EP1957799A1 - Compresseur à vis - Google Patents

Compresseur à vis

Info

Publication number
EP1957799A1
EP1957799A1 EP06754262A EP06754262A EP1957799A1 EP 1957799 A1 EP1957799 A1 EP 1957799A1 EP 06754262 A EP06754262 A EP 06754262A EP 06754262 A EP06754262 A EP 06754262A EP 1957799 A1 EP1957799 A1 EP 1957799A1
Authority
EP
European Patent Office
Prior art keywords
pressure
screw compressor
stage
rotor housing
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06754262A
Other languages
German (de)
English (en)
Inventor
Carsten Achtelik
Dieter HÜTTERMANN
Michael Besseling
Norbert Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GHH Rand Schraubenkompressoren GmbH
Original Assignee
GHH Rand Schraubenkompressoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GHH Rand Schraubenkompressoren GmbH filed Critical GHH Rand Schraubenkompressoren GmbH
Publication of EP1957799A1 publication Critical patent/EP1957799A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals

Definitions

  • the invention relates to a screw compressor with the features specified in the preamble of claim 1.
  • Screw compressors of this type are known for example from EP 0 993 553 Bl and EP 1 163 452 Bl. They have a vent duct open to the atmosphere connected to the relief chamber of the sealing arrangement.
  • the present invention is particularly advantageously applicable to a screw compressor that uses a gaseous medium, such as. B. air, to very high pressures, e.g. B. in the range of 30 to 50 bar, and which can be, in particular, the high pressure stage of a two-stage or multi-stage compressor unit.
  • the invention also relates to such a multi-stage, in particular three-stage screw compressor unit.
  • the sealing arrangements which seal the pressure-side shaft journals of the rotors in the rotor housing are exposed to a very high pressure load. Even if the sealing arrangement consists of a larger number of ring seals arranged in a row, there is no uniform pressure drop across the entire sealing arrangement, but the pressure drop occurs mainly at the outer, i.e. H. ring seals further away from the rotor, with the result that they are exposed to increased mechanical stress.
  • the object of the invention is to design the sealing arrangement for the pressure-side shaft journals in a screw compressor of the type specified in such a way that the pressure drop across the sealing arrangement is controlled and equalized can be, so that the reliability of the seal can be improved especially at very high final pressures of the screw compressor.
  • Figure 1 is a perspective, partially sectioned view of the screw compressor according to an embodiment of the invention.
  • FIG. 2 shows a cross section of the screw compressor from FIG. 1 approximately along the section line II-II from FIG. 1,
  • FIG. 3 shows a section substantially along the line III-III of FIG. 2.
  • FIG. 4 shows a perspective view of a three-stage screw compressor unit, the third stage of which is a screw compressor according to FIG. 1.
  • the screw compressor shown in FIG. 1 has a rotor housing 1, shown in section, in which two rotors 3 and 5 are rotatably mounted in parallel axes.
  • the axes of rotation of the rotors 3, 5 lie in a common vertical plane, which is also the sectional plane for the representation of the rotor housing 1.
  • Every rotor has a pro- fil section 7 or 9, which has a profile with helically extending ribs or grooves, the ribs and grooves of the two profile sections 7, 9 meshing and sealingly without contact.
  • Shaft journals 7a, 7b, 9a, 9b adjoin the profile sections 7, 9 on both sides, with their peripheral surface cooperating with sealing arrangements 11, 12 in order to seal the rotor in the rotor housing 1.
  • the shaft journals 7a, 7b, 9a, 9b are also rotatably supported in the rotor housing 1 by bearings 13, 15.
  • the upper rotor 3 in FIG. 1 is the main rotor and has at its left end in FIG. 1 an extension 7c of its shaft journal which is intended to receive a drive gear (not shown) which meshes with a corresponding gear of a drive gear (not shown) to drive the rotor 3 to rotate.
  • the two rotors 3, 5 have two meshing gears 17, 19 which form a synchronizing gear which rotates from the upper rotor 3 to the lower rotor 5, which is the secondary rotor, in the desired speed ratio transmits.
  • the screw compressor shown in FIG. 1 When the screw compressor shown in FIG. 1 is operating, its suction chamber 10, which is formed in the rotor housing 1 at the left end of the profile sections 7 and 9 in FIG. 1 and is connected to a suction nozzle (not shown), the gas to be compressed, in particular air , fed.
  • the gas supplied is preferably already pre-compressed by one or more upstream compressor stages (not shown) to an intermediate pressure, for example to a pressure in the range from 10 to 15 bar, preferably 12 bar.
  • This precompressed gas is conveyed to the right by the profile sections 7, 9 of the two rotors 3, 5 in FIG. 1 and is compressed to a final pressure which is preferably in the range from 30 to 50 bar, in particular around 40 bar.
  • the compressed gas leaves the rotor housing 1 at the right end of the profile sections 7, 9 in FIG. 1 through an outlet (not shown).
  • the rotor housing 1 is surrounded by a cooling jacket or cooling housing 21, which is predominantly formed in one piece with the rotor housing 1 and this at a distance surrounds.
  • the cooling housing 21 has large openings at the top and bottom, which are closed by means of a cover plate 23 and a base plate 25 which are fastened by screws. Between the rotor housing 1 and the cooling housing 21, 23, 25 there is a cooling space 27 which surrounds the rotor housing 1 in a ring .
  • FIG. 2 shows schematically and simplified a cross section approximately along the line II - II of Figure 1.
  • the rotor housing 1 for receiving the screw rotors (not shown) is surrounded by the cooling jacket or cooling housing 21, the side walls 21a, 21b of which are preferably in one piece with the rotor housing 1 are formed and which is closed at the top and bottom by the cover wall 23 or base plate 25.
  • the cooling housing 21 forms with the rotor housing 1 a cooling space 27 which surrounds the rotor housing 1 essentially completely in a ring and which is interrupted only at one point by a partition wall 29 connecting the rotor housing 1 to the side wall 21b of the cooling housing 21.
  • the partition 29 runs horizontally approximately halfway between the axis centers Ml, M2 of the screw rotors arranged vertically one above the other.
  • the cooling housing 21 has an inlet opening 31 and an outlet opening 33 for cooling liquid, for. B. cooling water or oil.
  • the inlet opening 31 opens into an inlet channel 35 which runs vertically upwards, the upper outlet opening 35 'of which is at a distance from the underside of the partition wall 29.
  • the black arrows in FIG. 2 indicate the flow path of the coolant supplied to the inlet opening 31. This is perpendicular through the inflow channel 35
  • a vent opening 41 with a small cross-section is formed at a height which corresponds approximately to the upper limit of the outlet opening 33. Air can escape through this ventilation opening 41 when the cooling space 27 is filled with coolant, as indicated by the dotted arrows in FIG Liquid level, can be filled and the volume of the residual air trapped above the liquid level 43 is very small.
  • a seepage opening 47 of very small cross-section is formed at the level of the lower limit of the inlet opening 31.
  • water can drain through the seepage opening 47 and the inlet opening 31 (as indicated by the lower dotted arrows in FIG. 2) until the liquid level in the cooling space 27 has reached the height of the seepage opening 47, i. H. has dropped to the level indicated by line 49.
  • the residual amount of cooling liquid remaining below line 49 when the cooling chamber 27 is emptied is therefore very small.
  • FIG. 3 shows further details of the invention which relate to the sealing arrangements 11 shown in FIG. 1 for sealing the pressure-side shaft journals 7b, 9b of the rotors 3, 5 in the rotor housing 1.
  • the sealing arrangement 11 consists of a number of ring seals I Ia, I Ib arranged in a row. In the embodiment shown, eight ring seals 11a, 11b are arranged one behind the other.
  • the ring seals I Ia, 1 Ib can preferably be lip seals, as such. B. is known from EP 0 993 553.
  • the seal arrangement 11 is surrounded by a first annular relief chamber 51 for collecting leakage gas passing through the seals 11a.
  • the relief space 51 can advantageously be seen between that from the rotor profile 7 first number of five sealing rings 11 a and the last three, ie outer ring seals 1 Ib.
  • the relief chamber 51 is connected to the suction chamber 10 of the screw compressor by a connecting channel 53 formed in the rotor housing 1 parallel to the rotor axis>.
  • the annular relief chamber 51 is therefore subjected to the suction pressure of the screw compressor prevailing in the suction chamber 10.
  • the air supplied to the suction chamber 10 can already be brought up to a pressure of, for example, upstream by the compressor stages. B. between 10 and 15 bar, in particular about 12 bar, and this is then the pressure prevailing in the relief chamber 51.
  • the high final pressure generated by the rotors e.g. B.
  • the first relief chamber 51 which is charged with the inlet pressure of the compressor, predefines a defined intermediate pressure at a defined point in the seal arrangement, thereby equalizing the pressure drop across the entire seal arrangement I Ia, I Ib, whereby the seals 1 Ib are mechanically relieved.
  • a second annular relief space 55 is provided, which is connected to the atmosphere in a manner known per se.
  • the task of this second relief chamber 55 is to keep the oil system used to lubricate the bearing 15 and the synchronous gear 17, 19 free of pressure and to keep the leakage gas through the seal arrangement 11 to the oil-lubricated areas as small as possible.
  • the sealing arrangement 11 'for the shaft journal 9b of the lower rotor 5 is designed in the same way as the sealing arrangement 11 of the shaft journal 7b and also has an annular relief chamber 51' which connects to the suction chamber 10 of the screw compressor through a ventilation duct ver is bound.
  • the venting duct 53 shown in FIGS. 2 and 3 is preferably a common connecting duct which is connected to both relief chambers 51, 51 'of the sealing arrangements 11, 11' and connects them to the suction chamber 10.
  • the ventilation duct 53 connecting the relief chamber 51 with the suction chamber 10 in the rotor housing 1 preferably runs in the immediate vicinity of the partition wall 29 connecting the rotor housing 1 with the cooling housing 21. Thanks to the intensive cooling of the partition wall 29, which acts like a cooling fin the coolant deflected at it, the connecting channel 53, and thus the leakage gas flowing in it to the suction space 10, is subjected to particularly intensive cooling.
  • FIG. 4 shows in perspective a three-stage screw compressor unit with three screw compressors 60, 70, 80, which are flange-mounted freely cantilevered parallel to one another on a gearbox housing 90, which essentially has the shape of a vertical disk. They are driven together by a drive gear mounted in the gear housing 90 and driven by a motor, as is known per se from DE 299 22 878.9 U1 and from DE-A-16 28 201 for two-stage compressor units.
  • the screw compressor 60 is the input stage (low-pressure stage) with intake opening 61 and outlet opening 63
  • the screw compressor 70 is the second stage or intermediate stage with inlet opening 71 and outlet opening 73
  • the screw compressor 80 is the final stage or high-pressure stage with inlet opening 81 and one In Figure 4 not visible outlet opening on the side facing away from the inlet opening 81.
  • FIG. 4 also shows an oil sump housing 95 flanged to the foot of the gear housing 90, which is connected by oil lines to the synchronous gears of the screw compressors 60, 70, 80 and to the drive gear arranged in the gear housing 90.
  • FIG. 4 Not shown in FIG. 4 are the connecting lines for the gas to be compressed, in particular air, connecting the inlets and outlets 61, 63, 71, 73, 81 of the three screw compressors 60, 70, 80. These can be carried out in the usual way. forms and z. B. be equipped with filters, intercoolers and / or silencers.
  • the screw compressor 80 of the third stage is a screw compressor designed according to FIGS. 1 to 3 according to the invention.
  • the three-stage compressor unit according to FIG. 4 is preferably designed such that the outlet pressure of the first stage 60 is approximately 3 to 6 bar, in particular approximately 3.5 bar, the second stage (intermediate stage) 70 an outlet pressure of approximately 10 to 15 bar, in particular approximately 12 bar, and the third stage (high pressure stage) generates an outlet pressure in the range from 30 to 50 bar, in particular approximately 40 bar.
  • the outlet pressure of approx. 12 bar generated by the second stage 70 is thus the pressure that prevails in the suction chamber 10 of the third stage 80 and thus also the relief chambers 51, 51 'of the sealing arrangements 11, 11' for the pressure-side shaft journals according to FIG 1 and 3 are acted upon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

L'invention concerne un compresseur à vis présentant deux rotors logés dans un carter de rotor, lequel compresseur comporte des systèmes d'étanchéité (11, 11') destinés à assurer l'étanchéité des tourillons côté pression des rotors, chaque système d'étanchéité présentant un certain nombre d'éléments d'étanchéité annulaires alignés (11a, 11b) et une chambre de décharge annulaire (51) étant associée à ce système en un point intermédiaire, laquelle chambre communique, par l'intermédiaire d'un canal d'évacuation d'air (53), avec une chambre du carter de rotor dans laquelle règne une pression supérieure à la pression atmosphérique. Le canal d'évacuation d'air est de préférence relié à la chambre d'aspiration (10) du carter de rotor (1) et cette dernière est alimentée en gaz précomprimé par un étage de compresseur situé en amont.
EP06754262A 2005-12-08 2006-06-09 Compresseur à vis Withdrawn EP1957799A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058698 2005-12-08
PCT/EP2006/005559 WO2007065487A1 (fr) 2005-12-08 2006-06-09 Compresseur à vis

Publications (1)

Publication Number Publication Date
EP1957799A1 true EP1957799A1 (fr) 2008-08-20

Family

ID=36763690

Family Applications (4)

Application Number Title Priority Date Filing Date
EP06762002A Active EP1957798B1 (fr) 2005-12-08 2006-06-09 Compresseur à vis
EP06754260.5A Active EP1957797B1 (fr) 2005-12-08 2006-06-09 Compresseur à vis pourvu d'une chemise de refroidissement
EP06754262A Withdrawn EP1957799A1 (fr) 2005-12-08 2006-06-09 Compresseur à vis
EP06754261.3A Active EP1979618B1 (fr) 2005-12-08 2006-06-09 Groupe de compresseurs à vis à plusieurs étages

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP06762002A Active EP1957798B1 (fr) 2005-12-08 2006-06-09 Compresseur à vis
EP06754260.5A Active EP1957797B1 (fr) 2005-12-08 2006-06-09 Compresseur à vis pourvu d'une chemise de refroidissement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06754261.3A Active EP1979618B1 (fr) 2005-12-08 2006-06-09 Groupe de compresseurs à vis à plusieurs étages

Country Status (8)

Country Link
US (4) US7690901B2 (fr)
EP (4) EP1957798B1 (fr)
CN (2) CN101321954B (fr)
AT (1) ATE498071T1 (fr)
DE (1) DE502006008894D1 (fr)
ES (1) ES2359015T3 (fr)
HK (1) HK1127111A1 (fr)
WO (4) WO2007065486A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669586B2 (en) * 2007-05-01 2010-03-02 Gm Global Technology Operations, Inc. Vented gear drive assembly for a supercharger
US20090142212A1 (en) * 2007-12-03 2009-06-04 Paul Xiubao Huang Rotary blower with noise abatement jacket enclosure
CN101498304B (zh) * 2009-03-11 2011-06-15 宁波鲍斯能源装备股份有限公司 一种煤层气双螺杆压缩机组
DE102009019220B4 (de) * 2009-04-30 2013-04-11 Leistritz Pumpen Gmbh Schraubenspindelpumpe
US8339714B2 (en) 2010-10-13 2012-12-25 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP5777379B2 (ja) * 2011-04-05 2015-09-09 株式会社日立産機システム 空気圧縮機
CN102322421B (zh) * 2011-08-29 2014-03-12 骆贻红 车载无油螺杆空气压缩机及其油路自循环冷却方法
CN103527481B (zh) * 2013-10-30 2015-12-16 上海齐耀螺杆机械有限公司 一种螺杆压缩机
US9951761B2 (en) 2014-01-16 2018-04-24 Ingersoll-Rand Company Aerodynamic pressure pulsation dampener
JP6228868B2 (ja) * 2014-03-10 2017-11-08 株式会社神戸製鋼所 スクリュ圧縮機
US9828995B2 (en) 2014-10-23 2017-11-28 Ghh Rand Schraubenkompressoren Gmbh Compressor and oil drain system
US9803639B2 (en) * 2014-12-19 2017-10-31 Ghh-Rand Schraubenkompressoren Gmbh Sectional sealing system for rotary screw compressor
DE102014019117B4 (de) * 2014-12-19 2022-02-24 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Druckluftversorgungseinrichtung für Fahrzeug-Druckluftanlagen mit wenigstens einem Gehäuse aus Kunststoff
EP3308002A4 (fr) * 2015-06-11 2018-12-05 Eaton Corporation Compresseur de suralimentation doté de pignons de synchronisation d'angle d'hélice à pas constant
CN105386972B (zh) * 2015-12-09 2017-05-17 合肥工业大学 一种具有动密封结构的螺杆真空泵
US10718334B2 (en) 2015-12-21 2020-07-21 Ingersoll-Rand Industrial U.S., Inc. Compressor with ribbed cooling jacket
US10451061B2 (en) 2016-05-06 2019-10-22 Ingersoll-Rand Company Compressor having non-contact and contact seals
CN108071586A (zh) * 2016-11-14 2018-05-25 上海汉钟精机股份有限公司 齿型转子组
TWI624596B (zh) * 2017-03-15 2018-05-21 亞台富士精機股份有限公司 可被遠端監控的幫浦機台及幫浦監控系統
EP3382203B1 (fr) 2017-03-30 2024-05-15 Roper Pump Company LLC Pompe à cavité progressive avec gaine de chauffage intégrée
CN108644117A (zh) * 2018-07-25 2018-10-12 宁波鲍斯能源装备股份有限公司 一种三级螺杆传动结构及其螺杆压缩机
CN109139456A (zh) * 2018-09-20 2019-01-04 宁波鲍斯能源装备股份有限公司 一种双级喷水螺杆主机
CN110425133A (zh) * 2019-07-26 2019-11-08 宁波鲍斯能源装备股份有限公司 螺杆涡旋水平式三级压缩机

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US562843A (en) * 1896-06-30 morse
US883911A (en) * 1907-07-09 1908-04-07 Harry Pierce Rotary engine.
US2575154A (en) * 1950-12-18 1951-11-13 Hydro Power Inc Rotary pump
US2849988A (en) * 1954-10-26 1958-09-02 Svenska Rotor Maskiner Ab Rotary devices and casing structures therefor
US3138320A (en) * 1959-01-15 1964-06-23 Svenska Roytor Maskiner Aktieb Fluid seal for compressor
DE1147443B (de) * 1960-07-11 1963-04-18 Gewerk Eisenhuette Westfalia Druckluftzahnradmotor
US3184155A (en) 1963-04-17 1965-05-18 Cooper Bessemer Corp Motor compressor unit
US3407996A (en) 1966-06-22 1968-10-29 Atlas Copco Ab Screw compressor units
GB1335025A (en) 1969-12-31 1973-10-24 Howden Godfrey Ltd Method of and apparatus for refrigeration
US4076468A (en) * 1970-07-09 1978-02-28 Svenska Rotor Maskiner Aktiebolag Multi-stage screw compressor interconnected via communication channel in common end plate
US3783710A (en) * 1972-11-16 1974-01-08 Twin Disc Inc Power transmitting drive apparatus
US4068984A (en) * 1974-12-03 1978-01-17 H & H Licensing Corporation Multi-stage screw-compressor with different tooth profiles
US3986801A (en) * 1975-05-06 1976-10-19 Frick Company Screw compressor
GB1570512A (en) * 1976-09-04 1980-07-02 Howden Compressors Ltd Meshing-screw gas-compressing apparatus
JPS5951190A (ja) * 1982-09-17 1984-03-24 Hitachi Ltd オイルフリ−スクリユ−圧縮機の油切り装置
JPS614889A (ja) * 1984-06-20 1986-01-10 Hitachi Ltd 多段式スクリユ−圧縮機
US4643654A (en) * 1985-09-12 1987-02-17 American Standard Inc. Screw rotor profile and method for generating
JP2511870B2 (ja) * 1986-03-20 1996-07-03 株式会社日立製作所 スクリユ−真空ポンプ装置
US4781553A (en) * 1987-07-24 1988-11-01 Kabushiki Kaisha Kobe Seiko Sho Screw vacuum pump with lubricated bearings and a plurality of shaft sealing means
JP2515831B2 (ja) * 1987-12-18 1996-07-10 株式会社日立製作所 スクリユ―真空ポンプ
JP2619468B2 (ja) * 1988-04-06 1997-06-11 株式会社日立製作所 無給油式スクリュー流体機械
US4938672A (en) * 1989-05-19 1990-07-03 Excet Corporation Screw rotor lobe profile for simplified screw rotor machine capacity control
JPH03267593A (ja) * 1990-03-16 1991-11-28 Hitachi Koki Co Ltd ねじ溝真空ポンプ
JPH05231362A (ja) 1992-02-25 1993-09-07 Hitachi Ltd スクリュ流体機械
JPH05231361A (ja) 1992-02-26 1993-09-07 Hitachi Ltd オイルフリースクリュー圧縮機の診断方法およびその装置
JPH0658278A (ja) * 1992-08-05 1994-03-01 Ebara Corp 多段スクリュー式真空ポンプ
JP3254457B2 (ja) * 1992-09-18 2002-02-04 株式会社日立製作所 無給油式スクリュー圧縮機のロータ形成方法およびそのロータを用いた無給油式スクリュー圧縮機
DE4241141A1 (de) 1992-12-07 1994-06-09 Bhs Voith Getriebetechnik Gmbh Verdichteranlage mit einem im Antriebsstrang zwischen einer Antriebseinheit und einem Verdichterbereich der Anlage eingeschalteten Zahnradgetriebe
US6217304B1 (en) * 1995-10-30 2001-04-17 David N. Shaw Multi-rotor helical-screw compressor
JP3493850B2 (ja) 1995-11-22 2004-02-03 石川島播磨重工業株式会社 機械駆動式過給機のシール構造
US5988994A (en) 1997-10-21 1999-11-23 Global Cooling Manufacturing Company Angularly oscillating, variable displacement compressor
JPH11223191A (ja) * 1998-02-04 1999-08-17 Hitachi Ltd 多段スクリューコンプレッサ
DE29807796U1 (de) 1998-04-30 1999-09-09 Ghh Rand Schraubenkompressoren Dichtungsanordnung für einen Wellenzapfen eines trockenlaufenden Rotationsschraubenverdichters
DE19822283A1 (de) 1998-05-18 1999-11-25 Sgi Prozess Technik Gmbh Drehzahnverdichter und Verfahren zum Betrieb eines solchen
DE29904409U1 (de) * 1999-03-10 2000-07-20 Ghh Rand Schraubenkompressoren Schraubenkompressor
DE29922878U1 (de) 1999-12-28 2001-05-10 Ghh Rand Schraubenkompressoren Zweistufiger trockenlaufender Schraubenkompressor
JP4003378B2 (ja) * 2000-06-30 2007-11-07 株式会社日立プラントテクノロジー スクリュー圧縮機
US6478560B1 (en) * 2000-07-14 2002-11-12 Ingersoll-Rand Company Parallel module rotary screw compressor and method
DE10040020A1 (de) * 2000-08-16 2002-03-07 Bitzer Kuehlmaschinenbau Gmbh Schraubenverdichter
DE20110360U1 (de) * 2001-06-22 2002-10-31 Ghh Rand Schraubenkompressoren Zweistufiger Schraubenkompressor
CN1399074A (zh) * 2001-07-27 2003-02-26 大晃机械工业株式会社 干式真空泵
US6981855B2 (en) * 2002-09-30 2006-01-03 Sandvik Ab Drilling rig having a compact compressor/pump assembly
DE20302989U1 (de) * 2003-02-24 2004-07-08 Werner Rietschle Gmbh + Co. Kg Drehkolbenpumpe
JP2006520873A (ja) 2003-03-19 2006-09-14 株式会社荏原製作所 容積型真空ポンプ
US7232297B2 (en) * 2003-05-08 2007-06-19 Automotive Motion Technology Limited Screw pump
US20050089414A1 (en) * 2003-10-28 2005-04-28 Svenska Rotor Maskiner Ab Screw rotor and screw rotor compressor
CN2688936Y (zh) * 2004-03-15 2005-03-30 朱祚睿 同轴梯型多节螺杆式空气压缩机
US8342829B2 (en) * 2005-12-08 2013-01-01 Ghh Rand Schraubenkompressoren Gmbh Three-stage screw compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007065487A1 *

Also Published As

Publication number Publication date
EP1979618A1 (fr) 2008-10-15
CN101321954A (zh) 2008-12-10
US7690901B2 (en) 2010-04-06
CN101321954B (zh) 2012-06-13
WO2007065485A1 (fr) 2007-06-14
EP1979618B1 (fr) 2016-04-27
US9091268B2 (en) 2015-07-28
WO2007065487A1 (fr) 2007-06-14
US7713039B2 (en) 2010-05-11
US20130011285A1 (en) 2013-01-10
ES2359015T3 (es) 2011-05-17
WO2007065486A1 (fr) 2007-06-14
EP1957798A1 (fr) 2008-08-20
EP1957797B1 (fr) 2016-09-28
HK1127111A1 (en) 2009-09-18
DE502006008894D1 (de) 2011-03-24
ATE498071T1 (de) 2011-02-15
US20080286138A1 (en) 2008-11-20
US20080286129A1 (en) 2008-11-20
EP1957798B1 (fr) 2011-02-09
US20090004036A1 (en) 2009-01-01
EP1957797A1 (fr) 2008-08-20
CN101321955A (zh) 2008-12-10
WO2007065484A1 (fr) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1957799A1 (fr) Compresseur à vis
DE3438262C2 (fr)
EP0030619B1 (fr) Compresseur à rotor, en particulier compresseur à vis avec alimentation en lubrifiant et drainage du lubrifiant des paliers
EP0290662B1 (fr) Pompe à vide à déplacement positif avec deux arbres
DE102005000897B4 (de) Spiralverdichter mit variabler Leistung
DE3518639C2 (fr)
DE3345073C2 (fr)
DE3705863A1 (de) Kompressor in spiralbauweise
EP2761180A2 (fr) Pompe volumétrique et procédé d'exploitation de ladite pompe volumétrique
EP3298241B1 (fr) Pompe à vide à palettes lubrifiée à l'huile munie d'un dispositif de séparation et de recyclage de l'huile
EP1476661A1 (fr) Pompe a vide
EP0156951A2 (fr) Pompe à vide avec deux arbres et avec obtention du vide de l'espace d'engrenage
DE102013007887A1 (de) Kompressionsvorrichtung und thermodynamisches System, das eine derartige Kompressionsvorrichtung umfasst
EP2592273A2 (fr) Agencement de pompe hydraulique
DE202016004933U1 (de) Schmiersystem für einen elektrischen Kompressor
DE102014000846A1 (de) Schraubenspindelpumpe
EP2229532B1 (fr) Compresseur à piston
EP2431613B1 (fr) Pompe à vide avec joint d'arbre
DE202014007117U1 (de) Klauenpumpe
EP3371458B1 (fr) Pompe à vide sèche
DE3513936A1 (de) Kuehleinrichtung fuer einen mehrstufigen verdichter
DE102018205269B4 (de) Schraubenverdichter
WO2003001064A1 (fr) Compresseur a vis a deux etages
DE102018129473A1 (de) Kältemittelverdichter
DE10221396B4 (de) C02-Axialkolbenverdichter für Fahrzeugklimaanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100105