EP1899608B1 - Pompe a vide a tiroirs rotatifs - Google Patents

Pompe a vide a tiroirs rotatifs Download PDF

Info

Publication number
EP1899608B1
EP1899608B1 EP06763998A EP06763998A EP1899608B1 EP 1899608 B1 EP1899608 B1 EP 1899608B1 EP 06763998 A EP06763998 A EP 06763998A EP 06763998 A EP06763998 A EP 06763998A EP 1899608 B1 EP1899608 B1 EP 1899608B1
Authority
EP
European Patent Office
Prior art keywords
oil
channel
chamber
vacuum pump
discharge channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06763998A
Other languages
German (de)
English (en)
Other versions
EP1899608A1 (fr
Inventor
Eric Figoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36942562&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1899608(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP1899608A1 publication Critical patent/EP1899608A1/fr
Application granted granted Critical
Publication of EP1899608B1 publication Critical patent/EP1899608B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/02Liquid sealing for high-vacuum pumps or for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring

Definitions

  • the invention relates to a vacuum rotary vane pump according to the preamble of claim 1.
  • a vacuum rotary vane pump is known from the US-A-3,053,439 ,
  • Vacuum rotary vane pumps have a pump chamber arranged in a housing. Within the housing, a rotor is arranged eccentrically. Two or more sliders are usually connected to the rotor in slide slots. As a result of the centrifugal force, the slides are pressed against an inner wall of the pump chamber during a rotation of the rotor. To generate a vacuum, a suction opening of the vacuum rotary vane pump is connected to the space to be vacuumed. Due to the eccentricity of the rotor and the changing size of the chambers formed between the sliders, the medium is conveyed through an ejection channel.
  • the discharge channel usually extends from the pumping chamber into an oil chamber.
  • the object of the invention is to provide a vacuum rotary vane pump in which a full run of the pump chamber is avoided by structurally simple measures.
  • the suction chamber is connected to an oil chamber via an ejection channel, wherein a valve device is arranged between the oil chamber and the ejection channel.
  • the valve device serves to prevent a backflow of medium, ie usually a mixture of oil and air, from the oil chamber into the pump chamber.
  • a compensation channel is also provided, which connects the discharge channel with a region in which substantially atmospheric pressure prevails.
  • the compensation channel is connected to an air space of the oil chamber, wherein it is in the air space of the oil chamber is around the area of the oil chamber, which is located above the oil bath and in which essentially enriched with oil air is present.
  • the medium is expelled from the pump chamber into the discharge channel during operation, whereby the medium, which is usually a mixture of air and oil, passes through the valve device into the oil chamber. A part of the oil present in the medium is pressed into the compensation channel and thus seals it off. It is thereby ensured that no fresh air is sucked in during operation via the compensation channel, or air with ambient pressure reaches the discharge channel. If a failure of the vacuum rotary vane pump or a deliberate stop the vacuum rotary vane pump, air is sucked through the compensation channel due to the pressure prevailing in the suction chamber lower pressure.
  • the period of time to equalize the pressure in the pump chamber is very small.
  • Controlled and defined emulsification of the oil is also achieved by providing the equalization channel.
  • the compensation channel is at least partially filled with oil, while the medium is conveyed from a region of the pumping space between two adjacent slides into the discharge channel. If the trailing slide now subsequently passes through the opening of the ejection channel connected to the suction chamber, the oil reservoir stored in the compensation channel is conveyed into this space. In this case, a small amount of air is sucked out of the compensation channel, which leads to the emulsion of the oil.
  • the inventive provision of at least one compensation channel thus also leads to a reduction in noise in speed limits of the vacuum rotary vane pump.
  • Due to the small cross-sectional area of the at least one compensation channel ensures that only a small amount of air enters the pump.
  • the compensation channel or the compensation channels is formed as a groove in the housing, wherein the groove is partially covered.
  • the grooves are provided in a flange surface of the housing facing in the direction of the oil chamber, wherein the grooves are preferably arranged within the oil chamber when attached to the flange oil chamber. It is particularly preferred in this case to cover the grooves by a valve tongue of the valve device, so that the single groove or the grooves are covered by a small inlet opening which is connected to the air space of the oil chamber.
  • valve tongue which may also cover the grooves, the opening and closing of the ejection channel.
  • the valve tongue is formed of an elastic, spring-back material. A particularly good sealing of the valve tongue can be achieved if the area of the valve tongue which seals off the discharge channel is located in an oil bath, so that an additional contact pressure is built up. Due to the increased tightness, a further and more efficient evacuation can be carried out.
  • a vacuum rotary vane pump has a housing 10. Within the housing 10, a rotor 14 is arranged in a pump chamber 12. The rotor 14 has in the illustrated embodiment, three slide slots 16, in each of which a slide 18 is arranged. The slides 18 are pressed by the rotation of the rotor 14 due to the centrifugal force against an inner wall 20 of the pump chamber.
  • a suction opening 22 which is connected to the space to be evacuated, medium is sucked from the space to be evacuated into a first area 24 of the pumping chamber 12.
  • the region 24 of the suction chamber 12 is bounded by two adjacent slides 18.
  • An area 28 of the suction space 12 located in front of the area 24 in the direction of rotation 26 is reduced by the rotation of the rotor 14, so that the medium located therein is compressed. From the region 28, the medium is conveyed through an ejection channel 30 from the suction chamber 12 in the direction of an oil chamber 32.
  • the oil chamber 32 is attached to a flange 34 of the housing 10 of the vacuum rotary vane pump.
  • the oil chamber 32 has an oil space or an oil bath 34, in which the oil supplied via the discharge channel 30, in particular together with the air taken from the space to be evacuated, collects.
  • valve means is a resilient valve tongue secured to the flange 34 of the housing 10 by, for example, a screw or nut 40. It is particularly preferred to arrange the valve tongue in an oil bath 42 in the region of the outlet opening 36. For this purpose, a separate oil space is formed in the oil chamber 32 by an intermediate wall 44, wherein when the oil space is filled, the oil flows in the direction of an arrow 46.
  • an oil bath 42 is on a rear side of the valve tongue, d. H. in the direction of the oil bath 42 facing side of the valve tongue, pressure exerted. As a result, the tightness of the valve device 38 is increased.
  • a plurality of compensation channels 50 are provided in a flange 48, which faces in the direction of the oil chamber 32.
  • the compensation channels 50 are formed by grooves provided in the flange surface 48, which are covered by the valve tongue 38 arranged in this region. in this connection are not the complete grooves covered by the valve tongue, so that an inlet opening 52 is formed, which is in communication with an air space 54 of the oil chamber 32.
  • a plurality of compensation channels 50 are provided, which are preferably formed fan-shaped starting from the inlet opening 52.
  • an oil-enriched medium is thus conveyed from the region 28 in the direction of an arrow 56 into the discharge channel 30. Due to the pressure, the valve tongue is pushed back, so that the medium in the direction of an arrow 58 in the oil bath 42 and in the oil chamber 32 passes. A portion of the oil is in this case pressed into the compensation channels 50 and thus causes a seal.
  • the oil reservoir present in the channels 50 is drawn into the discharge channel 30 together with a small amount of air drawn through the opening 52 from the air space 54 of the oil chamber 32.
  • the entrainment of air emulsifies the oil and thus reduces noise.
  • valve device 38 Due to the flow of oil or oil circulation in the area of the valve device 38, in particular the valve tongue, it is ensured that no deposits form here. In particular, contamination of the valve device 38 is avoided. This is a deadlock of Valve device 38 avoided. Furthermore, a good seal is ensured and an influence of the valve tightness on the pump performance is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

L'invention concerne une pompe à vide à tiroirs rotatifs comprenant une chambre d'aspiration (12) dans un logement (10). Un rotor (14) est monté de manière excentrique dans la chambre d'aspiration (12). Les tiroirs sont reliés au rotor (14) de manière déplaçable. Un canal d'éjection (30) est en outre relié à la chambre d'aspiration (12) ainsi qu'à une chambre d'huile (32). Un dispositif de soupape (38) est disposé entre le canal d'éjection (30) et la chambre d'huile (32), pour empêcher la substance contenue dans la chambre d'huile (32) de refluer vers la chambre d'aspiration (12). Selon l'invention, au moins un canal de compensation (50) est prévu et est relié au canal d'éjection (30) et à la chambre d'huile (32).

Claims (6)

  1. Pompe à vide à tiroirs rotatifs comprenant
    un boitier (10) ayant une chambre d'aspiration (12),
    un rotor (14) disposé de manière excentrique dans ladite chambre d'aspi ration (12),
    des tiroirs (18) connectés de manière déplaçable au rotor (14),
    une chambre d'huile,
    un canal de décharge (30) connecté à ladite chambre d'aspiration (12) et ladite chambre d'huile (32),
    un moyen de vanne (38) disposé entre ladite chambre d'huile (32) et ledit canal de décharge (30) pour empêcher le reflux du médium de la chambre d'huile (32) dans la chambre d'aspiration (12), et
    au moins un canal de compensation (50) connecté au canal de décharge (30), sur lequel est appliquée sensiblement la pression atmosphérique,
    caractérisée en ce que
    ledit canal de compensation est réalisé comme une rainure partiellement couverte, notamment dans un flanc (34) du boitier (10).
  2. Pompe à vide à tiroirs rotatifs selon la revendication 1, caractérisée en ce que ledit canal de compensation (50) est connecté à une zone d'air (54) de ladite chambre d'huile (32).
  3. Pompe à vide à tiroirs rotatifs selon les revendications 1 ou 2, caractérisée en ce que ledit canal de compensation (50) est connecté au canal de décharge (30) dans la région du moyen de vanne (38).
  4. Pompe à vide à tiroirs rotatifs selon l'une des revendications 1-3, caractérisée en ce que le moyen de vanne comprend une languette de vanne (38) élastiquement déformable qui, en plus, recouvre ladite rainure, de préférence pour former ledit canal de compensation (50).
  5. Pompe à vide à tiroirs rotatifs selon l'une des revendications 1-4, caractérisée par plusieurs canaux de compensation (50) qui sont de préférence connectés entre eux à une ouverture d'entrée du canal (52) connectée à l'atmosphère.
  6. Pompe à vide à tiroirs rotatifs selon l'une des revendications 1-5, caractérisée en ce que ledit moyen de vanne (38) fermant ledit canal de décharge (30) est disposé dans un bain d'huile (42) dans la région dudit canal de décharge (30).
EP06763998A 2005-07-07 2006-06-30 Pompe a vide a tiroirs rotatifs Active EP1899608B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031718A DE102005031718A1 (de) 2005-07-07 2005-07-07 Vakuum-Drehschieberpumpe
PCT/EP2006/063748 WO2007006666A1 (fr) 2005-07-07 2006-06-30 Pompe a vide a tiroirs rotatifs

Publications (2)

Publication Number Publication Date
EP1899608A1 EP1899608A1 (fr) 2008-03-19
EP1899608B1 true EP1899608B1 (fr) 2011-10-19

Family

ID=36942562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06763998A Active EP1899608B1 (fr) 2005-07-07 2006-06-30 Pompe a vide a tiroirs rotatifs

Country Status (7)

Country Link
US (2) US8469684B2 (fr)
EP (1) EP1899608B1 (fr)
JP (1) JP4996601B2 (fr)
KR (1) KR101291228B1 (fr)
CN (1) CN101203677B (fr)
DE (1) DE102005031718A1 (fr)
WO (1) WO2007006666A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012002882U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe
DE202012002881U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe
DE202012002883U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397771B1 (ko) 2008-12-26 2014-05-20 히타치가세이가부시끼가이샤 포지티브형 감광성 수지 조성물, 레지스트 패턴의 제조 방법, 반도체 장치 및 전자 디바이스
IT1393277B1 (it) * 2009-03-17 2012-04-12 Vhit Spa Pompa per vuoto rotativa con un dispositivo di disaccoppiamento dal motore di azionamento
DE102010051610B4 (de) 2009-11-24 2023-10-26 Hanon Systems Efp Deutschland Gmbh Vakuumpumpe
JP2012167590A (ja) * 2011-02-14 2012-09-06 Nabtesco Automotive Corp ケーシングの製造方法及び真空ポンプ
CN103061820B (zh) * 2012-12-27 2013-12-04 潍坊天瑞重工凿岩机械有限公司 具有内置式供油器的气动滑片式钻机
DE102013200410B4 (de) * 2013-01-14 2017-12-07 Schwäbische Hüttenwerke Automotive GmbH Gaspumpe mit Druckentlastung zur Reduzierung des Anfahrdrehmoments
GB2533621B (en) 2014-12-23 2019-04-17 Edwards Ltd Rotary screw vacuum pumps
CN105526171A (zh) * 2016-02-05 2016-04-27 无锡明治泵业有限公司 一种汽车真空泵降低泵腔内积油量的结构
CN105526174A (zh) * 2016-02-05 2016-04-27 无锡明治泵业有限公司 一种用于降低真空泵泵腔内积油量的机构
IT201700115881A1 (it) * 2017-10-13 2019-04-13 D V P Vacuum Tech S P A Pompa per il vuoto lubrificata
CN112963349A (zh) * 2021-01-22 2021-06-15 淄博真空泵厂有限公司 新型水环真空机组
JP7052101B1 (ja) * 2021-01-27 2022-04-11 株式会社アルバック 真空ポンプ及び真空ポンプの復圧方法
WO2024078678A1 (fr) 2022-10-10 2024-04-18 Busch Produktions Gmbh Pompe rotative améliorée à palettes coulissantes

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053439A (en) 1957-07-24 1962-09-11 Leybolds Nachfolger E Rotary vacuum pump
US3040973A (en) * 1958-12-02 1962-06-26 Prec Scient Company Vacuum pump
DE1123076B (de) 1959-04-18 1962-02-01 Leybolds Nachfolger E Rotierende mechanische Vakuumpumpe
US3326456A (en) * 1965-09-13 1967-06-20 Prec Scient Company Check valve for a vacuum pump
US3301474A (en) * 1965-09-24 1967-01-31 Bendix Balzers Vacuum Inc Oil sealed mechanical rotary vacuum pump
GB1140452A (en) * 1966-03-16 1969-01-22 Edwards High Vacuum Int Ltd Improvements relating to liquid sealed mechanical vacuum pumps
JPS4910005B1 (fr) * 1969-01-20 1974-03-07
JPS4911645B1 (fr) * 1969-09-22 1974-03-19
US3782868A (en) * 1971-11-26 1974-01-01 Componetrol Rotary vane pump
NL173343C (nl) 1972-03-29 1984-01-02 Philips Nv Inrichting voor het uitlezen van een schijfvormige registratiedrager met in optische vorm gecodeerde beeld-en/of geluidssignalen.
JPS5343209Y2 (fr) 1973-10-26 1978-10-18
DE2401177A1 (de) * 1974-01-11 1975-07-24 Pfeiffer Vakuumtechnik Vorrichtung zur geraeuschdaempfung bei drehschieberpumpen
FR2383335A1 (fr) * 1977-03-08 1978-10-06 Leybold Heraeus Sogev Pompe mecanique a joint d'huile
JPS5343209U (fr) * 1977-09-01 1978-04-13
JPS5676186U (fr) 1979-11-17 1981-06-22
JPS57172482A (en) * 1981-04-17 1982-10-23 Hitachi Ltd Image position detecting system
DE3616515A1 (de) * 1986-05-16 1987-11-19 Mugioiu Dipl Ing Ioan Drehschiebervakuumpumpe
DE4016014C2 (de) * 1989-06-01 1998-02-19 Barmag Barmer Maschf Flügelzellen-Vakuumpumpe
DE3933047A1 (de) * 1989-10-04 1991-04-11 Barmag Barmer Maschf Fluegelzellen-vakuumpumpe
DE19961317C1 (de) * 1999-12-18 2001-06-28 Bayerische Motoren Werke Ag Vakuumpumpe, insbesondere Flügelzellenvakuumpumpe
DE10147324A1 (de) * 2000-10-11 2002-05-23 Luk Automobiltech Gmbh & Co Kg Vakuumpumpe für einen Servoantrieb in einem Kraftfahrzeug
JP2002349458A (ja) 2001-05-22 2002-12-04 Matsushita Electric Ind Co Ltd 密閉型スクロール圧縮機
GB2380523A (en) 2001-06-27 2003-04-09 Luk Automobiltech Gmbh & Co Kg Vacuum generator
WO2004024985A1 (fr) 2002-09-11 2004-03-25 Inspire Technology Resource Management Corporation Solution de revetement par depot autocatalytique, procede mettant en application cette solution et objet revetu par depot catalytique
DE10393279D2 (de) 2002-11-13 2005-06-02 Luk Automobiltech Gmbh & Co Kg Vakuumpumpe
CN2688932Y (zh) * 2004-01-18 2005-03-30 吴允叔 旋转式防回油真空/压气两用泵

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012002882U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe
DE202012002881U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe
DE202012002883U1 (de) * 2012-03-22 2013-06-25 Oerlikon Leybold Vacuum Gmbh Vakuum-Drehschieberpumpe

Also Published As

Publication number Publication date
CN101203677B (zh) 2011-04-06
DE102005031718A1 (de) 2007-01-18
US9017051B2 (en) 2015-04-28
KR20080024149A (ko) 2008-03-17
CN101203677A (zh) 2008-06-18
US20130251578A1 (en) 2013-09-26
JP2008545096A (ja) 2008-12-11
EP1899608A1 (fr) 2008-03-19
US20090297376A1 (en) 2009-12-03
JP4996601B2 (ja) 2012-08-08
WO2007006666A1 (fr) 2007-01-18
KR101291228B1 (ko) 2013-07-31
US8469684B2 (en) 2013-06-25

Similar Documents

Publication Publication Date Title
EP1899608B1 (fr) Pompe a vide a tiroirs rotatifs
DE2223156C2 (de) Flügelzellenverdichter
DE4212169C2 (de) Dynamisches Sperrsystem für das Schmieröl der Lager eines Zentrifugalkompressors
EP1890040B1 (fr) Pompe à vide
DE1503507C3 (de) Flügelzellenverdichter
EP2836722B1 (fr) Pompe à vide à palettes rotatives
EP0718497B1 (fr) Pompe à palettes
DE3420344C2 (fr)
DE4030295C2 (de) Pumpeneinheit mit Steuerventil
DE1915574A1 (de) Rotationskolbenpumpe
WO2009018906A1 (fr) Pompe à vide
DE3906823A1 (de) Fluegelzellen-vakuumpumpe
DE4008522C2 (fr)
DE19539136B4 (de) Flügelzellenverdichter
DE202012002883U1 (de) Vakuum-Drehschieberpumpe
DE2029280A1 (de) Vakuumpumpe
DE202005022024U1 (de) Vakuum-Drehschieberpumpe
DE3303906A1 (de) Verdraengermaschine fuer fluide
EP1026401B1 (fr) Pompe hydrostatique
DE3801306A1 (de) Fluegelzellenverdichter
DE3922417C2 (fr)
DE10130953C2 (de) Flügelzellen- oder Rollenzellenpumpe
EP3650703B1 (fr) Pompe à vide et procédé de lubrification d'une telle pompe à vide
DE2248490C2 (de) Drehkolbenpumpe
DE4123938A1 (de) Fluessigkeitsring-vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1110928

Country of ref document: HK

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FIGONI, ERIC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010433

Country of ref document: DE

Effective date: 20111215

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: AGILENT TECHNOLOGIES DEUTSCHLAND GMBH

Effective date: 20120503

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006010433

Country of ref document: DE

Effective date: 20120503

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006010433

Country of ref document: DE

Owner name: LEYBOLD GMBH, DE

Free format text: FORMER OWNER: OERLIKON LEYBOLD VACUUM GMBH, 50968 KOELN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006010433

Country of ref document: DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LEYBOLD GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: LEYBOLD GMBH, DE

Effective date: 20170313

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502006010433

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20180507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 18

Ref country code: DE

Payment date: 20230628

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 18