least 10 and preferably at least 11 in the bath.
  • amounts of 50 to about 250 g / l and particularly preferably from 90 to about 130 g / l of the alkaline component can be used.
  • the electrolyte baths of the invention usually contain zinc ions in concentrations ranging from about 1 to about 100 g / L, with concentrations of 4 to 30 g / L being preferred.
  • the zinc ions may be present in the bath of the invention in the form of a soluble salt, such as zinc oxide, zinc sulfate, zinc carbonate, zinc acetate, zinc sulfamate, zinc hydroxide, zinc tartrate, etc.
  • the baths according to the invention contain about 0.1 to 50 g / l metal ions.
  • Suitable metal salts are hydroxides, sulfates, carbonates, ammonium sulfates, sulfamates, acetates, formates and halides, preferably chloride and bromide.
  • the baths according to the invention preferably contain about 0.1 to 50 g / l of nickel ions as the alloying metal.
  • Suitable nickel salts are nickel hydroxide, nickel sulfate, nickel carbonate, ammonium nickel sulfate, nickel sulfamate, nickel acetate, nickel formate and nickel halides.
  • the zinc and alloy metal sources that may be used in the electrolyte baths of the invention may include one or more of the nickel and zinc sources described above.
  • the electrolyte baths according to the invention contain the abovementioned aromatic heterocyclic nitrogen-containing compounds of the general formula I or II for the purpose of sustainably improving the leveling and luster formation of the deposited layers over a wide current density range. Accordingly, the compounds of the formulas I and II are also referred to below as brighteners according to the invention.
  • Preferred compounds of the formula I or II are 1-benzyl-3-carbamoylpyridinium chloride, 1,4-chlorobenzyl-S-carbamoylpyridinium chloride, 1- (2'-fluorobenzyl) -3- carbamoylpyridinium chloride, 1- (2'-methoxybenzyl) -3-carbamoylpyridinium chloride, 1- (2'-carboxybenzyl) -3-carbamoylpyridinium chloride, 1- (2'-carbamoyl) pyridinium chloride; Carbamoyl-benzyl) -3-carbamoyl-pyridinium chloride, i - ⁇ '- chloro-benzo-O-S-carbamoyl-pyridinium chloride, 1- (3'-fluoro-benzyl) -3-carbamoyl-pyridinium chloride, 1 - (3'-methoxy-benz
  • the brighteners can be readily prepared by reacting the corresponding nicotinic acid amides or nicotinic acid derivatives with the corresponding benzyl halides in a suitable solvent, e.g. Ethanol, propanol, iso-propanol, butanol, isobutanol, methanol or mixtures thereof, DMF, DMAc, NMP, NEP, in bulk or in an aqueous medium in the heat under normal or elevated pressure.
  • a suitable solvent e.g. Ethanol, propanol, iso-propanol, butanol, isobutanol, methanol or mixtures thereof, DMF, DMAc, NMP, NEP, in bulk or in an aqueous medium in the heat under normal or elevated pressure.
  • the reaction times required for this are between one and 48 hours, depending on the starting material used.
  • in addition to the classic heat sources and a microwave oven can be used.
  • the resulting pyridinium compounds can either be used directly as an aqueous or alcoholic reaction solution or, after cooling, isolated by filtration or removal of the appropriate solvent. Purification of the compounds may be carried out by recrystallization in a suitable solvent, e.g. Ethanol take place.
  • a suitable solvent e.g. Ethanol
  • the bispyridinium compounds of general formula II can be prepared according to US Pat. No. 6,652,728.
  • the compounds of the formula I or II can be used alone or as a mixture in a concentration of 0.001 to 20 g / l and more preferably of 0.01 to 10 g / l.
  • the baths may contain a combination of the pyridinium compounds of formula I or II.
  • the baths according to the invention for zinc-nickel deposits contain, as complexing reagents, compounds of the general formula III or IV.
  • the baths may contain a combination of the complexing reagents of the formula III or IV.
  • the amounts of polyamine compounds of the formula III or IV used in the baths according to the invention are between 5 and 100 g / l, depending on the zinc and nickel ion concentration.
  • Suitable complexing reagents for the baths according to the invention are, for example, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine. Furthermore, can Complexing reagents are used, as described in US Patent 5,417,840.
  • the baths according to the invention can be prepared by conventional methods, for example by adding the specific amounts of the above-described components to water.
  • the amount of base component e.g. Sodium hydroxide should be sufficient to achieve in the bath the desired pH of at least 10 and preferably above 11.
  • the electrolytic bath according to the invention comprises 1 to 100 g / l of zinc ions, 0.1 to 50 g / l of alloying metal ions, 5 to 100 g / l of at least one compound of general formula III or IV and 0.001 to 20 g / l of at least one Compound of general formula I or II or a combination thereof.
  • the electrolytic bath according to the invention comprises 4 to 30 g / l of zinc ions, alloying metal ions selected from nickel, iron, cobalt, manganese and 0.01 to 10 g / l of at least one compound of general formula I or II or a combination of them.
  • the electrolytic bath according to the invention contains as alloying metal nickel in an amount of 0.1 to 50 g / l, iron in an amount of 10 to 120 mg / l, manganese in an amount of 10 to 100 g / l and / or cobalt in an amount of 10 to 120 mg / l.
  • the baths according to the invention deposit a bright, level and ductile zinc alloy layer at any conventional temperature of about 15 ° C to 50 0 C, preferably 20 0 C to 30 0 C, more preferably about 25 ° C, from. At these temperatures, the baths according to the invention are stable and effective over a wide current density range of 0.01 to 10 A / dm 2 , more preferably from 0.5 to 4 A / dm 2 .
  • the baths of the invention may be operated in a continuous or intermittent manner, and from time to time the components of the bath will have to be supplemented.
  • the components of the bath may be added singly or in combination. Further, they can be varied over a wide range depending on the kind and properties of the zinc alloy baths to which the substances are added.
  • Table 1 shows according to a preferred embodiment, with nickel as an alloying metal to influence the layer thickness and nickel incorporation in the inventive electrolyte for the deposition of a zinc-nickel alloy (using 4.03 • KT 4 ITIOI /! Indicated pyridinium respect and tetraethylenepentamine as compound of the formula III):
  • nickel incorporation rates can be obtained, depending on the aryl or alkyl radical used and the groups attached thereto.
  • Tables 1 and 2 depending on the brightener used and its amount, different effects in terms of gloss, layer thickness and nickel incorporation rates over a large mass and mass range can be obtained and the baths of the invention depending on the desired Layer performance can be adjusted by selecting the additive or an additive mixture targeted.
  • a further advantage of the zinc-nickel alloy baths according to the invention is that, as a rule, the use of aromatic aldehydes and tellurite as brightener can be completely dispensed with.
  • An advantage of the electrolytes according to the invention in comparison with the electrolyte of DE 19848467 C2 is the surprisingly low consumption of the quaternized nicotinamide derivatives according to the invention in comparison to N-benzyl nicotinate.
  • the consumption of the pyridinium compounds acting as brighteners is compounds of the electrolytes according to the invention significantly lower and thus more economical than the market-standard pyridinium derivatives based on nicotinic acid.
  • the baths according to the invention may contain, in addition to the abovementioned additives, known planarizers such as 3-mercapto-1, 2,4-triazole and / or thiourea, with thiourea often being preferred.
  • planarizers such as 3-mercapto-1, 2,4-triazole and / or thiourea, with thiourea often being preferred.
  • aromatic aldehydes or their bisulphite adducts as additional brighteners, such as, for example, 4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3,4-dimethoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde, 2-hydroxybenzaldehyde or mixtures thereof can be dispensed with.
  • the electrolyte bath according to the invention thus contains no aromatic aldehydes or their bisulfite adducts as additional brighteners, in particular no 4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3,4-dimethoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde or 2-hydroxybenzaldehyde or bisulfite adduct thereof.
  • the aqueous alkaline baths according to the invention can generally be used for all types of substrates on which soft zinc alloys can be deposited.
  • substrates on which soft zinc alloys can be deposited include mild steel, spring steel, chrome steel, chromium-molybdenum steel, copper, copper-zinc alloys.
  • Another object of the invention is therefore a process for the electrodeposition of zinc alloy coatings on conventional substrates, wherein the electrolyte according to the invention is used.
  • the substrate to be coated is introduced into the electrolyte bath.
  • the deposition of the coatings at a current density of 0.01 A / dm 2 to 10 A / dm 2 and at a temperature in the range of 15 to 50 0 C, preferably 20 to 30 0 C, more preferably about 25 ° C.
  • the method according to the invention can be carried out in the application for mass parts, for example as a drum electroplating method and for depositing on larger workpieces as a rack electroplating method.
  • Anodes are used which can be soluble, such as zinc anodes, which also serve as the zinc ion source, to replace the zinc deposited on the cathode by dissolving zinc at the anode.
  • insoluble anodes e.g., platinized titanium mixed oxide anodes
  • the zinc ions and / or other metal ions withdrawn from the electrolyte must be otherwise re-added in alloy depositions, e.g. using a zinc dissolving container.
  • the method according to the invention can be operated with air injection, with goods movement or without movement, without resulting in any disadvantages for the coatings obtained.
  • the current source used are commercial DC converters or pulse rectifiers.
  • the anode used is a nickel anode.
  • the cathode sheet is coated at 1A for 15 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air.
  • the layer thickness measurement is made at two points (3 cm from the lower edge and 2.5 cm from the right and left edges) at high (3 A / dm 2 ) and low current density (0.5 A / dm 2 ). At these same places, the Ni content measurement is carried out. Measurements are taken with XRF at four different positions in the respective position in order to keep measurement errors as low as possible. A very shiny deposit was obtained.
  • a bright deposit was obtained with the following layer thicknesses and nickel contents:
  • a shiny, brownish shimmering deposit was obtained with the following layer thicknesses and nickel contents:
  • Application Example 19 Endurance test in a 5 l bath to determine the additive consumption
  • a pyridinium compound N-benzyl nicotinate or 1-benzyl-3-carbamoyl-pyridinium chloride
  • N-benzyl nicotinate corresponds to the teaching of DE 19848467 C2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Pyridine Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

L'invention concerne un bain électrolytique aqueux, alcalin et sans cyanure permettant de déposer des couches d'alliage de zinc sur des surfaces de substrats, lequel bain contient des composés pyridinium cationiques comme brillanteurs et des polyamines comme réactifs complexants. Le bain électrolytique peut être utilisé pour le dépôt galvanique de couches d'alliage de zinc brillantes et planes.
EP07726121A 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc Withdrawn EP2032742A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07726121A EP2032742A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06012766A EP1870495A1 (fr) 2006-06-21 2006-06-21 Bain aqueux alcalin, exempt de cyanide, pour la déposition galvanique de couches de Zinc et alliages de Zinc
PCT/EP2007/005491 WO2007147604A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc
EP07726121A EP2032742A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc

Publications (1)

Publication Number Publication Date
EP2032742A2 true EP2032742A2 (fr) 2009-03-11

Family

ID=37395875

Family Applications (3)

Application Number Title Priority Date Filing Date
EP06012766A Withdrawn EP1870495A1 (fr) 2006-06-21 2006-06-21 Bain aqueux alcalin, exempt de cyanide, pour la déposition galvanique de couches de Zinc et alliages de Zinc
EP07726120A Withdrawn EP2038453A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches de zinc et d'alliage de zinc
EP07726121A Withdrawn EP2032742A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP06012766A Withdrawn EP1870495A1 (fr) 2006-06-21 2006-06-21 Bain aqueux alcalin, exempt de cyanide, pour la déposition galvanique de couches de Zinc et alliages de Zinc
EP07726120A Withdrawn EP2038453A2 (fr) 2006-06-21 2007-06-21 Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches de zinc et d'alliage de zinc

Country Status (5)

Country Link
US (2) US20100236936A1 (fr)
EP (3) EP1870495A1 (fr)
JP (2) JP2009541580A (fr)
BR (2) BRPI0713489A2 (fr)
WO (3) WO2007147603A2 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032398A1 (de) * 2008-07-10 2010-01-14 Umicore Galvanotechnik Gmbh Verbesserter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
US20100096274A1 (en) * 2008-10-17 2010-04-22 Rowan Anthony J Zinc alloy electroplating baths and processes
ES2788080T3 (es) 2009-09-08 2020-10-20 Atotech Deutschland Gmbh Polímeros con grupos terminales amino y su uso como aditivos para baños galvanoplásticos de zinc y de aleaciones de zinc
FR2956123B1 (fr) * 2010-02-08 2017-10-27 Dalic Procede de protection d'un substrat metallique contre la corrosion et l'abrasion, et substrat metallique obtenu par ce procede.
EP2537962A1 (fr) * 2011-06-22 2012-12-26 Atotech Deutschland GmbH Procédé pour plaquage de cuivre
US9120111B2 (en) 2012-02-24 2015-09-01 Rain Bird Corporation Arc adjustable rotary sprinkler having full-circle operation and automatic matched precipitation
US9156043B2 (en) 2012-07-13 2015-10-13 Rain Bird Corporation Arc adjustable rotary sprinkler with automatic matched precipitation
CN102953095A (zh) * 2012-08-15 2013-03-06 长江润发(江苏)薄板镀层有限公司 一种无铬无氰耐指纹板
JP5747359B2 (ja) * 2012-10-09 2015-07-15 ユケン工業株式会社 ジンケート型亜鉛系めっき浴、ジンケート型亜鉛系めっき浴用添加剤および亜鉛系めっき部材の製造方法
US20160024683A1 (en) * 2013-03-21 2016-01-28 Atotech Deutschland Gmbh Apparatus and method for electrolytic deposition of metal layers on workpieces
EP2801640A1 (fr) * 2013-05-08 2014-11-12 ATOTECH Deutschland GmbH Bain électrolytique de nickel galvanique ou d'alliage de nickel pour déposer un alliage de nickel ou de nickel mi-lustré
EP3068819B1 (fr) 2013-11-06 2019-03-27 Rohm and Haas Electronic Materials LLC Polymères contenant de l'azote utilisés en tant que qu'agents nivelants
CN106471161B (zh) 2014-07-04 2020-05-12 巴斯夫欧洲公司 用于碱性镀锌的添加剂
BR112017027592A2 (pt) 2015-06-25 2018-08-28 Basf Se processo para deposição eletrolítica de um revestimento de zinco ou liga de zinco em um substrato metálico, substrato metálico revestido com zinco ou liga de zinco, e, uso de um aditivo de banho de galvanização com zinco
CN104878418B (zh) * 2015-06-29 2018-03-13 广州超邦化工有限公司 一种高稳定性的无氰碱性镀锌溶液
KR101657675B1 (ko) * 2015-09-25 2016-09-22 한국생산기술연구원 2종의 평탄제를 포함하는 전해 구리 도금용 유기첨가제 및 이를 포함하는 전해 구리 도금액
CN105200463A (zh) * 2015-11-03 2015-12-30 江苏梦得电镀化学品有限公司 一种无氰碱性挂镀镀锌镀液的配制方法及电镀工艺
KR101733141B1 (ko) * 2016-03-18 2017-05-08 한국생산기술연구원 고평탄 구리도금막 형성을 위한 전해 구리 도금용 유기첨가제 및 이를 포함하는 전해구리 도금액
KR102023363B1 (ko) * 2016-07-15 2019-09-24 한국생산기술연구원 니켈 도금용 평탄제 및 이를 포함하는 니켈 도금액
CN106191936A (zh) * 2016-07-21 2016-12-07 佛山市仁昌科技有限公司 一种应用于通讯滤波器电镀中的铝合金无氰沉锌剂的制作工艺
WO2018018161A1 (fr) * 2016-07-29 2018-02-01 Simon Fraser University Procédé de dépôt électrochimique
FI3415665T3 (fi) * 2017-06-14 2024-02-06 Dr Ing Max Schloetter Gmbh & Co Kg Menetelmä sinkki-nikkeliseoskerroksien erottamiseksi galvaanisesti emäksisestä sinkki-nikkeliseoskylvystä vähemmällä lisäaineiden hajoamisella
WO2019013762A1 (fr) * 2017-07-11 2019-01-17 Atotech Deutschland Gmbh Composition aqueuse pour le dépôt d'un dépôt de cobalt et procédé de dépôt électrolytique d'un tel dépôt
US11066752B2 (en) * 2018-02-28 2021-07-20 The Boeing Company Compositionally modulated zinc-manganese multilayered coatings
ES2847957T3 (es) * 2018-06-11 2021-08-04 Atotech Deutschland Gmbh Un baño ácido de galvanoplastia de zinc o aleación de zinc-níquel para el depósito de una capa de zinc o aleación de zinc-níquel
US10676436B2 (en) 2018-07-05 2020-06-09 Landos Biopharma, Inc. NLRX1 ligands
US10487057B1 (en) 2018-07-05 2019-11-26 Landos Biopharma, Inc. NLRX1 ligands
JP6750186B1 (ja) * 2019-11-28 2020-09-02 ユケン工業株式会社 めっき液の亜鉛濃度の上昇を抑制する方法および亜鉛系めっき部材の製造方法
EP4273303A1 (fr) * 2022-05-05 2023-11-08 Atotech Deutschland GmbH & Co. KG Procédé de dépôt d'un alliage zinc-nickel sur un substrat, bain de dépôt zinc-nickel aqueux, agent d'éclaircissement et son utilisation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681211A (en) * 1970-11-23 1972-08-01 Enequist Chem Co Inc The Electroplating a black nickel-zinc alloy deposit
US3884774A (en) * 1973-02-01 1975-05-20 Lea Ronal Inc Electrolytic deposition of zinc
US3881211A (en) * 1973-11-15 1975-05-06 Pro Diet Mop Grease mop for dietary control
JPS51103039A (fr) * 1975-03-08 1976-09-11 Japan Metarufuinitsushingu Kan
GB1507095A (en) * 1975-04-15 1978-04-12 Canning & Co Ltd W Electro-deposition of zinc
US3993548A (en) * 1975-05-21 1976-11-23 Oxy Metal Industries Corporation Zinc electrodeposition process and bath for use therein
US4889602B1 (en) * 1986-04-14 1995-11-14 Dipsol Chem Electroplating bath and method for forming zinc-nickel alloy coating
JPS6353285A (ja) * 1986-08-22 1988-03-07 Nippon Hyomen Kagaku Kk 亜鉛−ニツケル合金めつき液
JPH01219188A (ja) * 1988-02-26 1989-09-01 Okuno Seiyaku Kogyo Kk 亜鉛−ニッケル合金めっき浴
US5417840A (en) * 1993-10-21 1995-05-23 Mcgean-Rohco, Inc. Alkaline zinc-nickel alloy plating baths
US5405523A (en) * 1993-12-15 1995-04-11 Taskem Inc. Zinc alloy plating with quaternary ammonium polymer
US5435898A (en) * 1994-10-25 1995-07-25 Enthone-Omi Inc. Alkaline zinc and zinc alloy electroplating baths and processes
DE29504276U1 (de) * 1995-03-13 1995-05-04 Dr.-Ing. Max Schlötter GmbH & Co KG, 73312 Geislingen Alkalische, cyanidfreie Elektroplattierungsbadzusammensetzung zur Abscheidung von Zink-Nickel-Legierungsüberzügen
DE19840019C1 (de) * 1998-09-02 2000-03-16 Atotech Deutschland Gmbh Wäßriges alkalisches cyanidfreies Bad zur galvanischen Abscheidung von Zink- oder Zinklegierungsüberzügen sowie Verfahren
DE19848467C5 (de) * 1998-10-21 2006-04-27 Walter Hillebrand Gmbh & Co. Kg Galvanotechnik Alkalisches Zink-Nickelbad
DE19920394A1 (de) * 1999-05-04 2000-11-16 Hillebrand Walter Gmbh & Co Kg Legierungsbeschichtung von Grauguß
JP5005849B2 (ja) * 2000-01-31 2012-08-22 ディップソール株式会社 アルカリ性亜鉛及び亜鉛合金めっき浴
US6830674B2 (en) * 2002-11-05 2004-12-14 Columbia Chemical Corporation Brightener additive and bath for alkaline cyanide-free zinc electroplating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007147604A2 *

Also Published As

Publication number Publication date
EP2038453A2 (fr) 2009-03-25
EP1870495A1 (fr) 2007-12-26
US20100236936A1 (en) 2010-09-23
WO2007147605A3 (fr) 2008-05-22
JP2009541581A (ja) 2009-11-26
US20100155257A1 (en) 2010-06-24
WO2007147605A2 (fr) 2007-12-27
BRPI0713489A2 (pt) 2012-10-23
WO2007147604A3 (fr) 2008-05-29
BRPI0713500A2 (pt) 2012-01-24
WO2007147603A2 (fr) 2007-12-27
WO2007147603A3 (fr) 2008-05-15
WO2007147604A2 (fr) 2007-12-27
JP2009541580A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
WO2007147604A2 (fr) Bain aqueux, alcalin et sans cyanure permettant le dépôt galvanique de couches d'alliage de zinc
EP2292679B1 (fr) Polymères dotés de groupes terminaux aminés et leur utilisation comme additifs pour bains galvaniques de zinc et d'alliages de zinc
EP1114206B1 (fr) Bain alcalin aqueux exempt de cyanure s'utilisant pour le depot par galvanisation de revetements en zinc ou en alliage de zinc
EP3097222B1 (fr) Électrolyte au chrome trivalent et méthode de déposition du chrome métallique
DE69400952T2 (de) Alkalisches Bad für die galvanische Abscheidung von Zink-Nickel-Legierungen
WO2009135505A1 (fr) Bains d'électrolyte au pd et au pd-ni
KR20080110989A (ko) 이온성 액체를 사용하여 금속을 전착시키는 방법
DE2428499A1 (de) Glanzverzinkung
DE2525264C2 (de) Alkalisches cyanidfreies Zinkbad und Verfahren zur galvanischen Abscheidung von Zinküberzügen unter Verwendung dieses Bades
DE3231054A1 (de) Waessriges elektrolytbad zur kathodischen abscheidung von zink-nickel-legierungen und seine verwendung
DE3317620A1 (de) Waessriges bad fuer die galvanische abscheidung einer zinklegierung
EP2635724B1 (fr) Procédé de placage de chrome dur à partir d'un électrolyte sans cr(vi)
WO2007045650A2 (fr) Bain aqueux, alcalin et exempt de cyanure pour le dépôt galvanique de revêtements en zinc et en alliages de zinc
DE3712511C3 (de) Alkalisches cyanidfreies Elektroplattierungsbad und Verwendung dieses Bades
EP3559318A1 (fr) Électrolyte alcalin aqueux servant au dépôt de couches contenant du zinc sur des surfaces d'articles métalliques
EP3415665B1 (fr) Procédé de dépôt galvanique de revêtements d'alliage zinc/nicel à partir d'un bain d'alliage nickel/zinc à élimination réduite des additifs
DE2445359A1 (de) Cyanidfreies, glaenzende zinkueberzuege erzeugendes galvanisierungsbad
JPH1060683A (ja) 電気めっき三元系亜鉛合金とその方法
DE2852432A1 (de) Waessriges saures galvanisches zinkbad
DE19610361A1 (de) Bad und Verfahren für die galvanische Abscheidung von Halbglanznickel
DE19509713C1 (de) Lösung zum elektrolytischen Abscheiden von Zink- oder Zinklegierungsüberzügen
DE102011114931A1 (de) Selektive Hartgoldabscheidung
DE10100954A1 (de) Verwendung von Polyolefinen mit basischen, aromatischen Substituenten als Hilfsmittel zur elektrolytischen Abscheidung von metallischen Schichten
DE2740592B1 (de) Galvanisches Zinkbad
DE2159670C2 (de) Galvanisches Nickelbad

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090114

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWARZ, KONSTANTIN

Inventor name: VOGEL, ROLAND

Inventor name: KOHLMANN, LARS

Inventor name: BRUNNER, HEIKO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOTECH DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130418