EP1849527B1 - Zerstäuber und zugehöriges Betriebsverfahren - Google Patents

Zerstäuber und zugehöriges Betriebsverfahren Download PDF

Info

Publication number
EP1849527B1
EP1849527B1 EP07007204.6A EP07007204A EP1849527B1 EP 1849527 B1 EP1849527 B1 EP 1849527B1 EP 07007204 A EP07007204 A EP 07007204A EP 1849527 B1 EP1849527 B1 EP 1849527B1
Authority
EP
European Patent Office
Prior art keywords
atomiser
air
shroud stream
shroud
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07007204.6A
Other languages
English (en)
French (fr)
Other versions
EP1849527A3 (de
EP1849527A2 (de
Inventor
Hans-Jürgen Nolte
Frank Herre
Andreas Fischer
Peter Marquardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Priority to EP19178996.5A priority Critical patent/EP3566779B1/de
Publication of EP1849527A2 publication Critical patent/EP1849527A2/de
Publication of EP1849527A3 publication Critical patent/EP1849527A3/de
Application granted granted Critical
Publication of EP1849527B1 publication Critical patent/EP1849527B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/001Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell

Definitions

  • the invention relates to a painting device with an atomizer, in particular a rotary atomizer, and an associated operating method.
  • the respective coating agent eg filler, basecoat, clearcoat
  • the respective coating agent is usually atomized by atomizers (eg high-rotation air or ultrasonic atomizer) and applied by Lenkluft and electrostatic charging of the coating composition on the component to be coated .
  • atomizers eg high-rotation air or ultrasonic atomizer
  • the wet paint loses in the atomization and during the application especially volatile components, such as solvents in solvent-based paints or water in water-based paints, which evaporate into the ambient air.
  • the percentage solids content of the applied wet paint changes compared to the percentage solids content of the wet paint before the atomization.
  • this increase in the solids content in the application is determined by the application parameters, such as rotational speed of the rotary atomizer, outflow quantity, directing air quantity and painting distance.
  • the increase in the solids content in the application of the ambient conditions is affected, such as humidity, Heiltsink für and air temperature in the spray booth, as these environmental conditions affect the evaporation of the solvent content or the water content.
  • the additional adapter disturbs the otherwise smooth outer contour of the rotary atomizer, whereby the tendency to fouling increases and the cleaning of the rotary atomizer is difficult.
  • the additional adapter obstructs the handling of the rotary atomizer, since the external dimensions and the inertia of the rotary atomizer increase by the additional adapter. For example, due to the larger external dimensions, the rotary atomizer with the additional adapter can no longer be inserted into small openings in order to coat surfaces located there.
  • a further disadvantage of the additional adapter is the relatively large axial distance between the sheath flow nozzles in the adapter and the bell-plate sputtering edge, so that energy and amount of the sheath flow are generally insufficient to achieve truly defined evaporation conditions.
  • WO 2005/110618 A1 discloses a painting device with a bell cup and Lenkluftdüsen to deliver a directing air flow, which directs particles applied by the bell cup to the object to be painted.
  • EP 1 362 640 A1 also discloses a rotary atomizer with shaping air nozzles, which in addition has in a mounted on the outer casing of the atomizer electrode ring a ring of air holes or an annular nozzle-like air gap, from which the air is passed over the surface of the outer casing like a shell.
  • the invention is therefore based on the object to improve the known painting.
  • sheath flow unlike the prior art discussed above, is not delivered by a separate adapter, but by sheath flow nozzles that are structurally integrated into the atomizer.
  • This structural integration of the Hüllstromdüsen in the atomizer has the advantage that the smooth outer contour of the atomizer housing is not disturbed by the enveloping current, so that the tendency to fouling and cleaning ease of the atomizer is not affected.
  • the structural integration of the sheath flow nozzles into the atomizer makes it possible to supply the conditioned air for the sheath flow via the normal connection flange of the atomizer.
  • the separate hoses provided in the prior art for supplying the conditioned air can be dispensed with, eliminating the problem of hose breaks.
  • the invention advantageously allows for a reduction in the axial distance between the sheath flow nozzles and the bell cup spray edge so that the energy and amount of sheath flow are sufficient to produce truly defined flash conditions.
  • Another advantage of the invention integrating the Hüllstromdüsen in the atomizer is the better handling, since the outer dimensions and the inertia of the atomizer according to the invention over a conventional Atomizers without envelope current technology are hardly or not increased at all.
  • the structural integration of the Hüllstromdüsen in the atomizer can be achieved in the invention, for example, characterized in that the Hüllstromdüsen are arranged in the atomizer housing. However, there is also the alternative possibility that the Hüllstromdüsen are arranged in a shaping air ring or other integral component of the atomizer.
  • the invention encompasses the general technical teaching of influencing the evaporation conditions and thus the change in the solids content during application in that a defined microclimate is generated in the surroundings of the coating agent jet so that costly air conditioning of the entire paint booth is less important or even eliminated ,
  • the invention is not limited to those paint shops in which to dispense with a conventional air conditioning of the spray booth, but also includes painting, where in addition to the creation of a defined microclimate in the environment of the coating agent jet air conditioning of the entire spray booth takes place.
  • the invention provides an atomizer which, in addition to an application element (for example a bell cup) for applying a coating agent jet to a component to be coated, has at least one envelope flow nozzle via which a conditioned envelope flow is emitted which at least partially surrounds the coating agent jet and thereby in the environment the coating agent jet a defined Microclimate generated, which provides for predetermined evaporation conditions.
  • the conditioned envelope stream surrounds the coating agent jet in a jacket-like manner over its entire circumference and / or over its entire length between the application element and the component to be coated.
  • the sheath flow is heated, cooled, dried or moistened with respect to the ambient air. Furthermore, there is the possibility of a combination of heating or cooling on the one hand and drying or humidifying the envelope flow on the other hand.
  • the heating of the sheath flow is preferably carried out by an air heater, which is preferably structurally separated from the atomizer.
  • an air heater which is preferably structurally separated from the atomizer.
  • the heating of the enveloping current is preferably carried out for reasons of explosion protection not by electric heating elements in the atomizer, but by the above-mentioned separate air heater.
  • the sheath flow has an outlet temperature of more than + 40 ° C. and / or less than + 100 ° C. directly at the sheath flow nozzle, wherein any intermediate values within this range of values are possible.
  • the outlet temperature of the enveloping stream can here be varied depending on the coating agent used. For example, water as the solvent evaporates less than organic solvents, so that the exit temperature of the enveloping stream can be raised in the application of water-based paint to the application of solvent-based lacquer.
  • the sheath flow preferably has a volume flow of more than 500 l / min and / or less than 2500 l / min, with any intermediate values within this interval being possible.
  • the sheath flow preferably consists of air, which are available anyway in the form of compressed air in paint shops. In the context of the invention, however, it is also possible to use a gas other than air for the sheath flow. Gases with a greater heat capacity, a greater electrical insulation capacity and / or a higher moisture saturation limit than air are particularly suitable for this purpose.
  • the greater heat capacity offers the advantage here that the sheath flow only slightly loses its temperature after exiting the sheath flow nozzle, which ensures defined evaporation conditions.
  • a larger electrical insulation capacity is advantageous in an electrostatic atomizer because the insulating capacity of the sheath current prevents a discharge of the electrostatically charged coating agent particles and thereby provides a high application efficiency.
  • the sheath flow can therefore also consist, for example, of sulfur hexafluoride (SF 6 ) or inert gases (eg carbon dioxide (CO 2 ) and nitrogen).
  • SF 6 sulfur hexafluoride
  • CO 2 carbon dioxide
  • nitrogen nitrogen
  • the atomizer according to the invention preferably has an inner housing and an outer housing, wherein between the inner housing and the outer housing a Hüllstromzutechnisch for passing the air-conditioned envelope flow to the Hüllstromdüse runs.
  • This has the advantage that the sheath flow is only relatively slightly cooled in the passage through the atomizer and therefore still has a sufficiently high temperature at the Hüllstromdüse.
  • the atomiser according to the invention is therefore preferably designed so that the sheath flow within the atomizer in the sheath current supply up to the sheath flow nozzle only by less 140 ° C, 120 ° C, 100 ° C, 90 ° C, 80 ° C, 70 ° C, 60 ° C, 50 ° C, 40 ° C, 30 ° C, 20 °, 10 ° C or less than 5 ° C is cooled.
  • connection flange of the atomizer with the flange connections provided there does not have to be changed.
  • the atomizer according to the invention has shaping air nozzles for the discharge of a shaping air jet, wherein the shaping air jet forms the coating agent jet.
  • the shaping air jet forms the coating agent jet.
  • an inner shaping air jet and an outer shaping air jet are provided, which offers greater flexibility in the shaping of the coating agent jet.
  • the outer shaping air nozzles simultaneously form the sheath flow nozzles.
  • the sheath flow nozzles are provided in addition to the shaping air nozzles and separated from them.
  • the shaping air nozzles are preferably mounted inside, while the sheath flow nozzles are mounted on the outside.
  • This arrangement is advantageous because the jacket-shaped envelope of the coating agent jet is facilitated or made possible by the sheath flow in that the shaping air jet forms the coating agent jet.
  • the number of sheath flow nozzles is preferably greater than 20 and / or less than 60, with any intermediate values within this interval being possible.
  • the sheath flow nozzles preferably each have nozzle openings with a width or with a diameter of more than 1 mm and / or less than 8 mm.
  • the sheath flow nozzles therefore preferably have larger nozzle openings than the shaping air nozzles.
  • the envelope flow nozzle is designed as an annular gap nozzle.
  • the gap nozzle preferably has a gap width in the range of 0.1-1 mm, while the gap diameter is preferably in the range of 50-100 mm.
  • Such slit nozzles are as shaping air nozzles, for example EP 0 092 043 A2 known. The content of this document is therefore attributable to the structural design of the slit nozzle of the present description.
  • the application element mentioned at the outset for application of the coating agent jet may be, for example, a fixed spray nozzle.
  • the term of an application element used in the context of the invention is It also includes, for example, ultrasonic atomisers, airless devices and airmix devices.
  • the application element is a rotatable bell cup having a predetermined bell-shaped edge.
  • an axial distance of more than 5 mm and / or less than 100 mm preferably lies between the Hüllstromdüse and the Glockentellerkante.
  • an application element used in the context of the invention therefore has the meaning that a coating agent (for example wet paint or powder coating) can be applied to a component to be coated (for example a motor vehicle body part) by means of the application element.
  • a coating agent for example wet paint or powder coating
  • the Hüllstromdüsen can be angled in the circumferential direction of the bell cup and thus have a predetermined helix angle, the Hüllstromdüsen can be angled either in the direction of rotation of the bell cup or counter to the direction of rotation of the bell cup.
  • the helix angle of the sheath flow nozzles can in this case be in the range of 0-45 °, wherein in turn any intermediate values are possible.
  • the atomiser according to the invention can optionally be a powder atomizer or a wet paint atomizer.
  • the invention includes not only the above-described atomizer according to the invention as a single component, but also a painting device (eg, a painting robot or a paint shop) with such an atomizer.
  • a painting device eg, a painting robot or a paint shop
  • the painting device preferably has, in addition to the atomizer, an air-conditioning device for conditioning the enveloping flow, the air-conditioning device being connected downstream to the enveloping jet nozzle (s).
  • the air conditioning device may have a conventional air heater to heat the air flow.
  • the air conditioning device may have a cooling device which cools the enveloping flow.
  • the air conditioning device has a dehumidifying device, which dehumidifies the sheath flow.
  • the air conditioning device can therefore be constructed like a conventional air conditioning system.
  • the invention comprises an operating method for an atomizer according to the invention, in which, in addition to the delivery of a coating agent jet, a conditioned envelope stream is dispensed, which at least partially surrounds the coating agent jet.
  • the spatial position of the component surface to be coated is determined and the envelope current is influenced as a function of the determined spatial position.
  • the spatial position of the component surface to be coated and the spatial Location of the atomizer can be determined, since the atomizer is usually performed according to the spatial position of the component surface to be coated.
  • the spatial position of the atomizer can in turn be determined from the position control signals of the robot controller.
  • the temperature, the moisture content and / or the volume flow of the sheath flow can then be influenced.
  • an enveloping flow having a lower moisture content, a greater temperature and / or a larger volume flow is emitted than in the case of a coating of a substantially horizontal component surface.
  • the sheath flow can be adjusted such that the solids content of the coating agent jet increases by more than 5%, 10%, 25% or even 50% between the delivery to the application element and the impingement on the component surface to be coated.
  • FIG. 1 shows in simplified form a rotary atomizer 1, which is constructed largely conventional and can be used for example for painting automotive body panels.
  • the rotary atomizer 1 a conventional bell cup 2, which is rotatably mounted about a bell-plate axis 3 and is driven by a turbine 4. At the bell-shaped edge, the bell-shaped plate 2 emits a coating agent jet 5, wherein the coating agent jet 5 is shown here only schematically.
  • the rotary atomizer 1 has numerous inner shaping air nozzles 6, which are arranged concentrically around the bell-plate axis 3 and emit an inner shaping air jet 7 onto the outer surface of the bell plate 2, wherein the inner shaping air jet 7 forms the coating agent jet 5.
  • the rotary atomizer 1 has a plurality of outer shaping air nozzles 8, via which an outer shaping air jet 9 is dispensed, which additionally forms the coating agent jet 5.
  • the rotary atomizer 1 on numerous Hüllstromdüsen 10 which are also arranged concentrically around the Glockentellerachse 3 and deliver an air-conditioned envelope stream 11, which surrounds the coating agent jet 5 shell-shaped and thereby ensures defined evaporation conditions.
  • the exiting sheath flow 11 tears a side stream 12 of ambient air, wherein the entrained side stream 12 0-50% of the outflowing from the Hüllstromdüsen 10 sheath flow 11 accounts.
  • connection flange 13 The supply of the sheath flow 11, the coating agent and the shaping air takes place through a connection flange 13, to which two separate shaping air lines 14, 15 can be connected.
  • jacket power lines 16, 17, 18 and an optional envelope current line 19 can be connected to the connection flange 13 in order to supply the conditioned envelope current 11 to the rotary atomizer 1.
  • the sheath current lines 16-19 are connected to an air heater 20 and an air flow regulator 21, so that the volume flow and the temperature of the sheath flow 11 can be varied.
  • the supply of the enveloping flow 11 from the connection flange 13 to the enveloping flow nozzles 10 takes place by means of an enveloping flow passage between an inner housing 22 and an outer housing 23 of the rotary atomizer 1.
  • the number of sheath flow nozzles 10 may be in the range of 20 to 60, wherein the individual sheath flow nozzles 10 each have nozzle openings with a width of 1-8 mm.
  • the axial distance between the Hüllstromdüsen 10 and the Bell plate edge of the bell cup 2 can be between 5 and 100 mm.
  • FIG. 2a schematically shows the painting of a vertical component surface 24 by the rotary atomizer 1. Due to the vertical alignment of the component surface 24 is due to the force acting on the applied paint particles gravity g the risk of runners. In order to avoid such runners, the solids content of the coating agent jet 5 impinging on the vertical component surface 24 is purposefully increased, in which the temperature T1 of the sheath flow 11 from the air heater 20 (cf. Fig. 1 ) is specifically increased. As a result, the coating agent jet 5 impinging on the vertical component surface 24 contains less liquid solvent portions and therefore has less tendency to bleed. The stronger evaporation of the solvent components from the coating agent jet 5 into the surrounding enveloping flow 11 is represented here by block arrows.
  • FIG. 2b in contrast, the painting of a horizontal component surface 25 is represented by the rotary atomizer 1. Due to the horizontal alignment of the component surface 25, the risk of a running of the coating agent on the component surface 25 is lower, so that less liquid solvent components from the coating agent jet 5 must evaporate into the sheath flow 11. The sheath flow 11 therefore has a lower temperature T2 ⁇ T1 in the coating of the horizontal component surface 25 than in the coating of the vertical component surface 24.
  • FIG. 3 shows in a highly simplified form a block diagram of a painting device according to the invention with a robot controller 26, which has a multi-axis painting robot 27 with Actuates position control data, wherein the painting robot 27 leads the rotary atomizer 1.
  • the position control data are also passed on by the robot controller 26 to a computing unit 28, which determines therefrom the inclination ⁇ of the component surface to be coated.
  • the inclination ⁇ of the component surface is then passed on to an envelope current controller 29, which influences the envelope current 11 as a function of the inclination ⁇ of the component surface.
  • the sheath flow controller 29 controls a sheath flow dryer 30, a sheath current heater 31 and a sheath flow valve 32.
  • the sheath flow 11 is in this case influenced in dependence on the inclination ⁇ of the component surface to be coated in such a way that bleeding of the coating agent on the component surface is prevented.
  • the coating stream is heated to a greater extent during a coating of vertically aligned component surfaces and dried than when coating horizontally aligned component surfaces.
  • the robot controller 26, the arithmetic unit 28 and the envelope current controller 29 can be integrated in a common electronic control unit 33. In this case, there is also the possibility that the robot controller 26, the arithmetic unit 28 and / or the envelope current controller 29 are implemented as software modules.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

  • Die Erfindung betrifft eine Lackiereinrichtung mit einem Zerstäuber, insbesondere einen Rotationszerstäuber, sowie ein zugehöriges Betriebsverfahren.
  • Bei der Lackierung von Bauteilen (z.B. Kraftfahrzeugkarosserieteilen) wird das jeweilige Beschichtungsmittel (z.B. Füller, Basislack, Klarlack) in der Regel durch Zerstäuber (z.B. Hochrotations- Luft- oder Ultraschallzerstäuber) zerstäubt und mittels Lenkluft und elektrostatischer Aufladung des Beschichtungsmittels auf das zu beschichtende Bauteil aufgetragen. Bei einer Lackierung mit Nasslack verliert der Nasslack bei der Zerstäubung und während der Applikation vor allem leicht flüchtige Bestandteile, wie Lösemittel bei lösemittelbasierten Lacken oder Wasser bei Wasserlacken, die in die Umgebungsluft abdunsten. Dadurch verändert sich der prozentuale Festkörperanteil des applizierten Nasslacks gegenüber dem prozentualen Festkörperanteil des Nasslacks vor der Zerstäubung.
  • Zum einen wird diese Zunahme des Festkörperanteils bei der Applikation von den Applikationsparametern bestimmt, wie beispielsweise Drehzahl des Rotationszerstäubers, Ausflussmenge, Lenkluftmenge und Lackierabstand.
  • Zum anderen wird die Zunahme des Festkörperanteils bei der Applikation von den Umgebungsbedingungen beeinflusst, wie beispielsweise Luftfeuchtigkeit, Luftsinkgeschwindigkeit und Lufttemperatur in der Lackierkabine, da diese Umgebungsbedingungen die Abdunstung des Lösemittelanteils bzw. des Wasseranteils beeinflussen.
  • Bei den bekannten Lackieranlagen zur Lackierung von Kraftfahrzeugkarosserieteilen wird deshalb ein großer Aufwand betrieben, um den Lufthaushalt in der Lackierkabine konstant zu halten, damit die Abdunstbedingungen und damit die Zunahme des Festkörperanteils bei der Applikation möglichst konstant bleiben. Nachteilig an den bekannten Lackieranlagen ist also der große apparative Aufwand für die Klimatisierung der Lackierkabine.
  • In der am häufigsten verwendeten Variante zur Klimatisierung der Lackierkabinen erfolgt ein Heizen und Befeuchten mittels Heizregister und Wäscher. Hierbei ist die Abhängigkeit von der Wetterlage nachteilig, aufgrund nicht zu korrigierender Wetterlagen (z.B. Sommer mit feuchter Luft). Bei ungeeigneten Umgebungsbedingungen können deshalb Lackierfehler auftreten, wie z.B. Läufer und stark schwankende Lackierergebnisse. Darüber hinaus erfordert diese Variante der Klimatisierung einen großen Energieeinsatz.
  • In einer anderen Variante der Klimatisierung erfolgt dagegen eine Vollklimatisierung analog üblichen Klimaanlagen mit einer kombinierten Kühlung und Entfeuchtung, wodurch der Energieaufwand allerdings nochmals steigt.
  • Aus US 2005/0181142 A1 ist es bekannt, den Beschichtungsmittelstrahl eines Rotationszerstäubers mit einem Hüllstrom von klimatisierter Luft zu umgeben, wobei der Hüllstrom an der Außenseite des Beschichtungsmittelstrahls definierte Abdunstbedingungen herstellt, so dass der Aufwand für die Klimatisierung der gesamten Lackierkabine verringert werden kann. Der Hüllstrom wird hierbei von einem separaten Adapter abgegeben, der ringförmig ausgebildet ist und im Betrieb außen auf dem Zerstäubergehäuse sitzt. Diese bekannte Art der Hüllstromerzeugung weist jedoch zahlreiche Nachteile auf.
  • Zum einen stört der zusätzliche Adapter die ansonsten glatte Außenkontur des Rotationszerstäubers, wodurch die Verschmutzungsneigung erhöht und die Reinigung des Rotationszerstäubers erschwert wird.
  • Zum anderen muss die Zuleitung der klimatisierten Luft zu dem Adapter über zusätzliche Schläuche erfolgen, die bei häufigen und schnellen Bewegungen des Lackierroboters durch Materialermüdung belastet werden und schließlich abreißen können.
  • Darüber hinaus behindert der zusätzliche Adapter die Handhabung des Rotationszerstäubers, da die Außenabmessungen und die Massenträgheit des Rotationszerstäubers durch den zusätzlichen Adapter zunehmen. Beispielsweise kann der Rotationszerstäuber mit dem zusätzlichen Adapter aufgrund der größeren Außenabmessungen nicht mehr in kleine Öffnungen eingeführt werden, um dort befindliche Oberflächen zu beschichten.
  • Ein weiterer Nachteil des zusätzlichen Adapters besteht in dem relativ großen axialen Abstand zwischen den Hüllstromdüsen in dem Adapter und der Glockentellerzerstäubungskante, so dass Energie und Menge des Hüllstroms in der Regel nicht ausreichen, um wirklich definierte Abdunstbedingungen zu erreichen.
  • WO 2005/110618 A1 offenbart eine Lackiereinrichtung mit einem Glockenteller und Lenkluftdüsen, um einen Lenkluftstrom abzugeben, der von dem Glockenteller applizierte Partikel zu dem zu lackierenden Objekt lenkt.
  • EP 1 362 640 A1 offenbart ebenfalls einen Rotationszerstäuber mit Lenkluftdüsen, der zusätzlich hierzu in einem auf das Außengehäuse des Zerstäubers aufgesetzten Elektrodenring einen Kranz von Luftbohrungen oder einen kreisringförmigen düsenartigen Luftspalt hat, aus denen die Luft wie eine Hülle über die Oberfläche des Außengehäuses geleitet wird.
  • Ferner ist zum Stand der Technik auf US 2004/81769 A1 , DE 197 49 072 C1 und DE 102 32 863 A1 hinzuweisen.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, die bekannten Lackieranlagen zu verbessern.
  • Diese Aufgabe wird durch eine Lackiereinrichtung mit einem Zerstäuber und ein entsprechendes Betriebsverfahren gemäß den nebengeordneten Ansprüchen gelöst.
  • Im Rahmen der Erfindung wird der Hüllstrom jedoch im Gegensatz zu dem vorstehend diskutierten Stand der Technik nicht durch einen separaten Adapter abgegeben, sondern durch Hüllstromdüsen, die in den Zerstäuber baulich integriert sind.
  • Diese bauliche Integration der Hüllstromdüsen in den Zerstäuber bietet den Vorteil, dass die glatte Außenkontur des Zerstäubergehäuses durch die Hüllstromtechnik nicht gestört wird, so dass die Verschmutzungsneigung und die Reinigungsfreundlichkeit des Zerstäubers nicht beeinträchtigt wird.
  • Darüber hinaus ermöglicht es die bauliche Integration der Hüllstromdüsen in den Zerstäuber, dass die klimatisierte Luft für den Hüllstrom über den normalen Anschlussflansch des Zerstäubers zugeführt wird. Dadurch können die im Stand der Technik vorgesehenen separaten Schläuche zur Zuleitung der klimatisierten Luft entfallen, wodurch das Problem der Schlauchabrisse entfällt.
  • Darüber hinaus ermöglicht die Erfindung vorteilhaft eine Verringerung des axialen Abstands zwischen den Hüllstromdüsen und der Glockentellerabsprühkante, so dass Energie und Menge des Hüllstroms ausreichen, um wirklich definierte Abdunstbedingungen herzustellen.
  • Ein weiterer Vorteil der erfindungsgemäßen Integration der Hüllstromdüsen in den Zerstäuber besteht in der besseren Handhabung, da die Außenabmessungen und die Massenträgheit des erfindungsgemäßen Zerstäubers gegenüber einem herkömmlichen Zerstäuber ohne Hüllstromtechnik kaum oder gar nicht erhöht sind.
  • Die bauliche Integration der Hüllstromdüsen in den Zerstäuber kann im Rahmen der Erfindung beispielsweise dadurch erreicht werden, dass die Hüllstromdüsen in dem Zerstäubergehäuse angeordnet sind. Es besteht jedoch alternativ auch die Möglichkeit, dass die Hüllstromdüsen in einem Lenkluftring oder einem sonstigen integralen Bauteil des Zerstäubers angeordnet sind.
  • Die Erfindung umfasst die allgemeine technische Lehre, die Abdunstbedingungen und damit die Veränderung des Festkörperanteils bei der Applikation dadurch zu beeinflussen, dass in der Umgebung des Beschichtungsmittelstrahls ein definiertes Mikroklima erzeugt wird, so dass eine aufwendige Klimatisierung der gesamten Lackierkabine weniger wichtig ist oder sogar entfallen kann.
  • Die Erfindung ist jedoch nicht auf solche Lackieranlagen beschränkt, bei denen auf eine herkömmliche Klimatisierung der Lackierkabine verzichtet wird, sondern umfasst auch Lackieranlagen, bei denen zusätzlich zu der Schaffung eines definierten Mikroklimas in der Umgebung des Beschichtungsmittelstrahls eine Klimatisierung der gesamten Lackierkabine erfolgt.
  • Die Erfindung sieht einen Zerstäuber vor, der zusätzlich zu einem Applikationselement (z.B. einem Glockenteller) zur Applikation eines Beschichtungsmittelstrahls auf ein zu beschichtendes Bauteil mindestens eine Hüllstromdüse aufweist, über die ein klimatisierter Hüllstrom abgegeben wird, der den Beschichtungsmittelstrahl mindestens teilweise umgibt und dadurch in der Umgebung des Beschichtungsmittelstrahls ein definiertes Mikroklima erzeugt, was für vorgegebene Abdunstbedingungen sorgt. Vorzugsweise umgibt der klimatisierte Hüllstrom den Beschichtungsmittelstrahl mantelförmig auf seinem gesamten Umfang und/oder auf seiner gesamten Länge zwischen dem Applikationselement und dem zu beschichtenden Bauteil.
  • Im Rahmen der Klimatisierung des Hüllstroms besteht die Möglichkeit, dass der Hüllstrom gegenüber der Umgebungsluft erwärmt, gekühlt, getrocknet oder befeuchtet ist. Weiterhin besteht die Möglichkeit einer Kombination einer Erwärmung bzw. Kühlung einerseits und einer Trocknung bzw. Befeuchtung des Hüllstroms andererseits.
  • Die Erwärmung des Hüllstroms erfolgt vorzugsweise durch einen Lufterhitzer, der vorzugsweise von dem Zerstäuber baulich getrennt ist. Alternativ besteht auch die Möglichkeit, den Hüllstrom durch Heizschläuche oder elektrische Heizelemente aufzuheizen, wobei die Heizelemente auch austrittsnah im Bereich der Hüllstromdüse angeordnet sein können, was zu geringen thermischen Verlusten führt. Bei einem elektrostatischen Zerstäuber erfolgt die Erwärmung des Hüllstroms jedoch aus Gründen des Explosionsschutzes vorzugsweise nicht durch elektrische Heizelemente in dem Zerstäuber, sondern durch den vorstehend erwähnten separaten Lufterhitzer.
  • Vorzugsweise weist der Hüllstrom unmittelbar an der Hüllstromdüse eine Austrittstemperatur von mehr als +40°C und/oder weniger als +100°C auf, wobei beliebige Zwischenwerte innerhalb dieses Wertebereichs möglich sind.
  • Die Austrittstemperatur des Hüllstroms kann hierbei in Abhängigkeit von dem verwendeten Beschichtungsmittel variiert werden. Beispielsweise dunstet Wasser als Lösemittel weniger ab als organische Lösemittel, so dass die Austrittstemperatur des Hüllstroms bei der Applikation von Wasserlack gegenüber der Applikation von Lösemittellack angehoben werden kann.
  • Vorzugsweise weist der Hüllstrom einen Volumenstrom von mehr als 500 l/min und/oder weniger als 2500 l/min auf, wobei beliebige Zwischenwerte innerhalb dieses Intervalls möglich sind.
  • Weiterhin ist zu erwähnen, dass der Hüllstrom vorzugsweise aus Luft besteht, die in Lackieranlagen ohnehin in Form von Druckluft zur Verfügung stehen. Im Rahmen der Erfindung besteht jedoch auch die Möglichkeit, ein anderes Gas als Luft für den Hüllstrom zu verwenden. Hierzu bieten sich besonders Gase an, die eine größere Wärmekapazität, ein größeres elektrisches Isolationsvermögen und/oder eine höhere Feuchtigkeitssättigungsgrenze aufweisen als Luft. Die größere Wärmekapazität bietet hierbei den Vorteil, dass der Hüllstrom nach dem Austreten aus der Hüllstromdüse nur geringfügig an Temperatur verliert, was für definierte Abdunstbedingungen sorgt. Ein größeres elektrisches Isolationsvermögen ist dagegen bei einem elektrostatischen Zerstäuber vorteilhaft, da das Isolationsvermögen des Hüllstroms eine Endladung der elektrostatisch aufgeladenen Beschichtungsmittelteilchen verhindert und dadurch für einen hohen Auftragswirkungsgrad sorgt. Eine hohe Feuchtigkeitssättigungsgrenze des für den Hüllstrom verwendeten Gases ist dagegen vorteilhaft, wenn der Hüllstrom viel Lösemittel aus dem Beschichtungsmittelstrahl aufnehmen soll. Der Hüllstrom kann also beispielsweise auch aus Schwefelhexafluorid (SF6) oder inerten Gasen (z.B. Kohlendioxid (CO2) und Stickstoff) bestehen.
  • Zur Zuführung des Hüllstroms weist der erfindungsgemäße Zerstäuber vorzugsweise ein Innengehäuse und ein Außengehäuse auf, wobei zwischen dem Innengehäuse und dem Außengehäuse eine Hüllstromzuleitung zur Durchleitung des klimatisierten Hüllstroms zu der Hüllstromdüse verläuft. Dies bietet den Vorteil, dass der Hüllstrom bei der Durchleitung durch den Zerstäuber nur relativ geringfügig abgekühlt wird und deshalb an der Hüllstromdüse noch eine ausreichend hohe Temperatur aufweist. Der erfindungsgemäße Zerstäuber ist deshalb vorzugsweise so ausgelegt, dass der Hüllstrom innerhalb des Zerstäubers in der Hüllstromzuleitung bis zu der Hüllstromdüse nur um weniger 140°C, 120°C, 100°C, 90°C, 80°C, 70°C, 60°C, 50°C, 40°C, 30°C, 20°, 10°C oder weniger als 5°C abgekühlt wird.
  • Es ist jedoch im Rahmen der Erfindung auch alternativ möglich, den Hüllstrom aus der Lenkluftzuführung zu speisen, so dass der Anschlussflansch des Zerstäubers mit den dort vorgesehenen Flanschanschlüssen nicht verändert werden muss.
  • Weiterhin besteht im Rahmen der Erfindung die Möglichkeit, dass der erfindungsgemäße Zerstäuber Lenkluftdüsen zur Abgabe eines Lenkluftstrahls aufweist, wobei der Lenkluftstrahl den Beschichtungsmittelstrahl formt. In einer Variante der Erfindung wird hierbei nur ein einziger Lenkluftstrahl abgegeben. In einer anderen Variante der Erfindung sind dagegen ein innerer Lenkluftstrahl und ein äußerer Lenkluftstrahl vorgesehen, was bei der Formung des Beschichtungsmittelstrahls eine größere Flexibilität bietet. Bei der letzteren Variante besteht die Möglichkeit, dass die äußeren Lenkluftdüsen gleichzeitig die Hüllstromdüsen bilden.
  • Vorzugsweise sind die Hüllstromdüsen jedoch zusätzlich zu den Lenkluftdüsen vorgesehen und von diesen getrennt.
  • Bei einer solchen Kombination von Hüllstromdüsen und Lenkluftdüsen sind die Lenkluftdüsen vorzugsweise innen angebracht, während die Hüllstromdüsen außen angebracht sind. Dies bedeutet, dass der Hüllstrom nicht nur den Beschichtungsmittelstrahl umhüllt bzw. ummantelt, sondern auch den Lenkluftstrom, so dass der Lenkluftstrom zwischen dem Hüllstrom und dem Beschichtungsmittelstrahl verläuft. Diese Anordnung ist vorteilhaft, weil die mantelförmige Umhüllung des Beschichtungsmittelstrahls durch den Hüllstrom dadurch erleichtert bzw. ermöglicht wird, dass der Lenkluftstrahl den Beschichtungsmittelstrahl formt.
  • Die Anzahl der Hüllstromdüsen ist vorzugsweise größer als 20 und/oder kleiner als 60, wobei beliebige Zwischenwerte innerhalb dieses Intervalls möglich sind.
  • Weiterhin weisen die Hüllstromdüsen vorzugsweise jeweils Düsenöffnungen mit einer Breite bzw. mit einem Durchmesser von mehr als 1 mm und/oder weniger als 8 mm auf. Die Hüllstromdüsen weisen also vorzugsweise größere Düsenöffnungen auf als die Lenkluftdüsen.
  • In einer Variante der Erfindung ist die Hüllstromdüse als ringförmig umlaufende Spaltdüse ausgebildet. Die Spaltdüse weist hierbei vorzugsweise eine Spaltbreite im Bereich von 0,1-1 mm auf, während der Spaltdurchmesser vorzugsweise im Bereich von 50-100 mm liegt. Derartige Spaltdüsen sind als Lenkluftdüsen beispielsweise aus EP 0 092 043 A2 bekannt. Der Inhalt dieser Druckschrift ist deshalb hinsichtlich der konstruktiven Gestaltung der Spaltdüse der vorliegenden Beschreibung zuzurechnen.
  • Bei dem eingangs erwähnten Applikationselement zur Applikation des Beschichtungsmittelstrahls kann es sich beispielsweise um eine feststehende Sprühdüse handeln. Der im Rahmen der Erfindung verwendete Begriff eines Applikationselements ist jedoch allgemein zu verstehen und umfasst beispielsweise auch Ultraschallzerstäuber, Airless-Geräte und Airmix-Geräte.
  • Vorzugsweise ist das Applikationselement jedoch ein drehbarer Glockenteller, der eine vorgegebene Glockentellerkante aufweist. Hierbei liegt zwischen der Hüllstromdüse und der Glockentellerkante vorzugsweise ein axialer Abstand von mehr als 5 mm und/oder weniger als 100 mm.
  • Der im Rahmen der Erfindung verwendete Begriff eines Applikationselements hat also die Bedeutung, dass mittels des Applikationselements ein Beschichtungsmittel (z.B. Nasslack oder Pulverlack) auf ein zu beschichtendes Bauteil (z.B. ein Kraftfahrzeugkarosserieteil) appliziert werden kann.
  • Weiterhin können die Hüllstromdüsen in Umfangsrichtung des Glockentellers angewinkelt sein und somit einen vorgegebenen Drallwinkel aufweisen, wobei die Hüllstromdüsen entweder in Drehrichtung des Glockentellers oder entgegen der Drehrichtung des Glockentellers angewinkelt sein können. Der Drallwinkel der Hüllstromdüsen kann hierbei im Bereich von 0-45° liegen, wobei wiederum beliebige Zwischenwerte möglich sind.
  • Ferner ist zu erwähnen, dass es sich bei dem erfindungsgemäßen Zerstäuber wahlweise um einen Pulverzerstäuber oder einen Nasslackzerstäuber handeln kann.
  • Darüber hinaus umfasst die Erfindung nicht nur den vorstehend beschriebenen erfindungsgemäßen Zerstäuber als einzelnes Bauteil, sondern auch eine Lackiereinrichtung (z.B. einen Lackierroboter oder eine Lackieranlage) mit einem derartigen Zerstäuber.
  • Die erfindungsgemäße Lackiereinrichtung weist zusätzlich zu dem Zerstäuber vorzugsweise eine Klimatisierungseinrichtung zur Klimatisierung des Hüllstroms auf, wobei die Klimatisierungseinrichtung stromabwärts mit der bzw. den Hüllstromdüsen verbunden ist. Beispielsweise kann die Klimatisierungseinrichtung einen herkömmlichen Lufterhitzer aufweisen, um den Luftstrom zu erwärmen. Weiterhin kann die Klimatisierungseinrichtung eine Kühleinrichtung aufweisen, die den Hüllstrom kühlt. Darüber hinaus besteht auch die Möglichkeit, dass die Klimatisierungseinrichtung eine Entfeuchtungseinrichtung aufweist, welche den Hüllstrom entfeuchtet. Die Klimatisierungseinrichtung kann also wie eine herkömmliche Klimaanlage aufgebaut sein.
  • Weiterhin umfasst die Erfindung ein Betriebsverfahren für einen erfindungsgemäßen Zerstäuber, bei dem zusätzlich zu der Abgabe eines Beschichtungsmittelstrahls ein klimatisierter Hüllstrom abgegeben wird, der den Beschichtungsmittelstrahl mindestens teilweise umgibt.
  • Im Rahmen des erfindungsgemäßen Betriebsverfahrens besteht die Möglichkeit, den Hüllstrom in Abhängigkeit von der räumlichen Lage der zu beschichtenden Bauteiloberfläche zu beeinflussen. So kann der applizierte Lack bei der Lackierung von vertikalen Bauteiloberflächen leichter verlaufen als bei der Lackierung von waagerechten Bauteiloberflächen, so dass der Festkörperanteil bei der Lackierung von vertikalen Bauteiloberflächen gegenüber der Lackierung von waagerechten Bauteiloberflächen erhöht werden sollte. Im Rahmen des erfindungsgemäßen Betriebsverfahrens wird deshalb vorzugsweise die räumliche Lage der zu beschichtenden Bauteiloberfläche ermittelt und der Hüllstrom in Abhängigkeit von der ermittelten räumlichen Lage beeinflusst. Anstelle der räumlichen Lage der zu beschichtenden Bauteiloberfläche kann auch die räumliche Lage des Zerstäubers ermittelt werden, da der Zerstäuber in der Regel entsprechend der räumlichen Lage der zu beschichtenden Bauteiloberfläche geführt wird.
  • Bei einer Verwendung eines mehrachsigen Lackierroboters kann die räumliche Lage des Zerstäubers wiederum aus den Positions-Steuersignalen der Robotersteuerung ermittelt werden.
  • In Abhängigkeit von der räumlichen Lage der zu beschichtenden Bauteiloberfläche und/oder des Zerstäubers kann dann die Temperatur, der Feuchtigkeitsgehalt und/oder der Volumenstrom des Hüllstroms beeinflusst werden.
  • Vorzugsweise wird hierbei bei einer Beschichtung einer im Wesentlichen vertikalen Bauteiloberfläche ein Hüllstrom mit einem geringeren Feuchtigkeitsgehalt, einer größeren Temperatur und/oder einem größeren Volumenstrom abgegeben als bei einer Beschichtung einer im Wesentlichen waagerechten Bauteiloberfläche.
  • Der Hüllstrom kann hierbei so eingestellt werden, dass der Festkörperanteil des Beschichtungsmittelstrahls zwischen der Abgabe an dem Applikationselement und dem Auftreffen auf der zu beschichtenden Bauteiloberfläche um mehr als 5%, 10%, 25% oder gar 50% zunimmt.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher erläutert. Es zeigen:
  • Figur 1
    eine schematische Darstellung eines erfindungsgemäßen Rotationszerstäubers mit zahlreichen Hüllstromdüsen,
    Figuren 2a und 2b
    schematische Darstellungen zur Variation des Hüllstroms bei einer Lackierung von vertikalen und waagerechten Bauteiloberflächen, sowie
    Figur 3
    ein stark vereinfachtes Blockschaltbild einer erfindungsgemäßen Lackiereinrichtung.
  • Figur 1 zeigt in vereinfachter Form einen Rotationszerstäuber 1, der weitgehend herkömmlich aufgebaut ist und beispielsweise zur Lackierung von Kraftfahrzeugkarosserieteilen eingesetzt werden kann.
  • Als Applikationselement weist der Rotationszerstäuber 1 einen herkömmlichen Glockenteller 2 auf, der um eine Glockentellerachse 3 drehbar gelagert ist und von einer Turbine 4 angetrieben wird. An der Glockentellerkante gibt der Glockenteller 2 einen Beschichtungsmittelstrahl 5 ab, wobei der Beschichtungsmittelstrahl 5 hier nur schematisch dargestellt ist.
  • Weiterhin weist der Rotationszerstäuber 1 zahlreiche innere Lenkluftdüsen 6 auf, die konzentrisch um die Glockentellerachse 3 angeordnet sind und einen inneren Lenkluftstrahl 7 auf die äußere Mantelfläche des Glockentellers 2 abgeben, wobei der innere Lenkluftstrahl 7 den Beschichtungsmittelstrahl 5 formt.
  • Darüber hinaus weist der Rotationszerstäuber 1 mehrere äußere Lenkluftdüsen 8 auf, über die ein äußerer Lenkluftstrahl 9 abgegeben wird, der den Beschichtungsmittelstrahl 5 zusätzlich formt.
  • Weiterhin weist der Rotationszerstäuber 1 zahlreiche Hüllstromdüsen 10 auf, die ebenfalls konzentrisch um die Glockentellerachse 3 angeordnet sind und einen klimatisierten Hüllstrom 11 abgeben, der den Beschichtungsmittelstrahl 5 mantelförmig umgibt und dadurch für definierte Abdunstbedingungen sorgt.
  • Beim Austreten aus den Hüllstromdüsen 10 reißt der austretenden Hüllstrom 11 einen Nebenstrom 12 von Umgebungsluft mit, wobei der mitgerissene Nebenstrom 12 0-50% des aus den Hüllstromdüsen 10 austretenden Hüllstroms 11 ausmacht.
  • Die Zuführung des Hüllstroms 11, des Beschichtungsmittels und der Lenkluft erfolgt durch einen Anschlussflansch 13, an den zwei getrennte Lenkluftleitungen 14, 15 angeschlossen werden können. Darüber hinaus können an den Anschlussflansch 13 Hüllstromleitungen 16, 17, 18 und eine optionale Hüllstromleitung 19 angeschlossen werden, um den klimatisierten Hüllstrom 11 dem Rotationszerstäuber 1 zuzuführen. Die Hüllstromleitungen 16-19 sind hierzu mit einem Lufterhitzer 20 und einem Luftmengenregler 21 verbunden, so dass der Volumenstrom und die Temperatur des Hüllstroms 11 variiert werden kann.
  • Die Zuführung des Hüllstroms 11 von dem Anschlussflansch 13 zu den Hüllstromdüsen 10 erfolgt durch eine Hüllstromdurchleitung zwischen einem Innengehäuse 22 und einem Außengehäuse 23 des Rotationszerstäubers 1.
  • In diesem Ausführungsbeispiel kann die Anzahl der Hüllstromdüsen 10 im Bereich von 20 bis 60 liegen, wobei die einzelnen Hüllstromdüsen 10 jeweils Düsenöffnungen mit einer Breite von 1-8 mm aufweisen.
  • Weiterhin ist zu erwähnen, dass der axiale Abstand zwischen den Hüllstromdüsen 10 und der Glockentellerkante des Glockentellers 2 zwischen 5 und 100 mm liegen kann.
  • Figur 2a zeigt schematisch die Lackierung einer vertikalen Bauteiloberfläche 24 durch den Rotationszerstäuber 1. Aufgrund der vertikalen Ausrichtung der Bauteiloberfläche 24 besteht aufgrund der auf die aufgebrachten Lackteilchen wirkenden Schwerkraft g die Gefahr von Läufern. Zur Vermeidung derartiger Läufer wird der Festkörperanteil des auf die vertikale Bauteiloberfläche 24 auftreffenden Beschichtungsmittelstrahls 5 gezielt erhöht, in dem die Temperatur T1 des Hüllstroms 11 von dem Lufterhitzer 20 (vgl. Fig. 1) gezielt erhöht wird. Dadurch enthält der auf die vertikale Bauteiloberfläche 24 auftreffende Beschichtungsmittelstrahl 5 weniger flüssige Lösemittelanteile und neigt deshalb weniger zum Verlaufen. Die stärkere Abdunstung der Lösemittelanteile aus dem Beschichtungsmittelstrahl 5 in den umgebenden Hüllstrom 11 ist hierbei durch Blockpfeile dargestellt.
  • In Figur 2b ist dagegen die Lackierung einer waagerechten Bauteiloberfläche 25 durch den Rotationszerstäuber 1 dargestellt. Aufgrund der waagerechten Ausrichtung der Bauteiloberfläche 25 ist die Gefahr eines Verlaufens des Beschichtungsmittels auf der Bauteiloberfläche 25 geringer, so dass weniger flüssige Lösemittelanteile aus dem Beschichtungsmittelstrahl 5 in den Hüllstrom 11 abdunsten müssen. Der Hüllstrom 11 weist deshalb bei der Lackierung der waagerechten Bauteiloberfläche 25 eine kleinere Temperatur T2<T1 als bei der Lackierung der vertikalen Bauteiloberfläche 24 auf.
  • Figur 3 zeigt in stark vereinfachter Form ein Blockschaltbild einer erfindungsgemäßen Lackiereinrichtung mit einer Robotersteuerung 26, die einen mehrachsigen Lackierroboter 27 mit Positions-Steuerdaten ansteuert, wobei der Lackierroboter 27 den Rotationszerstäuber 1 führt.
  • Die Positions-Steuerdaten werden von der Robotersteuerung 26 auch an eine Recheneinheit 28 weiter gegeben, die daraus die Neigung α der zu beschichtenden Bauteiloberfläche ermittelt.
  • Die Neigung α der Bauteiloberfläche wird dann an eine Hüllstromsteuerung 29 weiter gegeben, die den Hüllstrom 11 in Abhängigkeit von der Neigung α der Bauteiloberfläche beeinflusst. Hierzu steuert die Hüllstromsteuerung 29 einen Hüllstromtrockner 30, einen Hüllstromerhitzer 31 und ein Hüllstromventil 32 an. Der Hüllstrom 11 wird hierbei in Abhängigkeit von der Neigung α der zu beschichtenden Bauteiloberfläche so beeinflusst, dass ein Verlaufen des Beschichtungsmittels auf der Bauteiloberfläche verhindert wird. Hierzu wird der Hüllstrom bei einer Beschichtung von vertikal ausgerichteten Bauteiloberflächen stärker erwärmt und getrocknet als bei einer Beschichtung von waagerecht ausgerichteten Bauteiloberflächen.
  • Hierbei ist zu erwähnen, dass die Robotersteuerung 26, die Recheneinheit 28 und die Hüllstromsteuerung 29 in eine gemeinsame elektronische Steuereinheit 33 integriert sein können. Hierbei besteht auch die Möglichkeit, dass die Robotersteuerung 26, die Recheneinheit 28 und/oder die Hüllstromsteuerung 29 als Software-Module implementiert sind.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen.
  • Bezugszeichenliste:
  • 1
    Rotationszerstäuber
    2
    Glockenteller
    3
    Glockentellerachse
    4
    Turbine
    5
    Beschichtungsmittelstrahl
    6
    Innere Lenkluftdüsen
    7
    Innerer Lenkluftstrahl
    8
    Äußere Lenkluftdüsen
    9
    Äußerer Lenkluftstrahl
    10
    Hüllstromdüsen
    11
    Hüllstrom
    12
    Nebenstrom
    13
    Anschlussflansch
    14
    Lenkluftleitung
    15
    Lenkluftleitung
    16-19
    Hüllstromleitungen
    20
    Lufterhitzer
    21
    Luftmengenregler
    22
    Innengehäuse
    23
    Außengehäuse
    24
    Vertikale Bauteiloberfläche
    25
    Waagerechte Bauteilober
    26
    Robotersteuerung
    27
    Lackierroboter
    28
    Recheneinheit
    29
    Hüllstromsteuerung
    30
    Hüllstromtrockner
    31
    Hüllstromerhitzer
    32
    Hüllstromventil
    33
    Steuereinheit

Claims (28)

  1. Lackiereinrichtung mit einem Zerstäuber (1), insbesondere Rotationszerstäuber, mit
    a) einem Applikationselement (2) zur Applikation eines Beschichtungsmittelstrahls (5) auf ein zu beschichtendes Bauteil (24, 25),
    b) einem Zerstäubergehäuse,
    c) Lenkluftdüsen (6) zur Abgabe eines Lenkluftstrahls (7) zur Formung des Beschichtungsmittelstrahls (5),
    d) mindestens einer zusätzlich zu den Lenkluftdüsen (6) vorgesehenen und in dem Zerstäubergehäuse angeordneten Hüllstromdüse (10) zur Abgabe eines klimatisierten Hüllstroms (11), der den Beschichtungsmittelstrahl (5) auf seinem gesamten Umfang mantelförmig umgibt, wobei
    e) die mindestens eine Hüllstromdüse (10) von einer Hüllstromzuleitung gespeist wird, die innerhalb des Zerstäubergehäuses zwischen einem Innengehäuse (22) und einem Außengehäuse (23) verläuft, und
    f) zur Klimatisierung des Hüllstroms (11) eine Klimatisierungseinrichtung (20, 21, 30-32) mit einem Lufterhitzer stromabwärts mit der mindestens einen Hüllstromdüse (10) verbunden ist,
    g) und mit einem zur Montage des Zerstäubers (1) an einem Roboter vorgesehenen Anschlussflansch (13), durch den dem Zerstäuber das Beschichtungsmittel und die Lenkluft zugeführt werden,
    h) wobei der klimatisierte Hüllstrom (11) dem Zerstäuber (1) ebenfalls durch dessen Anschlussflansch (13) zugeführt wird.
  2. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Hüllstrom (11) relativ zu der Umgebungsluft
    a) erwärmt,
    b) gekühlt,
    c) getrocknet oder
    d) befeuchtet
    ist.
  3. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Hüllstromleitungen (16-19) mit einem Luftmengenregler (21) verbunden sind.
  4. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch äußere Lenkluftdüsen (8) zur Abgabe eines äußeren Lenkluftstrahls (9) zur Formung des Beschichtungsmittelstrahls (5).
  5. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 4, dadurch gekennzeichnet, dass die äußeren Lenkluftdüsen die Hüllstromdüsen bilden.
  6. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Hüllstromdüsen (10) zusätzlich zu den äußeren Lenkluftdüsen (8) vorgesehen sind.
  7. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Applikationselement
    a) eine feststehende Sprühdüse,
    b) ein Ultraschallzerstäuber,
    c) ein Airless-Gerät oder
    d) ein Airmix-Gerät ist.
  8. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Applikationselement (2) ein drehbarer Glockenteller ist, der eine vorgegebene Glockentellerkante aufweist.
  9. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 8, dadurch gekennzeichnet, dass zwischen der Hüllstromdüse (10) und der Glockentellerkante ein axialer Abstand von
    - mehr als 2, 5, 10, 15 mm und/oder
    - weniger als 150, 100, 75 oder 50 mm liegt.
  10. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass die Hüllstromdüsen (10) in Umfangsrichtung des Glockentellers angewinkelt sind und einen vorgegebenen Drallwinkel aufweisen.
  11. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Hüllstromdüsen (10) entweder
    a) in Drehrichtung des Glockentellers (2) oder
    b) entgegen der Drehrichtung des Glockentellers (2) angewinkelt sind.
  12. Lackiereinrichtung mit einem Zerstäuber (1) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Drallwinkel der Hüllstromdüsen (10) im Bereich von 0-45° liegt.
  13. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hüllstromdüsen (10) jeweils eine Düsenöffnung mit einer Breite von
    - mehr als 1, 2 oder 5 mm und/oder
    - weniger als 15, 10, 8 oder 6 mm aufweisen.
  14. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl der Hüllstromdüsen (10)
    - größer als 5, 10, 20, 30 und/oder
    - kleiner als 100, 60, 50 oder 40 ist.
  15. Lackiereinrichtung mit einem Zerstäuber nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hüllstromdüse eine ringförmig umlaufende Spaltdüse ist.
  16. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hüllstrom (11) mindestens teilweise aus einem der folgenden Gase besteht:
    a) Luft,
    b) einem anderen Gas als Luft mit einer größeren Wärmekapazität als Luft,
    c) einem anderen Gas als Luft mit einem größeren elektrischen Isolationsvermögen als Luft,
    d) einem anderen Gas als Luft mit einer höheren Feuchtigkeitssättigungsgrenze als Luft.
  17. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hüllstrom (11) unmittelbar an der Hüllstromdüse (10) eine Austrittstemperatur von
    - mehr als +30°C, +40°C oder +60°C und/oder
    - weniger als +200°C, +150°C, +100°C oder +75°C aufweist.
  18. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hüllstrom (11) einen Volumenstrom von
    - mehr als 250 l/min, 500 l/min, 750 l/min und/oder
    - weniger als 2500 l/min, 2000 l/min, 1500 l/min oder 1000 l/min aufweist.
  19. Lackiereinrichtung mit einem Zerstäuber (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zerstäubergehäuse (23) eine glatte Außenkontur aufweist.
  20. Betriebsverfahren für einen Zerstäuber (1), insbesondere für einen Rotationszerstäuber, mit den folgenden Schritten:
    a) Abgabe eines Beschichtungsmittelstrahls (5) auf ein zu beschichtendes Bauteil (24, 25) und
    b) Abgabe eines Lenkluftstrahls (7) zur Formung des Beschichtungsmittelstrahls (5)
    c) zusätzliche und gleichzeitige Abgabe eines klimatisierten Hüllstroms (11) durch mindestens eine in einem Zerstäubergehäuse angeordnete Hüllstromdüse (10), die von einer Hüllstromzuleitung gespeist wird, die innerhalb des Zerstäubergehäuses zwischen einem Innengehäuse (22) und einem Außengehäuse (23) verläuft,
    d) wobei zur Klimatisierungs des Hüllstroms (11) eine Klimatisierungseinrichtung (20, 21, 30-32) mit einem Lufterhitzer (20) stromabwärts mit der mindestens einen Hüllstromdüse (10) verbunden wird,
    e) der Hüllstrom (11) den Beschichtungsmittelstrahl (5) auf seinem gesamten Umfang mantelförmig umgibt,
    f) das Beschichtungsmittel und die Lenkluft dem Zerstäuber (1) durch einen zur Montage des Zerstäubers (1) an einem Roboter vorgesehenen Anschlussflansch (13) des Zerstäubers (1) zugeführt werden und
    g) der klimatisierte Hüllstrom (11) dem Zerstäuber (1) ebenfalls durch dessen Anschlussflansch (13) zugeführt wird.
  21. Betriebsverfahren nach Anspruch 20, dadurch gekennzeichnet, dass der Hüllstrom (11) im Rahmen der Klimatisierung
    a) erwärmt oder
    b) gekühlt und/oder
    c) getrocknet oder
    d) befeuchtet
    wird.
  22. Betriebsverfahren nach Anspruch 20 oder 21, gekennzeichnet durch folgende Schritte:
    a) Ermittlung eines Prozessparameters, der den Beschichtungsprozess beeinflusst,
    b) Beeinflussung des Hüllstroms (11) in Abhängigkeit von dem Prozessparameter.
  23. Betriebsverfahren nach Anspruch 22, dadurch gekennzeichnet, dass der Prozessparameter eine der folgende Größen ist:
    a) Räumliche Lage (α) der zu beschichtenden Bauteiloberfläche (24, 25),
    b) Typ des zu beschichtenden Bauteils (24, 25),
    c) Typ des zu applizierenden Beschichtungsmittels,
    d) Festkörperanteil des zu applizierenden Beschichtungsmittels und/oder
    e) Lösemittelanteil des zu applizierenden Beschichtungsmittels und/oder
    f) Räumliche Lage des Zerstäubers (1).
  24. Betriebsverfahren nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass in Abhängigkeit von dem Prozessparameter
    a) die Temperatur und/oder
    b) der Feuchtigkeitsgehalt und/oder
    c) der Volumenstrom
    des Hüllstroms (11) beeinflusst wird.
  25. Betriebsverfahren nach einem der Ansprüche 20 bis 24, gekennzeichnet durch folgende Schritte:
    a) Führung des Zerstäubers (1) mit einem Lackierroboter (27),
    b) Ansteuerung des Lackierroboters (27) mit Positions-Steuersignalen von einer Robotersteuerung (26), um die Position und die räumliche Lage des Zerstäubers (1) festzulegen,
    c) Ermittlung der räumlichen Lage (α) des Zerstäubers (1) aus den Positions-Steuersignalen der Robotersteuerung (26) .
  26. Betriebsverfahren nach einem der Ansprüche 20 bis 25, dadurch gekennzeichnet, dass bei einer Beschichtung einer im Wesentlichen vertikalen Bauteiloberfläche (24) ein Hüllstrom (11) mit
    a) einem geringeren Feuchtigkeitsgehalt und/oder
    b) einer größeren Temperatur und/oder
    c) einem größeren Volumenstrom
    abgegeben wird als bei einer Beschichtung einer im Wesentlichen waagerechten Bauteiloberfläche (25).
  27. Betriebsverfahren nach einem der Ansprüche 20 bis 26, dadurch gekennzeichnet, dass der Beschichtungsmittelstrahl (5) einen Festkörperanteil und einen Lösungsmittelanteil aufweist, wobei der Festkörperanteil des Beschichtungsmittelstrahls (5) zwischen der Abgabe an dem Applikationselement (2) und dem Auftreffen auf der zu beschichtenden Bauteiloberfläche (24, 25) durch partielles Abdunsten des Lösungsmittelanteils aus dem Beschichtungsmittelstrahl (5) in den Hüllstrom (11) zunimmt.
  28. Betriebsverfahren nach Anspruch 27, dadurch gekennzeichnet, dass der Festkörperanteil durch die partielle Abdunstung des Lösungsmittelanteils in den Hüllstrom (11) um mehr als 5%, 10%, 25% oder 50% zunimmt.
EP07007204.6A 2006-04-28 2007-04-05 Zerstäuber und zugehöriges Betriebsverfahren Active EP1849527B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19178996.5A EP3566779B1 (de) 2006-04-28 2007-04-05 Zerstäuber und zugehöriges betriebsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006019890A DE102006019890B4 (de) 2006-04-28 2006-04-28 Zerstäuber und zugehöriges Betriebsverfahren

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP19178996.5A Division EP3566779B1 (de) 2006-04-28 2007-04-05 Zerstäuber und zugehöriges betriebsverfahren

Publications (3)

Publication Number Publication Date
EP1849527A2 EP1849527A2 (de) 2007-10-31
EP1849527A3 EP1849527A3 (de) 2010-05-05
EP1849527B1 true EP1849527B1 (de) 2019-06-12

Family

ID=38283495

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07007204.6A Active EP1849527B1 (de) 2006-04-28 2007-04-05 Zerstäuber und zugehöriges Betriebsverfahren
EP19178996.5A Active EP3566779B1 (de) 2006-04-28 2007-04-05 Zerstäuber und zugehöriges betriebsverfahren

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19178996.5A Active EP3566779B1 (de) 2006-04-28 2007-04-05 Zerstäuber und zugehöriges betriebsverfahren

Country Status (5)

Country Link
US (1) US7971805B2 (de)
EP (2) EP1849527B1 (de)
JP (1) JP5548330B2 (de)
DE (1) DE102006019890B4 (de)
ES (2) ES2744815T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094842A1 (de) * 2021-05-28 2022-11-30 Graco Minnesota Inc. Rotationsglockenzerstäuber zur formung der luftkonfiguration, luftkappenvorrichtung und entsprechende methode

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019890B4 (de) * 2006-04-28 2008-10-16 Dürr Systems GmbH Zerstäuber und zugehöriges Betriebsverfahren
DE102007006547B4 (de) * 2007-02-09 2016-09-29 Dürr Systems GmbH Lenkluftring und entsprechendes Beschichtungsverfahren
FR2917309B1 (fr) * 2007-06-13 2013-10-25 Sames Technologies Projecteur rotatif de produit de revetement et installation comprenant un tel projecteur.
DE102007030724A1 (de) * 2007-07-02 2009-01-08 Dürr Systems GmbH Beschichtungseinrichtung und Beschichtungsverfahren mit konstanter Lenklufttemperatur
DE102007062132A1 (de) * 2007-12-21 2009-07-02 Dürr Systems GmbH Testverfahren und Testgerät zur Funktionsprüfung einer Lackiereinrichtung
JP5490369B2 (ja) * 2008-03-12 2014-05-14 ランズバーグ・インダストリー株式会社 回転式静電塗装装置及び塗装パターン制御方法
GB2469539B (en) * 2009-09-21 2011-03-09 Dau Binh Chiu Rotary device and method for transmitting material
DE102012001896A1 (de) * 2012-02-01 2013-08-01 Eisenmann Ag Rotationszerstäuber
JP5681779B1 (ja) * 2013-11-08 2015-03-11 ランズバーグ・インダストリー株式会社 静電塗装機
ITFI20130286A1 (it) * 2013-11-25 2015-05-26 Eurosider Sas Di Milli Ottavio & C Apparato automatico di verniciatura pneumatica.
US10076712B2 (en) 2014-09-11 2018-09-18 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
US9307841B2 (en) 2014-09-11 2016-04-12 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
JP6181094B2 (ja) * 2015-02-16 2017-08-16 トヨタ自動車株式会社 回転霧化型静電塗装機及びそのシェーピングエアリング
JP6669537B2 (ja) * 2015-04-17 2020-03-18 トヨタ車体株式会社 塗装装置及び塗装方法
KR101692347B1 (ko) * 2015-04-17 2017-01-03 주식회사 에스엠뿌레 분무기 및 분무조절장치
WO2019082456A1 (ja) * 2017-10-24 2019-05-02 日本精工株式会社 ノズル構造、ブロー装置、並びに部品、軸受、直動装置、操舵装置、車両及び機械装置の製造方法
US20210387213A1 (en) * 2021-05-28 2021-12-16 Graco Minnesota Inc. Rotory bell atomizer shaping air configuration and air cap apparatus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857511A (en) * 1973-07-31 1974-12-31 Du Pont Process for the spray application of aqueous paints by utilizing an air shroud
DE3001209C2 (de) * 1980-01-15 1985-07-25 Behr, Hans, 7000 Stuttgart Vorrichtung zum Vernebeln flüssiger Farbe, insbesondere Lackzerstäuber
JPS5892475A (ja) * 1981-11-27 1983-06-01 Asahi Okuma Ind Co Ltd 静電塗装機
DE3214314A1 (de) 1982-04-19 1983-10-20 J. Wagner AG, 9450 Altstätten Elektrostatische spruehvorrichtung
JPS59166859U (ja) * 1983-04-20 1984-11-08 松下電器産業株式会社 噴霧装置
US4936510A (en) * 1986-06-26 1990-06-26 The Devilbiss Company Rotary automizer with air cap and retainer
US4798341A (en) * 1987-09-28 1989-01-17 The Devilbiss Company Spray gun for robot mounting
JPH02277567A (ja) * 1989-04-20 1990-11-14 Nissan Motor Co Ltd 回転霧化式塗装装置
JP2510296B2 (ja) * 1989-09-29 1996-06-26 トリニティ工業株式会社 回転霧化式静電塗装機
JPH0631236A (ja) * 1992-07-13 1994-02-08 Toyota Motor Corp メタリック塗料の静電塗装方法
JPH06134353A (ja) * 1992-10-23 1994-05-17 Ransburg Automot Kk 静電塗装装置
JP3473718B2 (ja) * 1994-07-22 2003-12-08 日産自動車株式会社 回転霧化静電塗装方法および装置
JPH0899052A (ja) * 1994-09-29 1996-04-16 Abb Ransburg Kk 回転霧化頭型塗装装置
JPH08108103A (ja) * 1994-10-13 1996-04-30 Abb Ransburg Kk 回転霧化頭型塗装装置
JPH0938528A (ja) * 1995-08-01 1997-02-10 Abb Ind Kk 静電塗装方法およびその静電塗装装置
JPH09225350A (ja) * 1996-02-28 1997-09-02 Mazda Motor Corp 回転霧化塗装方法およびその装置
JP3365203B2 (ja) * 1996-04-17 2003-01-08 トヨタ自動車株式会社 回転霧化塗装装置
US6050499A (en) * 1996-12-03 2000-04-18 Abb K. K. Rotary spray head coater
DE19749072C1 (de) * 1997-11-06 1999-06-10 Herbert Huettlin Mehrstoffzerstäuberdüse
JP2000325860A (ja) * 1999-05-18 2000-11-28 Kansai Paint Co Ltd 塗装方法
FR2797789B1 (fr) * 1999-08-30 2001-11-23 Sames Sa Procede et dispositif de montage d'un sous-ensemble comprenant au moins un projecteur de produit de revetement sur une partie mobile d'un robot
JP4589513B2 (ja) * 2000-10-05 2010-12-01 関西ペイント株式会社 塗膜形成方法
JP2002355582A (ja) * 2001-05-31 2002-12-10 Nissan Motor Co Ltd 静電塗装装置
DE10202711A1 (de) * 2002-01-24 2003-07-31 Duerr Systems Gmbh Zerstäuber für die elektrostatische Serienbeschichtung von Werkstücken
JP2003236416A (ja) * 2002-02-20 2003-08-26 Abb Kk 回転霧化頭型塗装装置
DE10232863A1 (de) * 2002-07-16 2004-02-05 Hüttlin, Herbert, Dr.h.c. Zerstäubungsdüse mit rotativem Ringspalt
DE10233198A1 (de) * 2002-07-22 2004-02-05 Dürr Systems GmbH Rotationszerstäuber
DE10239517A1 (de) 2002-08-28 2004-03-11 Dürr Systems GmbH Beschichtungseinrichtung mit einem Rotationszerstäuber und Verfahren zum Steuern ihres Betriebes
US6889921B2 (en) * 2002-09-30 2005-05-10 Illinois Tool Works Inc. Bell cup skirt
US6929696B2 (en) * 2003-02-26 2005-08-16 Dubois Equipment Company, Inc. Apparatus and system for spray coating an article
DE10332863A1 (de) * 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
JP4409910B2 (ja) * 2003-10-31 2010-02-03 日本ペイント株式会社 スプレー塗装装置および塗装方法
JP2005278742A (ja) * 2004-03-29 2005-10-13 A & D Co Ltd 霧放出器
SE528093C2 (sv) 2004-05-18 2006-09-05 Lind Finance & Dev Ab Elanslutningar till målningsspindel
JP4568631B2 (ja) * 2005-03-30 2010-10-27 日産自動車株式会社 静電塗装機
DE102006019890B4 (de) * 2006-04-28 2008-10-16 Dürr Systems GmbH Zerstäuber und zugehöriges Betriebsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094842A1 (de) * 2021-05-28 2022-11-30 Graco Minnesota Inc. Rotationsglockenzerstäuber zur formung der luftkonfiguration, luftkappenvorrichtung und entsprechende methode

Also Published As

Publication number Publication date
ES2744815T3 (es) 2020-02-26
EP1849527A3 (de) 2010-05-05
US7971805B2 (en) 2011-07-05
EP3566779A1 (de) 2019-11-13
DE102006019890B4 (de) 2008-10-16
JP2007296520A (ja) 2007-11-15
US20070262170A1 (en) 2007-11-15
EP1849527A2 (de) 2007-10-31
DE102006019890A1 (de) 2007-11-15
JP5548330B2 (ja) 2014-07-16
ES2857835T3 (es) 2021-09-29
EP3566779B1 (de) 2020-12-02

Similar Documents

Publication Publication Date Title
EP1849527B1 (de) Zerstäuber und zugehöriges Betriebsverfahren
EP2285495B1 (de) Universalzerstäuber
EP2566627B1 (de) Beschichtungseinrichtung mit zertropfenden beschichtungsmittelstrahlen
DE102006054786A1 (de) Betriebsverfahren für einen Zerstäuber und entsprechende Beschichtungseinrichtung
EP0192854A1 (de) Spritzpistole für Beschichtungsmaterial
WO2005042170A1 (ja) スプレー塗装装置および塗装方法
WO2013178327A1 (de) Verfahren zum betreiben eines rotationszerstäubers, düsenkopf und rotationszerstäuber mit einem solchen
WO2009003602A1 (de) Beschichtungseinrichtung und beschichtungsverfahren mit konstanter lenklufttemperatur
EP2460591B1 (de) Düsenkopf und Rotationszerstäuber mit einem solchen
EP2758181B1 (de) Beschichtungsverfahren und beschichtungseinrichtung mit einer kompensation von unsymmetrien des sprühstrahls
DE3716776A1 (de) Nicht-leitender rotierender zerstaeuber
EP1384514B1 (de) Rotationszerstäuber und Lagereinheit hierfür
EP0695582B1 (de) Verfahren und Vorrichtung zum elektrostatischen und / oder pneumatischen Applizieren von flüssigen Überzugsmitteln auf leitfähige Substrate
EP0192028B1 (de) Verfahren zum Auftragen von Sprühgut mittels einer Sprühvorrichtung und zugehörige Sprühvorrichtung
DD266513A5 (de) Elektrostatische farbspritzpistole
EP1481733B1 (de) Glockenteller für Rotationzerstäuber
DE102021203315A1 (de) Kühlanordnung für ein Brennstoffzellensystem
DE516833C (de) Verfahren und Vorrichtung zum Spritzen
DE69833252T2 (de) Rotierende vorrichtung zur abgabe von teilchenförmigem material
EP4377016A1 (de) Glockenteller, rotationszerstäuber mit dem glockenteller, lackieranlage und entsprechendes lackierverfahren
DE102017116715A1 (de) Düsenkopf für einen Rotationszerstäuber zum Aufbringen eines Beschichtungsmaterials auf einen Gegenstand
DE202004007726U1 (de) Sprühvorrichtung zum Versprühen eines fließfähigen, flüssigen oder pastösen Sprühmittels, wie beispielsweise Fette, Öle, Farben u.dgl.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR SYSTEMS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20101022

17Q First examination report despatched

Effective date: 20101117

AKX Designation fees paid

Designated state(s): DE ES FR TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR SYSTEMS AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007016693

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05B0005040000

Ipc: B05B0005000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 12/18 20180101ALI20181123BHEP

Ipc: B05B 5/04 20060101ALI20181123BHEP

Ipc: B05B 5/00 20060101AFI20181123BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190108

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 12/18 20180101ALI20181123BHEP

Ipc: B05B 5/00 20060101AFI20181123BHEP

Ipc: B05B 5/04 20060101ALI20181123BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016693

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2744815

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200313

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 17

Ref country code: ES

Payment date: 20230627

Year of fee payment: 17

Ref country code: DE

Payment date: 20230420

Year of fee payment: 17