EP1905896B1 - Railway sleeper - Google Patents

Railway sleeper Download PDF

Info

Publication number
EP1905896B1
EP1905896B1 EP07291077A EP07291077A EP1905896B1 EP 1905896 B1 EP1905896 B1 EP 1905896B1 EP 07291077 A EP07291077 A EP 07291077A EP 07291077 A EP07291077 A EP 07291077A EP 1905896 B1 EP1905896 B1 EP 1905896B1
Authority
EP
European Patent Office
Prior art keywords
block
resilient
sleeper
dynamic stiffness
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07291077A
Other languages
German (de)
French (fr)
Other versions
EP1905896A1 (en
Inventor
Marcel Girardi
Charles Petit
Frédéric Le Corre
Ian Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport SA
Original Assignee
Alstom Transport SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA filed Critical Alstom Transport SA
Priority to PL07291077T priority Critical patent/PL1905896T3/en
Publication of EP1905896A1 publication Critical patent/EP1905896A1/en
Application granted granted Critical
Publication of EP1905896B1 publication Critical patent/EP1905896B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • E01B1/005Ballastless track, e.g. concrete slab trackway, or with asphalt layers with sleeper shoes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/40Slabs; Blocks; Pot sleepers; Fastening tie-rods to them
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/44Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from other materials only if the material is essential
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/01Elastic layers other than rail-pads, e.g. sleeper-shoes, bituconcrete

Definitions

  • Such sleepers are frequently used to perform the laying of a railway without ballast, for example in or on a work such as a tunnel or viaduct, providing support for crosses a raft or slab.
  • EP-A-0 919 666 describes a cross of this type.
  • the rigid liner is embedded in a concrete slab, with which it forms a rigid assembly.
  • Each rail generally rests on a resilient support member disposed between each rail and the rigid block.
  • the resilient support elements thus form a first elastic stage. They can be mounted at the time of laying the track, or previously, for example at the time of assembly of the cross.
  • the resilient sole disposed between the block and the rigid boot forms a second elastic floor.
  • the vibrations generated by the rails when the trains pass are essentially damped at the level of the first and second elastic stages.
  • the aim of the invention is to improve the vibration damping performance of the aforementioned crossbar, in particular in a frequency range up to 250 Hz, which is considered as being able to generate nuisances in the surrounding buildings, while limiting the fatigue and stresses to the track system.
  • the invention relates to a cross member of the aforementioned type, characterized in that the resilient sole has a dynamic stiffness k2 between 6kN / mm and 10kN / mm, preferably between 6kN / mm and 8kN / mm.
  • the invention also relates to a section of railway characterized in that it comprises a cross member as described above and at least one rail resting on the cross.
  • a section of track 2 according to a first embodiment of the invention is schematically illustrated on the figure 1 .
  • the section 2 comprises two longitudinal rails 4 fixed on a cross-member 8.
  • the cross-member 8 comprises a single rigid concrete block 9 and two resilient support elements 10 placed between each rail 4 and the block 9.
  • the longitudinal rails 4 define a longitudinal reference.
  • the resilient support members 10 have a substantially parallelepipedal shape. In the example shown in figure 1 , their width is substantially equal to the width of the base of a rail 4, and their length is substantially equal to the width of the block 9.
  • the resilient support elements 10 are housed in a respective recess 12 of the block 9.
  • the profile of each recess 12, in section transverse, is substantially rectangular.
  • the width and the length of each recess 12 are, in the example illustrated in FIG. figure 1 substantially equal to the width and length of a resilient support member 10, respectively.
  • the resilient support elements 10 are for example glued to the cross member 8.
  • Each rail 4 is attached to the block 9 by means of rail fasteners (not shown) which prevent any transverse displacement of the rail relative to the block 9 and secure the rail 4 with the block 9 and with each resilient support element 10.
  • any dynamic stiffness is considered constant and substantially equal to 130% of the static stiffness.
  • the resilient support elements 10 form a first elastic stage 14 of vertical dynamic stiffness k1 as modeled on the figure 4 . Indeed, each rail 4 is modeled as being in suspension on a first end of a spring 16 of dynamic stiffness k1. The second end of the spring 16 is linked to the block 9.
  • Each resilient support member 10 has a dynamic stiffness k1 of between 120kN / mm and 300kN / mm, preferably between 200kN / mm and 300kN / mm.
  • the material used for each resilient support member 10 is, for example, rubber, polyurethane or any other resilient material.
  • the crossing 8 of the figure 1 illustrated in detail on the figures 2 and 3 , includes a shoe 20 for receiving the block 9, a resilient soleplate 22 disposed in a substantially horizontal plane between the block 9 and the shoe 20, and four resilient segments 24, 26 disposed in a substantially vertical plane between the block 9 and the slipper 20.
  • the block 9 has a substantially parallelepipedal shape and essentially comprises an upper face 32, a lower face substantially plane 34 serving as a support, and four peripheral faces 36, 38 connecting the upper face 32 to the lower face 34 respectively via a rounded portion 44 and a bevel 46.
  • the peripheral faces 36, 38 comprise two faces longitudinal peripherals 36 and two transverse peripheral faces 38.
  • the peripheral faces 36, 38 each comprise a substantially flat lower portion 36A, 38A, a substantially flat upper portion 36B, 38B, and a substantially flat intermediate portion 36C, 38C connecting each lower portion 36A, 38A to its respective upper portion 36B, 38B .
  • the longitudinal upper portions 36B and the upper transverse portions 38B converge mutually upwardly.
  • the lower longitudinal portions 36A and the lower transverse portions 38A mutually converge downwardly.
  • the longitudinal intermediate portions 36C and the transverse intermediate portions 38C mutually converge downward at an angle relative to the vertical plane greater than each respective lower portion 36A, 38A.
  • Block 9 is chosen with a particularly large mass. Indeed, its mass is between 350kg and 450kg, preferably between 400kg and 450kg.
  • the increase in the mass of the block 9 is conventionally obtained by adding metal elements in the concrete.
  • the liner 20 is formed of a substantially rigid shell.
  • the liner 20 essentially comprises a bottom 48 and a continuous peripheral rim 50 along the bottom 48.
  • the bottom 48 has an upper face 52 substantially flat and rectangular.
  • the peripheral rim 50 of the liner 20 comprises four panels 54, 56.
  • the four panels 54, 56 comprise two longitudinal panels 54 associated respectively with the longitudinal faces 36 of the block 9 and two transverse panels 56 associated respectively with the transverse faces 38.
  • Each panel 54, 56 comprises a respective inner face 62, 64.
  • Each inner face 62, 64 comprises a housing 66, 68 substantially parallelepipedic for receiving each of the resilient segments 24,26.
  • the housings 66, 68 are substantially parallel to the respective lower portions 36A, 38A of the peripheral faces 36, 38 of the block 9.
  • Each housing 66, 68 has a rectangular periphery defined by a continuous peripheral shoulder 66A, 68A.
  • Each housing 66, 68 also has substantially the same height and substantially the same length as the lower portion 36A, 38A with which it is associated.
  • Each inner face 62, 64 comprises an upper portion 62A, 64A flat and whose inclination relative to the vertical is substantially equal to or greater than the inclination of the respective intermediate portions 36C, 38C of the peripheral faces 36, 38 of the block 9.
  • the upper parts 62A, 64A are substantially the same height as the respectively associated intermediate parts 36C, 38C of the block 9.
  • the upper portions 62A, 64A of the inner faces 62, 64 of the panels 54, 56 are connected to a continuous upper edge 70 of the flange 50.
  • the upper edge 70 has, in the example illustrated in FIGS. secure a continuous seal 72.
  • the seal 72 is for example natural or synthetic rubber. It creates a seal between the block 9 and the shoe 20 without affecting the movement of the block 9 in the shoe 20. It is also possible to produce the seal 72 by casting a material such as a silicone or a polyurethane in the form of a continuous bead.
  • the stiffness of the shoe 20 is reinforced by ribs 74 arranged in relief outside the panels 54, 56, and partly under the bottom 48. They are for example integral with the shoe 20. These ribs 74 can to present any appropriate shape and any appropriate arrangement with respect to the shoe 20, in a manner known in the state of the art, in particular by EP-A-0 919 666 . They present, in the example illustrated in figures 2 and 3 notches 76 for anchoring the boot 20 on an armature. The ribs 74 are, when laying the track, embedded at least partially in the concrete. They thus ensure the fastening of the shoe 20 with the filling concrete.
  • the shoe 20 is made in one piece, by molding.
  • the liner 20 is made by assembling several partial shells as is known in the state of the art (for example EP-A-0 919 666 ).
  • a monobloc cross member 8 according to the first embodiment of the invention, it may for example be two end half-shells and a central shell connecting the two end half-shells .
  • the shoe 20 is for example made of molded thermoplastic material or resin concrete.
  • the resilient soleplate 22 has a substantially parallelepiped shape and substantially planar upper and lower faces to minimize the mechanical stresses experienced by the resilient sole 22 and avoid fatigue problems. Its length and its width are substantially equal to the length and the width of the lower face 34 of the block 9, respectively.
  • the resilient sole 22 thus remains in an elastic domain; which corresponds substantially to a maximum deformation rate of less than or equal to 40%.
  • the rate of deformation is the rate of variation of the thickness of the resilient sole 22 between a free state and a state under load.
  • the resilient soleplate 22 forms a second elastic stage 78 of vertical dynamic stiffness k2 as modeled on the figure 4 .
  • the rigid block 9 is modeled as being in suspension on the first ends of two springs 80 of dynamic stiffness k2.
  • the second ends of the springs 80 are connected to the boot 20.
  • the resilient soleplate 22 according to the invention has a dynamic stiffness k2 less than the dynamic stiffness of the devices conventionally used.
  • the dynamic stiffness k2 is between 6kN / mm and 10kN / mm, preferably between 6kN / mm and 8kN / mm.
  • the resilient soleplate 22 is for example made of a cellular elastomeric material.
  • the resilient soleplate 22 has a vertical dynamic stiffness k2 substantially uniform over its entire surface.
  • the resilient soleplate 22 has, in a central zone of the block 9, a vertical dynamic stiffness k3 less than or equal to k2.
  • the central zone comprises the middle of the block 9 and extends transversely from the middle of the block 9 towards the ends on substantially half of the surface of the block 9. Indeed, this central area being less stressed, it is possible to use it a more elastic material and therefore less expensive.
  • the resilient soleplate 22 can rest freely on the bottom 48 of the liner 20. It can thus easily be removed from the liner 20.
  • the crosspiece 8 also comprises a shim 82 of substantially incompressible thickness, as illustrated in FIGS. figures 2 and 3 .
  • the shim 82 has a substantially parallelepiped shape. Its length and width are substantially equal to the length and width of the upper face 52 of the bottom 48 of the liner 20. Its thickness is less than or equal to 10 mm, preferably between 2 mm and 4 mm.
  • the shim 82 rests freely on the bottom 48 of the liner 20. Thus, it can be easily removed from the shoe 20, or be added to the shoe 20, to adjust the leveling of the track.
  • the resilient soleplate 22 rests freely on the shim 82.
  • the surface of the shim 82 has a sufficiently high roughness to prevent the sliding of the resilient sole 22 in the slipper 20.
  • the roughness is for example obtained by means of streaks, diamond tips or spikes.
  • Each resilient segment 24, 26 has an outer face 24A, 26A, an inner face 24B, 26B and four peripheral faces.
  • outer faces 24A, 26A and inner 24B, 26B have substantially the same dimensions and have a substantially rectangular contour.
  • the external faces 24A, 26A and internal 24B, 26B have a length and a width substantially equal to the length and width respectively of the respective housings 66, 68 of the peripheral rim 50 of the liner 20.
  • the resilient segments 24, 26 are arranged in the respective housings 66, 68. They are for example maintained thanks to the friction between the peripheral faces of the resilient segments 24, 26 and the peripheral shoulder 66A, 68A of each housing 66, 68. Resilient segments 24, 26 can thus be easily removed.
  • each resilient segment 24, 26 can also be provided by mutual snapping.
  • the housings 66, 68 comprise grooves and the resilient segments 24, 26 comprise complementary grooves.
  • the resilient segments 24, 26 have a thickness greater than the depth of the recesses 66, 68 so as to protrude from the shoulders 66A, 68A.
  • the internal faces 24B, 26B are in simple support against the respective lower portions 36A, 38A of the peripheral faces 36, 38 of the rigid block 9.
  • the inner faces 24B, 26B are provided with grooves increasing their elasticity.
  • the resilient segments 24, 26 have a dynamic stiffness of between 12kN / mm and 25kN / mm. They are for example made of rubber, polyurethane or any other resilient material.
  • the longitudinal segments 24 corresponding to the longitudinal peripheral faces 36 are subjected to greater forces than the transverse segments 26 corresponding to the transverse peripheral faces 38.
  • the longitudinal segments 24 may advantageously be chosen with a dynamic stiffness greater than that of the transverse segments 26
  • the longitudinal segments 24 have for example a dynamic stiffness of between 20kN / mm and 25kN / mm, while the transverse segments 26 have a dynamic stiffness of between 15kN / mm and 18kN / mm.
  • the resilient segments 24, 26 hold the block 9 at a distance from the internal faces 62, 64 of the liner 20.
  • the resilient segments 24, 26 thus allow a horizontal damping of the block 9. This horizontal damping is decoupled from the vertical damping obtained thanks to the resilient support elements 10 and to the resilient soleplate 22.
  • the cross member 8 may for example comprise, on each side of the block 8, two transverse segments 34 one next to the other.
  • the figure 5 illustrates the acoustic performance of a cross member according to the invention and a known cross.
  • the figure 5 represents an insertion gain as a function of frequency.
  • the insertion gain is here the ratio expressed in dB between the value of a metric quantity (speed, acceleration, force, etc.) obtained with the introduction of a resilient sole and that obtained without it (see NF ISO 14837-1: 2005). In the example considered, it is the force exerted on the shoe 20.
  • a reduction in value of the metric quantity will be expressed by a negative sign of the insertion gain.
  • the cutoff frequency is the frequency from which a decrease in the insertion gain is generally observed.
  • k1 dyn is the dynamic stiffness of the resilient support elements 10
  • k2dyn is the dynamic stiffness of the resilient soleplate 22
  • M is the mass of the block 9.
  • the vibration attenuation performance is substantially the same.
  • the insertion gain is a few dB higher than the S1 curve.
  • the insertion gain is several dB lower than the S1 curve.
  • the cutoff frequency is lower compared to the S1 curve (20Hz instead of 32Hz).
  • the cross member 108 comprises two rigid blocks 109 connected by a spacer 184.
  • the biblock cross member 108 has great similarities with the one-piece cross member 8, there is, at the figure 6 , the same references as Figures 1 to 4 , however incremented by 100.
  • the length of the slippers 120 is adapted to receive the blocks 109. It is the same for the transverse segments 126 and the resilient soles 122.
  • the figures 2 and 3 which illustrate a monobloc cross member 8, are also a perfect illustration of a cross member 108.
  • the main difference between the one-piece cross member 8 and the cross-piece 108 is the presence of a spacer 184 penetrating the two blocks 109.
  • the decrease in the dynamic stiffness K2 of the resilient soles 122 and / or the increase in the mass of the blocks 109 generate a significant longitudinal flexion moment.
  • the spacer 184 has a shape adapted to obtain a high inertia. This is for example a shape square or cylinder.
  • the spacer 184 has for example also a section between 800mm2 and 1500mm2 and a thickness of between 6mm and 10mm. It is for example made of steel according to EN 13230-3.
  • Each block 109 has a mass of between 100 kg and 150 kg, preferably between 130 kg and 150 kg.
  • the monobloc cross member 8 particularly easily supports the additional mechanical stresses resulting from the invention.
  • the reduction of the dynamic stiffness k2 of the resilient soleplate 22, 122 makes it possible to obtain better performances of attenuation of the vibrations, in particular by lowering the cutoff frequency and lowering the insertion gain between 25Hz and 250HZ.
  • the increase in the mass of the block 9, 109 also makes it possible, for a dynamic stiffness k2 resilient sole 22, 122 given, to lower the cutoff frequency and thus improve the performance of the cross 8, 108 in the bass frequencies.
  • a dynamic stiffness k2 resilient sole 22, 122 given, to lower the cutoff frequency and thus improve the performance of the cross 8, 108 in the bass frequencies.
  • the mechanical stresses experienced by the crossbar 8, 108 become too great.
  • Increasing the dynamic stiffness k1 of the resilient support members 10, 110 lowers the insertion gain between 200Hz and 250Hz and moves the resonance frequency to higher frequencies, the resonant frequency being the frequency for which a rise in the insertion gain.
  • the invention thus makes it possible to approach the vibration attenuation performance obtained with a floating slab whose cutoff frequency is between 14 Hz and 20 Hz and whose insertion gain at -25 dB is at 63 Hz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Railway Tracks (AREA)
  • Vibration Prevention Devices (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Bridges Or Land Bridges (AREA)
  • Sliding-Contact Bearings (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)
  • Heat Treatment Of Articles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Heads (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

The sleeper (8) has a rigid concrete block (9) with a lower surface, and an upper face to receive a longitudinal rail (4), where the block has a weight ranging between 400 and 450 kilograms. A shoe (20) receives the rigid block, and is formed of a rigid shell comprising a peripheral edge (50) bordering a base of the shell. A resilient tie plate (22) is arranged between the lower surface of the block and the base of the shoe. The tie plate has a dynamic stiffness ranging from 6-8 kilo-newtons per millimeter.

Description

La présente invention concerne une traverse de chemin de fer, du type comprenant :

  • un bloc rigide présentant une face inférieure, et une face supérieure destinée à recevoir au moins un rail longitudinal,
  • un chausson destiné à recevoir le bloc rigide et formé d'une coque rigide comportant un fond et un rebord périphérique bordant ce fond,
  • une semelle résiliente disposée entre la face inférieure du bloc rigide et le fond du chausson.
The present invention relates to a railroad tie, of the type comprising:
  • a rigid block having a lower face, and an upper face intended to receive at least one longitudinal rail,
  • a liner for receiving the rigid block and formed of a rigid shell having a bottom and a peripheral rim bordering the bottom,
  • a resilient sole disposed between the underside of the rigid block and the bottom of the liner.

De telles traverses sont fréquemment utilisées pour effectuer la pose d'une voie ferrée sans ballast, par exemple dans ou sur un ouvrage tel qu'un tunnel ou un viaduc, offrant comme support aux traverses un radier ou une dalle.Such sleepers are frequently used to perform the laying of a railway without ballast, for example in or on a work such as a tunnel or viaduct, providing support for crosses a raft or slab.

EP-A-0 919 666 décrit une traverse de ce type. Le chausson rigide est encastré dans une dalle en béton, avec laquelle il forme un ensemble rigide. EP-A-0 919 666 describes a cross of this type. The rigid liner is embedded in a concrete slab, with which it forms a rigid assembly.

Chaque rail repose généralement sur un élément d'appui résilient, disposé entre chaque rail et le bloc rigide. Les éléments d'appui résilients forment ainsi un premier étage élastique. Ils peuvent être montés au moment de la pose de la voie, ou préalablement, par exemple au moment de l'assemblage de la traverse.Each rail generally rests on a resilient support member disposed between each rail and the rigid block. The resilient support elements thus form a first elastic stage. They can be mounted at the time of laying the track, or previously, for example at the time of assembly of the cross.

La semelle résiliente disposée entre le bloc et le chausson rigide forme quant à elle un deuxième étage élastique.The resilient sole disposed between the block and the rigid boot forms a second elastic floor.

Les vibrations générées par les rails au passage des trains sont essentiellement amorties au niveau des premier et deuxième étages élastiques.The vibrations generated by the rails when the trains pass are essentially damped at the level of the first and second elastic stages.

Cependant, l'atténuation des vibrations mécaniques au passage du train de ce système de voie tel qu'il est connu à ce jour, n'est pas entièrement satisfaisante. En effet, la fréquence de coupure et le gain d'insertion sont plus importants que ceux par exemple d'un système de voie sur dalles flottantes.However, the attenuation of the mechanical vibrations at the passage of the train of this track system as it is known today, is not entirely satisfactory. In fact, the cutoff frequency and the insertion gain are greater than those of, for example, a track system on floating slabs.

L'invention a pour but d'améliorer les performances d'atténuation des vibrations de la traverse précitée, notamment dans une gamme de fréquence jusqu'à 250 Hz, laquelle est considérée comme pouvant générer des nuisances dans les bâtiments environnants, tout en limitant la fatigue et les contraintes subies par le système de voie.The aim of the invention is to improve the vibration damping performance of the aforementioned crossbar, in particular in a frequency range up to 250 Hz, which is considered as being able to generate nuisances in the surrounding buildings, while limiting the fatigue and stresses to the track system.

A cet effet, l'invention a pour objet une traverse du type précité, caractérisée en ce que la semelle résiliente a une raideur dynamique k2 comprise entre 6kN/mm et 10kN/mm, de préférence entre 6kN/mm et 8kN/mm.For this purpose, the invention relates to a cross member of the aforementioned type, characterized in that the resilient sole has a dynamic stiffness k2 between 6kN / mm and 10kN / mm, preferably between 6kN / mm and 8kN / mm.

Suivant d'autres caractéristiques de l'invention:

  • la semelle résiliente comporte une face supérieure sensiblement plane et une face inférieure sensiblement plane ;
  • le bloc comprend quatre faces périphériques qui raccordent la face supérieure à la face inférieure, la traverse comprenant des segments résilients disposés entre chaque face périphérique du bloc et le rebord périphérique du chausson ;
  • les segments résilients comprennent au moins deux segments résilients longitudinaux dont la raideur dynamique est comprise entre 20kN/mm et 25kN/mm, et au moins deux segments résilients transversaux dont la raideur dynamique est comprise entre 15kN/mm et 18kN/mm ;
  • ladite traverse comprend, sur la face supérieure du bloc rigide, un élément d'appui résilient dont la raideur dynamique est comprise entre 120kN/mm et 300kN/mm, de préférence entre 200kN/mm et 300kN/mm, l'élément d'appui résilient étant prévu pour recevoir le rail en appui ;
  • la traverse comporte un unique bloc et un unique chausson;
  • le bloc a une masse comprise entre 350 kg et 450kg, de préférence entre 400kg et 450kg ;
  • la traverse comprend deux blocs, deux chaussons respectivement associés et une entretoise transversale reliant les deux blocs ; et
  • chaque bloc a une masse comprise entre 100kg et 150kg, de préférence entre 130kg et 150kg.
According to other features of the invention:
  • the resilient sole comprises a substantially flat upper face and a substantially flat bottom face;
  • the block comprises four peripheral faces which connect the upper face to the lower face, the cross member comprising resilient segments disposed between each peripheral face of the block and the peripheral rim of the liner;
  • the resilient segments comprise at least two longitudinal resilient segments whose dynamic stiffness is between 20kN / mm and 25kN / mm, and at least two transverse resilient segments whose dynamic stiffness is between 15kN / mm and 18kN / mm;
  • said crosspiece comprises, on the upper face of the rigid block, a resilient bearing element whose dynamic stiffness is between 120kN / mm and 300kN / mm, preferably between 200kN / mm and 300kN / mm, the support element resilient being provided to receive the rail in support;
  • the cross comprises a single block and a single shoe;
  • the block has a mass of between 350 kg and 450 kg, preferably between 400 kg and 450 kg;
  • the crossbar comprises two blocks, two slippers respectively associated and a transverse spacer connecting the two blocks; and
  • each block has a mass of between 100kg and 150kg, preferably between 130kg and 150kg.

L'invention a également pour objet un tronçon de voie ferrée caractérisé en ce qu'il comprend une traverse telle que décrite ci-dessus et au moins un rail en appui sur la traverse.The invention also relates to a section of railway characterized in that it comprises a cross member as described above and at least one rail resting on the cross.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple, et faite en se référant aux dessins, sur lesquels :

  • la figure 1 est une vue schématique en coupe transversale d'un tronçon de voie ferrée selon un premier mode de réalisation;
  • la figure 2 est une vue schématique plus détaillée en coupe transversale de la traverse de la figure 1;
  • la figure 3 est une vue schématique en coupe longitudinale de la traverse des figures 1 et 2;
  • la figure 4 est un schéma modélisant le tronçon de voie ferrée de la figure 1 ;
  • la figure 5 est un graphique illustrant les performances acoustiques d'une traverse selon l'invention ; et
  • la figure 6 est une vue analogue à la figure 1 d'un tronçon de voie ferrée selon un deuxième mode de réalisation.
The invention will be better understood on reading the description which follows, given by way of example, and with reference to the drawings, in which:
  • the figure 1 is a schematic cross-sectional view of a railway section according to a first embodiment;
  • the figure 2 is a more detailed schematic view in cross-section of the cross section of the figure 1 ;
  • the figure 3 is a schematic view in longitudinal section of the cross figures 1 and 2 ;
  • the figure 4 is a diagram modeling the section of railway of the figure 1 ;
  • the figure 5 is a graph illustrating the acoustic performance of a cross member according to the invention; and
  • the figure 6 is a view similar to the figure 1 of a railway section according to a second embodiment.

Un tronçon de voie ferrée 2 selon un premier mode de réalisation de l'invention est illustré de façon schématique sur la figure 1. Le tronçon 2 comprend deux rails longitudinaux 4 fixés sur une traverse 8. La traverse 8 comprend un unique bloc rigide en béton 9 et deux éléments d'appui 10 résilients disposés entre chaque rail 4 et le bloc 9.A section of track 2 according to a first embodiment of the invention is schematically illustrated on the figure 1 . The section 2 comprises two longitudinal rails 4 fixed on a cross-member 8. The cross-member 8 comprises a single rigid concrete block 9 and two resilient support elements 10 placed between each rail 4 and the block 9.

Par convention, les rails longitudinaux 4 définissent une référence de longitudinalité.By convention, the longitudinal rails 4 define a longitudinal reference.

Les éléments d'appui résilients 10 ont une forme sensiblement parallélépipédique. Dans l'exemple illustré à la figure 1, leur largeur est sensiblement égale à la largeur de la base d'un rail 4, et leur longueur est sensiblement égale à la largeur du bloc 9.The resilient support members 10 have a substantially parallelepipedal shape. In the example shown in figure 1 , their width is substantially equal to the width of the base of a rail 4, and their length is substantially equal to the width of the block 9.

Les éléments d'appui résilients 10 viennent se loger dans un évidement 12 respectif du bloc 9. Le profil de chaque évidement 12, en coupe transversale, est sensiblement rectangulaire. La largeur et la longueur de chaque évidement 12 sont, dans l'exemple illustré à la figure 1, sensiblement égales à la largeur et la longueur d'un élément d'appui résilient 10, respectivement.The resilient support elements 10 are housed in a respective recess 12 of the block 9. The profile of each recess 12, in section transverse, is substantially rectangular. The width and the length of each recess 12 are, in the example illustrated in FIG. figure 1 substantially equal to the width and length of a resilient support member 10, respectively.

Les éléments d'appui résilients 10 sont par exemple collés à la traverse 8.The resilient support elements 10 are for example glued to the cross member 8.

Chaque rail 4 est attaché au bloc 9 au moyen d'attaches de rail (non représentées) qui empêchent tout déplacement transversal du rail par rapport au bloc 9 et solidarisent le rail 4 avec le bloc 9 et avec chaque élément d'appui résilient 10.Each rail 4 is attached to the block 9 by means of rail fasteners (not shown) which prevent any transverse displacement of the rail relative to the block 9 and secure the rail 4 with the block 9 and with each resilient support element 10.

Dans tout ce qui suit, compte tenu de la gamme de fréquence considérée (inférieure ou égale à 250Hz), toute raideur dynamique est considérée comme constante et sensiblement égale à 130% de la raideur statique.In what follows, given the frequency range considered (less than or equal to 250Hz), any dynamic stiffness is considered constant and substantially equal to 130% of the static stiffness.

Les éléments d'appui résilients 10 forment un premier étage élastique 14 de raideur dynamique verticale k1 tel que modélisé sur la figure 4. En effet, chaque rail 4 est modélisé comme étant en suspension sur une première extrémité d'un ressort 16 de raideur dynamique k1. La seconde extrémité du ressort 16 est liée au bloc 9.The resilient support elements 10 form a first elastic stage 14 of vertical dynamic stiffness k1 as modeled on the figure 4 . Indeed, each rail 4 is modeled as being in suspension on a first end of a spring 16 of dynamic stiffness k1. The second end of the spring 16 is linked to the block 9.

Chaque élément d'appui résilient 10 a une raideur dynamique k1 comprise entre 120kN/mm et 300kN/mm, de préférence entre 200kN/mm et 300kN/mm. Le matériau utilisé pour chaque élément d'appui résilient 10 est par exemple du caoutchouc, du polyuréthanne ou tout autre matériau résilient.Each resilient support member 10 has a dynamic stiffness k1 of between 120kN / mm and 300kN / mm, preferably between 200kN / mm and 300kN / mm. The material used for each resilient support member 10 is, for example, rubber, polyurethane or any other resilient material.

La traverse 8 de la figure 1, illustrée de façon détaillée sur les figures 2 et 3, comprend un chausson 20 destiné à recevoir le bloc 9, une semelle résiliente 22 disposée dans un plan sensiblement horizontal entre le bloc 9 et le chausson 20, et quatre segments résilients 24, 26 disposés dans un plan sensiblement vertical entre le bloc 9 et le chausson 20.The crossing 8 of the figure 1 , illustrated in detail on the figures 2 and 3 , includes a shoe 20 for receiving the block 9, a resilient soleplate 22 disposed in a substantially horizontal plane between the block 9 and the shoe 20, and four resilient segments 24, 26 disposed in a substantially vertical plane between the block 9 and the slipper 20.

Le bloc 9 a une forme sensiblement parallélépipédique et comprend essentiellement une face supérieure 32, une face inférieure sensiblement plane 34 servant d'appui, et quatre faces périphériques 36, 38 reliant la face supérieure 32 à la face inférieure 34 par l'intermédiaire respectivement d'un arrondi 44 et d'un biseau 46. Les faces périphériques 36, 38 comprennent deux faces périphériques longitudinales 36 et deux faces périphériques transversales 38.The block 9 has a substantially parallelepipedal shape and essentially comprises an upper face 32, a lower face substantially plane 34 serving as a support, and four peripheral faces 36, 38 connecting the upper face 32 to the lower face 34 respectively via a rounded portion 44 and a bevel 46. The peripheral faces 36, 38 comprise two faces longitudinal peripherals 36 and two transverse peripheral faces 38.

Les faces périphériques 36, 38 comprennent chacune une partie inférieure sensiblement plane 36A, 38A, une partie supérieure sensiblement plane 36B, 38B, et une partie intermédiaire sensiblement plane 36C, 38C reliant chaque partie inférieure 36A, 38A à sa partie supérieure respective 36B, 38B. Les parties supérieures longitudinales 36B et les parties supérieures transversales 38B convergent mutuellement vers le haut. Les parties inférieures longitudinales 36A et les parties inférieures transversales 38A convergent mutuellement vers le bas. Les parties intermédiaires longitudinales 36C et les parties intermédiaires transversales 38C convergent mutuellement vers le bas en formant un angle par rapport au plan vertical plus important que chaque partie inférieure respective 36A, 38A.The peripheral faces 36, 38 each comprise a substantially flat lower portion 36A, 38A, a substantially flat upper portion 36B, 38B, and a substantially flat intermediate portion 36C, 38C connecting each lower portion 36A, 38A to its respective upper portion 36B, 38B . The longitudinal upper portions 36B and the upper transverse portions 38B converge mutually upwardly. The lower longitudinal portions 36A and the lower transverse portions 38A mutually converge downwardly. The longitudinal intermediate portions 36C and the transverse intermediate portions 38C mutually converge downward at an angle relative to the vertical plane greater than each respective lower portion 36A, 38A.

Le bloc 9 est choisi avec une masse particulièrement importante. En effet, sa masse est comprise entre 350kg et 450kg, de préférence entre 400kg et 450kg. L'augmentation de la masse du bloc 9 est classiquement obtenue par adjonction d'éléments métalliques dans le béton.Block 9 is chosen with a particularly large mass. Indeed, its mass is between 350kg and 450kg, preferably between 400kg and 450kg. The increase in the mass of the block 9 is conventionally obtained by adding metal elements in the concrete.

Le chausson 20 est formé d'une coque sensiblement rigide. Le chausson 20 comprend essentiellement un fond 48 et un rebord périphérique continu 50 longeant le fond 48.The liner 20 is formed of a substantially rigid shell. The liner 20 essentially comprises a bottom 48 and a continuous peripheral rim 50 along the bottom 48.

Le fond 48 présente une face supérieure 52 sensiblement plane et rectangulaire.The bottom 48 has an upper face 52 substantially flat and rectangular.

Le rebord périphérique 50 du chausson 20 comprend quatre panneaux 54, 56. Les quatre panneaux 54, 56 comprennent deux panneaux longitudinaux 54 associés respectivement aux faces longitudinales 36 du bloc 9 et deux panneaux transversaux 56 associés respectivement aux faces transversales 38. Chaque panneau 54, 56 comprend une face interne respective 62, 64. Chaque face interne 62, 64 comprend un logement 66, 68 sensiblement parallélépipédique destiné à recevoir chacun des segments résilients 24,26.The peripheral rim 50 of the liner 20 comprises four panels 54, 56. The four panels 54, 56 comprise two longitudinal panels 54 associated respectively with the longitudinal faces 36 of the block 9 and two transverse panels 56 associated respectively with the transverse faces 38. Each panel 54, 56 comprises a respective inner face 62, 64. Each inner face 62, 64 comprises a housing 66, 68 substantially parallelepipedic for receiving each of the resilient segments 24,26.

Les logements 66, 68 sont sensiblement parallèles aux parties inférieures respectives 36A, 38A des faces périphériques 36, 38 du bloc 9. Chaque logement 66, 68 présente une périphérie rectangulaire définie par un épaulement périphérique continu 66A, 68A. Chaque logement 66, 68 a également sensiblement la même hauteur et sensiblement la même longueur que la partie inférieure 36A, 38A à laquelle il est associé.The housings 66, 68 are substantially parallel to the respective lower portions 36A, 38A of the peripheral faces 36, 38 of the block 9. Each housing 66, 68 has a rectangular periphery defined by a continuous peripheral shoulder 66A, 68A. Each housing 66, 68 also has substantially the same height and substantially the same length as the lower portion 36A, 38A with which it is associated.

Chaque face interne 62, 64 comprend une partie supérieure 62A, 64A plane et dont l'inclinaison par rapport à la verticale est sensiblement égale ou supérieure à l'inclinaison des parties intermédiaires respectives 36C, 38C des faces périphériques 36, 38 du bloc 9. Les parties supérieures 62A, 64A ont sensiblement la même hauteur que les parties intermédiaires respectivement associées 36C, 38C du bloc 9.Each inner face 62, 64 comprises an upper portion 62A, 64A flat and whose inclination relative to the vertical is substantially equal to or greater than the inclination of the respective intermediate portions 36C, 38C of the peripheral faces 36, 38 of the block 9. The upper parts 62A, 64A are substantially the same height as the respectively associated intermediate parts 36C, 38C of the block 9.

Les parties supérieures 62A, 64A des faces internes 62, 64 des panneaux 54, 56 se raccordent à un bord supérieur continu 70 du rebord 50. Le bord supérieur 70 présente, dans l'exemple illustré aux figues 2 et 3, deux doigts permettant de fixer un joint d'étanchéité continu 72. Le joint 72 est par exemple en caoutchouc naturel ou synthétique. Il crée une étanchéité entre le bloc 9 et le chausson 20 sans nuire au déplacement du bloc 9 dans le chausson 20. Il est également possible de réaliser le joint d'étanchéité 72 par coulée d'un matériau tel qu'un silicone ou un polyuréthane, sous forme d'un cordon continu.The upper portions 62A, 64A of the inner faces 62, 64 of the panels 54, 56 are connected to a continuous upper edge 70 of the flange 50. The upper edge 70 has, in the example illustrated in FIGS. secure a continuous seal 72. The seal 72 is for example natural or synthetic rubber. It creates a seal between the block 9 and the shoe 20 without affecting the movement of the block 9 in the shoe 20. It is also possible to produce the seal 72 by casting a material such as a silicone or a polyurethane in the form of a continuous bead.

La rigidité du chausson 20 est renforcée par des nervures 74 aménagées en relief à l'extérieur des panneaux 54, 56, et, pour partie, sous le fond 48. Elles sont par exemple venues de matière avec le chausson 20. Ces nervures 74 peuvent présenter toute forme appropriée et toute disposition appropriée par rapport au chausson 20, de façon connue dans l'état de la technique, notamment par EP-A-0 919 666 . Elles présentent, dans l'exemple illustré aux figures 2 et 3, des encoches 76 permettant d'ancrer le chausson 20 sur une armature. Les nervures 74 sont, lors de la pose de la voie, noyées au moins partiellement dans le béton. Elles assurent ainsi la solidarisation du chausson 20 avec le béton de remplissage.The stiffness of the shoe 20 is reinforced by ribs 74 arranged in relief outside the panels 54, 56, and partly under the bottom 48. They are for example integral with the shoe 20. These ribs 74 can to present any appropriate shape and any appropriate arrangement with respect to the shoe 20, in a manner known in the state of the art, in particular by EP-A-0 919 666 . They present, in the example illustrated in figures 2 and 3 notches 76 for anchoring the boot 20 on an armature. The ribs 74 are, when laying the track, embedded at least partially in the concrete. They thus ensure the fastening of the shoe 20 with the filling concrete.

Dans l'exemple illustré aux figures 2 et 3, le chausson 20 est réalisé d'une pièce, par moulage. De façon non illustrée, le chausson 20 est réalisé par assemblage de plusieurs coques partielles comme cela est connu dans l'état de la technique (par exemple EP-A-0 919 666 ). Dans le cas d'une traverse 8 monobloc selon le premier mode de réalisation de l'invention, il peut par exemple s'agir de deux demi-coques d'extrémité et d'une coque centrale reliant les deux demi-coques d'extrémité.In the example shown in figures 2 and 3 , the shoe 20 is made in one piece, by molding. In a manner not illustrated, the liner 20 is made by assembling several partial shells as is known in the state of the art (for example EP-A-0 919 666 ). In the case of a monobloc cross member 8 according to the first embodiment of the invention, it may for example be two end half-shells and a central shell connecting the two end half-shells .

Le chausson 20 est par exemple réalisé en matière thermoplastique moulée ou en béton de résine.The shoe 20 is for example made of molded thermoplastic material or resin concrete.

La semelle résiliente 22 a une forme sensiblement parallélépipédique et des faces supérieure et inférieure sensiblement planes pour minimiser les contraintes mécaniques subies par la semelle résiliente 22 et éviter les problèmes de fatigue. Sa longueur et sa largeur sont sensiblement égales respectivement à la longueur et à la largeur de la face inférieure 34 du bloc 9.The resilient soleplate 22 has a substantially parallelepiped shape and substantially planar upper and lower faces to minimize the mechanical stresses experienced by the resilient sole 22 and avoid fatigue problems. Its length and its width are substantially equal to the length and the width of the lower face 34 of the block 9, respectively.

Son épaisseur est comprise entre 10mm et 20mm, de préférence entre 16mm et 20mm. La semelle résiliente 22 reste ainsi dans un domaine élastique ; ce qui correspond sensiblement à un taux de déformation maximum inférieur ou égal à 40%. Le taux de déformation est le taux de variation de l'épaisseur de la semelle résiliente 22 entre un état libre et un état sous charge.Its thickness is between 10mm and 20mm, preferably between 16mm and 20mm. The resilient sole 22 thus remains in an elastic domain; which corresponds substantially to a maximum deformation rate of less than or equal to 40%. The rate of deformation is the rate of variation of the thickness of the resilient sole 22 between a free state and a state under load.

La semelle résiliente 22 forme un deuxième étage élastique 78 de raideur dynamique verticale k2 tel que modélisé sur la figure 4. En effet, le bloc rigide 9 est modélisé comme étant en suspension sur les premières extrémités de deux ressorts 80 de raideur dynamique k2. Les secondes extrémités des ressorts 80 sont liées au chausson 20.The resilient soleplate 22 forms a second elastic stage 78 of vertical dynamic stiffness k2 as modeled on the figure 4 . Indeed, the rigid block 9 is modeled as being in suspension on the first ends of two springs 80 of dynamic stiffness k2. The second ends of the springs 80 are connected to the boot 20.

La semelle résiliente 22 selon l'invention a une raideur dynamique k2 inférieure à la raideur dynamique des dispositifs classiquement utilisés. En effet, la raideur dynamique k2 est comprise entre 6kN/mm et 10kN/mm, de préférence entre 6kN/mm et 8kN/mm.The resilient soleplate 22 according to the invention has a dynamic stiffness k2 less than the dynamic stiffness of the devices conventionally used. Indeed, the dynamic stiffness k2 is between 6kN / mm and 10kN / mm, preferably between 6kN / mm and 8kN / mm.

La semelle résiliente 22 est par exemple réalisée en un matériau élastomère cellulaire.The resilient soleplate 22 is for example made of a cellular elastomeric material.

Dans un mode de réalisation préféré, la semelle résiliente 22 a une raideur dynamique verticale k2 sensiblement uniforme sur l'ensemble de sa surface.In a preferred embodiment, the resilient soleplate 22 has a vertical dynamic stiffness k2 substantially uniform over its entire surface.

Dans un autre mode de réalisation, la semelle résiliente 22 a, dans une zone centrale du bloc 9, une raideur dynamique verticale k3 inférieure ou égale à k2. La zone centrale comprend le milieu du bloc 9 et s'étend transversalement du milieu du bloc 9 vers les extrémités sur sensiblement la moitié de la surface du bloc 9. En effet, cette zone centrale étant moins sollicitée, il est possible d'y utiliser un matériau plus élastique et donc moins onéreux.In another embodiment, the resilient soleplate 22 has, in a central zone of the block 9, a vertical dynamic stiffness k3 less than or equal to k2. The central zone comprises the middle of the block 9 and extends transversely from the middle of the block 9 towards the ends on substantially half of the surface of the block 9. Indeed, this central area being less stressed, it is possible to use it a more elastic material and therefore less expensive.

La semelle résiliente 22 peut reposer librement sur le fond 48 du chausson 20. Elle peut ainsi être facilement retirée du chausson 20.The resilient soleplate 22 can rest freely on the bottom 48 of the liner 20. It can thus easily be removed from the liner 20.

De manière avantageuse, la traverse 8 comprend également une cale d'épaisseur 82 sensiblement incompressible, comme illustré sur les figures 2 et 3.Advantageously, the crosspiece 8 also comprises a shim 82 of substantially incompressible thickness, as illustrated in FIGS. figures 2 and 3 .

La cale d'épaisseur 82 a une forme sensiblement parallélépipédique. Sa longueur et sa largeur sont sensiblement égales à la longueur et à la largeur de la face supérieure 52 du fond 48 du chausson 20. Son épaisseur est inférieure ou égale à 10mm, de préférence comprise entre 2mm et 4mm.The shim 82 has a substantially parallelepiped shape. Its length and width are substantially equal to the length and width of the upper face 52 of the bottom 48 of the liner 20. Its thickness is less than or equal to 10 mm, preferably between 2 mm and 4 mm.

La cale d'épaisseur 82 repose librement sur le fond 48 du chausson 20. Ainsi, elle peut être retirée facilement du chausson 20, ou être ajoutée au chausson 20, pour ajuster le nivellement de la voie.The shim 82 rests freely on the bottom 48 of the liner 20. Thus, it can be easily removed from the shoe 20, or be added to the shoe 20, to adjust the leveling of the track.

De manière avantageuse, la semelle résiliente 22 repose librement sur la cale d'épaisseur 82.Advantageously, the resilient soleplate 22 rests freely on the shim 82.

La surface de la cale d'épaisseur 82 a une rugosité suffisamment importante pour éviter le glissement de la semelle résiliente 22 dans le chausson 20. La rugosité est par exemple obtenue au moyen de stries, de pointes de diamant ou de picots.The surface of the shim 82 has a sufficiently high roughness to prevent the sliding of the resilient sole 22 in the slipper 20. The roughness is for example obtained by means of streaks, diamond tips or spikes.

Chaque segment résilient 24, 26 présente une face externe 24A, 26A, un face interne 24B, 26B et quatre faces périphériques.Each resilient segment 24, 26 has an outer face 24A, 26A, an inner face 24B, 26B and four peripheral faces.

Les faces externes 24A, 26A et internes 24B, 26B ont sensiblement les même dimensions et ont un contour sensiblement rectangulaire.The outer faces 24A, 26A and inner 24B, 26B have substantially the same dimensions and have a substantially rectangular contour.

Les faces externes 24A, 26A et internes 24B, 26B ont une longueur et une largeur sensiblement égales respectivement à la longueur et à la largeur des logements respectifs 66, 68 du rebord périphérique 50 du chausson 20.The external faces 24A, 26A and internal 24B, 26B have a length and a width substantially equal to the length and width respectively of the respective housings 66, 68 of the peripheral rim 50 of the liner 20.

Les segments résilients 24, 26 sont disposés dans les logements respectifs 66, 68. Ils sont par exemple maintenus grâce aux frottements entre les faces périphériques des segments résilients 24, 26 et l'épaulement périphérique 66A, 68A de chaque logement 66, 68. Les segments résilients 24, 26 peuvent ainsi être retirés facilement.The resilient segments 24, 26 are arranged in the respective housings 66, 68. They are for example maintained thanks to the friction between the peripheral faces of the resilient segments 24, 26 and the peripheral shoulder 66A, 68A of each housing 66, 68. Resilient segments 24, 26 can thus be easily removed.

La retenue de chaque segment résilient 24, 26 peut également être assurée par encliquetage mutuel. Par exemple, les logements 66, 68 comprennent des rainures et les segments résilients 24, 26 comprennent des cannelures complémentaires.The retention of each resilient segment 24, 26 can also be provided by mutual snapping. For example, the housings 66, 68 comprise grooves and the resilient segments 24, 26 comprise complementary grooves.

Les segments résilients 24, 26 ont une épaisseur supérieure à la profondeur des logements 66, 68 de façon à faire saillie par rapport aux épaulements 66A, 68A.The resilient segments 24, 26 have a thickness greater than the depth of the recesses 66, 68 so as to protrude from the shoulders 66A, 68A.

Les faces internes 24B, 26B sont en simple appui contre les parties inférieures respectives 36A, 38A des faces périphériques 36, 38 du bloc rigide 9.The internal faces 24B, 26B are in simple support against the respective lower portions 36A, 38A of the peripheral faces 36, 38 of the rigid block 9.

Comme illustré aux figures 2 et 3, les faces internes 24B, 26B sont munies de rainures augmentant leur élasticité.As illustrated in figures 2 and 3 , the inner faces 24B, 26B are provided with grooves increasing their elasticity.

Les segments résilients 24, 26 ont une raideur dynamique comprise entre 12kN/mm et 25kN/mm. Ils sont par exemple réalisés en caoutchouc, polyuréthanne ou tout autre matériau résilient.The resilient segments 24, 26 have a dynamic stiffness of between 12kN / mm and 25kN / mm. They are for example made of rubber, polyurethane or any other resilient material.

Les segments longitudinaux 24 correspondant aux faces périphériques longitudinales 36 sont soumis à des efforts plus importants que les segments transversaux 26 correspondant aux faces périphériques transversales 38. Aussi, les segments longitudinaux 24 peuvent être avantageusement choisis avec une raideur dynamique supérieure à celle des segments transversaux 26. Ainsi, les segments longitudinaux 24 ont par exemple une raideur dynamique comprise entre 20kN/mm et 25kN/mm, tandis que les segments transversaux 26 ont une raideur dynamique comprise entre 15kN/mm et 18kN/mm.The longitudinal segments 24 corresponding to the longitudinal peripheral faces 36 are subjected to greater forces than the transverse segments 26 corresponding to the transverse peripheral faces 38. Also, the longitudinal segments 24 may advantageously be chosen with a dynamic stiffness greater than that of the transverse segments 26 Thus, the longitudinal segments 24 have for example a dynamic stiffness of between 20kN / mm and 25kN / mm, while the transverse segments 26 have a dynamic stiffness of between 15kN / mm and 18kN / mm.

En conditions normales de fonctionnement, les segments résilients 24, 26 maintiennent le bloc 9 à distance des faces internes 62, 64 du chausson 20.Under normal operating conditions, the resilient segments 24, 26 hold the block 9 at a distance from the internal faces 62, 64 of the liner 20.

Les segments résilients 24, 26 permettent ainsi un amortissement horizontal du bloc 9. Cet amortissement horizontal est découplé de l'amortissement vertical obtenu grâce aux éléments d'appui résilients 10 et à la semelle résiliente 22.The resilient segments 24, 26 thus allow a horizontal damping of the block 9. This horizontal damping is decoupled from the vertical damping obtained thanks to the resilient support elements 10 and to the resilient soleplate 22.

On notera que le nombre de segments résilients n'est pas limitatif. La traverse 8 peut par exemple comprendre, de chaque côté du bloc 8, deux segments transversaux 34 l'un à côté de l'autre.It will be noted that the number of resilient segments is not limiting. The cross member 8 may for example comprise, on each side of the block 8, two transverse segments 34 one next to the other.

La figure 5 illustre les performances acoustiques d'une traverse selon l'invention et d'une traverse connue. La figure 5 représente un gain d'insertion en fonction de la fréquence. Le gain d'insertion est ici le rapport exprimé en dB entre la valeur d'une grandeur métrique (vitesse, accélération, force, etc.) obtenue avec l'introduction d'une semelle résiliente et celle obtenue sans celle-ci (voir NF ISO 14837-1:2005). Dans l'exemple considéré, il s'agit de la force exercée sur le chausson 20. Une réduction de valeur de la grandeur métrique sera exprimée par un signe négatif du gain d'insertion.The figure 5 illustrates the acoustic performance of a cross member according to the invention and a known cross. The figure 5 represents an insertion gain as a function of frequency. The insertion gain is here the ratio expressed in dB between the value of a metric quantity (speed, acceleration, force, etc.) obtained with the introduction of a resilient sole and that obtained without it (see NF ISO 14837-1: 2005). In the example considered, it is the force exerted on the shoe 20. A reduction in value of the metric quantity will be expressed by a negative sign of the insertion gain.

De plus, la fréquence de coupure est la fréquence à partir de laquelle on observe globalement une décroissance du gain d'insertion.In addition, the cutoff frequency is the frequency from which a decrease in the insertion gain is generally observed.

k1 dyn est la raideur dynamique des éléments d'appui résilients 10, k2dyn est la raideur dynamique de la semelle résiliente 22, M est la masse du bloc 9.k1 dyn is the dynamic stiffness of the resilient support elements 10, k2dyn is the dynamic stiffness of the resilient soleplate 22, M is the mass of the block 9.

La courbe illustrant le gain d'insertion en fonction de la fréquence pour k2dyn = 21.3MN/m, M = 200 kg, k1dyn = 150 MN/m constitue une courbe de référence S1 illustrant la performance du dispositif connu. Une seconde courbe--illustre- les- performances d'une traverse selon l'invention dont k2dyn = 8MN/m, M = 400 kg et k1dyn = 270 MN/m.The curve illustrating the insertion gain as a function of the frequency for k2dyn = 21.3 MN / m, M = 200 kg, k1dyn = 150 MN / m constitutes a reference curve S1 illustrating the performance of the known device. A second curve - illustrates the performance of a cross member according to the invention of which k2dyn = 8MN / m, M = 400 kg and k1dyn = 270 MN / m.

Entre 0 et 10 Hz, les performances d'atténuation des vibrations sont sensiblement les mêmes. Entre 10 et 25 Hz, le gain d'insertion est supérieur de quelques dB par rapport à la courbe S1. Entre 25 Hz et 250 Hz, le gain d'insertion est inférieur de plusieurs dB par rapport à la courbe S1.Between 0 and 10 Hz, the vibration attenuation performance is substantially the same. Between 10 and 25 Hz, the insertion gain is a few dB higher than the S1 curve. Between 25 Hz and 250 Hz, the insertion gain is several dB lower than the S1 curve.

De plus, la fréquence de coupure est inférieure par rapport à la courbe S1 (20Hz au lieu de 32Hz).In addition, the cutoff frequency is lower compared to the S1 curve (20Hz instead of 32Hz).

Ainsi, entre 25 Hz et 250 Hz, les performances d'une traverse selon l'invention sont sensiblement meilleures.Thus, between 25 Hz and 250 Hz, the performance of a cross member according to the invention is substantially better.

Dans un deuxième mode de réalisation illustré à la figure 6, la traverse 108 comprend deux blocs rigides 109 reliés par une entretoise 184. Dans la mesure où la traverse bibloc 108 présente de grandes similitudes avec la traverse monobloc 8, on retrouve, à la figure 6, les mêmes références qu'aux figures 1 à 4, toutefois incrémentées de 100.In a second embodiment illustrated in figure 6 , the cross member 108 comprises two rigid blocks 109 connected by a spacer 184. Insofar as the biblock cross member 108 has great similarities with the one-piece cross member 8, there is, at the figure 6 , the same references as Figures 1 to 4 , however incremented by 100.

La longueur des chaussons 120 est adaptée pour recevoir les blocs 109. Il en est de même pour les segments transversaux 126 et les semelles résilientes 122. Les figures 2 et 3, qui illustrent une traverse monobloc 8, sont également une parfaite illustration d'une traverse 108.The length of the slippers 120 is adapted to receive the blocks 109. It is the same for the transverse segments 126 and the resilient soles 122. The figures 2 and 3 , which illustrate a monobloc cross member 8, are also a perfect illustration of a cross member 108.

La principale différence entre la traverse monobloc 8 et la traverse bibloc 108 réside dans la présence d'une entretoise 184 pénétrant les deux blocs 109.The main difference between the one-piece cross member 8 and the cross-piece 108 is the presence of a spacer 184 penetrating the two blocks 109.

La diminution de la raideur dynamique K2 des semelles résilientes 122 et/ou l'augmentation de la masse des blocs 109 génèrent un moment de flexion longitudinal important.The decrease in the dynamic stiffness K2 of the resilient soles 122 and / or the increase in the mass of the blocks 109 generate a significant longitudinal flexion moment.

Aussi, l'entretoise 184 a une forme adaptée pour obtenir une forte inertie. Il s'agit par exemple d'une forme en équerre ou en cylindre. L'entretoise 184 a par exemple également une section comprise entre 800mm2 et 1500mm2 et une épaisseur comprise entre 6mm et 10mm. Elle est par exemple réalisée en acier suivant la norme EN 13230-3.Also, the spacer 184 has a shape adapted to obtain a high inertia. This is for example a shape square or cylinder. The spacer 184 has for example also a section between 800mm2 and 1500mm2 and a thickness of between 6mm and 10mm. It is for example made of steel according to EN 13230-3.

Chaque bloc 109 a une masse comprise entre 100kg et 150 kg, de préférence entre 130 kg et 150 kg.Each block 109 has a mass of between 100 kg and 150 kg, preferably between 130 kg and 150 kg.

On notera que la traverse monobloc 8 supporte particulièrement facilement les contraintes mécaniques supplémentaires résultant de l'invention.It will be noted that the monobloc cross member 8 particularly easily supports the additional mechanical stresses resulting from the invention.

On comprendra qu'avec une traverse selon l'invention, la diminution de la raideur dynamique k2 de la semelle résiliente 22, 122 permet d'obtenir de meilleures performances d'atténuation des vibrations, notamment en abaissant la fréquence de coupure et en abaissant le gain d'insertion entre 25Hz et 250HZ.It will be understood that with a cross member according to the invention, the reduction of the dynamic stiffness k2 of the resilient soleplate 22, 122 makes it possible to obtain better performances of attenuation of the vibrations, in particular by lowering the cutoff frequency and lowering the insertion gain between 25Hz and 250HZ.

L'augmentation de la masse du bloc 9, 109 permet également, pour une raideur dynamique k2 de semelle résiliente 22, 122 donnée, d'abaisser la fréquence de coupure et donc d'améliorer les performances de la traverse 8, 108 dans les basses fréquences. Cependant, au dessus d'une certaine masse, les contraintes mécaniques subies par la traverse 8, 108 deviennent trop importantes.The increase in the mass of the block 9, 109 also makes it possible, for a dynamic stiffness k2 resilient sole 22, 122 given, to lower the cutoff frequency and thus improve the performance of the cross 8, 108 in the bass frequencies. However, above a certain mass, the mechanical stresses experienced by the crossbar 8, 108 become too great.

L'augmentation de la raideur dynamique k1 des éléments d'appui résilients 10, 110 abaisse le gain d'insertion entre 200Hz et 250Hz et déplace la fréquence de résonance vers des fréquences plus élevées , la fréquence de résonance étant la fréquence pour laquelle on observe une remonté du gain d'insertion.Increasing the dynamic stiffness k1 of the resilient support members 10, 110 lowers the insertion gain between 200Hz and 250Hz and moves the resonance frequency to higher frequencies, the resonant frequency being the frequency for which a rise in the insertion gain.

L'invention permet donc de se rapprocher des performances d'atténuation vibratoires obtenues avec une dalle flottante dont la fréquence de coupure se situe entre 14Hz et 20Hz et dont le gain d'insertion à -25dB se situe à 63Hz.The invention thus makes it possible to approach the vibration attenuation performance obtained with a floating slab whose cutoff frequency is between 14 Hz and 20 Hz and whose insertion gain at -25 dB is at 63 Hz.

Claims (10)

  1. Railway sleeper (8; 108) of the type comprising:
    - a rigid block (9; 109) having a lower face (34) and an upper face (32) designed to receive at least one longitudinal rail (4; 104);
    - a shoe (20; 120) designed to receive the rigid block (9; 109) and formed of a rigid shell comprising a base (48; 148) and a peripheral edge (50; 150) bordering this base (48; 148);
    - a resilient plate (22; 122) arranged between the lower face (34) of the rigid block (9; 109) and the base (48; 148) of the shoe (20; 120);
    characterised in that the resilient plate (22; 122) has a dynamic stiffness k2 of between 6kN/mm and 10kN/mm, preferably between 6kN/mm and 8kN/mm.
  2. Sleeper (8; 108) according to claim 1, characterised in that the resilient plate (22; 122) comprises a substantially flat upper face and a substantially flat lower face.
  3. Sleeper (8; 108) according to claim 1 or 2, characterised in that the block (9; 109) comprises four peripheral faces (36, 38) which connect the upper face (32) to the lower face (34), the sleeper (8; 108) comprising resilient segments (24, 26; 124, 126) arranged between each peripheral face (36, 38) of the block (9; 109) and the peripheral edge (50; 150) of the shoe (20; 120).
  4. Sleeper (8; 108) according to claim 3, characterised in that the resilient segments (24, 26; 124, 126) comprise at least two longitudinal resilient segments (24; 124) whose dynamic stiffness is between 20kN/mm and 25kN/mm, and at least two transverse resilient segments (26; 126) whose dynamic stiffness is between 15kN/mm and 18kN/mm.
  5. Sleeper (8; 108) according to any of the preceding claims, characterised in that it comprises, on the upper face (32) of the rigid block (9; 109), a resilient supporting element (10; 110) whose dynamic stiffness is between 120kN/mm and 300kN/mm, preferably between 200kN/mm and 300kN/mm, the resilient supporting element (10; 110) being designed to receive and support the rail (4; 104).
  6. Sleeper (8) according to any of the preceding claims, characterised in that the sleeper (8) comprises a single block (9) and a single shoe (20).
  7. Sleeper (8) according to claim 6, characterised in that the block (9) has a mass of between 350kg and 450kg, preferably between 400kg and 450kg.
  8. Sleeper (108) according to any of claims 1 to 5, characterised in that the sleeper (108) comprises two blocks (109), two shoes (120) linked together and a transverse spacer (184) connecting the two blocks (109).
  9. Sleeper (108) according to claim 8, characterised in that each block (109) has a mass of between 100kg and 150kg, preferably between 130kg and 150kg.
  10. Section of railway (2; 102), characterised in that it comprises one sleeper (8; 108) according to any of the preceding claims and at least one rail (4; 104) supported by the sleeper (8; 108).
EP07291077A 2006-09-22 2007-09-07 Railway sleeper Active EP1905896B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07291077T PL1905896T3 (en) 2006-09-22 2007-09-07 Railway sleeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0608356A FR2906269B1 (en) 2006-09-22 2006-09-22 RAILWAY TRAVERSE

Publications (2)

Publication Number Publication Date
EP1905896A1 EP1905896A1 (en) 2008-04-02
EP1905896B1 true EP1905896B1 (en) 2010-04-14

Family

ID=37969667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07291077A Active EP1905896B1 (en) 2006-09-22 2007-09-07 Railway sleeper

Country Status (18)

Country Link
US (1) US20080083835A1 (en)
EP (1) EP1905896B1 (en)
JP (1) JP2008101456A (en)
KR (1) KR20080027450A (en)
CN (1) CN101165272A (en)
AT (1) ATE464431T1 (en)
AU (1) AU2007216806B2 (en)
BR (1) BRPI0702998B1 (en)
CA (1) CA2598637C (en)
DE (1) DE602007005892D1 (en)
ES (1) ES2341300T3 (en)
FR (1) FR2906269B1 (en)
MX (1) MX2007009521A (en)
NZ (1) NZ561705A (en)
PL (1) PL1905896T3 (en)
RU (1) RU2487207C2 (en)
SG (1) SG141363A1 (en)
TW (1) TWI427208B (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100284A2 (en) * 2002-05-21 2003-12-04 Bell Helicopter Textron Inc. Variable stiffness support
AT506529B1 (en) * 2008-03-06 2010-05-15 Getzner Werkstoffe Holding Gmbh THRESHOLD SOLE
DE102009000316A1 (en) 2009-01-20 2010-07-22 Semperit Ag Holding Threshold shoe for sleepers
DE102009019683B4 (en) 2009-04-30 2013-05-16 Ulf Pahnke Dynamically optimized ballast track with prestressed concrete sleepers
DK2545219T3 (en) * 2010-03-12 2015-01-26 Rst Rail Systems And Technologies Gmbh Concrete element with a plastic plate on the underside
US9346237B2 (en) 2010-10-27 2016-05-24 Richard W. Roberts Recyclable plastic structural articles and method of manufacture
US20130115399A1 (en) 2010-10-27 2013-05-09 Richard W. Roberts In-situ foam core articles
US8342420B2 (en) 2010-10-27 2013-01-01 Roberts Jr Richard W Recyclable plastic structural articles and method of manufacture
US8752773B2 (en) 2011-07-28 2014-06-17 Voestalpine Nortrak Inc. Grade crossing interface pad
US9272484B2 (en) 2012-01-25 2016-03-01 Richard W. Roberts, JR. Structural plastic articles, method of use, and methods of manufacture
US9073462B2 (en) 2012-03-28 2015-07-07 Richard W. Roberts In-situ foam core vehicle seating system and method of manufacture
US8840819B2 (en) 2012-03-28 2014-09-23 Richard W. Roberts, JR. In-situ foam core structural energy management system and method of manufacture
US9102086B2 (en) 2012-03-28 2015-08-11 Richard W. Roberts In-situ foam core structural articles and methods of manufacture of profiles
US10207606B2 (en) 2012-03-28 2019-02-19 Richard W. Roberts Recyclable plastic structural articles and method of manufacture
US8708177B2 (en) 2012-03-29 2014-04-29 Richard W. Roberts In-situ foam core dielectrically-resistant systems and method of manufacture
RU2521913C2 (en) * 2012-04-26 2014-07-10 Общество с ограниченной ответственностью "МЕТРО-СТИЛЬ 2000" Rail track superstructure
US10328662B2 (en) 2012-11-01 2019-06-25 Richard W. Roberts In-situ foam core stress mitigation component and method of manufacture
JP6097554B2 (en) * 2012-12-25 2017-03-15 積水化学工業株式会社 Pillow
EP2778284A1 (en) * 2013-03-11 2014-09-17 Sonneville AG Sleeper block unit for railway rail systems
CN103147369A (en) * 2013-03-29 2013-06-12 无锡恒畅铁路轨枕有限公司 Elastic concrete sleeper
CN103194939A (en) * 2013-03-29 2013-07-10 无锡恒畅铁路轨枕有限公司 Concrete sleeper
CN103194938A (en) * 2013-03-29 2013-07-10 无锡恒畅铁路轨枕有限公司 Concrete sleeper
US9271610B2 (en) 2013-04-12 2016-03-01 Richard W. Roberts, JR. Bathtub/shower tray support
US20150204023A1 (en) 2014-01-21 2015-07-23 Voestalpine Nortrak Inc. Grade crossing interface pad
DE102014116905A1 (en) * 2014-11-19 2016-05-19 Getzner Werkstoffe Holding Gmbh sleeper pad
FR3048983A1 (en) 2016-03-18 2017-09-22 Alstom Transp Tech IMPROVED HULL TRAVERSE SYSTEM AND RAILWAY TRUNK INTEGRATING SUCH A SYSTEM
US10352000B2 (en) 2016-04-28 2019-07-16 Construction Polymers Technologies, Inc. Band for railway track block and boot combination
CN106320101B (en) * 2016-08-23 2018-05-18 毛建红 A kind of precast concrete rail pedestal and preparation method thereof
FR3067369B1 (en) * 2017-06-07 2019-08-09 Sateba Systeme Vagneux IMPROVED RIGID HULL TRAVERSE FOR RAILWAY
CN107700282B (en) * 2017-09-01 2023-07-07 中国铁建重工集团股份有限公司 Switch spacer
AT520697B1 (en) * 2017-11-21 2022-06-15 Getzner Werkstoffe Holding Gmbh soft
CN108277700A (en) * 2018-03-10 2018-07-13 青岛安平轨道工程技术咨询有限公司 A kind of compound ballastless track system of rail traffic Superimposed
CN109235151A (en) * 2018-09-13 2019-01-18 中铁二院工程集团有限责任公司 Elastic long sleeper buried-type ballastless track structure on a kind of Railway Steel Truss Girder Bridges
RU206763U1 (en) * 2021-02-19 2021-09-28 Дмитрий Витальевич Гвидонский Reinforced concrete half sleepers cover for subway
AT525019B1 (en) * 2021-04-28 2023-08-15 Johannes Stephanides Dipl Ing rail sleeper
CN117090082A (en) * 2023-08-30 2023-11-21 北京市市政工程设计研究总院有限公司 Vibration reduction track assembly, vibration reduction track structure and construction and maintenance methods thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2204198A5 (en) * 1972-10-24 1974-05-17 Bernard Raoul
US4356968A (en) * 1980-10-10 1982-11-02 Stedef S.A. Railroad tie cover
US4489884A (en) * 1980-10-10 1984-12-25 Stedef S.A. Railroad tie cover
US4609144A (en) * 1984-04-27 1986-09-02 Stedef S.A. Railroad tie cover
AT405197B (en) * 1990-01-30 1999-06-25 Porr Allg Bauges Track and track substructure for rail-bound vehicles
BE1005352A6 (en) * 1991-09-16 1993-07-06 Gen Railways Activities Device support for rail road tracks.
BE1009494A6 (en) * 1995-07-26 1997-04-01 Goossens Armand Device support for rail road tracks.
FR2741090B1 (en) * 1995-11-09 1998-01-30 Allevard Sa BALLAST-FREE RAILWAY CROSSING SLIPPERS
BR9611195A (en) * 1995-10-20 1999-04-06 Butzbacher Weichenbau Gmbh Superstructure construction
FR2740788B1 (en) * 1995-11-07 1998-01-23 Vagneux Traverses Beton RAILWAY CROSSING AND COMPONENTS OF SUCH A CROSSING
US6283383B1 (en) * 1997-09-26 2001-09-04 Phoenix Aktiengesellschaft Rail system
FR2771760B1 (en) * 1997-12-01 2000-02-18 Vagneux Traverses Beton RAILWAY CROSSING CARRYING SLIPPERS, AND SLIPPERS FOR SUCH CROSSINGS
BE1014318A6 (en) * 2001-07-26 2003-08-05 Vanhonacker Patrick SUPPORT DEVICE FOR RAIL RAIL ballasted.
US7152807B2 (en) * 2004-08-24 2006-12-26 Nevins James H Pre-fastened rail pad assembly and method
US7278588B2 (en) * 2004-11-08 2007-10-09 Northwest Rubber Extruders, Inc. Elastomeric railway tie pad

Also Published As

Publication number Publication date
AU2007216806B2 (en) 2013-09-26
TWI427208B (en) 2014-02-21
PL1905896T3 (en) 2010-09-30
BRPI0702998A (en) 2008-05-13
US20080083835A1 (en) 2008-04-10
FR2906269B1 (en) 2008-12-19
RU2007135045A (en) 2009-03-27
ATE464431T1 (en) 2010-04-15
NZ561705A (en) 2009-04-30
JP2008101456A (en) 2008-05-01
DE602007005892D1 (en) 2010-05-27
RU2487207C2 (en) 2013-07-10
TW200829752A (en) 2008-07-16
BRPI0702998B1 (en) 2019-05-21
KR20080027450A (en) 2008-03-27
CN101165272A (en) 2008-04-23
SG141363A1 (en) 2008-04-28
FR2906269A1 (en) 2008-03-28
MX2007009521A (en) 2009-02-04
BRPI0702998A8 (en) 2016-08-16
ES2341300T3 (en) 2010-06-17
CA2598637A1 (en) 2008-03-22
CA2598637C (en) 2015-04-21
EP1905896A1 (en) 2008-04-02
AU2007216806A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP1905896B1 (en) Railway sleeper
EP3221515B1 (en) Sleeper arrangement in a ballast bed comprising an elasto-plastic intermediate layer
EP0698148B1 (en) Device for supporting and securing a railway track rail
FR2938273A1 (en) FIXED TRACK SUPERSTRUCTURE WITHOUT BALLAST AND CONSTRUCTION METHOD
FR2771760A1 (en) RAILWAY CROSSING CARRYING SLIPPERS, AND SLIPPERS FOR SUCH CROSSINGS
EP1251204B1 (en) Vibration insulating system for railway tracks
BE1017257A5 (en) SEAT WITH REDUCED VIBRATION LEVEL FOR RAILWAY.
EP0533645B1 (en) Supporting device for railway rails
BE1009494A6 (en) Device support for rail road tracks.
EP1279770A2 (en) Railway support system for rails
BE1015814A5 (en) Track railway system installation and traverse to such a system.
FR3025813A1 (en) RAILWAY RAIL SUPPORT SADDLE
FR3002555A1 (en) Support device for supporting rail of railway track relative to ground during movement of train on rail, has screws for adjusting upper plate relative to lower base, so as to adapt height of support of rail
EP0229409A1 (en) Method and device for resiliently fastening railway rails
EP0465390B1 (en) Railway track
BE903871A (en) Antivibration rail track system - has continuous elastic rail support with head and core inserted in grooves in concrete
EP1118711B1 (en) Supporting device for a rail of railway track
FR2982622A1 (en) Concrete slab for supporting two rail lines of tracks used for tram, has bands made of elastomeric material and detachably fixed in rabbets bordering reglet such that bands seal set of ruts defined by reglet on sides of rails
FR2872829A1 (en) Embedded track installing method, involves placing and holding base profile sections with respect to rails, between consecutive sleepers, and embedding two lateral sections between upper zones of hoods, edges of sections and cores of rails
EP1180174B1 (en) Elastomer tie pad for the support of a railway rail on a sleeper
FR2458627A1 (en) Railway sleeper noise attenuating pad - has outer edges of hard rubber, fits between rail and sleeper
FR2816967A1 (en) Rail track comprises concrete support and pair of grooved rail lines each of which is inserted in longitudinal cut in support and embedded in fixing resin
EP0242241B1 (en) Elastic ring having non-linear characteristics for movable guard barriers
FR3067046A1 (en) RAIL DISMOUNTABLE AND INTERCHANGEABLE AGAINST RAINFALL SOUND NUISANCES.
WO2013088073A1 (en) Crosspiece sole plate and crosspiece having such a sole plate secured thereto

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080515

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007005892

Country of ref document: DE

Date of ref document: 20100527

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2341300

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100414

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100414

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100816

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

26N No opposition filed

Effective date: 20110117

BERE Be: lapsed

Owner name: ALSTOM TRANSPORT SA

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100715

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101015

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100414

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007005892

Country of ref document: DE

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Free format text: FORMER OWNER: ALSTOM TRANSPORT S.A., LEVALLOIS-PERRET, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20151119 AND 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007005892

Country of ref document: DE

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FR

Free format text: FORMER OWNER: ALSTOM TRANSPORT TECHNOLOGIES, LEVALLOIS-PERRET, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200903

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210922

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210830

Year of fee payment: 15

Ref country code: DE

Payment date: 20210920

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007005892

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 18