EP1802783B1 - Beschichtungsverfahren - Google Patents
Beschichtungsverfahren Download PDFInfo
- Publication number
- EP1802783B1 EP1802783B1 EP05815486A EP05815486A EP1802783B1 EP 1802783 B1 EP1802783 B1 EP 1802783B1 EP 05815486 A EP05815486 A EP 05815486A EP 05815486 A EP05815486 A EP 05815486A EP 1802783 B1 EP1802783 B1 EP 1802783B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanoparticles
- sol
- plasma
- coating
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 121
- 239000002105 nanoparticle Substances 0.000 claims abstract description 80
- 239000011248 coating agent Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000002347 injection Methods 0.000 claims abstract description 26
- 239000007924 injection Substances 0.000 claims abstract description 26
- 239000002103 nanocoating Substances 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000007921 spray Substances 0.000 claims abstract description 7
- 230000004888 barrier function Effects 0.000 claims abstract description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 22
- 239000002243 precursor Substances 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 239000002609 medium Substances 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- -1 metalloid salt Chemical class 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052752 metalloid Inorganic materials 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 239000002082 metal nanoparticle Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000012736 aqueous medium Substances 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 239000010948 rhodium Substances 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- 150000002738 metalloids Chemical class 0.000 claims description 3
- 229910015802 BaSr Inorganic materials 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910020684 PbZr Inorganic materials 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910010252 TiO3 Inorganic materials 0.000 claims 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 claims 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 2
- 229910004369 ThO2 Inorganic materials 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 claims 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 229910000421 cerium(III) oxide Inorganic materials 0.000 claims 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 claims 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 claims 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 91
- 239000002689 soil Substances 0.000 description 50
- 230000008569 process Effects 0.000 description 38
- 239000007788 liquid Substances 0.000 description 34
- 239000000243 solution Substances 0.000 description 24
- 235000010599 Verbascum thapsus Nutrition 0.000 description 21
- 238000000151 deposition Methods 0.000 description 18
- 239000000126 substance Substances 0.000 description 15
- 230000008021 deposition Effects 0.000 description 14
- 239000000499 gel Substances 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 230000006641 stabilisation Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 150000004703 alkoxides Chemical class 0.000 description 8
- 238000011105 stabilization Methods 0.000 description 8
- 238000004627 transmission electron microscopy Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 244000178289 Verbascum thapsus Species 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 238000007750 plasma spraying Methods 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910016853 F4 VB Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 241001639412 Verres Species 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/123—Spraying molten metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- the present invention relates to a method for coating a surface of a substrate with nanoparticles, a nanostructured coating obtainable by this method, and a device for implementing the process of the invention. invention.
- the present invention also relates to optical, mechanical, chemical, electronic and energetic devices comprising a nanostructured coating obtainable by the method of the invention.
- Nanostructured materials are defined as materials having nanoscale organization, i.e. on a scale ranging from a few nm to a few hundred nm. This size domain is where the characteristic lengths of the various physical, electronic, magnetic, optical, superconductivity, mechanical, and other processes are found. and where the surface plays a predominant role in these processes, which gives these "nanomaterials" specific and often exalted properties. Because of these characteristics, these materials offer real potential in the construction of new high-performance buildings with specific properties.
- nanostructures makes it possible to develop innovative materials and offers the possibility of exploiting them in many different ways. areas such as optics, electronics, energy, etc. These nanomaterials offer undeniable fundamental benefits and important application and application potential in various future technologies such as fuel cells, "smart” coatings, resistant materials (thermal barrier).
- the present invention makes it possible to develop new nanostructured coatings by a simple and easily industrializable process, and opens these technologies to manufacturers.
- the essence of the "nano" concept is self-assembly, which leads complex molecules to form larger heterogeneous aggregates, capable of performing a sophisticated function or of constituting a material with unprecedented properties.
- the inventors of the present are interested in plasma projection. It's about a a technique used in research laboratories and in industry to make deposits of ceramic, metallic or cermet materials, or polymers and combinations of these materials on different types of substrates (shape and nature). Its principle is as follows: the material to be deposited is injected dry in the plasma jet in the form of particles, average diameter generally greater than 5 microns, using a carrier gas. In this medium, the particles are melted totally or partially and accelerated to a substrate where they come to pile up.
- the layer thus formed of thickness generally greater than 100 microns, has a strongly anisotropic lamellar structure characteristic of deposits made by plasma spraying. These techniques therefore do not make it possible to form nanoparticle coatings or coatings with thicknesses of less than 100 ⁇ m, up to a few microns.
- the coatings obtained have the disadvantage of being micro-cracked, especially in the case of ceramics deposits, fragile materials that relax the internal stresses.
- the coating obtained has a lamellar structure which strongly conditions its thermomechanical properties, which therefore clearly limits, a priori, the potential applications of the plasma projection.
- Kear et al propose the injection of a solution containing agglomerates of nanostructured powders in the form of a spray in a plasma.
- the use of a spray imposes different stages so that the size of the particles to be injected is sufficiently large (of the order of one micron) to penetrate into the plasma: drying of the solution containing small particles, agglomeration of these particles with a binder and colloidal suspension agglomerates larger than one micron.
- This method requires ultrasonic assistance or the use of dispersants, for example surfactants, to maintain the dispersion of the particles in suspension in the liquid.
- sol-gel deposition processes particularly in the field of optics. These processes usually use liquid deposition methods such as spin-coating, laminar coating, dip-coating, aerosol spray ("spray-coating"). These different techniques lead to thin layers whose thickness is generally less than one micron. Some of these deposition methods make it possible to coat large surfaces, for example from a few hundred cm 2 to a few m 2 , which is an advantage.
- the coatings obtained by these processes crack beyond critical micron thicknesses.
- the main cause of this major defect lies in the stress of voltage applied by the substrate during heat treatments necessary for their development.
- Another disadvantage lies in the impossibility of depositing homogeneous coatings having a good adhesion, even for thicknesses greater than about 150 nm.
- EP-A1-1 134 302 discloses a method for preparing nanoparticle films by thermal spraying techniques such as plasma spraying wherein a nanocompartmentalized solution of a metallic material is used as a filler.
- said nanocompartmentalized solution is or may be a colloidal sol in which nanoparticles of a metal oxide are dispersed and stabilized.
- the object of the present invention is precisely to provide a method for forming a nanostructured coating that meets the needs indicated above and provides a solution to all of the aforementioned drawbacks.
- the object of the present invention is still to provide a coating of nanoparticles which does not have the drawbacks, defects and disadvantages of the coatings of the prior art, and which can be used in optical, mechanical, chemical, electronic and microsystem devices and microsystems. energy present and future with excellent performance.
- the process of the invention is a process for coating a surface of a substrate with nanoparticles, characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a thermal plasma jet which projects them onto said surface .
- the inventors are the first to solve the aforementioned drawbacks of prior art techniques relating to plasma deposition by this method. Compared to the old techniques, it consists in particular to replace the injection gas in the dry process with a carrier liquid consisting of a colloidal sol. The projected particles are thus stabilized in a liquid medium before being accelerated in a plasma.
- the method of the present invention also allows, unexpectedly, the preservation of the nanostructural properties of the projected material, by thermal projection of a stabilized suspension (sol) of nanoscale particles.
- the method of the invention makes it possible to avoid the use of stabilizing additives such as dispersants or surfactants as in the processes of the prior art, and / or the essential use of additional dispersing means such as ultrasound atomization, mechanical agitation, etc. during the projection phase.
- the present invention therefore makes it possible at the same time to preserve the purity of the projected material and to simplify the method of implementation. It is also notably thanks to the use of a soil that the aggregation of the nanoparticles is limited, and that the process of the invention results in a homogeneous nanostructured coating.
- the inventors exploit the singular advantage of soils-gels to offer a very large number of physicochemical pathways for obtaining stable colloidal suspensions and nanoparticles.
- the soft chemistry of constitution of the soils-gels makes it possible in particular to synthesize, from very numerous inorganic or organometallic precursors, a plurality of different metal oxides.
- the present invention also uses the advantageous property of soils-gels to allow the synthesis of inorganic particles of different crystalline phases, in the same soil, for example using the hydrothermal route or in milder conditions.
- the nucleation of the particles takes place in a liquid medium.
- preferred conditions of the process of the invention make it possible to further limit or even avoid segregations of nanoparticles, concentration gradients or sedimentations.
- plasma projection conditions as well as soil injection protocols allow to act on the quality of the nanoparticle coating formed, and, according to various examples presented below, can further improve the quality and to refine the conservation of the properties of the particles of the colloidal sol within the coating material.
- the substrate may be organic, inorganic or mixed (that is to say organic and inorganic on the same surface). Preferably it supports the operating conditions of the process of the invention. It may consist for example of a material chosen from semiconductors such as silicon; organic polymers such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC); metals such as gold, aluminum and silver; the glasses ; inorganic oxides, for example layered, such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , Ta 2 O 5 , MgO, etc. ; and composite or mixed materials comprising several of these materials.
- semiconductors such as silicon
- organic polymers such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC)
- metals such as gold, aluminum and silver
- the surface of the substrate to be coated will optionally be cleaned in order to remove organic and / or inorganic contaminants which could prevent the deposition or even the attachment of the coating to the surface and improve the adhesion of the coating.
- the cleaning used depends on the nature of the substrate and can be selected from the physical, chemical or mechanical processes known to those skilled in the art.
- the cleaning process may be chosen from immersion in an organic solvent and / or washing detergent and / or etching assisted by ultrasound; these cleanings being eventually followed by rinsing with tap water, then rinsing with deionized water; these rinses being optionally followed by drying by "lift-out", by a spray of alcohol, by a jet of compressed air, with hot air, or by infrared rays.
- Cleaning can also be a cleaning by ultraviolet rays.
- nanoparticles particles of nanometric size, generally ranging from 1 nm to a few hundred nanometers. The term “particles” is also used.
- a "sol-gel process” means a series of reactions where soluble metal species hydrolyze to form a metal hydroxide.
- the sol-gel process involves a hydrolysis-condensation of metal precursors (salts and / or alkoxides) allowing easy stabilization and dispersion of particles in a growth medium.
- Soil is a colloidal system in which the dispersion medium is a liquid and the dispersed phase is a solid. Soil is also called “colloidal sol-gel solution” or “colloidal sol.” The nanoparticles are dispersed and stabilized thanks to the colloidal sol.
- the sol can be prepared by any method known to those skilled in the art. We will of course prefer the processes that make it possible to obtain a greater homogeneity of size of the nanoparticles, as well as a greater stabilization and dispersion of the nanoparticles.
- the methods for preparing the sol-gel colloidal solution described herein include the various conventional methods for synthesizing nanoparticles dispersed and stabilized in a liquid medium.
- the sol can be prepared for example by precipitation in an aqueous medium or by sol-gel synthesis in an organic medium from a precursor of nanoparticles.
- the document [10] describes examples of this route of preparation by sol-gel synthesis in organic medium, with different precursors (metalloid salts, metal salts, metal alkoxides), usable in the present invention.
- the nanoparticles can directly be stabilized in the solvent used during the synthesis or subsequently peptized if they are synthesized by precipitation. In both cases the suspension obtained is a soil.
- the nanoparticle precursor is typically selected from the group consisting of a metalloid salt, a metal salt, a metal alkoxide, or a mixture thereof.
- the metal or metalloid of the salt or alkoxide precursor of nanoparticles may be chosen for example from the group comprising silicon, titanium, zirconium, hafnium, aluminum, tantalum, niobium, cerium , nickel, iron, zinc, chromium, magnesium, cobalt, vanadium, barium, strontium, tin, scandium, indium, lead, yttrium, tungsten, manganese, gold, silver, platinum, palladium, nickel, copper, cobalt, ruthenium, rhodium, europium and other rare earths, or a metal alkoxide of these metals.
- the reducing agent may be chosen for example from those cited in the abovementioned documents, for example in the group comprising polyols, hydrazine and its derivatives, quinone and its derivatives, hydrides, alkali metals, cysteine and its derivatives, ascorbate and its derivatives.
- the precursor of metal nanoparticles can be chosen for example from those cited in the aforementioned documents, for example in the group comprising the salts of metalloids or metals such as gold, silver, platinum, palladium, nickel, copper, cobalt, aluminum, ruthenium or rhodium or the various metal alkoxides of these metals.
- the sol may be prepared by preparing a mixture of nanoparticles dispersed in a solvent, each family may be derived from the preparations described in documents [8], [9], [10] and Example 2 below.
- the soil used in the process of the present invention may comprise, for example, nanoparticles of a metal oxide selected from the group consisting of SiO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , HfO 2 , ThO 2 , SnO 2 , VO 2 , In 2 O 3 , CeO 2 , ZnO, Nb 2 O 5 , V 2 O 5 , Al 2 O 3 , Sc 2 O 3 , Ce 2 O 3 , NiO, MgO, Y 2 O 3 , WO 3 , BaTiO 3 , Fe 2 O 3 , Fe 3 O 4 , Sr 2 O 3 , (PbZr) TiO 3 , (BaSr) TiO 3 , CO 2 O 3 , Cr 2 O 3 , Mn 2 O 3 , Mn 3 O 4 , Cr 3 O 4 , MnO 2 , RuO 2 or a combination of these oxides, for example by doping the particles or by mixing the particles.
- the sol may comprise, for example, metallic nanoparticles of a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium or rhodium, or a mixture of different metallic nanoparticles made of these metals.
- a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium or rhodium, or a mixture of different metallic nanoparticles made of these metals.
- this list is not exhaustive since it includes all the metal oxides described in the aforementioned documents.
- the size of the nanoparticles of the soil obtained is perfectly controlled by its synthesis conditions, in particular by the nature of the precursors used, the solvent (s), the pH, the temperature, etc. and can range from a few angstroms to a few microns. This control of the particle size in the preparation of the soil is described for example in document [12].
- the nanoparticles preferably have a size of 1 to 100 nm, this especially in order to be able to achieve thin layers or coatings, for example with a thickness ranging from 0.1 to 50 ⁇ m.
- the soil also comprises a carrier liquid, which comes from its manufacturing process, called growth medium.
- This carrier liquid is an organic or inorganic solvent such as those described in the aforementioned documents. It may be for example a liquid selected from water, alcohols, ethers, ketones, aromatics, alkanes, halogens and any mixture thereof.
- the pH of this carrier liquid depends on the soil manufacturing process and its chemical nature. It is usually from 1 to 14.
- the nanoparticles are dispersed and stabilized in their growth medium, and this stabilization and / or dispersion can be promoted by the soil preparation process and the chemistry used (see above).
- the process of the present invention takes advantage of this property of soils.
- the sol may further comprise organic molecules. It may be, for example, molecules for stabilizing the nanoparticles in the soil and / or molecules that functionalize the nanoparticles.
- an organic compound can be added to the nanoparticles to give them a particular property.
- the stabilization of these nanoparticles in liquid medium by steric effect leads to materials called organic-inorganic hybrid materials of class I.
- the interactions which regulate the stabilization of these particles are weak of electrostatic nature of hydrogen bonds or Van Der Waals type.
- Such compounds usable in the present invention, and their effect on soils, are described for example in documents [13] and Example 2 below.
- the particles can be functionalized with an organic compound either during synthesis by introduction of suitable organomineral precursors, or by grafting on the surface of the colloids. Examples have been given above. These materials are then called organic-inorganic class II materials since the interactions between the organic component and the mineral particle are strong, of a covalent or ionocovalent nature. Such materials and their method of production are described in document [13].
- the properties of the hybrid materials that can be used in the present invention depend not only on the chemical nature of the organic and inorganic components used to form the soil, but also on the synergy that can appear between these two chemistries.
- Document [13] describes the effects of the chemical nature of the organic and inorganic components used and of such synergies.
- the method of the invention comprises injecting the colloidal sol in a jet or flow of thermal plasma.
- the injection of the ground into the plasma jet can be carried out by any appropriate means of injecting a liquid, for example by means of an injector, by example in the form of jet or drops, preferably with a momentum adapted to be substantially identical to that of the plasma flow. Examples of injectors are given below.
- the temperature of the soil during its injection may range, for example, from room temperature (20 ° C.) to a temperature below its boiling point.
- it is possible to control and modify the temperature of the soil for its injection for example to be from 0 ° C. to 100 ° C.
- the soil then has a different surface tension, depending on the temperature imposed, resulting in a more or less rapid and efficient fragmentation mechanism when it arrives in the plasma.
- the temperature can therefore have an effect on the quality of the coating obtained.
- the injected soil for example in the form of drops, enters the plasma jet, where it is exploded into a multitude of droplets under the effect of plasma shear forces.
- the size of these droplets can be adjusted according to the desired microstructure of the deposit, depending on the properties of the soil (liquid) and the plasma flow.
- the size of the droplets ranges from 0.1 to 10 ⁇ m.
- the kinetic and thermal energies of the plasma jet serve respectively to disperse the drops in a multitude of droplets (fragmentation), then to vaporize the liquid.
- the liquid soil reaches the jet core, which is a medium at high temperature and high speed, it is vaporized and the nanoparticles are accelerated to be collected on the substrate to form a nanostructured deposit (coating) having a crystalline structure identical to that of the particles initially present in the starting soil.
- the vaporization of the liquid brings about the bringing together of fine nanoparticles of material belonging to the same droplet and their agglomeration.
- the resulting agglomerates are found in the heart of the plasma where they are melted, partially or totally, then accelerated before being collected on the substrate. If the agglomerate fusion is complete, the grain size in the deposit is a few hundred nanometers to a few microns. On the other hand, if the melting is only partial, the size of the grains in the deposit is close to that of the particles contained in the starting liquid and the crystalline properties of the particles are well preserved within the deposit.
- thermal plasmas are plasmas producing a jet having a temperature of 5000 K to 15000 K. In the implementation of the method of the invention, this temperature range is preferred.
- the temperature of the plasma used for the projection of the ground on the surface to be coated may be different. It will be chosen according to the chemical nature of the soil and the desired coating. According to the invention, the temperature will be chosen so as to be preferentially in a configuration of partial or total melting of the particles of the soil, preferably partial melting to best preserve their starting properties within the layer.
- the plasma may be for example an arc plasma, blown or not, or an inductive or radiofrequency plasma, for example in supersonic mode. It can operate at atmospheric pressure or at lower pressure.
- the documents [14], [15] and [16] describe plasmas that can be used in the present invention, and the plasma torches making it possible to generate them.
- the plasma torch used is an arc plasma torch.
- the plasma jet may advantageously be generated from a plasmagenic gas chosen from the group comprising Ar, H 2 , He and N 2 .
- the jet of plasma constituting the jet has a viscosity of 10 -4 to 5 ⁇ 10 -4 kg / ms
- the plasma jet is an arc plasma jet.
- the substrate to be coated is, for obvious reasons, preferentially positioned relative to the plasma jet so that the projection of the nanoparticles is directed on the surface to be coated. Different tests make it very easy to find an optimal position. The positioning is adjusted for each application, according to the selected projection conditions and the microstructure of the desired deposit.
- the rate of growth of the deposits depends essentially on the mass percentage of material in the liquid and the flow of liquid. With the method of the invention, it is possible easily obtain a coating deposition rate of nanoparticles of 1 to 100 microns / min.
- the thin layers or coatings which can be obtained by the process of the invention may consist of grains of smaller size or of the order of one micron. They can be dense or porous. They can be pure and homogeneous.
- the synthesis of a stable and homogeneous sol-gel solution of nanoparticles of defined particle size associated with the liquid plasma spraying method of the invention makes it possible to preserve the intrinsic properties of the starting sol within the deposit and to obtain a nanostructured coating in advantageously controlling the properties following porosity / density; homogeneity in composition; "exotic" stoichiometry (mixed soils and mixtures); nanometric structure (size and crystalline phases); granulometry of the grains; thickness of the homogeneous deposit on object with a complex shape; possibility of deposit on all types of substrates, whatever their nature and their roughness.
- the process of the invention may be carried out several times on the same substrate surface, with different soils - in composition and / or in concentration and / or in particle size - to produce successive layers of different materials or deposits with compositional gradients.
- These deposits of successive layers are useful for example in applications such as layers with electrical properties (electrode and electrolyte), layers with optical properties (low and high refractive index), thermal property layers (conductive and insulating), diffusion barrier layers and / or controlled porosity layers.
- the projection method of the present invention is easily industrializable since its specificity and its innovative character reside in particular in the injection system which can adapt to all thermal spray machines already present in the industry; in the nature of the sol-gel solution; and in the choice of plasma conditions for obtaining a nanostructured coating having the properties of the projected particles.
- the plasma torch is capable of producing a plasma jet having a temperature of 5000 K to 15000 K.
- the plasma torch is capable of producing a plasma jet having a viscosity of 10 -4 to 5 ⁇ 10 - 4 kg / ms
- the plasma torch is an arc plasma torch. Examples of plasmagenic gases are given above, the reservoirs of these gases are commercially available. The reasons for these advantageous choices are outlined above.
- the device that can be used for carrying out the process of the invention comprises several reservoirs respectively containing several sols loaded with nanoparticles, the sols being different from each other by their composition and / or diameter and / or concentration.
- the device may further comprise a cleaning tank containing a solution for cleaning the piping and the injector.
- the piping and the injector can be cleaned between each implementation of the process.
- the injector makes it possible to inject the ground into the plasma. It is preferably such that the injected soil mechanically fragments at the outlet of the injector in the form of drops as indicated above.
- the hole of the injector may be of any form for injecting the colloidal sol in the plasma jet, preferably under the aforementioned conditions.
- the hole is circular.
- the hole of the injector has a diameter of 10 to 500 ⁇ m.
- the device may be provided with several injectors, for example according to the quantities of soil to be injected.
- the inclination of the injector relative to the longitudinal axis of the plasma jet can vary from 20 to 160 °.
- the injector can be moved in the longitudinal direction of the plasma jet. These movements are indicated schematically on the figure 2 attached.
- the injection of the colloidal sol in the plasma jet can be oriented. This orientation makes it possible to optimize the injection of the colloidal sol, and thus the formation of the projected coating on the surface of the substrate.
- the soil injection line may be thermostatically controlled to control and possibly modify the temperature of the injected soil. This temperature control and this modification can be carried out at the level of the pipes and / or at the level of the tanks.
- the device may comprise means for fixing and moving the substrate relative to the plasma torch.
- This means may consist of clamps or equivalent system for gripping (securing) the substrate and maintaining it during the plasma projection at a selected position, and means for moving in rotation and in translation the surface of the substrate facing the plasma jet and in the longitudinal direction of the plasma jet.
- Direct injection can be achieved by means of a well-adapted injection system, for example using the device described above, of a stable suspension of nanoparticles, a solution called "sol" since it results from the synthesis of a colloid by sol-gel process involving the hydrolysis condensation of metal precursors (salts or alkoxides) allowing stabilization and easy dispersion of particles in their growth medium.
- a solution called "sol” since it results from the synthesis of a colloid by sol-gel process involving the hydrolysis condensation of metal precursors (salts or alkoxides) allowing stabilization and easy dispersion of particles in their growth medium.
- the present invention thus also relates to an optical and / or electronic device comprising a nanostructured coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.
- the present invention thus also relates to a fuel cell comprising a nanostructured coating obtainable by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the process of the invention. 'invention.
- the present invention therefore also relates to a thermal barrier comprising a coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.
- aqueous sol of zirconia (ZrO 2 ) at 10% is injected into an argon-hydrogen blown arc plasma (75% by volume of Ar).
- the injection system comprises a reservoir (R) containing the colloidal sol (7) and a cleaning tank (N), containing a cleaning liquid (L) of the injector and the pipe (v). It also includes pipes (v) for conveying liquids from the tanks to the injector (I), pressure regulators (m) allowing to adjust the pressure in the tanks (pressure ⁇ 2x10 6 Pa).
- the assembly is connected to a compression gas (G), here air, to create in the pipes a network of compressed air. Under the effect of pressure, the liquid is conveyed to the injector.
- G compression gas
- the diameter of the outlet orifice (t) of the injector (I) is 150 ⁇ m and the pressure in the reservoir (R) containing the soil is 0.4 MPa, which involves a liquid flow of 20 ml / min and a speed of 16 m / s.
- the soil exits the injector in the form of a jet of liquid that mechanically fragments in the form of large drops of calibrated diameter ranging from 2 microns to 1 mm, on average two times greater than the diameter of the circular exit hole.
- the injector ( figure 2 ) can be inclined with respect to the axis of the plasma jet from 20 to 160 °. In the tests, a 90 ° inclination was used.
- the average diameter of the crystallites, observed in transmission electron microscopy, is about 9 nm as shown by the photographs of the figure 4 (see example 2 below).
- the zirconia deposits from the plasma projection are obtained at 70 mm from the intersection between the jet of liquid and the plasma jet.
- Different types of substrates have been tested to be coated: aluminum plates, silicon wafers or glass plates.
- the deposition rate was 0.3 ⁇ m each time the torch passed the substrate.
- the thickness of the deposits obtained was between 4 ⁇ m and 100 ⁇ m.
- the size of the crystals in the coating (deposit) is between 10 and 20 nm; it is very close to that of particles of the starting soil.
- TEM Transmission electron microscopy
- the surface condition of the substrate does not interfere with the adhesion of the plasma deposit.
- Example 1 The zirconia sol of Example 1, having specific properties of the present invention (dispersion and stabilization), is projected into a plasma jet as described in Example 1.
- This zirconia sol consists of crystalline nanoparticles in the monoclinic phase and in the quadratic phase. A size distribution was made from transmission electron microscopy (TEM) micrographs of the zirconia sol. The average diameter of the zirconia particles is 9 nm. The right photograph on the figure 4 annexed presents a photograph taken by transmission electron microscopy on this zirconia sol used. The line at the bottom left indicates the scale of the shot. This line represents 10 nm in the photograph.
- TEM transmission electron microscopy
- the deposition carried out by plasma spraying of said sol according to the process of the invention consists, according to the surface and thickness transmission microscopy (TEM) analysis, of zirconia nanoparticles of morphology similar to those of starting and average diameter of 10 nm. These measures are deductible from Figures 6a and 6b attached.
- the line at the bottom right of these snapshots indicates the scale of the snapshot. This line represents 100 nm on the top photograph ( figure 6a ), and 50 nm on the bottom photograph ( figure 6b ).
- the zirconia sol like the zirconia deposit resulting from this sol, has crystallites of identical diameter and crystallized according to the same two monoclinic and quadratic phases.
- the following table shows the distribution in% of these crystalline phases present in the zirconia sol and the zirconia deposit, as well as their size.
- Materials Distribution of crystalline phases Sizes of crystallites monoclinic Quadratic monoclinic Quadratic Sol ZrO 2 65% 35% 11.8 nm 8.9 nm ZrO 2 deposit 61% 39% 12 nm 8.9 nm
- This example illustrates one of the many modes of preparation of a nanoparticle sol that can be used to implement the present invention.
- Transmission electron microscopy observations reveal an average colloid diameter of about 10 nm.
- the X-ray pattern is characteristic of that of titanium oxide in anatase form.
- the pH of this sol is about 2 and the mass concentration of TiO 2 is brought to 10% by distillation (100 ° C, 10 5 Pa).
- the colloidal solution of nanoparticles can be filtered, for example to 0.45 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inert Electrodes (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Coating By Spraying Or Casting (AREA)
- Chemically Coating (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Medicinal Preparation (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Claims (22)
- Verfahren zum Beschichten einer Substratoberfläche mit Nanoteilchen, dadurch gekennzeichnet, dass es die Zuführung eines kolloidalen Sols, in dem diese Nanoteilchen dispergiert und stabilisiert sind, in einen thermischen Plasmastrahl, der sie auf diese Oberfläche spritzt, umfasst; dass diese Nanoteilchen Nanoteilchen aus einem Metalloxid sind, das aus der Gruppe ausgewählt ist, die SiO2, ZrO2, TiO2, Ta2O5, HfO2, ThO2, SnO2, VO2, In2O3, CeO2, ZnO, Nb2O5, V2O5, Al2O3,, Sc2O3, Ce2O3, NiO, MgO, Y2O3, WO3, BaTiO3, Fe2O3, Fe3O4, Sr2O3, (PbZr)TiO3, (BaSr)TiO3, Co2O3, Cr2O3, Mn2O3, Mn3O4, Cr3O4, MnO2, RuO2 oder eine Kombination dieser Oxide durch Dotierung der Teilchen oder durch Mischung umfasst, und dass diese Nanoteilchen während ihrer Synthese in dem verwendeten Lösungsmittel direkt stabilisiert oder anschließend an ihre Synthese peptisiert worden sind.
- Verfahren gemäß Anspruch 1, bei dem die Nanoteilchen eine Größe von 1 bis 100 nm aufweisen.
- Verfahren gemäß Anspruch 1, bei dem das Sol durch Fällen in wässrigem Medium oder durch Sol-Gel-Synthese in einem organischen Medium aus einem Nanoteilchenvorläufer hergestellt wird.
- Verfahren gemäß Anspruch 3, bei dem der Nanoteilchenvorläufer aus der Gruppe ausgewählt ist, die ein Metalloidsalz, ein Metallsalz, ein Metallalkoxid oder ein Gemisch daraus umfasst.
- Verfahren gemäß Anspruch 4, bei dem das Metall oder Metalloid des Nanoteilchenvorläufersalzes oder-alkoxids aus der Gruppe ausgewählt ist, die Silizium, Titan, Zirkonium, Hafnium, Aluminium, Tantal, Niobium, Zerium, Nickel, Eisen, Zink, Chrom, Magnesium, Kobalt, Vanadium, Barium, Strontium, Zinn, Scandium, Indium, Blei, Yttrium, Wolfram, Mangan, Gold, Silber, Platin, Palladium, Nickel, Kupfer, Kobalt, Ruthenium, Rhodium, Europium und die anderen Seltenen Erden.
- Verfahren gemäß Anspruch 1, bei dem das Sol ein gemischtes Sol ist.
- Verfahren gemäß Anspruch 1, bei dem das Sol außerdem Metallnanoteilchen eines Metalls umfasst, das aus der Gruppe ausgewählt ist, die Gold, Silber, Platin, Palladium, Nickel, Ruthenium oder Rhodium oder ein Gemisch verschiedener, sich aus diesen Metallen zusammensetzender Metallnanoteilchen umfasst.
- Verfahren gemäß Anspruch 1, bei dem das Sol außerdem organische Moleküle umfasst.
- Verfahren gemäß Anspruch 8, bei dem die organischen Moleküle Moleküle zur Stabilisierung der Nanoteilchen in dem Sol und/oder die Nanoteilchen funktionalisierende Moleküle sind.
- Verfahren gemäß Anspruch 1, bei dem das kolloidale Sol in Tropfenform in den Plasmastrahl eingespritzt wird.
- Verfahren gemäß Anspruch 1, bei dem der Plasmastrahl ein Lichtbogenplasmastrahl ist.
- Verfahren gemäß Anspruch 1, bei dem der Plasmastrahl solcherart ist, dass er ein teilweises Schmelzen der eingespritzten Nanoteilchen bewirkt.
- Verfahren gemäß Anspruch 1, bei dem das den Strahl bildende Plasma eine Temperatur von 5000 K bis 15000 K aufweist.
- Verfahren gemäß Anspruch 1, bei dem das den Strahl bildende Plasma eine Viskosität von 10-4 bis 5x10-4 kg/m.s aufweist.
- Verfahren gemäß Anspruch 1, bei dem der Plasmastrahl aus einem plasmabildenden Gas erzeugt wird, das aus der Ar, H2, He und N2 umfassenden Gruppe ausgewählt ist.
- Verfahren gemäß einem der vorangehenden Ansprüche, bei dem die Beschichtung eine Beschichtung mit Nanostruktur ist.
- Verfahren gemäß Anspruch 16, bei dem die Beschichtung eine Dicke von 0,1 bis 50 µm aufweist.
- Verfahren gemäß Anspruch 16 oder 17, bei dem sich die Beschichtung aus Körnern mit einer Größe von unter einem Mikron oder in der Größenordnung von einem Mikron zusammensetzt.
- Verfahren gemäß einem der Ansprüche 16 bis 18, bei dem sich das Substrat aus einem organischen, anorganischen oder gemischten Material zusammensetzt.
- Verfahren gemäß einem der Ansprüche 16 bis 19, bei dem die Beschichtung mit Nanostruktur Teil einer optischen und/oder elektronischen Vorrichtung ist.
- Verfahren gemäß einem der Ansprüche 16 bis 19, bei dem die Beschichtung mit Nanostruktur Teil einer Brennstoffzelle ist.
- Verfahren gemäß einem der Ansprüche 16 bis 19, bei dem die Beschichtung Teil einer Wärmesperre ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0452390A FR2877015B1 (fr) | 2004-10-21 | 2004-10-21 | Revetement nanostructure et procede de revetement. |
PCT/FR2005/050870 WO2006043006A1 (fr) | 2004-10-21 | 2005-10-20 | Revetement nanostructure et procede de revetement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1802783A1 EP1802783A1 (de) | 2007-07-04 |
EP1802783B1 true EP1802783B1 (de) | 2012-03-21 |
Family
ID=34951338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05815486A Active EP1802783B1 (de) | 2004-10-21 | 2005-10-20 | Beschichtungsverfahren |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080090071A1 (de) |
EP (1) | EP1802783B1 (de) |
JP (1) | JP5970147B2 (de) |
AT (1) | ATE550452T1 (de) |
ES (1) | ES2384263T3 (de) |
FR (1) | FR2877015B1 (de) |
WO (1) | WO2006043006A1 (de) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006005775A1 (de) * | 2006-02-07 | 2007-08-09 | Forschungszentrum Jülich GmbH | Thermisches Spritzverfahren mit kolloidaler Suspension |
FR2900351B1 (fr) * | 2006-04-26 | 2008-06-13 | Commissariat Energie Atomique | Procede de preparation d'une couche nanoporeuse de nanoparticules et couche ainsi obtenue |
JP2008031529A (ja) * | 2006-07-28 | 2008-02-14 | Fujitsu Ltd | ナノ粒子の堆積方法及びナノ粒子堆積装置 |
ES2534215T3 (es) | 2006-08-30 | 2015-04-20 | Oerlikon Metco Ag, Wohlen | Dispositivo de pulverización de plasma y un método para la introducción de un precursor líquido en un sistema de gas de plasma |
EP1895818B1 (de) | 2006-08-30 | 2015-03-11 | Sulzer Metco AG | Plasmazerstäubungsvorrichtung und Verfahren zur Einführung eines Flüssigkeitsvorläufers in ein Plasmagassystem |
WO2008128000A1 (en) * | 2007-04-12 | 2008-10-23 | Altairnano, Inc. | Teflon replacements and related production methods |
JP2009021214A (ja) * | 2007-06-12 | 2009-01-29 | Panasonic Corp | 非水電解質二次電池用電極の製造方法 |
EP2093305A1 (de) * | 2008-02-14 | 2009-08-26 | Universite Libre De Bruxelles | Verfahren zum Aufbringen von Nanopartikeln auf eine Unterlage |
CA2696081A1 (en) * | 2007-08-14 | 2009-02-19 | Universite Libre De Bruxelles | Method for depositing nanoparticles on a support |
FI121990B (fi) * | 2007-12-20 | 2011-07-15 | Beneq Oy | Laite sumun ja hiukkasten tuottamiseksi |
US7520951B1 (en) | 2008-04-17 | 2009-04-21 | International Business Machines (Ibm) Corporation | Method of transferring nanoparticles to a surface |
US20090280386A1 (en) * | 2008-05-09 | 2009-11-12 | Universitat Duisburg-Essen | Metallic bipolar plate for fuel cell |
JP2011524944A (ja) * | 2008-05-29 | 2011-09-08 | ノースウエスト メテック コーポレイション | 軸送りを用いて液体供給原料から皮膜を製造する方法および装置 |
DE102008026101B4 (de) * | 2008-05-30 | 2010-02-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermisch gespritzte Al2O3-Schichten mit einem hohen Korundgehalt ohne eigenschaftsmindernde Zusätze und Verfahren zu ihrer Herstellung |
KR101045793B1 (ko) * | 2008-09-08 | 2011-07-04 | 재단법인 철원플라즈마 산업기술연구원 | 코팅 방법 및 장치 |
JP5548991B2 (ja) * | 2009-02-02 | 2014-07-16 | 独立行政法人物質・材料研究機構 | TiO2ナノ粒子 |
WO2010122855A1 (ja) * | 2009-04-24 | 2010-10-28 | 国立大学法人山梨大学 | 一酸化炭素の選択的メタン化触媒、その製造方法及びそれを用いた装置 |
JP5146402B2 (ja) * | 2009-05-19 | 2013-02-20 | トヨタ自動車株式会社 | 炭素粒子含有被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ |
US20110086178A1 (en) * | 2009-10-14 | 2011-04-14 | General Electric Company | Ceramic coatings and methods of making the same |
EP2543443B1 (de) * | 2010-03-04 | 2019-01-09 | Imagineering, Inc. | Beschichtungsformungsvorrichtung sowie verfahren zur herstellung eines beschichtungsformungsmaterials |
FR2959244B1 (fr) * | 2010-04-23 | 2012-06-29 | Commissariat Energie Atomique | Procede de preparation d'un revetement multicouche sur une surface d'un substrat par projection thermique. |
FR2961350B1 (fr) | 2010-06-11 | 2012-08-03 | Commissariat Energie Atomique | Procede de fabrication de cellules electrochimiques elementaires pour systemes electrochimiques producteurs d'energie ou d'hydrogene, notamment du type sofc et eht |
FR2966455B1 (fr) | 2010-10-25 | 2013-05-17 | Commissariat Energie Atomique | Procede pour revetir une piece d'un revetement de protection contre l'oxydation |
FR2967992B1 (fr) | 2010-11-26 | 2015-05-29 | Commissariat Energie Atomique | Preparation de sols d'oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l'abrasion |
ES2793954T3 (es) * | 2010-12-15 | 2020-11-17 | Sulzer Metco Us Inc | Sistema de alimentación de líquido a base de presión para recubrimientos por pulverización de plasma en suspensión |
ES2602794T3 (es) | 2011-03-31 | 2017-02-22 | Pfizer Inc | Piridinonas bicíclicas novedosas |
US20120258254A1 (en) * | 2011-04-06 | 2012-10-11 | Basf Corporation | Methods For Providing High-Surface Area Coatings To Mitigate Hydrocarbon Deposits On Engine And Powertrain Components |
WO2012172449A1 (en) | 2011-06-13 | 2012-12-20 | Pfizer Inc. | Lactams as beta secretase inhibitors |
WO2013030713A1 (en) | 2011-08-31 | 2013-03-07 | Pfizer Inc. | Hexahydropyrano [3,4-d][1,3] thiazin-2-amine compounds |
ZA201202480B (en) * | 2011-10-17 | 2012-11-28 | Int Advanced Res Centre For Power Metallurgy And New Mat (Arci) Dept Of Science And Tech Govt Of Ind | An improved hybrid methodology for producing composite,multi-layered and graded coatings by plasma spraying utitilizing powder and solution precurrsor feedstock |
FR2983192B1 (fr) | 2011-11-25 | 2014-05-23 | Commissariat Energie Atomique | Procede pour revetir une piece d'un revetement de protection contre l'oxydation par une technique de depot chimique en phase vapeur, et revetement et piece |
EP2636763B1 (de) * | 2012-03-05 | 2020-09-02 | Ansaldo Energia Switzerland AG | Verfahren zur Anwendung einer hochtemperaturbeständigen Beschichtungsschicht auf der Oberfläche einer Komponente und Komponente mit einer solchen Beschichtungsschicht |
KR101775548B1 (ko) | 2012-08-01 | 2017-09-06 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차 전지 |
UA110688C2 (uk) | 2012-09-21 | 2016-01-25 | Пфайзер Інк. | Біциклічні піридинони |
FR2999457B1 (fr) | 2012-12-18 | 2015-01-16 | Commissariat Energie Atomique | Procede de revetement d'un substrat par un materiau abradable ceramique, et revetement ainsi obtenu. |
CN105121439A (zh) | 2013-02-19 | 2015-12-02 | 辉瑞公司 | 作为pde4亚型抑制剂用于治疗cns和其他病症的氮杂苯并咪唑化合物 |
JP6161943B2 (ja) * | 2013-04-22 | 2017-07-12 | 株式会社セイワマシン | ナノ粒子含有スラリー噴霧装置及び溶射装置 |
EP3052495B1 (de) | 2013-10-04 | 2019-06-26 | Pfizer Inc | Neuartige bicyclische pyridinone als gamma-sekretase-modulatoren |
JP5894198B2 (ja) * | 2014-01-06 | 2016-03-23 | 株式会社フジミインコーポレーテッド | 溶射用スラリー及び溶射皮膜の形成方法 |
JP6367567B2 (ja) | 2014-01-31 | 2018-08-01 | 吉川工業株式会社 | 耐食性溶射皮膜、その形成方法およびその形成用溶射装置 |
US9718075B2 (en) | 2014-06-12 | 2017-08-01 | United Technologies Corporation | Suspension plasma injector system and method of flushing the system |
JP5987097B2 (ja) * | 2015-09-07 | 2016-09-06 | 株式会社フジミインコーポレーテッド | 溶射皮膜 |
RU2688755C2 (ru) * | 2017-02-28 | 2019-05-22 | Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) | Способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама |
US10724132B2 (en) * | 2017-04-04 | 2020-07-28 | General Electric Company | Method of preparing aerogel particles and aerogel coated component |
KR102032413B1 (ko) * | 2018-02-21 | 2019-10-15 | 인하대학교 산학협력단 | 그래핀 복합체의 제조방법 |
JP2019178389A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社フジミインコーポレーテッド | 溶射用スラリー |
CN111153440B (zh) * | 2019-12-31 | 2022-04-22 | 陕西斯瑞新材料股份有限公司 | 一种提高热辐射系数的Fe3O4涂层的制备方法及应用 |
CN113185326A (zh) * | 2021-04-02 | 2021-07-30 | 武汉科技大学 | 一种锂电池正极材料焙烧用窑具喷涂料及其制备方法 |
CN114918057B (zh) * | 2022-03-16 | 2023-03-03 | 清华大学 | 核壳纳米颗粒的气相合成原位包覆装置及方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777759B1 (de) * | 1994-08-26 | 1999-03-31 | Université de Sherbrooke | Suspension plasmabeschichtung |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2931779A (en) * | 1952-06-21 | 1960-04-05 | Monsanto Chemicals | Preparation of alumina sols |
US3865547A (en) * | 1971-07-28 | 1975-02-11 | Shell Oil Co | Preventing corrosion during the pipeline transportation of coal slurries |
JPS5141017B2 (de) * | 1972-12-26 | 1976-11-08 | ||
US3879515A (en) * | 1973-10-18 | 1975-04-22 | Yoshishige Morita | Method of manufacturing porous articles of synthetic resins |
US4612138A (en) * | 1983-08-04 | 1986-09-16 | Nalco Chemical Company | Stable acidic and alkaline metal oxide sols |
FR2628655B1 (fr) * | 1988-03-16 | 1990-07-20 | Pro Catalyse | Support de catalyseur et catalyseur pour le traitement des gaz d'echappement des moteurs a combustion interne et procede de fabrication de ceux-ci |
US4982067A (en) * | 1988-11-04 | 1991-01-01 | Marantz Daniel Richard | Plasma generating apparatus and method |
US5032568A (en) * | 1989-09-01 | 1991-07-16 | Regents Of The University Of Minnesota | Deposition of superconducting thick films by spray inductively coupled plasma method |
US5037579A (en) * | 1990-02-12 | 1991-08-06 | Nalco Chemical Company | Hydrothermal process for producing zirconia sol |
JPH04323358A (ja) * | 1991-01-16 | 1992-11-12 | Sumitomo Metal Ind Ltd | プラズマ溶射方法 |
JPH059005A (ja) * | 1991-06-28 | 1993-01-19 | Toyo Ink Mfg Co Ltd | セラミツクス薄膜の製造方法 |
JPH05202460A (ja) * | 1991-07-01 | 1993-08-10 | Onoda Cement Co Ltd | ペロブスカイト型酸化物の溶射方法及び溶射皮膜並びに固体電解質型燃料電池及びその製造方法。 |
JPH05156315A (ja) * | 1991-12-05 | 1993-06-22 | Ngk Insulators Ltd | プラズマ溶射用粉末の製造方法 |
EP0662110B1 (de) * | 1992-09-25 | 1999-11-24 | Minnesota Mining And Manufacturing Company | Seltenes erdoxid enthaltendes schleifkorn |
US5413821A (en) * | 1994-07-12 | 1995-05-09 | Iowa State University Research Foundation, Inc. | Process for depositing Cr-bearing layer |
JPH08158033A (ja) * | 1994-12-02 | 1996-06-18 | Nisshin Steel Co Ltd | 微細組織厚膜材料の製造法および装置 |
WO1997018341A1 (en) * | 1995-11-13 | 1997-05-22 | The University Of Connecticut | Nanostructured feeds for thermal spray |
US6447848B1 (en) * | 1995-11-13 | 2002-09-10 | The United States Of America As Represented By The Secretary Of The Navy | Nanosize particle coatings made by thermally spraying solution precursor feedstocks |
US5578349A (en) * | 1995-11-30 | 1996-11-26 | Caterpillar Inc. | Process for coating a ceramic glow plug portion with a corrosion inhibiting material |
US6287714B1 (en) * | 1997-08-22 | 2001-09-11 | Inframat Corporation | Grain growth inhibitor for nanostructured materials |
JP3511128B2 (ja) * | 1998-03-02 | 2004-03-29 | 日立造船株式会社 | 金属微粒子の製造方法および同微粒子の多孔質担体への担持方法 |
US6004889A (en) * | 1998-04-28 | 1999-12-21 | Kabushiki Kaisya Nippankenkyusyo | Composition for antistatic finish |
JP2000328223A (ja) * | 1999-05-25 | 2000-11-28 | Agency Of Ind Science & Technol | 積層構造体及びその原料粉、及び、圧電アクチュエータ |
CA2377019C (en) * | 1999-06-24 | 2009-10-20 | Paroc Group Oy Ab | Method for manufacturing a binder and use thereof |
JP3705052B2 (ja) * | 1999-12-07 | 2005-10-12 | 住友金属鉱山株式会社 | 超微粒子導体ペーストの製造方法 |
EP1134302A1 (de) * | 2000-03-17 | 2001-09-19 | Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I | Verfahren zur Herstellung von festen nanostrukturierten Pulvern und Filmen aus Nano-Teilchen durch thermisches Spritzen einer kompartimentierten Lösung |
US20030219544A1 (en) * | 2002-05-22 | 2003-11-27 | Smith William C. | Thermal spray coating process with nano-sized materials |
JP2004081952A (ja) * | 2002-08-26 | 2004-03-18 | Ricoh Co Ltd | 電子写真感光体の塗工装置 |
FR2900351B1 (fr) * | 2006-04-26 | 2008-06-13 | Commissariat Energie Atomique | Procede de preparation d'une couche nanoporeuse de nanoparticules et couche ainsi obtenue |
-
2004
- 2004-10-21 FR FR0452390A patent/FR2877015B1/fr not_active Expired - Fee Related
-
2005
- 2005-10-20 ES ES05815486T patent/ES2384263T3/es active Active
- 2005-10-20 AT AT05815486T patent/ATE550452T1/de active
- 2005-10-20 US US11/577,257 patent/US20080090071A1/en not_active Abandoned
- 2005-10-20 JP JP2007537352A patent/JP5970147B2/ja not_active Expired - Fee Related
- 2005-10-20 EP EP05815486A patent/EP1802783B1/de active Active
- 2005-10-20 WO PCT/FR2005/050870 patent/WO2006043006A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777759B1 (de) * | 1994-08-26 | 1999-03-31 | Université de Sherbrooke | Suspension plasmabeschichtung |
Also Published As
Publication number | Publication date |
---|---|
FR2877015B1 (fr) | 2007-10-26 |
JP5970147B2 (ja) | 2016-08-17 |
ATE550452T1 (de) | 2012-04-15 |
EP1802783A1 (de) | 2007-07-04 |
US20080090071A1 (en) | 2008-04-17 |
JP2008517159A (ja) | 2008-05-22 |
WO2006043006A1 (fr) | 2006-04-27 |
ES2384263T3 (es) | 2012-07-03 |
FR2877015A1 (fr) | 2006-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1802783B1 (de) | Beschichtungsverfahren | |
EP2010308B1 (de) | Verfahren zur herstellung einer nanoporösen nanopartikelschicht | |
EP2155923B1 (de) | Verfahren und vorrichtung zur herstellung eines mehrschichtigen überzugs auf einem substrat | |
US6358567B2 (en) | Colloidal spray method for low cost thin coating deposition | |
AU2006344096B2 (en) | Manufacturing methods for nanomaterial dispersion and products thereof | |
EP0188950B1 (de) | Verfahren zur Herstellung poröser und permeabler anorganischer Membranen | |
Kashyap et al. | Deposition of thin films by chemical solution-assisted techniques | |
WO2007131990A1 (fr) | Procede de synthese de particules organiques ou inorganiques enrobees | |
FR2984305A1 (fr) | Procede de preparation d'un sol-gel d'au moins trois sels de metaux et mise en oeuvre du procede pour preparer une membrane ceramique | |
EP2764569B1 (de) | Verfahren zur herstellung eines materials auf einem substrat mittels eines sol-gels | |
EP2183406A1 (de) | Verfahren zur herstellung eines nanoverbundmaterials durch chemische dampfphasenablagerung | |
EP2935641A1 (de) | Verfahren zur beschichtung eines substrats mit einem abreibbaren keramischen material und dadurch erhaltene beschichtung | |
EP3696203B1 (de) | Herstellungsverfahren von hybriden metall-/polymer-nanopartikeln mit geringer grössenverteilung durch polymerisation in mini-emulsionen | |
JP2002286962A (ja) | 微粒子薄膜の製造方法 | |
WO2004113253A2 (fr) | Procede de preparation de couches d'oxydes d'elements metalliques | |
Bohac et al. | Chemical spray deposition of ceramic films | |
Pham et al. | Colloidal spray method for low cost thin coating deposition | |
Zyryanov et al. | Fabrication of coatings by the charged aerosol deposition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070316 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BLEIN, FRANCK Inventor name: WITTMANN-TENEZE, KARINE Inventor name: BELLEVILLE, PHILIPPE Inventor name: BIANCHI, LUC Inventor name: VALLE, KARINE |
|
17Q | First examination report despatched |
Effective date: 20071018 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
RTI1 | Title (correction) |
Free format text: COATING METHOD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 550452 Country of ref document: AT Kind code of ref document: T Effective date: 20120415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005033312 Country of ref document: DE Effective date: 20120516 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2384263 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120703 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120622 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 550452 Country of ref document: AT Kind code of ref document: T Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120723 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
26N | No opposition filed |
Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005033312 Country of ref document: DE Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120621 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051020 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20161027 Year of fee payment: 12 Ref country code: BE Payment date: 20161027 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171021 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231031 Year of fee payment: 19 Ref country code: FR Payment date: 20231023 Year of fee payment: 19 Ref country code: DE Payment date: 20231018 Year of fee payment: 19 |