EP1802783B1 - Coating method - Google Patents

Coating method Download PDF

Info

Publication number
EP1802783B1
EP1802783B1 EP05815486A EP05815486A EP1802783B1 EP 1802783 B1 EP1802783 B1 EP 1802783B1 EP 05815486 A EP05815486 A EP 05815486A EP 05815486 A EP05815486 A EP 05815486A EP 1802783 B1 EP1802783 B1 EP 1802783B1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
sol
plasma
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05815486A
Other languages
German (de)
French (fr)
Other versions
EP1802783A1 (en
Inventor
Karine Valle
Philippe Belleville
Karine Wittmann-Teneze
Luc Bianchi
Franck Blein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1802783A1 publication Critical patent/EP1802783A1/en
Application granted granted Critical
Publication of EP1802783B1 publication Critical patent/EP1802783B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a method for coating a surface of a substrate with nanoparticles, a nanostructured coating obtainable by this method, and a device for implementing the process of the invention. invention.
  • the present invention also relates to optical, mechanical, chemical, electronic and energetic devices comprising a nanostructured coating obtainable by the method of the invention.
  • Nanostructured materials are defined as materials having nanoscale organization, i.e. on a scale ranging from a few nm to a few hundred nm. This size domain is where the characteristic lengths of the various physical, electronic, magnetic, optical, superconductivity, mechanical, and other processes are found. and where the surface plays a predominant role in these processes, which gives these "nanomaterials" specific and often exalted properties. Because of these characteristics, these materials offer real potential in the construction of new high-performance buildings with specific properties.
  • nanostructures makes it possible to develop innovative materials and offers the possibility of exploiting them in many different ways. areas such as optics, electronics, energy, etc. These nanomaterials offer undeniable fundamental benefits and important application and application potential in various future technologies such as fuel cells, "smart” coatings, resistant materials (thermal barrier).
  • the present invention makes it possible to develop new nanostructured coatings by a simple and easily industrializable process, and opens these technologies to manufacturers.
  • the essence of the "nano" concept is self-assembly, which leads complex molecules to form larger heterogeneous aggregates, capable of performing a sophisticated function or of constituting a material with unprecedented properties.
  • the inventors of the present are interested in plasma projection. It's about a a technique used in research laboratories and in industry to make deposits of ceramic, metallic or cermet materials, or polymers and combinations of these materials on different types of substrates (shape and nature). Its principle is as follows: the material to be deposited is injected dry in the plasma jet in the form of particles, average diameter generally greater than 5 microns, using a carrier gas. In this medium, the particles are melted totally or partially and accelerated to a substrate where they come to pile up.
  • the layer thus formed of thickness generally greater than 100 microns, has a strongly anisotropic lamellar structure characteristic of deposits made by plasma spraying. These techniques therefore do not make it possible to form nanoparticle coatings or coatings with thicknesses of less than 100 ⁇ m, up to a few microns.
  • the coatings obtained have the disadvantage of being micro-cracked, especially in the case of ceramics deposits, fragile materials that relax the internal stresses.
  • the coating obtained has a lamellar structure which strongly conditions its thermomechanical properties, which therefore clearly limits, a priori, the potential applications of the plasma projection.
  • Kear et al propose the injection of a solution containing agglomerates of nanostructured powders in the form of a spray in a plasma.
  • the use of a spray imposes different stages so that the size of the particles to be injected is sufficiently large (of the order of one micron) to penetrate into the plasma: drying of the solution containing small particles, agglomeration of these particles with a binder and colloidal suspension agglomerates larger than one micron.
  • This method requires ultrasonic assistance or the use of dispersants, for example surfactants, to maintain the dispersion of the particles in suspension in the liquid.
  • sol-gel deposition processes particularly in the field of optics. These processes usually use liquid deposition methods such as spin-coating, laminar coating, dip-coating, aerosol spray ("spray-coating"). These different techniques lead to thin layers whose thickness is generally less than one micron. Some of these deposition methods make it possible to coat large surfaces, for example from a few hundred cm 2 to a few m 2 , which is an advantage.
  • the coatings obtained by these processes crack beyond critical micron thicknesses.
  • the main cause of this major defect lies in the stress of voltage applied by the substrate during heat treatments necessary for their development.
  • Another disadvantage lies in the impossibility of depositing homogeneous coatings having a good adhesion, even for thicknesses greater than about 150 nm.
  • EP-A1-1 134 302 discloses a method for preparing nanoparticle films by thermal spraying techniques such as plasma spraying wherein a nanocompartmentalized solution of a metallic material is used as a filler.
  • said nanocompartmentalized solution is or may be a colloidal sol in which nanoparticles of a metal oxide are dispersed and stabilized.
  • the object of the present invention is precisely to provide a method for forming a nanostructured coating that meets the needs indicated above and provides a solution to all of the aforementioned drawbacks.
  • the object of the present invention is still to provide a coating of nanoparticles which does not have the drawbacks, defects and disadvantages of the coatings of the prior art, and which can be used in optical, mechanical, chemical, electronic and microsystem devices and microsystems. energy present and future with excellent performance.
  • the process of the invention is a process for coating a surface of a substrate with nanoparticles, characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a thermal plasma jet which projects them onto said surface .
  • the inventors are the first to solve the aforementioned drawbacks of prior art techniques relating to plasma deposition by this method. Compared to the old techniques, it consists in particular to replace the injection gas in the dry process with a carrier liquid consisting of a colloidal sol. The projected particles are thus stabilized in a liquid medium before being accelerated in a plasma.
  • the method of the present invention also allows, unexpectedly, the preservation of the nanostructural properties of the projected material, by thermal projection of a stabilized suspension (sol) of nanoscale particles.
  • the method of the invention makes it possible to avoid the use of stabilizing additives such as dispersants or surfactants as in the processes of the prior art, and / or the essential use of additional dispersing means such as ultrasound atomization, mechanical agitation, etc. during the projection phase.
  • the present invention therefore makes it possible at the same time to preserve the purity of the projected material and to simplify the method of implementation. It is also notably thanks to the use of a soil that the aggregation of the nanoparticles is limited, and that the process of the invention results in a homogeneous nanostructured coating.
  • the inventors exploit the singular advantage of soils-gels to offer a very large number of physicochemical pathways for obtaining stable colloidal suspensions and nanoparticles.
  • the soft chemistry of constitution of the soils-gels makes it possible in particular to synthesize, from very numerous inorganic or organometallic precursors, a plurality of different metal oxides.
  • the present invention also uses the advantageous property of soils-gels to allow the synthesis of inorganic particles of different crystalline phases, in the same soil, for example using the hydrothermal route or in milder conditions.
  • the nucleation of the particles takes place in a liquid medium.
  • preferred conditions of the process of the invention make it possible to further limit or even avoid segregations of nanoparticles, concentration gradients or sedimentations.
  • plasma projection conditions as well as soil injection protocols allow to act on the quality of the nanoparticle coating formed, and, according to various examples presented below, can further improve the quality and to refine the conservation of the properties of the particles of the colloidal sol within the coating material.
  • the substrate may be organic, inorganic or mixed (that is to say organic and inorganic on the same surface). Preferably it supports the operating conditions of the process of the invention. It may consist for example of a material chosen from semiconductors such as silicon; organic polymers such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC); metals such as gold, aluminum and silver; the glasses ; inorganic oxides, for example layered, such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , Ta 2 O 5 , MgO, etc. ; and composite or mixed materials comprising several of these materials.
  • semiconductors such as silicon
  • organic polymers such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC)
  • metals such as gold, aluminum and silver
  • the surface of the substrate to be coated will optionally be cleaned in order to remove organic and / or inorganic contaminants which could prevent the deposition or even the attachment of the coating to the surface and improve the adhesion of the coating.
  • the cleaning used depends on the nature of the substrate and can be selected from the physical, chemical or mechanical processes known to those skilled in the art.
  • the cleaning process may be chosen from immersion in an organic solvent and / or washing detergent and / or etching assisted by ultrasound; these cleanings being eventually followed by rinsing with tap water, then rinsing with deionized water; these rinses being optionally followed by drying by "lift-out", by a spray of alcohol, by a jet of compressed air, with hot air, or by infrared rays.
  • Cleaning can also be a cleaning by ultraviolet rays.
  • nanoparticles particles of nanometric size, generally ranging from 1 nm to a few hundred nanometers. The term “particles” is also used.
  • a "sol-gel process” means a series of reactions where soluble metal species hydrolyze to form a metal hydroxide.
  • the sol-gel process involves a hydrolysis-condensation of metal precursors (salts and / or alkoxides) allowing easy stabilization and dispersion of particles in a growth medium.
  • Soil is a colloidal system in which the dispersion medium is a liquid and the dispersed phase is a solid. Soil is also called “colloidal sol-gel solution” or “colloidal sol.” The nanoparticles are dispersed and stabilized thanks to the colloidal sol.
  • the sol can be prepared by any method known to those skilled in the art. We will of course prefer the processes that make it possible to obtain a greater homogeneity of size of the nanoparticles, as well as a greater stabilization and dispersion of the nanoparticles.
  • the methods for preparing the sol-gel colloidal solution described herein include the various conventional methods for synthesizing nanoparticles dispersed and stabilized in a liquid medium.
  • the sol can be prepared for example by precipitation in an aqueous medium or by sol-gel synthesis in an organic medium from a precursor of nanoparticles.
  • the document [10] describes examples of this route of preparation by sol-gel synthesis in organic medium, with different precursors (metalloid salts, metal salts, metal alkoxides), usable in the present invention.
  • the nanoparticles can directly be stabilized in the solvent used during the synthesis or subsequently peptized if they are synthesized by precipitation. In both cases the suspension obtained is a soil.
  • the nanoparticle precursor is typically selected from the group consisting of a metalloid salt, a metal salt, a metal alkoxide, or a mixture thereof.
  • the metal or metalloid of the salt or alkoxide precursor of nanoparticles may be chosen for example from the group comprising silicon, titanium, zirconium, hafnium, aluminum, tantalum, niobium, cerium , nickel, iron, zinc, chromium, magnesium, cobalt, vanadium, barium, strontium, tin, scandium, indium, lead, yttrium, tungsten, manganese, gold, silver, platinum, palladium, nickel, copper, cobalt, ruthenium, rhodium, europium and other rare earths, or a metal alkoxide of these metals.
  • the reducing agent may be chosen for example from those cited in the abovementioned documents, for example in the group comprising polyols, hydrazine and its derivatives, quinone and its derivatives, hydrides, alkali metals, cysteine and its derivatives, ascorbate and its derivatives.
  • the precursor of metal nanoparticles can be chosen for example from those cited in the aforementioned documents, for example in the group comprising the salts of metalloids or metals such as gold, silver, platinum, palladium, nickel, copper, cobalt, aluminum, ruthenium or rhodium or the various metal alkoxides of these metals.
  • the sol may be prepared by preparing a mixture of nanoparticles dispersed in a solvent, each family may be derived from the preparations described in documents [8], [9], [10] and Example 2 below.
  • the soil used in the process of the present invention may comprise, for example, nanoparticles of a metal oxide selected from the group consisting of SiO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , HfO 2 , ThO 2 , SnO 2 , VO 2 , In 2 O 3 , CeO 2 , ZnO, Nb 2 O 5 , V 2 O 5 , Al 2 O 3 , Sc 2 O 3 , Ce 2 O 3 , NiO, MgO, Y 2 O 3 , WO 3 , BaTiO 3 , Fe 2 O 3 , Fe 3 O 4 , Sr 2 O 3 , (PbZr) TiO 3 , (BaSr) TiO 3 , CO 2 O 3 , Cr 2 O 3 , Mn 2 O 3 , Mn 3 O 4 , Cr 3 O 4 , MnO 2 , RuO 2 or a combination of these oxides, for example by doping the particles or by mixing the particles.
  • the sol may comprise, for example, metallic nanoparticles of a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium or rhodium, or a mixture of different metallic nanoparticles made of these metals.
  • a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium or rhodium, or a mixture of different metallic nanoparticles made of these metals.
  • this list is not exhaustive since it includes all the metal oxides described in the aforementioned documents.
  • the size of the nanoparticles of the soil obtained is perfectly controlled by its synthesis conditions, in particular by the nature of the precursors used, the solvent (s), the pH, the temperature, etc. and can range from a few angstroms to a few microns. This control of the particle size in the preparation of the soil is described for example in document [12].
  • the nanoparticles preferably have a size of 1 to 100 nm, this especially in order to be able to achieve thin layers or coatings, for example with a thickness ranging from 0.1 to 50 ⁇ m.
  • the soil also comprises a carrier liquid, which comes from its manufacturing process, called growth medium.
  • This carrier liquid is an organic or inorganic solvent such as those described in the aforementioned documents. It may be for example a liquid selected from water, alcohols, ethers, ketones, aromatics, alkanes, halogens and any mixture thereof.
  • the pH of this carrier liquid depends on the soil manufacturing process and its chemical nature. It is usually from 1 to 14.
  • the nanoparticles are dispersed and stabilized in their growth medium, and this stabilization and / or dispersion can be promoted by the soil preparation process and the chemistry used (see above).
  • the process of the present invention takes advantage of this property of soils.
  • the sol may further comprise organic molecules. It may be, for example, molecules for stabilizing the nanoparticles in the soil and / or molecules that functionalize the nanoparticles.
  • an organic compound can be added to the nanoparticles to give them a particular property.
  • the stabilization of these nanoparticles in liquid medium by steric effect leads to materials called organic-inorganic hybrid materials of class I.
  • the interactions which regulate the stabilization of these particles are weak of electrostatic nature of hydrogen bonds or Van Der Waals type.
  • Such compounds usable in the present invention, and their effect on soils, are described for example in documents [13] and Example 2 below.
  • the particles can be functionalized with an organic compound either during synthesis by introduction of suitable organomineral precursors, or by grafting on the surface of the colloids. Examples have been given above. These materials are then called organic-inorganic class II materials since the interactions between the organic component and the mineral particle are strong, of a covalent or ionocovalent nature. Such materials and their method of production are described in document [13].
  • the properties of the hybrid materials that can be used in the present invention depend not only on the chemical nature of the organic and inorganic components used to form the soil, but also on the synergy that can appear between these two chemistries.
  • Document [13] describes the effects of the chemical nature of the organic and inorganic components used and of such synergies.
  • the method of the invention comprises injecting the colloidal sol in a jet or flow of thermal plasma.
  • the injection of the ground into the plasma jet can be carried out by any appropriate means of injecting a liquid, for example by means of an injector, by example in the form of jet or drops, preferably with a momentum adapted to be substantially identical to that of the plasma flow. Examples of injectors are given below.
  • the temperature of the soil during its injection may range, for example, from room temperature (20 ° C.) to a temperature below its boiling point.
  • it is possible to control and modify the temperature of the soil for its injection for example to be from 0 ° C. to 100 ° C.
  • the soil then has a different surface tension, depending on the temperature imposed, resulting in a more or less rapid and efficient fragmentation mechanism when it arrives in the plasma.
  • the temperature can therefore have an effect on the quality of the coating obtained.
  • the injected soil for example in the form of drops, enters the plasma jet, where it is exploded into a multitude of droplets under the effect of plasma shear forces.
  • the size of these droplets can be adjusted according to the desired microstructure of the deposit, depending on the properties of the soil (liquid) and the plasma flow.
  • the size of the droplets ranges from 0.1 to 10 ⁇ m.
  • the kinetic and thermal energies of the plasma jet serve respectively to disperse the drops in a multitude of droplets (fragmentation), then to vaporize the liquid.
  • the liquid soil reaches the jet core, which is a medium at high temperature and high speed, it is vaporized and the nanoparticles are accelerated to be collected on the substrate to form a nanostructured deposit (coating) having a crystalline structure identical to that of the particles initially present in the starting soil.
  • the vaporization of the liquid brings about the bringing together of fine nanoparticles of material belonging to the same droplet and their agglomeration.
  • the resulting agglomerates are found in the heart of the plasma where they are melted, partially or totally, then accelerated before being collected on the substrate. If the agglomerate fusion is complete, the grain size in the deposit is a few hundred nanometers to a few microns. On the other hand, if the melting is only partial, the size of the grains in the deposit is close to that of the particles contained in the starting liquid and the crystalline properties of the particles are well preserved within the deposit.
  • thermal plasmas are plasmas producing a jet having a temperature of 5000 K to 15000 K. In the implementation of the method of the invention, this temperature range is preferred.
  • the temperature of the plasma used for the projection of the ground on the surface to be coated may be different. It will be chosen according to the chemical nature of the soil and the desired coating. According to the invention, the temperature will be chosen so as to be preferentially in a configuration of partial or total melting of the particles of the soil, preferably partial melting to best preserve their starting properties within the layer.
  • the plasma may be for example an arc plasma, blown or not, or an inductive or radiofrequency plasma, for example in supersonic mode. It can operate at atmospheric pressure or at lower pressure.
  • the documents [14], [15] and [16] describe plasmas that can be used in the present invention, and the plasma torches making it possible to generate them.
  • the plasma torch used is an arc plasma torch.
  • the plasma jet may advantageously be generated from a plasmagenic gas chosen from the group comprising Ar, H 2 , He and N 2 .
  • the jet of plasma constituting the jet has a viscosity of 10 -4 to 5 ⁇ 10 -4 kg / ms
  • the plasma jet is an arc plasma jet.
  • the substrate to be coated is, for obvious reasons, preferentially positioned relative to the plasma jet so that the projection of the nanoparticles is directed on the surface to be coated. Different tests make it very easy to find an optimal position. The positioning is adjusted for each application, according to the selected projection conditions and the microstructure of the desired deposit.
  • the rate of growth of the deposits depends essentially on the mass percentage of material in the liquid and the flow of liquid. With the method of the invention, it is possible easily obtain a coating deposition rate of nanoparticles of 1 to 100 microns / min.
  • the thin layers or coatings which can be obtained by the process of the invention may consist of grains of smaller size or of the order of one micron. They can be dense or porous. They can be pure and homogeneous.
  • the synthesis of a stable and homogeneous sol-gel solution of nanoparticles of defined particle size associated with the liquid plasma spraying method of the invention makes it possible to preserve the intrinsic properties of the starting sol within the deposit and to obtain a nanostructured coating in advantageously controlling the properties following porosity / density; homogeneity in composition; "exotic" stoichiometry (mixed soils and mixtures); nanometric structure (size and crystalline phases); granulometry of the grains; thickness of the homogeneous deposit on object with a complex shape; possibility of deposit on all types of substrates, whatever their nature and their roughness.
  • the process of the invention may be carried out several times on the same substrate surface, with different soils - in composition and / or in concentration and / or in particle size - to produce successive layers of different materials or deposits with compositional gradients.
  • These deposits of successive layers are useful for example in applications such as layers with electrical properties (electrode and electrolyte), layers with optical properties (low and high refractive index), thermal property layers (conductive and insulating), diffusion barrier layers and / or controlled porosity layers.
  • the projection method of the present invention is easily industrializable since its specificity and its innovative character reside in particular in the injection system which can adapt to all thermal spray machines already present in the industry; in the nature of the sol-gel solution; and in the choice of plasma conditions for obtaining a nanostructured coating having the properties of the projected particles.
  • the plasma torch is capable of producing a plasma jet having a temperature of 5000 K to 15000 K.
  • the plasma torch is capable of producing a plasma jet having a viscosity of 10 -4 to 5 ⁇ 10 - 4 kg / ms
  • the plasma torch is an arc plasma torch. Examples of plasmagenic gases are given above, the reservoirs of these gases are commercially available. The reasons for these advantageous choices are outlined above.
  • the device that can be used for carrying out the process of the invention comprises several reservoirs respectively containing several sols loaded with nanoparticles, the sols being different from each other by their composition and / or diameter and / or concentration.
  • the device may further comprise a cleaning tank containing a solution for cleaning the piping and the injector.
  • the piping and the injector can be cleaned between each implementation of the process.
  • the injector makes it possible to inject the ground into the plasma. It is preferably such that the injected soil mechanically fragments at the outlet of the injector in the form of drops as indicated above.
  • the hole of the injector may be of any form for injecting the colloidal sol in the plasma jet, preferably under the aforementioned conditions.
  • the hole is circular.
  • the hole of the injector has a diameter of 10 to 500 ⁇ m.
  • the device may be provided with several injectors, for example according to the quantities of soil to be injected.
  • the inclination of the injector relative to the longitudinal axis of the plasma jet can vary from 20 to 160 °.
  • the injector can be moved in the longitudinal direction of the plasma jet. These movements are indicated schematically on the figure 2 attached.
  • the injection of the colloidal sol in the plasma jet can be oriented. This orientation makes it possible to optimize the injection of the colloidal sol, and thus the formation of the projected coating on the surface of the substrate.
  • the soil injection line may be thermostatically controlled to control and possibly modify the temperature of the injected soil. This temperature control and this modification can be carried out at the level of the pipes and / or at the level of the tanks.
  • the device may comprise means for fixing and moving the substrate relative to the plasma torch.
  • This means may consist of clamps or equivalent system for gripping (securing) the substrate and maintaining it during the plasma projection at a selected position, and means for moving in rotation and in translation the surface of the substrate facing the plasma jet and in the longitudinal direction of the plasma jet.
  • Direct injection can be achieved by means of a well-adapted injection system, for example using the device described above, of a stable suspension of nanoparticles, a solution called "sol" since it results from the synthesis of a colloid by sol-gel process involving the hydrolysis condensation of metal precursors (salts or alkoxides) allowing stabilization and easy dispersion of particles in their growth medium.
  • a solution called "sol” since it results from the synthesis of a colloid by sol-gel process involving the hydrolysis condensation of metal precursors (salts or alkoxides) allowing stabilization and easy dispersion of particles in their growth medium.
  • the present invention thus also relates to an optical and / or electronic device comprising a nanostructured coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.
  • the present invention thus also relates to a fuel cell comprising a nanostructured coating obtainable by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the process of the invention. 'invention.
  • the present invention therefore also relates to a thermal barrier comprising a coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.
  • aqueous sol of zirconia (ZrO 2 ) at 10% is injected into an argon-hydrogen blown arc plasma (75% by volume of Ar).
  • the injection system comprises a reservoir (R) containing the colloidal sol (7) and a cleaning tank (N), containing a cleaning liquid (L) of the injector and the pipe (v). It also includes pipes (v) for conveying liquids from the tanks to the injector (I), pressure regulators (m) allowing to adjust the pressure in the tanks (pressure ⁇ 2x10 6 Pa).
  • the assembly is connected to a compression gas (G), here air, to create in the pipes a network of compressed air. Under the effect of pressure, the liquid is conveyed to the injector.
  • G compression gas
  • the diameter of the outlet orifice (t) of the injector (I) is 150 ⁇ m and the pressure in the reservoir (R) containing the soil is 0.4 MPa, which involves a liquid flow of 20 ml / min and a speed of 16 m / s.
  • the soil exits the injector in the form of a jet of liquid that mechanically fragments in the form of large drops of calibrated diameter ranging from 2 microns to 1 mm, on average two times greater than the diameter of the circular exit hole.
  • the injector ( figure 2 ) can be inclined with respect to the axis of the plasma jet from 20 to 160 °. In the tests, a 90 ° inclination was used.
  • the average diameter of the crystallites, observed in transmission electron microscopy, is about 9 nm as shown by the photographs of the figure 4 (see example 2 below).
  • the zirconia deposits from the plasma projection are obtained at 70 mm from the intersection between the jet of liquid and the plasma jet.
  • Different types of substrates have been tested to be coated: aluminum plates, silicon wafers or glass plates.
  • the deposition rate was 0.3 ⁇ m each time the torch passed the substrate.
  • the thickness of the deposits obtained was between 4 ⁇ m and 100 ⁇ m.
  • the size of the crystals in the coating (deposit) is between 10 and 20 nm; it is very close to that of particles of the starting soil.
  • TEM Transmission electron microscopy
  • the surface condition of the substrate does not interfere with the adhesion of the plasma deposit.
  • Example 1 The zirconia sol of Example 1, having specific properties of the present invention (dispersion and stabilization), is projected into a plasma jet as described in Example 1.
  • This zirconia sol consists of crystalline nanoparticles in the monoclinic phase and in the quadratic phase. A size distribution was made from transmission electron microscopy (TEM) micrographs of the zirconia sol. The average diameter of the zirconia particles is 9 nm. The right photograph on the figure 4 annexed presents a photograph taken by transmission electron microscopy on this zirconia sol used. The line at the bottom left indicates the scale of the shot. This line represents 10 nm in the photograph.
  • TEM transmission electron microscopy
  • the deposition carried out by plasma spraying of said sol according to the process of the invention consists, according to the surface and thickness transmission microscopy (TEM) analysis, of zirconia nanoparticles of morphology similar to those of starting and average diameter of 10 nm. These measures are deductible from Figures 6a and 6b attached.
  • the line at the bottom right of these snapshots indicates the scale of the snapshot. This line represents 100 nm on the top photograph ( figure 6a ), and 50 nm on the bottom photograph ( figure 6b ).
  • the zirconia sol like the zirconia deposit resulting from this sol, has crystallites of identical diameter and crystallized according to the same two monoclinic and quadratic phases.
  • the following table shows the distribution in% of these crystalline phases present in the zirconia sol and the zirconia deposit, as well as their size.
  • Materials Distribution of crystalline phases Sizes of crystallites monoclinic Quadratic monoclinic Quadratic Sol ZrO 2 65% 35% 11.8 nm 8.9 nm ZrO 2 deposit 61% 39% 12 nm 8.9 nm
  • This example illustrates one of the many modes of preparation of a nanoparticle sol that can be used to implement the present invention.
  • Transmission electron microscopy observations reveal an average colloid diameter of about 10 nm.
  • the X-ray pattern is characteristic of that of titanium oxide in anatase form.
  • the pH of this sol is about 2 and the mass concentration of TiO 2 is brought to 10% by distillation (100 ° C, 10 5 Pa).
  • the colloidal solution of nanoparticles can be filtered, for example to 0.45 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Inert Electrodes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a method of coating a surface with nanoparticles, to a nanostructured coating that can be obtained by this method, and also to a device for implementing the method of the invention. The method is characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a plasma jet that sprays them onto said surface. The device ( 1 ) comprises: a plasma torch ( 3 ); at least one container ( 5 ) containing the colloidal sol ( 7 ) of nanoparticles; a device ( 9 ) for fixing and for moving the substrate(S); and a device ( 11 ) for injecting the colloidal sol into the plasma jet ( 13 ) of the plasma torch. The present invention has applications in optical, electronic and energy devices (cells, thermal barriers) comprising a nanostructured coating that can be obtained by the method of the invention.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte à un procédé de revêtement d'une surface d'un substrat par des nanoparticules, à un revêtement nanostructuré susceptible d'être obtenu par ce procédé, ainsi qu'à un dispositif de mise en oeuvre du procédé de l'invention.The present invention relates to a method for coating a surface of a substrate with nanoparticles, a nanostructured coating obtainable by this method, and a device for implementing the process of the invention. invention.

La présente invention se rapporte également à des dispositifs optiques, mécaniques, chimiques, électroniques et énergétiques comprenant un revêtement nanostructuré susceptible d'être obtenu par le procédé de l'invention.The present invention also relates to optical, mechanical, chemical, electronic and energetic devices comprising a nanostructured coating obtainable by the method of the invention.

Les matériaux nanostructurés sont définis comme étant des matériaux présentant une organisation à l'échelle nanométrique, c'est-à-dire à une échelle allant de quelques nm à quelques centaines de nm. Ce domaine de taille est celui où se trouvent les longueurs caractéristiques des différents processus physiques, électroniques, magnétiques, optiques, supraconductivité, mécaniques, etc. et où la surface joue un rôle prépondérant dans ces processus, ce qui confère à ces « nanomatériaux » des propriétés spécifiques et souvent exaltées. De par ces caractéristiques, ces matériaux offrent un véritable potentiel dans la construction de nouveaux édifices performants à propriétés spécifiques.Nanostructured materials are defined as materials having nanoscale organization, i.e. on a scale ranging from a few nm to a few hundred nm. This size domain is where the characteristic lengths of the various physical, electronic, magnetic, optical, superconductivity, mechanical, and other processes are found. and where the surface plays a predominant role in these processes, which gives these "nanomaterials" specific and often exalted properties. Because of these characteristics, these materials offer real potential in the construction of new high-performance buildings with specific properties.

La possibilité de fabriquer des nanostructures permet de développer des matériaux innovants et offre la possibilité de les exploiter dans de nombreux domaines comme l'optique, l'électronique, l'énergie, etc. Ces nanomatériaux offrent des retombées fondamentales indéniables et des applications et potentialités d'application importantes dans diverses technologies à venir comme les piles à combustibles, les revêtements « intelligents », les matériaux résistants (barrière thermique).The possibility of manufacturing nanostructures makes it possible to develop innovative materials and offers the possibility of exploiting them in many different ways. areas such as optics, electronics, energy, etc. These nanomaterials offer undeniable fundamental benefits and important application and application potential in various future technologies such as fuel cells, "smart" coatings, resistant materials (thermal barrier).

La présente invention permet de développer de nouveaux revêtements nanostructurés par un procédé simple et facilement industrialisable, et ouvre ces technologies aux industriels. L'essence du concept « nano » est l'auto-assemblage qui conduit des molécules complexes à former des agrégats hétérogènes plus gros, capables de remplir une fonction sophistiquée ou de constituer un matériau aux propriétés sans précédent.The present invention makes it possible to develop new nanostructured coatings by a simple and easily industrializable process, and opens these technologies to manufacturers. The essence of the "nano" concept is self-assembly, which leads complex molecules to form larger heterogeneous aggregates, capable of performing a sophisticated function or of constituting a material with unprecedented properties.

Les références entre crochets ([ ]) renvoient à la liste des références bibliographiques présentée à la suite des exemples.References in square brackets ([]) refer to the list of bibliographic references presented following the examples.

Art antérieurPrior art

Il n'existe pas actuellement de technique simple à mettre en oeuvre et permettant d'obtenir des revêtements de nanoparticules qui répondent aux exigences de plus en plus grandes d'homogénéité de structure et d'épaisseur, même à l'échelle de quelques microns, et de résistance mécanique, du fait de la miniaturisation des microsystèmes électromécaniques et/ou optiques et/ou électrochimiques.There is currently no simple technique to implement and to obtain nanoparticle coatings that meet the requirements of greater and greater homogeneity of structure and thickness, even at a scale of a few microns, and mechanical strength, due to the miniaturization of electromechanical microsystems and / or optical and / or electrochemical.

Les inventeurs de la présente se sont intéressés à la projection plasma. Il s'agit d'une technique utilisée en laboratoire de recherche et dans l'industrie pour réaliser des dépôts de matériaux céramiques, métalliques ou cermets, ou polymères ainsi que des combinaisons de ces matériaux sur différents types de substrats (forme et nature). Son principe est le suivant : le matériau à déposer est injecté en voie sèche dans le jet de plasma sous la forme de particules, de diamètre moyen généralement supérieur à 5 µm, à l'aide d'un gaz vecteur. Dans ce milieu, les particules sont fondues totalement ou partiellement et accélérées jusqu'à un substrat où elles viennent s'empiler.The inventors of the present are interested in plasma projection. It's about a a technique used in research laboratories and in industry to make deposits of ceramic, metallic or cermet materials, or polymers and combinations of these materials on different types of substrates (shape and nature). Its principle is as follows: the material to be deposited is injected dry in the plasma jet in the form of particles, average diameter generally greater than 5 microns, using a carrier gas. In this medium, the particles are melted totally or partially and accelerated to a substrate where they come to pile up.

Cependant, la couche ainsi formée, d'épaisseur généralement supérieure à 100 µm, possède une structure lamellaire fortement anisotrope caractéristique des dépôts réalisés par projection plasma. Ces techniques ne permettent donc pas de former des revêtements de nanoparticules, ni des revêtements ayant des épaisseurs inférieures à 100 µm, allant jusqu'à quelques microns.However, the layer thus formed, of thickness generally greater than 100 microns, has a strongly anisotropic lamellar structure characteristic of deposits made by plasma spraying. These techniques therefore do not make it possible to form nanoparticle coatings or coatings with thicknesses of less than 100 μm, up to a few microns.

De plus, les revêtements obtenus présentent l'inconvénient d'être micro-fissurés, notamment dans le cas de dépôts de céramiques, matériaux fragiles qui relâchent ainsi les contraintes internes.In addition, the coatings obtained have the disadvantage of being micro-cracked, especially in the case of ceramics deposits, fragile materials that relax the internal stresses.

En outre, il a été constaté que le revêtement obtenu présente une structure lamellaire qui conditionne fortement ses propriétés thermomécaniques, ce qui limite donc clairement, a priori, les applications potentielles de la projection plasma.In addition, it has been found that the coating obtained has a lamellar structure which strongly conditions its thermomechanical properties, which therefore clearly limits, a priori, the potential applications of the plasma projection.

Particulièrement, l'apparition de nouvelles applications, notamment en microélectronique et sur les laboratoires sur puce, nécessite de réaliser des dépôts d'épaisseur inférieure à 50 µm, constitués de grains de taille sub-micronique ne possédant pas obligatoirement une structure lamellaire, et en utilisant des vitesses de dépôt élevées. Or, il n'est pas possible actuellement de faire pénétrer des particules de diamètre inférieur au micron dans un jet de plasma à l'aide d'un injecteur classique à gaz vecteur, sans perturber considérablement celui-ci. En effet, la vitesse élevée du gaz porteur froid, nécessaire à l'accélération de particules fines, entraîne une forte diminution de la température et de la vitesse d'écoulement du plasma, propriétés essentielles pour fondre et entraîner les particules.In particular, the emergence of new applications, particularly in microelectronics and on-chip labs, requires of thickness less than 50 microns, consisting of sub-micron sized grains not necessarily having a lamellar structure, and using high deposition rates. However, it is not currently possible to penetrate particles smaller than one micron in a plasma jet using a conventional vector gas injector, without significantly disturbing it. Indeed, the high speed of the cold carrier gas, necessary for the acceleration of fine particles, causes a sharp decrease in the temperature and the flow velocity of the plasma, essential properties for melting and driving the particles.

Différentes solutions ont été proposées. Ainsi, le document [1] de Lau et al. décrit l'utilisation d'une solution aqueuse, constituée d'au moins trois sels métalliques, atomisée dans un plasma inductif non supersonique. Il en résulte des dépôts de céramiques supraconductrices mais qui ne présentent pas de structure nanométrique.Different solutions have been proposed. Thus, the document [1] of Lau et al. describes the use of an aqueous solution, consisting of at least three metal salts, atomized in a non-supersonic inductive plasma. This results in deposits of superconducting ceramics but which do not have a nanometric structure.

Le document [2] de Marantz et al. décrit une injection axiale dans un plasma d'arc soufflé d'une solution colloïdale. La réalisation de dépôts nanostructurés n'est pas mentionnée, ni suggérée. De plus, ce procédé est difficilement industrialisable car il nécessite l'utilisation de deux à quatre torches à plasma fonctionnant simultanément.The document [2] by Marantz et al. describes an axial injection into a blown arc plasma of a colloidal solution. The production of nanostructured deposits is neither mentioned nor suggested. In addition, this process is difficult to industrialize because it requires the use of two to four plasma torches operating simultaneously.

Le document [3] de Ellis et al. décrit un procédé dans lequel un composé organo-métallique est introduit dans un plasma inductif non supersonique sous forme gazeuse ou solide. Le dépôt formé ne présente cependant pas de structure nanométrique.The document [3] of Ellis et al. discloses a process in which an organometallic compound is introduced into a non-supersonic inductive plasma under gaseous or solid form. The deposit formed, however, does not have a nanometric structure.

Dans le document [4], Gitzhofer et al. décrivent l'utilisation d'un liquide chargé de particules ayant une taille de l'ordre du micron. Ce liquide est injecté dans un plasma sous la forme de gouttelettes au moyen d'un atomiseur. Cette technique est limitée aux plasmas de type radio-fréquence et les dépôts résultants ne sont pas nanostructurés.In document [4], Gitzhofer et al. describe the use of a micron-sized particle-laden liquid. This liquid is injected into a plasma in the form of droplets by means of an atomizer. This technique is limited to radio-frequency type plasmas and the resulting deposits are not nanostructured.

Dans le document [5], Chow et al. décrivent une méthode consistant en l'injection de plusieurs solutions dans un jet de plasma afin d'obtenir des dépôts possédant une structure nanométrique. Cependant, le matériau final est issu d'une réaction chimique en vol dans le plasma, rendant la méthode complexe à maîtriser. En outre, dans cette méthode (qui met en jeu une réaction chimique dans le plasma) les tailles de particules sont de 100 nm ; la méthode prévoit nominalement une conversion chimique durant le processus de projection et utilise des dispersants ; et les conditions de projection sont choisies explicitement pour ne pas vaporiser le solvant de la solution projetée avant d'atteindre le substrat.In document [5], Chow et al. describe a method consisting of injecting several solutions into a plasma jet in order to obtain deposits having a nanometric structure. However, the final material comes from a chemical reaction in flight in the plasma, making the complex method to master. In addition, in this method (which involves a chemical reaction in the plasma) the particle sizes are 100 nm; the method nominally predicts a chemical conversion during the projection process and uses dispersants; and the projection conditions are explicitly chosen not to vaporize the solvent from the projected solution before reaching the substrate.

Dans le document [6], Kear et al proposent l'injection d'une solution contenant des agglomérats de poudres nanostructurées sous forme d'un spray dans un plasma. L'utilisation d'un spray impose différentes étapes afin que la taille des particules à injecter soit suffisamment importante (de l'ordre du micron) pour pénétrer dans le plasma : séchage de la solution contenant des particules de petite taille, agglomération de ces particules à l'aide d'un liant et mise en suspension colloïdale des agglomérats de taille supérieure au micron. Ce procédé nécessite une assistance ultrasons ou l'utilisation de dispersants, par exemple des tensioactifs, pour maintenir la dispersion des particules en suspension dans le liquide.In document [6], Kear et al propose the injection of a solution containing agglomerates of nanostructured powders in the form of a spray in a plasma. The use of a spray imposes different stages so that the size of the particles to be injected is sufficiently large (of the order of one micron) to penetrate into the plasma: drying of the solution containing small particles, agglomeration of these particles with a binder and colloidal suspension agglomerates larger than one micron. This method requires ultrasonic assistance or the use of dispersants, for example surfactants, to maintain the dispersion of the particles in suspension in the liquid.

Le document [7] de Rao N.P. et al. décrit une méthode où des précurseurs gazeux, injectés radialement dans un plasma d'arc, donnent lieu à la formation de particules solides en vol par nucléation-croissance. Cependant, l'épaisseur des dépôts formés ne peut dépasser la dizaine de microns et il n'est pas possible de réaliser tout type de matériaux.Document [7] by Rao N.P. et al. describes a method where gaseous precursors, injected radially in an arc plasma, give rise to the formation of solid particles in flight by nucleation-growth. However, the thickness of the deposits formed can not exceed ten microns and it is not possible to make any type of materials.

Les problèmes liés à la technique plasma sont donc très nombreux, les solutions proposées également, mais aucune de ces solutions ne permet actuellement de résoudre l'ensemble de ces problèmes.The problems related to the plasma technique are therefore very numerous, the solutions also proposed, but none of these solutions currently makes it possible to solve all of these problems.

Les inventeurs se sont aussi intéressés aux procédés de dépôt sol-gel existants, notamment dans le domaine de l'optique. Ces procédés utilisent habituellement des méthodes de dépôt par voie liquide telles que l'enduction centrifuge (« spin-coating »), l'enduction laminaire (« meniscus-coating »), le trempage-retrait (« dip-coating »), la pulvérisation d'aérosol (« spray-coating »). Ces différentes techniques conduisent à des couches minces dont l'épaisseur est généralement inférieure au micron. Certains de ces procédés de dépôt permettent de revêtir de grandes surfaces par exemple de quelques centaines de cm2 à quelques m2, ce qui constitue un avantage.The inventors have also been interested in existing sol-gel deposition processes, particularly in the field of optics. These processes usually use liquid deposition methods such as spin-coating, laminar coating, dip-coating, aerosol spray ("spray-coating"). These different techniques lead to thin layers whose thickness is generally less than one micron. Some of these deposition methods make it possible to coat large surfaces, for example from a few hundred cm 2 to a few m 2 , which is an advantage.

Cependant, les revêtements obtenus par ces procédés se fissurent au-delà d'épaisseurs critiques de l'ordre du micron. La cause principale de ce défaut majeur réside dans les contraintes de tension appliquée par le substrat lors des traitements thermiques nécessaires à leur élaboration. Un autre inconvénient réside dans l'impossibilité de déposer des revêtements homogènes ayant une bonne adhésion, même pour des épaisseurs supérieures à environ 150 nm.However, the coatings obtained by these processes crack beyond critical micron thicknesses. The main cause of this major defect lies in the stress of voltage applied by the substrate during heat treatments necessary for their development. Another disadvantage lies in the impossibility of depositing homogeneous coatings having a good adhesion, even for thicknesses greater than about 150 nm.

Les problèmes liés à cette autre technique sont donc également très nombreux, même si des techniques récentes ont permis d'en résoudre certains en agissant sur la composition chimique des sol-gel.The problems associated with this other technique are therefore also very numerous, even if recent techniques have made it possible to solve some by acting on the chemical composition of the sol-gel.

En résumé, aucune de ces techniques de l'art antérieur ne permet d'obtenir un revêtement de nanoparticules d'épaisseur et de structure homogènes, et aucune de ces techniques n'indique une voie prometteuse pour y arriver simplement.In summary, none of these techniques of the prior art makes it possible to obtain a coating of nanoparticles of homogeneous thickness and structure, and none of these techniques indicates a promising way to achieve this simply.

Par ailleurs, le document EP-A1-1 134 302 décrit un procédé de préparation de films de nanoparticules par des techniques de projection thermique comme la projection par plasma dans lequel une solution nanocompartimentée d'un matériau métallique est utilisée comme charge.In addition, the document EP-A1-1 134 302 discloses a method for preparing nanoparticle films by thermal spraying techniques such as plasma spraying wherein a nanocompartmentalized solution of a metallic material is used as a filler.

Il n'y a aucune mention dans ce document que ladite solution nanocompartimentée soit ou puisse être un sol colloïdal dans lequel des nanoparticules d'un oxyde métallique sont dispersées et stabilisées.There is no mention in this document that said nanocompartmentalized solution is or may be a colloidal sol in which nanoparticles of a metal oxide are dispersed and stabilized.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

Le but de la présente invention est précisément de fournir un procédé permettant de former un revêtement nanostructuré qui réponde aux besoins indiqués ci-dessus et apporte une solution à l'ensemble des inconvénients précités.The object of the present invention is precisely to provide a method for forming a nanostructured coating that meets the needs indicated above and provides a solution to all of the aforementioned drawbacks.

Le but de la présente invention est encore de fournir un revêtement de nanoparticules qui ne présente pas les inconvénients, défaut et désavantages dés revêtements de l'art antérieur, et qui puisse être utilisé dans les dispositifs et microsystèmes optiques, mécaniques, chimiques, électroniques et énergétiques actuels et futurs en présentant d'excellentes performances.The object of the present invention is still to provide a coating of nanoparticles which does not have the drawbacks, defects and disadvantages of the coatings of the prior art, and which can be used in optical, mechanical, chemical, electronic and microsystem devices and microsystems. energy present and future with excellent performance.

Le procédé de l'invention est un procédé de revêtement d'une surface d'un substrat par des nanoparticules caractérisé en ce qu'il comprend une injection d'un sol colloïdal desdites nanoparticules dans un jet de plasma thermique qui les projette sur ladite surface.The process of the invention is a process for coating a surface of a substrate with nanoparticles, characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a thermal plasma jet which projects them onto said surface .

Les inventeurs sont les premiers à résoudre les inconvénients précités des techniques de l'art antérieur relatives au dépôt plasma grâce à ce procédé. Par rapport aux anciennes techniques, il consiste notamment à remplacer le gaz d'injection en voie sèche par un liquide porteur constitué d'un sol colloïdal. Les particules projetées sont ainsi stabilisées en milieu liquide avant d'être accélérées dans un plasma.The inventors are the first to solve the aforementioned drawbacks of prior art techniques relating to plasma deposition by this method. Compared to the old techniques, it consists in particular to replace the injection gas in the dry process with a carrier liquid consisting of a colloidal sol. The projected particles are thus stabilized in a liquid medium before being accelerated in a plasma.

Comme exposé ci-dessus, des travaux plus récents ont déjà été réalisés relativement à l'injection d'un matériau se trouvant sous une autre forme que pulvérulente dans un plasma et notamment sous forme liquide. Cependant, aucun de ces travaux n'utilise ni ne suggère une injection directe dans un jet de plasma d'un sol colloïdal, ou solution sol-gel colloïdale, de nanoparticules, et la possibilité de réalisation de dépôts nanostructurés de tout type de matériau possédant la même composition chimique et structurale que le produit initial.As stated above, more recent work has already been done on the injection of a material in a form other than powder in a plasma and especially in liquid form. However, none of these works uses or suggests a direct injection into a plasma jet of colloidal sol, or colloidal sol-gel solution, of nanoparticles, and the possibility of producing nanostructured deposits of any type of material possessing the same chemical and structural composition as the initial product.

Le procédé de la présente invention permet en outre, de manière inattendue, la conservation des propriétés nanostructurales du matériau projeté, grâce à la projection thermique d'une suspension stabilisée (sol) de particules nanométriques. Le procédé de l'invention permet d'éviter le recours à des additifs de stabilisation tels que des dispersants ou des surfactants comme dans les procédés de l'art antérieur, et/ou l'emploi indispensable de moyens de dispersion annexes tels que les ultrasons, l'atomisation, l'agitation mécanique, etc. durant la phase de projection. La présente invention permet par conséquent à la fois de conserver la pureté du matériau projeté et de simplifier le procédé de mise en oeuvre. C'est également notamment grâce à l'utilisation d'un sol que l'agrégation des nanoparticules est limitée, et que le procédé de l'invention aboutit à un revêtement nanostructuré homogène.The method of the present invention also allows, unexpectedly, the preservation of the nanostructural properties of the projected material, by thermal projection of a stabilized suspension (sol) of nanoscale particles. The method of the invention makes it possible to avoid the use of stabilizing additives such as dispersants or surfactants as in the processes of the prior art, and / or the essential use of additional dispersing means such as ultrasound atomization, mechanical agitation, etc. during the projection phase. The present invention therefore makes it possible at the same time to preserve the purity of the projected material and to simplify the method of implementation. It is also notably thanks to the use of a soil that the aggregation of the nanoparticles is limited, and that the process of the invention results in a homogeneous nanostructured coating.

De plus, grâce au procédé de la présente invention, les inventeurs exploitent l'avantage singulier des sols-gels d'offrir de très nombreuses voies physicochimiques d'obtention de suspensions colloïdales stables et nanoparticulaires. La chimie douce de constitution des sols-gels permet notamment de synthétiser, à partir de précurseurs inorganiques ou organométalliques très nombreux, une pluralité d'oxydes métalliques différents.In addition, by virtue of the process of the present invention, the inventors exploit the singular advantage of soils-gels to offer a very large number of physicochemical pathways for obtaining stable colloidal suspensions and nanoparticles. The soft chemistry of constitution of the soils-gels makes it possible in particular to synthesize, from very numerous inorganic or organometallic precursors, a plurality of different metal oxides.

En outre, la présente invention utilise aussi la propriété avantageuse des sols-gels de permettre la synthèse de particules inorganiques de phases cristallines différentes, dans un même sol, par exemple en utilisant la voie hydrothermale ou dans des conditions plus douces. Dans cette chimie, la nucléation des particules a lieu en milieu liquide. L'accès à des sols colloïdaux mixtes constitués soit d'un mélange de nanoparticules d'oxydes de métaux de nature différente, soit d'un mélange de nanoparticules d'oxyde métallique et de nanoparticules métalliques et/ou de nanoparticules d'oxyde métallique dopé par un autre oxyde de métal ou par un autre élément métallique, offre également de très nombreuses variantes.In addition, the present invention also uses the advantageous property of soils-gels to allow the synthesis of inorganic particles of different crystalline phases, in the same soil, for example using the hydrothermal route or in milder conditions. In this chemistry, the nucleation of the particles takes place in a liquid medium. Access to mixed colloidal sols consisting of a mixture of metal oxide nanoparticles of different types, or a mixture of metal oxide nanoparticles and metal nanoparticles and / or doped metal oxide nanoparticles by another metal oxide or other metal element, also offers many variants.

Par ailleurs, grâce au procédé de l'invention, on peut améliorer encore et affiner l'homogénéité et la stabilité du sol en sélectionnant judicieusement la granulométrie des particules du sol ainsi que le solvant utilisé. En effet, des conditions préférées du procédé de l'invention permettent de limiter d'avantage encore, voire d'éviter, des ségrégations de nanoparticules, gradients de concentration ou sédimentations.Moreover, thanks to the method of the invention, one can further improve and refine the homogeneity and stability of the soil by judiciously selecting the particle size of the soil particles and the solvent used. Indeed, preferred conditions of the process of the invention make it possible to further limit or even avoid segregations of nanoparticles, concentration gradients or sedimentations.

Egalement, des conditions de projection plasma, ainsi que des protocoles d'injection du sol permettent d'agir sur la qualité du revêtement de nanoparticules formé, et, suivant divers exemples présentés ci-dessous, permettent d'améliorer encore la qualité et d'affiner la conservation des propriétés des particules du sol colloïdal au sein du matériau de revêtement.Also, plasma projection conditions, as well as soil injection protocols allow to act on the quality of the nanoparticle coating formed, and, according to various examples presented below, can further improve the quality and to refine the conservation of the properties of the particles of the colloidal sol within the coating material.

Les définitions, ainsi que les conditions opératoires générales et préférées du procédé de l'invention sont exposées ci-après.The definitions, as well as the general and preferred operating conditions of the process of the invention are set forth below.

Selon l'invention, le substrat peut être organique, inorganique ou mixte (c'est-à-dire organique et inorganique sur une même surface). De préférence il supporte les conditions opératoires du procédé de l'invention. Il peut être constitué par exemple d'un matériau choisi parmi les semiconducteurs tels que le silicium ; les polymères organiques tels que le poly(méthacrylate de méthyle) (PMMA), le polycarbonate (PC), le polystyrène (PS), le polypropylène (PP) et le poly(chlorure de vinyle) (PVC) ; les métaux tels que l'or, l'aluminium et l'argent ; les verres ; les oxydes minéraux , par exemple en couche, tels que SiO2, Al2O3, ZrO2, TiO2, Ta2O5, MgO, etc. ; et les matériaux composites ou mixtes comprenant plusieurs de ces matériaux.According to the invention, the substrate may be organic, inorganic or mixed (that is to say organic and inorganic on the same surface). Preferably it supports the operating conditions of the process of the invention. It may consist for example of a material chosen from semiconductors such as silicon; organic polymers such as poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC); metals such as gold, aluminum and silver; the glasses ; inorganic oxides, for example layered, such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , Ta 2 O 5 , MgO, etc. ; and composite or mixed materials comprising several of these materials.

La surface du substrat que l'on souhaite revêtir sera éventuellement nettoyée afin d'éliminer les contaminants organiques et/ou inorganiques qui pourraient empêcher le dépôt, voire la fixation, du revêtement sur la surface, et d'améliorer l'adhérence du revêtement. Le nettoyage utilisé dépend de la nature du substrat et peut être choisi parmi les procédés physiques, chimiques ou mécaniques connus de l'homme du métier. Par exemple, et de manière non limitative, le procédé de nettoyage peut être choisi parmi l'immersion dans un solvant organique et/ou le nettoyage lessiviel et/ou le décapage acide assistés par les ultrasons ; ces nettoyages étant suivis éventuellement d'un rinçage à l'eau de ville, puis d'un rinçage à l'eau désionisée ; ces rinçages étant suivis éventuellement d'un séchage par « lift-out », par une pulvérisation d'alcool, par un jet d'air comprimé, à l'air chaud, ou par les rayons infrarouges. Le nettoyage peut être aussi un nettoyage par les rayons ultraviolets.The surface of the substrate to be coated will optionally be cleaned in order to remove organic and / or inorganic contaminants which could prevent the deposition or even the attachment of the coating to the surface and improve the adhesion of the coating. The cleaning used depends on the nature of the substrate and can be selected from the physical, chemical or mechanical processes known to those skilled in the art. For example, and without limitation, the cleaning process may be chosen from immersion in an organic solvent and / or washing detergent and / or etching assisted by ultrasound; these cleanings being eventually followed by rinsing with tap water, then rinsing with deionized water; these rinses being optionally followed by drying by "lift-out", by a spray of alcohol, by a jet of compressed air, with hot air, or by infrared rays. Cleaning can also be a cleaning by ultraviolet rays.

Par « nanoparticules », on entend des particules de taille nanométrique, allant généralement de 1 nm à quelques centaines de nanomètres. On utilise également le terme « particules ».By "nanoparticles" is meant particles of nanometric size, generally ranging from 1 nm to a few hundred nanometers. The term "particles" is also used.

Un « procédé sol-gel » signifie une série de réactions où des espèces métalliques solubles s'hydrolysent pour former un hydroxyde de métal. Le procédé sol-gel met en jeu une hydrolyse-condensation de précurseurs métalliques (sels et/ou alcoxydes) permettant une stabilisation et une dispersion aisées de particules dans un milieu de croissance.A "sol-gel process" means a series of reactions where soluble metal species hydrolyze to form a metal hydroxide. The sol-gel process involves a hydrolysis-condensation of metal precursors (salts and / or alkoxides) allowing easy stabilization and dispersion of particles in a growth medium.

Le « sol » est un système colloïdal dont le milieu de dispersion est un liquide et la phase dispersée un solide. Le sol est également appelé « solution sol-gel colloïdale » ou « sol colloïdal ». Les nanoparticules sont dispersées et stabilisées grâce au sol colloïdal."Soil" is a colloidal system in which the dispersion medium is a liquid and the dispersed phase is a solid. Soil is also called "colloidal sol-gel solution" or "colloidal sol." The nanoparticles are dispersed and stabilized thanks to the colloidal sol.

Selon l'invention, le sol peut être préparé par tout procédé connu de l'homme du métier. On préférera bien entendu les procédés qui permettent d'obtenir une plus grande homogénéité de taille des nanoparticules, ainsi qu'une plus grande stabilisation et dispersion des nanoparticules. Les procédés de préparation de la solution sol-gel colloïdale décrits ici incluent les différents procédés classiques de synthèse de nanoparticules dispersées et stabilisées en milieu liquide.According to the invention, the sol can be prepared by any method known to those skilled in the art. We will of course prefer the processes that make it possible to obtain a greater homogeneity of size of the nanoparticles, as well as a greater stabilization and dispersion of the nanoparticles. The methods for preparing the sol-gel colloidal solution described herein include the various conventional methods for synthesizing nanoparticles dispersed and stabilized in a liquid medium.

Selon une première variante de la présente invention, le sol peut être préparé par exemple par précipitation en milieu aqueux ou par synthèse sol-gel en milieu organique à partir d'un précurseur de nanoparticules.According to a first variant of the present invention, the sol can be prepared for example by precipitation in an aqueous medium or by sol-gel synthesis in an organic medium from a precursor of nanoparticles.

Lorsque le sol est préparé par précipitation en milieu aqueux à partir d'un précurseur de nanoparticules, la préparation peut comprendre, par exemple, les étapes suivantes :

  • étape 1 : synthèse hydrothermale des nanoparticules par utilisation d'un autoclave à partir de précurseurs métalliques ou synthèse des nanoparticules par co-précipitation à pression ordinaire ;
  • étape 2 : traitement des nanoparticules (poudre), dispersion et stabilisation des nanoparticules en milieu aqueux (lavages, dialyses) ;
  • étape 3 (facultative) : modification du solvant de stabilisation : dialyse, distillation, mélange de solvant ;
  • étape 4 : (facultative) : dispersion des nanoparticules dans un milieu organique pour former un sol hybride organique-inorganique par dispersion des particules au sein d'un polymère ou oligomère organique et/ou par fonctionnalisation de la surface des particules par tout type de fonctions organiques réactives ou non.
When the sol is prepared by precipitation in an aqueous medium from a precursor of nanoparticles, the preparation may comprise, for example, the following steps:
  • step 1: hydrothermal synthesis of the nanoparticles by using an autoclave from metal precursors or synthesis of the nanoparticles by co-precipitation at ordinary pressure;
  • step 2: treatment of the nanoparticles (powder), dispersion and stabilization of the nanoparticles in an aqueous medium (washing, dialysis);
  • step 3 (optional): modification of the stabilizing solvent: dialysis, distillation, solvent mixture;
  • step 4: (optional): dispersion of the nanoparticles in an organic medium to form an organic-inorganic hybrid sol by dispersing the particles within an organic polymer or oligomer and / or by functionalizing the surface of the particles by any type of function organic reactive or not.

Les documents [8], [9] et l'exemple 2 ci-dessous décrivent des exemples de cette voie de préparation par précipitation en milieu aqueux, avec différents précurseurs (sels de métalloïde, sels de métaux, alcoxydes métalliques), utilisables pour la mise en oeuvre de la présente invention.Documents [8], [9] and Example 2 below describe examples of this way of preparation by precipitation in an aqueous medium, with different precursors (metalloid salts, metal salts, metal alkoxides), usable for the implementation of the present invention.

Lorsque le sol est préparé par synthèse sol-gel en milieu organique à partir d'un précurseur de nanoparticules, la préparation peut comprendre, par exemple, la succession d'étapes suivantes :

  • étape (a) : hydrolyse-condensation de précurseurs organométalliques ou de sels métalliques en milieu organique ou hydroalcoolique ;
  • étape (b) : nucléation des nanoparticules stabilisées et dispersées en milieu organique ou hydroalcoolique par mûrissement, croissance ;
  • étape (c) (facultative) : formation d'un sol hybride organique-inorganique par dispersion des particules au sein d'un polymère ou oligomère organique et/ou par fonctionnalisation de la surface des particules par tout type de fonctions organiques réactives ou non.
When the sol is prepared by sol-gel synthesis in an organic medium from a precursor of nanoparticles, the preparation may comprise, for example, the following succession of steps:
  • step (a): hydrolysis-condensation of organometallic precursors or metal salts in an organic or aqueous-alcoholic medium;
  • step (b): nucleation of the nanoparticles stabilized and dispersed in organic or hydroalcoholic medium by ripening, growth;
  • step (c) (optional): formation of an organic-inorganic hybrid sol by dispersing the particles within an organic polymer or oligomer and / or by functionalizing the surface of the particles by any type of reactive or non-reactive organic functions.

Le document [10] décrit des exemples de cette voie de préparation par synthèse sol-gel en milieu organique, avec différents précurseurs (sels de métalloïde, sels de métaux, alcoxydes métalliques), utilisable dans la présente invention.The document [10] describes examples of this route of preparation by sol-gel synthesis in organic medium, with different precursors (metalloid salts, metal salts, metal alkoxides), usable in the present invention.

Ainsi, comme exposé ci-dessus, les nanoparticules peuvent directement être stabilisées dans le solvant utilisé au cours de la synthèse ou peptisées ultérieurement si elles sont synthétisées par précipitation. Dans les deux cas la suspension obtenue est un sol.Thus, as explained above, the nanoparticles can directly be stabilized in the solvent used during the synthesis or subsequently peptized if they are synthesized by precipitation. In both cases the suspension obtained is a soil.

Quelle que soit la voie de préparation choisie, selon l'invention, le précurseur de nanoparticules est typiquement choisi dans le groupe comprenant un sel de métalloïde, un sel de métal, un alcoxyde métallique, ou un mélange de ceux-ci. Les documents précités illustrent cet aspect technique.Regardless of the chosen preparation route, according to the invention, the nanoparticle precursor is typically selected from the group consisting of a metalloid salt, a metal salt, a metal alkoxide, or a mixture thereof. The aforementioned documents illustrate this technical aspect.

Par exemple, le métal ou métalloïde du sel ou de l'alcoxyde précurseur de nanoparticules peut être choisi par exemple dans le groupe comprenant le silicium, le titane, le zirconium, le hafnium, l'aluminium, le tantale, le niobium, le cérium, le nickel, le fer, le zinc, le chrome, le magnésium, le cobalt, le vanadium, le baryum, le strontium, l'étain, le scandium, l'indium, le plomb, l'yttrium, le tungstène, le manganèse, l'or, l'argent, le platine, le palladium, le nickel, le cuivre, le cobalt, le ruthénium, le rhodium, l'europium et les autres terres rares, ou un alcoxyde métallique de ces métaux.For example, the metal or metalloid of the salt or alkoxide precursor of nanoparticles may be chosen for example from the group comprising silicon, titanium, zirconium, hafnium, aluminum, tantalum, niobium, cerium , nickel, iron, zinc, chromium, magnesium, cobalt, vanadium, barium, strontium, tin, scandium, indium, lead, yttrium, tungsten, manganese, gold, silver, platinum, palladium, nickel, copper, cobalt, ruthenium, rhodium, europium and other rare earths, or a metal alkoxide of these metals.

Selon une deuxième variante de la présente invention, le sol peut être préparé par exemple par synthèse d'une solution de nanoparticules métalliques à partir d'un précurseur de nanoparticules métalliques en utilisant un réducteur organique ou minéral en solution, par exemple par un procédé choisi dans le groupe comprenant :

  • une réduction chimique de précurseurs organométalliques ou métalliques ou d'oxydes métalliques, par exemple de la manière décrite dans le document [11].
According to a second variant of the present invention, the sol may be prepared for example by synthesis of a solution of metal nanoparticles from a precursor of metal nanoparticles by using an organic or inorganic reducer in solution, for example by a chosen process. in the group comprising:
  • a chemical reduction of organometallic or metal precursors or oxides metal, for example as described in document [11].

Quel que soit le procédé choisi dans cette deuxième variante, selon l'invention, le réducteur peut être choisi par exemple parmi ceux cités dans les documents précités, par exemple dans le groupe comprenant les polyols, l'hydrazine et ses dérivés, la quinone et ses dérivés, les hydrures, les métaux alcalins, la cystéine et ses dérivés, l'ascorbate et ses dérivés.Whatever the method chosen in this second variant, according to the invention, the reducing agent may be chosen for example from those cited in the abovementioned documents, for example in the group comprising polyols, hydrazine and its derivatives, quinone and its derivatives, hydrides, alkali metals, cysteine and its derivatives, ascorbate and its derivatives.

Egalement, selon l'invention, le précurseur de nanoparticules métalliques peut être choisi par exemple parmi ceux cités dans les documents précités, par exemple dans le groupe comprenant les sels de métalloïdes ou de métaux comme l'or, l'argent, le platine, le palladium, le nickel, le cuivre, le cobalt, l'aluminium, le ruthénium ou le rhodium ou les différents alcoxydes métalliques de ces métaux.Also, according to the invention, the precursor of metal nanoparticles can be chosen for example from those cited in the aforementioned documents, for example in the group comprising the salts of metalloids or metals such as gold, silver, platinum, palladium, nickel, copper, cobalt, aluminum, ruthenium or rhodium or the various metal alkoxides of these metals.

Selon une troisième variante de la présente invention, le sol peut être préparé en préparant un mélange de nanoparticules dispersées dans un solvant, chaque famille pouvant être issue des préparations décrites dans les documents [8], [9], [10] et l'exemple 2 ci-dessous.According to a third variant of the present invention, the sol may be prepared by preparing a mixture of nanoparticles dispersed in a solvent, each family may be derived from the preparations described in documents [8], [9], [10] and Example 2 below.

Quel que soit la variante d'obtention du sol utilisée, dans le procédé de l'invention, on peut bien entendu utiliser un mélange de différents sols qui diffèrent par leur nature chimique et/ou par leur procédé d'obtention.Whatever the variant for obtaining the soil used, in the process of the invention, it is of course possible to use a mixture of different sols which differ in their chemical nature and / or in their method of production.

Typiquement, le sol utilisé dans le procédé de la présente invention peut comprendre par exemple des nanoparticules d'un oxyde métallique choisi dans le groupe comprenant SiO2, ZrO2, TiO2, Ta2O5, HfO2, ThO2, SnO2, VO2, In2O3, CeO2, ZnO, Nb2O5, V2O5, Al2O3, Sc2O3, Ce2O3, NiO, MgO, Y2O3, WO3, BaTiO3, Fe2O3, Fe3O4, Sr2O3, (PbZr)TiO3, (BaSr)TiO3, CO2O3, Cr2O3, Mn2O3, Mn3O4, Cr3O4, MnO2, RuO2 ou d'une combinaison de ces oxydes, par exemple par dopage des particules ou par mélange des particules. Cette liste n'est bien entendu pas exhaustive puisqu'elle inclut tous les oxydes métalliques décrits dans les documents précités.Typically, the soil used in the process of the present invention may comprise, for example, nanoparticles of a metal oxide selected from the group consisting of SiO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , HfO 2 , ThO 2 , SnO 2 , VO 2 , In 2 O 3 , CeO 2 , ZnO, Nb 2 O 5 , V 2 O 5 , Al 2 O 3 , Sc 2 O 3 , Ce 2 O 3 , NiO, MgO, Y 2 O 3 , WO 3 , BaTiO 3 , Fe 2 O 3 , Fe 3 O 4 , Sr 2 O 3 , (PbZr) TiO 3 , (BaSr) TiO 3 , CO 2 O 3 , Cr 2 O 3 , Mn 2 O 3 , Mn 3 O 4 , Cr 3 O 4 , MnO 2 , RuO 2 or a combination of these oxides, for example by doping the particles or by mixing the particles. This list is of course not exhaustive since it includes all the metal oxides described in the aforementioned documents.

En outre, selon l'invention, le sol peut comprendre par exemple des nanoparticules métalliques d'un métal choisi dans le groupe comprenant l'or, l'argent, le platine, le palladium, le nickel, le ruthénium ou le rhodium, ou un mélange de différentes nanoparticules métalliques constituées de ces métaux. Là aussi, cette liste n'est pas exhaustive puisqu'elle inclut tous les oxydes métalliques décrits dans les documents précités.In addition, according to the invention, the sol may comprise, for example, metallic nanoparticles of a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium or rhodium, or a mixture of different metallic nanoparticles made of these metals. Here too, this list is not exhaustive since it includes all the metal oxides described in the aforementioned documents.

La taille des nanoparticules du sol obtenu est parfaitement contrôlée par ses conditions de synthèse, en particulier par la nature des précurseurs utilisés, du ou des solvant(s), du pH, de la température, etc. et peut aller de quelques angströms à quelques microns. Ce contrôle de la taille des particules dans la préparation des sol est décrit par exemple dans le document [12].The size of the nanoparticles of the soil obtained is perfectly controlled by its synthesis conditions, in particular by the nature of the precursors used, the solvent (s), the pH, the temperature, etc. and can range from a few angstroms to a few microns. This control of the particle size in the preparation of the soil is described for example in document [12].

Selon l'invention, par exemple dans les applications mentionnées dans la présente, les nanoparticules ont préférentiellement une taille de 1 à 100 nm, ceci notamment dans le but de pouvoir réaliser des couches ou revêtements minces, par exemple d'épaisseur allant de 0,1 à 50 µm.According to the invention, for example in the applications mentioned herein, the nanoparticles preferably have a size of 1 to 100 nm, this especially in order to be able to achieve thin layers or coatings, for example with a thickness ranging from 0.1 to 50 μm.

A côté des nanoparticules, le sol comprend également un liquide porteur, qui provient de son procédé de fabrication, appelé milieu de croissance. Ce liquide porteur est un solvant organique ou inorganique tels que ceux décrit dans les documents précités. Il peut s'agir par exemple d'un liquide choisi parmi l'eau, les alcools, les éthers, les cétones, les aromatiques, les alcanes, les halogènes et tout mélange de ceux-ci. Le pH de ce liquide porteur dépend du procédé de fabrication du sol et de sa nature chimique. Il est généralement de 1 à 14.Besides the nanoparticles, the soil also comprises a carrier liquid, which comes from its manufacturing process, called growth medium. This carrier liquid is an organic or inorganic solvent such as those described in the aforementioned documents. It may be for example a liquid selected from water, alcohols, ethers, ketones, aromatics, alkanes, halogens and any mixture thereof. The pH of this carrier liquid depends on the soil manufacturing process and its chemical nature. It is usually from 1 to 14.

Dans les sols obtenus, les nanoparticules sont dispersées et stabilisées dans leur milieu de croissance, et cette stabilisation et/ou dispersion peut être favorisée par le procédé de préparation du sol et par la chimie utilisée (voir ci-dessus). Le procédé de la présente invention tire partie de cette propriété des sols.In the soils obtained, the nanoparticles are dispersed and stabilized in their growth medium, and this stabilization and / or dispersion can be promoted by the soil preparation process and the chemistry used (see above). The process of the present invention takes advantage of this property of soils.

Selon l'invention, le sol peut comprendre en outre des molécules organiques. Il peut s'agir par exemple de molécules de stabilisation des nanoparticules dans le sol et/ou de molécules qui fonctionnalisent les nanoparticules.According to the invention, the sol may further comprise organic molecules. It may be, for example, molecules for stabilizing the nanoparticles in the soil and / or molecules that functionalize the nanoparticles.

En effet, un composé organique peut être ajouté aux nanoparticules afin de leur conférer une propriété particulière. Par exemple, la stabilisation de ces nanoparticules en milieu liquide par effet stérique conduit à des matériaux appelés matériaux hybrides organiques-inorganiques de classe I. Les interactions qui régissent la stabilisation de ces particules sont faibles de nature électrostatique de type liaisons hydrogènes ou de Van Der Waals. De tels composés utilisables dans la présente invention, et leur effet sur les sols, sont décrits par exemple dans les documents [13] et l'exemple 2 ci-dessous.Indeed, an organic compound can be added to the nanoparticles to give them a particular property. For example, the stabilization of these nanoparticles in liquid medium by steric effect leads to materials called organic-inorganic hybrid materials of class I. The interactions which regulate the stabilization of these particles are weak of electrostatic nature of hydrogen bonds or Van Der Waals type. Such compounds usable in the present invention, and their effect on soils, are described for example in documents [13] and Example 2 below.

Egalement, selon l'invention, les particules peuvent être fonctionnalisées par un composé organique soit au cours de la synthèse par introduction de précurseurs organominéraux adéquates, soit par greffage sur la surface des colloïdes. Des exemples ont été donnés ci-dessus. Ces matériaux sont alors appelés matériaux organiques-inorganiques de classe II puisque les interactions présentes entre la composante organique et la particule minérale sont fortes, de nature covalente ou ionocovalente. De tels matériaux et leur procédé d'obtention sont décrits dans le document [13].Also, according to the invention, the particles can be functionalized with an organic compound either during synthesis by introduction of suitable organomineral precursors, or by grafting on the surface of the colloids. Examples have been given above. These materials are then called organic-inorganic class II materials since the interactions between the organic component and the mineral particle are strong, of a covalent or ionocovalent nature. Such materials and their method of production are described in document [13].

Les propriétés des matériaux hybrides utilisables dans la présente invention dépendent non seulement de la nature chimique des composantes organiques et inorganiques utilisées pour constituer le sol, mais également de la synergie qui peut apparaître entre ces deux chimies. Le document [13] décrit les effets de la nature chimique des composantes organiques et inorganiques utilisées et de telles synergies.The properties of the hybrid materials that can be used in the present invention depend not only on the chemical nature of the organic and inorganic components used to form the soil, but also on the synergy that can appear between these two chemistries. Document [13] describes the effects of the chemical nature of the organic and inorganic components used and of such synergies.

Le procédé de l'invention comprend l'injection du sol colloïdal dans un jet ou écoulement de plasma thermique. L'injection du sol dans le jet de plasma peut être réalisée par tout moyen approprié d'injection d'un liquide, par exemple au moyen d'un injecteur, par exemple sous forme de jet ou de gouttes, de préférence avec une quantité de mouvement adaptée pour qu'elle soit sensiblement identique à celle de l'écoulement plasma. Des exemples d'injecteurs sont donnés ci-dessous.The method of the invention comprises injecting the colloidal sol in a jet or flow of thermal plasma. The injection of the ground into the plasma jet can be carried out by any appropriate means of injecting a liquid, for example by means of an injector, by example in the form of jet or drops, preferably with a momentum adapted to be substantially identical to that of the plasma flow. Examples of injectors are given below.

La température du sol lors de son injection peut aller par exemple de la température ambiante (20°C) jusqu'à une température inférieure à son ébullition. Avantageusement, on peut contrôler et modifier la température du sol pour son injection, par exemple pour être de 0°C à 100°C. Le sol possède alors une tension de surface différente, selon la température imposée, entraînant un mécanisme de fragmentation plus ou moins rapide et efficace lorsqu'il arrive dans le plasma. La température peut donc avoir un effet sur la qualité du revêtement obtenu.The temperature of the soil during its injection may range, for example, from room temperature (20 ° C.) to a temperature below its boiling point. Advantageously, it is possible to control and modify the temperature of the soil for its injection, for example to be from 0 ° C. to 100 ° C. The soil then has a different surface tension, depending on the temperature imposed, resulting in a more or less rapid and efficient fragmentation mechanism when it arrives in the plasma. The temperature can therefore have an effect on the quality of the coating obtained.

Le sol injecté, par exemple sous forme de gouttes, pénètre dans le jet de plasma, où il est explosé en une multitude de gouttelettes sous l'effet des forces de cisaillement du plasma. La taille de ces gouttelettes peut être ajustée, selon la microstructure recherchée du dépôt, en fonction des propriétés du sol (liquide) et de l'écoulement plasma. Avantageusement, la taille des gouttelettes varie de 0,1 à 10 µm.The injected soil, for example in the form of drops, enters the plasma jet, where it is exploded into a multitude of droplets under the effect of plasma shear forces. The size of these droplets can be adjusted according to the desired microstructure of the deposit, depending on the properties of the soil (liquid) and the plasma flow. Advantageously, the size of the droplets ranges from 0.1 to 10 μm.

Les énergies cinétique et thermique du jet de plasma servent respectivement à disperser les gouttes en une multitude de gouttelettes (fragmentation), puis à vaporiser le liquide. Quand le sol liquide atteint le coeur du jet, qui est un milieu à haute température et haute vitesse, il est vaporisé et les nanoparticules sont accélérées pour être recueillies sur le substrat pour former un dépôt (revêtement) nanostructuré possédant une structure cristalline identique à celle des particules initialement présentes dans le sol de départ. La vaporisation du liquide entraîne le rapprochement des nanoparticules fines de matière appartenant à une même gouttelette et leur agglomération. Les agglomérats résultants, généralement de taille inférieure à 1 µm, se retrouvent au coeur du plasma où ils sont fondus, partiellement ou totalement, puis accélérés avant d'être recueillis sur le substrat. Si la fusion des agglomérats est complète, la taille des grains dans le dépôt est de quelques centaines de nanomètres à quelques microns. En revanche, si la fusion n'est que partielle, la taille des grains dans le dépôt est proche de celle des particules contenues dans le liquide de départ et les propriétés cristallines des particules sont bien conservées au sein du dépôt.The kinetic and thermal energies of the plasma jet serve respectively to disperse the drops in a multitude of droplets (fragmentation), then to vaporize the liquid. When the liquid soil reaches the jet core, which is a medium at high temperature and high speed, it is vaporized and the nanoparticles are accelerated to be collected on the substrate to form a nanostructured deposit (coating) having a crystalline structure identical to that of the particles initially present in the starting soil. The vaporization of the liquid brings about the bringing together of fine nanoparticles of material belonging to the same droplet and their agglomeration. The resulting agglomerates, generally less than 1 μm in size, are found in the heart of the plasma where they are melted, partially or totally, then accelerated before being collected on the substrate. If the agglomerate fusion is complete, the grain size in the deposit is a few hundred nanometers to a few microns. On the other hand, if the melting is only partial, the size of the grains in the deposit is close to that of the particles contained in the starting liquid and the crystalline properties of the particles are well preserved within the deposit.

Généralement, les plasmas thermiques sont des plasmas produisant un jet ayant une température de 5000 K à 15000 K. Dans la mise en oeuvre du procédé de l'invention, cette fourchette de température est préférée. Bien entendu, la température du plasma utilisé pour la projection du sol sur la surface à revêtir peut être différente. Elle sera choisie en fonction de la nature chimique du sol et du revêtement souhaité. Selon l'invention, la température sera choisie de manière à se placer préférentiellement dans une configuration de fusion partielle ou totale des particules du sol, de préférence de fusion partielle pour conserver au mieux leurs propriétés de départ au sein de la couche.Generally, thermal plasmas are plasmas producing a jet having a temperature of 5000 K to 15000 K. In the implementation of the method of the invention, this temperature range is preferred. Of course, the temperature of the plasma used for the projection of the ground on the surface to be coated may be different. It will be chosen according to the chemical nature of the soil and the desired coating. According to the invention, the temperature will be chosen so as to be preferentially in a configuration of partial or total melting of the particles of the soil, preferably partial melting to best preserve their starting properties within the layer.

Le plasma peut être par exemple un plasma d'arc, soufflé ou non, ou un plasma inductif ou radiofréquence, par exemple en mode supersonique. Il peut fonctionner à la pression atmosphérique ou à plus basse pression. Les documents [14], [15] et [16] décrivent des plasmas utilisables dans la présente invention, et les torches à plasma permettant de les générer. Avantageusement, la torche à plasma utilisée est une torche à plasma d'arc.The plasma may be for example an arc plasma, blown or not, or an inductive or radiofrequency plasma, for example in supersonic mode. It can operate at atmospheric pressure or at lower pressure. The documents [14], [15] and [16] describe plasmas that can be used in the present invention, and the plasma torches making it possible to generate them. Advantageously, the plasma torch used is an arc plasma torch.

Selon l'invention, le jet de plasma peut être généré avantageusement à partir d'un gaz plasmagène choisi dans le groupe comprenant Ar, H2, He et N2. Avantageusement, le jet de plasma constituant le jet a une viscosité de 10-4 à 5×10-4 kg/m.s. Avantageusement, le jet de plasma est un jet de plasma d'arc.According to the invention, the plasma jet may advantageously be generated from a plasmagenic gas chosen from the group comprising Ar, H 2 , He and N 2 . Advantageously, the jet of plasma constituting the jet has a viscosity of 10 -4 to 5 × 10 -4 kg / ms Advantageously, the plasma jet is an arc plasma jet.

Le substrat à revêtir est, pour des raisons évidentes, préférentiellement positionné par rapport au jet plasma pour que la projection des nanoparticules soit dirigée sur la surface à revêtir. Différents essais permettent très facilement de trouver une position optimale. Le positionnement est ajusté pour chaque application, selon les conditions de projection sélectionnées et la microstructure du dépôt souhaitée.The substrate to be coated is, for obvious reasons, preferentially positioned relative to the plasma jet so that the projection of the nanoparticles is directed on the surface to be coated. Different tests make it very easy to find an optimal position. The positioning is adjusted for each application, according to the selected projection conditions and the microstructure of the desired deposit.

La vitesse de croissance des dépôts, élevée pour un procédé de fabrication de couches finement structurées, dépend essentiellement du pourcentage massique de matière dans le liquide et du débit de liquide. Avec le procédé de l'invention, on peut aisément obtenir une vitesse de dépôt du revêtement de nanoparticules de 1 à 100 µm/min.The rate of growth of the deposits, high for a method of manufacturing finely structured layers, depends essentially on the mass percentage of material in the liquid and the flow of liquid. With the method of the invention, it is possible easily obtain a coating deposition rate of nanoparticles of 1 to 100 microns / min.

Les couches ou revêtements minces qui peuvent être obtenus par le procédé de l'invention, allant aisément de 0,1 à 50 µm, peuvent être constitués de grains de taille inférieure ou de l'ordre du micron. Elles peuvent être denses ou poreuses. Elles peuvent être pures et homogènes. La synthèse d'une solution sol-gel stable et homogène de nanoparticules de granulométrie définie associée au procédé liquide de projection plasma de l'invention permet de conserver les propriétés intrinsèques du sol de départ au sein du dépôt et d'obtenir un revêtement nanostructuré en maîtrisant avantageusement les propriétés suivante porosité/densité ; homogénéité en composition ; stoechiométrie « exotique » (sols mixtes et mélanges précités) ; structure nanométrique (taille et phases cristallines) ; granulométrie des grains ; épaisseur du dépôt homogène sur objet à forme complexe ; possibilité de dépôt sur tout type de substrats, quelles que soient leur nature et leur rugosité.The thin layers or coatings which can be obtained by the process of the invention, easily ranging from 0.1 to 50 microns, may consist of grains of smaller size or of the order of one micron. They can be dense or porous. They can be pure and homogeneous. The synthesis of a stable and homogeneous sol-gel solution of nanoparticles of defined particle size associated with the liquid plasma spraying method of the invention makes it possible to preserve the intrinsic properties of the starting sol within the deposit and to obtain a nanostructured coating in advantageously controlling the properties following porosity / density; homogeneity in composition; "exotic" stoichiometry (mixed soils and mixtures); nanometric structure (size and crystalline phases); granulometry of the grains; thickness of the homogeneous deposit on object with a complex shape; possibility of deposit on all types of substrates, whatever their nature and their roughness.

Le procédé de l'invention peut être mis en oeuvre plusieurs fois sur une même surface de substrat, avec différents sols - en composition et/ou en concentration et/ou en taille de particules - pour réaliser des couches successives de différents matériaux ou bien des dépôts avec des gradients de composition. Ces dépôts de couches successives sont utiles par exemple dans des applications telles que des couches à propriétés électriques (électrode et électrolyte), des couches à propriétés optiques (bas et haut indice de réfraction), des couches à propriété thermique (conductrice et isolante), des couches barrières de diffusion et/ou des couches à porosité contrôlée.The process of the invention may be carried out several times on the same substrate surface, with different soils - in composition and / or in concentration and / or in particle size - to produce successive layers of different materials or deposits with compositional gradients. These deposits of successive layers are useful for example in applications such as layers with electrical properties (electrode and electrolyte), layers with optical properties (low and high refractive index), thermal property layers (conductive and insulating), diffusion barrier layers and / or controlled porosity layers.

Le procédé de projection de la présente invention est facilement industrialisable puisque sa spécificité et son caractère innovant résident notamment dans le système d'injection qui peut s'adapter sur toutes machines de projection thermiques déjà présentes dans l'industrie ; dans la nature de la solution sol-gel ; et dans le choix des conditions plasma pour l'obtention d'un revêtement nanostructuré présentant les propriétés des particules projetées.The projection method of the present invention is easily industrializable since its specificity and its innovative character reside in particular in the injection system which can adapt to all thermal spray machines already present in the industry; in the nature of the sol-gel solution; and in the choice of plasma conditions for obtaining a nanostructured coating having the properties of the projected particles.

Un dispositif de revêtement d'une surface d'un substrat utilisable pour la mise en oeuvre du procédé de l'invention, comprend :

  • une torche à plasma thermique capable de produire un jet de plasma ;
  • un réservoir de gaz plasmagène;
  • un réservoir de sol colloïdal de nanoparticules ;
  • un moyen de fixation et de déplacement du substrat par rapport à la torche à plasma ;
  • un système d'injection reliant d'une part le réservoir de sol colloïdal et d'autre part un injecteur dont l'extrémité est microperforée d'un trou d'injection du sol colloïdal dans le jet de plasma généré par la torche à plasma ; et
  • un mano-détendeur permettant d'ajuster la pression à l'intérieur du réservoir.
A device for coating a surface of a substrate that can be used for carrying out the method of the invention comprises:
  • a thermal plasma torch capable of producing a plasma jet;
  • a reservoir of plasma gas;
  • a colloidal soil reservoir of nanoparticles;
  • means for fixing and moving the substrate relative to the plasma torch;
  • an injection system connecting on the one hand the colloidal solids reservoir and on the other hand an injector whose end is microperforated with an injection hole of the colloidal sol in the plasma jet generated by the plasma torch; and
  • a pressure regulator for adjusting the pressure inside the tank.

Avantageusement, la torche à plasma est capable de produire un jet de plasma ayant une température de 5000 K à 15000 K. Avantageusement, la torche à plasma est capable de produire un jet de plasma ayant une viscosité de 10-4 à 5×10-4 kg/m.s. Avantageusement, la torche à plasma est une torche à plasma d'arc. Des exemples de gaz plasmagènes sont donnés ci-dessus, les réservoirs de ces gaz sont disponibles dans le commerce. Les raisons de ces choix avantageux sont exposées ci-dessus.Advantageously, the plasma torch is capable of producing a plasma jet having a temperature of 5000 K to 15000 K. Advantageously, the plasma torch is capable of producing a plasma jet having a viscosity of 10 -4 to 5 × 10 - 4 kg / ms Advantageously, the plasma torch is an arc plasma torch. Examples of plasmagenic gases are given above, the reservoirs of these gases are commercially available. The reasons for these advantageous choices are outlined above.

Avantageusement, le dispositif utilisable pour la mise en oeuvre du procédé de l'invention comprend plusieurs réservoirs contenant respectivement plusieurs sols chargés de nanoparticules, les sols étant différents les uns des autres de par leur composition et/ou diamètre et/ou concentration. Le dispositif peut comprendre en outre un réservoir de nettoyage contenant une solution de nettoyage de la tuyauterie et de l'injecteur. Ainsi, la tuyauterie et l'injecteur peuvent être nettoyés entre chaque mise en oeuvre du procédé.Advantageously, the device that can be used for carrying out the process of the invention comprises several reservoirs respectively containing several sols loaded with nanoparticles, the sols being different from each other by their composition and / or diameter and / or concentration. The device may further comprise a cleaning tank containing a solution for cleaning the piping and the injector. Thus, the piping and the injector can be cleaned between each implementation of the process.

Les réservoirs peuvent être reliés à un réseau d'air comprimé grâce à des tuyaux et à une source de gaz de compression, par exemple d'air comprimé. Un ou plusieurs mano-détendeur(s) permet (tent) d'ajuster la pression à l'intérieur du ou des réservoir(s), généralement à une pression inférieure à 2×106 Pa (20 bars). Dans ce cas, sous l'effet de la pression, le liquide est acheminé jusqu'à l'injecteur, ou les injecteurs s'il y en a plusieurs, par des tuyaux puis sort de l'injecteur, par exemple sous la forme d'un jet de liquide qui se fragmente mécaniquement sous la forme de grosses gouttes, de préférence de diamètre calibré, en moyenne deux fois supérieures au diamètre du trou circulaire de sortie. Une pompe est également utilisable. Le débit et la quantité de mouvement du sol en sortie de l'injecteur dépendent notamment :

  • de la pression dans le réservoir utilisé et/ou de la pompe,
  • des caractéristiques des dimensions de l'orifice de sortie (diamètre de profondeur), et
  • des propriétés rhéologiques du sol.
The tanks can be connected to a compressed air network by means of pipes and a source of compression gas, for example compressed air. One or more pressure reducer (s) allows (s) to adjust the pressure inside the tank (s), usually at a pressure of less than 2 × 10 6 Pa (20 bar). In this case, under the effect of the pressure, the liquid is conveyed to the injector, or the injectors if there are several, by pipes and then exits the injector, for example in the form of a jet of liquid that fragments mechanically in the form of large drops, preferably of calibrated diameter, on average two times greater than the diameter of the circular exit hole. A pump is also usable. The flow rate and the amount of movement of the soil at the outlet of the injector depend in particular on:
  • the pressure in the tank used and / or the pump,
  • characteristics of the dimensions of the outlet orifice (depth diameter), and
  • rheological properties of the soil.

L'injecteur permet d'injecter le sol dans le plasma. Il est de préférence tel que le sol injecté se fragmente mécaniquement en sortie de l'injecteur sous forme de gouttes comme indiqué ci-dessus. Le trou de l'injecteur peut être de n'importe quelle forme permettant d'injecter le sol colloïdal dans le jet de plasma, de préférence dans les conditions précitées. Avantageusement, le trou est circulaire. Avantageusement le trou de l'injecteur a un diamètre de 10 à 500 µm. Le dispositif peut être doté de plusieurs injecteurs, par exemple selon les quantités de sol à injecter.The injector makes it possible to inject the ground into the plasma. It is preferably such that the injected soil mechanically fragments at the outlet of the injector in the form of drops as indicated above. The hole of the injector may be of any form for injecting the colloidal sol in the plasma jet, preferably under the aforementioned conditions. Advantageously, the hole is circular. Advantageously, the hole of the injector has a diameter of 10 to 500 μm. The device may be provided with several injectors, for example according to the quantities of soil to be injected.

Selon un mode particulier de réalisation du dispositif utilisable pour la mise en oeuvre du procédé de l'invention, l'inclinaison de l'injecteur par rapport à l'axe longitudinal du jet de plasma peut varier de 20 à 160°. Avantageusement également, l'injecteur peut être déplacé dans le sens longitudinal du jet de plasma. Ces déplacements sont indiqués schématiquement sur la figure 2 annexée. Ainsi, l'injection du sol colloïdal dans le jet de plasma peut être orientée. Cette orientation permet d'optimiser l'injection du sol colloïdal, et donc la formation du revêtement projeté sur la surface du substrat.According to a particular embodiment of the device that can be used for carrying out the method of the invention, the inclination of the injector relative to the longitudinal axis of the plasma jet can vary from 20 to 160 °. Advantageously also, the injector can be moved in the longitudinal direction of the plasma jet. These movements are indicated schematically on the figure 2 attached. Thus, the injection of the colloidal sol in the plasma jet can be oriented. This orientation makes it possible to optimize the injection of the colloidal sol, and thus the formation of the projected coating on the surface of the substrate.

La ligne d'injection du sol peut être thermostatée de façon à contrôler et éventuellement modifier la température du sol injecté. Ce contrôle de la température et cette modification peuvent être réalisés au niveau des tuyaux et/ou au niveau des réservoirs.The soil injection line may be thermostatically controlled to control and possibly modify the temperature of the injected soil. This temperature control and this modification can be carried out at the level of the pipes and / or at the level of the tanks.

Le dispositif peut comprendre un moyen de fixation et de déplacement du substrat par rapport à la torche à plasma. Ce moyen peut consister en des pinces ou système équivalent permettant de saisir (fixer) le substrat et de le maintenir lors de la projection plasma en une position choisie, et en un moyen permettant de déplacer en rotation et en translation la surface du substrat face au jet de plasma et dans le sens longitudinal du jet de plasma. Ainsi, on peut optimiser la position de la surface à revêtir, par rapport au jet de plasma, pour obtenir un revêtement homogène.The device may comprise means for fixing and moving the substrate relative to the plasma torch. This means may consist of clamps or equivalent system for gripping (securing) the substrate and maintaining it during the plasma projection at a selected position, and means for moving in rotation and in translation the surface of the substrate facing the plasma jet and in the longitudinal direction of the plasma jet. Thus, one can optimize the position of the surface to be coated, relative to the plasma jet, to obtain a homogeneous coating.

Une injection directe peut être réalisée grâce à un système d'injection bien adapté, par exemple en utilisant le dispositif décrit ci-dessus, d'une suspension stable de nanoparticules, solution appelée « sol » puisqu'elle résulte de la synthèse d'un colloïde par procédé sol-gel mettant en jeu l'hydrolyse condensation de précurseurs métalliques (sels ou alcoxydes) permettant une stabilisation et une dispersion aisées de particules dans leur milieu de croissance.Direct injection can be achieved by means of a well-adapted injection system, for example using the device described above, of a stable suspension of nanoparticles, a solution called "sol" since it results from the synthesis of a colloid by sol-gel process involving the hydrolysis condensation of metal precursors (salts or alkoxides) allowing stabilization and easy dispersion of particles in their growth medium.

Les avantages principaux de la présente invention par rapport aux procédés de l'art antérieur sont :

  • la conservation de la taille et de la répartition granulométrique des nanoparticules ;
  • la conservation de l'état cristallin du matériau projeté ;
  • la conservation de la stoechiométrie initiale et de l'état d'homogénéité ;
  • le contrôle de la porosité du film ;
  • l'accès à des épaisseurs de revêtements submicroniques sans aucune difficulté, contrairement au procédé de projection thermique classique de l'art antérieur ;
  • l'obtention d'un excellent et inhabituel rendement pondéral de projection thermique en limitant les pertes de matière, c'est-à-dire un rapport de masse déposée/masse projetée, supérieur à 80% en poids ;
  • la réduction des températures auxquelles sont soumis les matériaux projetés, autorisant ainsi l'utilisation de compositions- sensibles thermiquement ;
  • la possibilité, aujourd'hui inédite, de réaliser des dépôts sur des supports de toute nature et de toute rugosité comme du verre ou des wafers de silicium polis miroir (sur ces derniers la très faible rugosité de surface des substrats interdisait l'adhérence des revêtements) ;
  • la capacité de réalisation par projection thermique de revêtements à composition SiO2, composition jusqu'à présent inaccessible pour les procédés classiques ; et
  • l'obtention de revêtements mécaniquement résistants et adhérents.
The main advantages of the present invention compared to the methods of the prior art are:
  • preserving the size and particle size distribution of the nanoparticles;
  • the preservation of the crystalline state of the projected material;
  • the preservation of the initial stoichiometry and the state of homogeneity;
  • the control of the porosity of the film;
  • access to thicknesses of submicron coatings without any difficulty, unlike the conventional thermal spraying method of the prior art;
  • obtaining an excellent and unusual weight efficiency of thermal spraying by limiting the losses of material, that is to say a mass ratio deposited / projected mass, greater than 80% by weight;
  • reducing the temperatures to which the projected materials are subjected, thus allowing the use of thermally sensitive compositions;
  • the possibility, today unpublished, of depositing on supports of any kind and roughness such as glass or mirror-polished silicon wafers (on the latter the very low surface roughness of the substrates prevented the adhesion of the coatings );
  • the capacity for thermal projection of SiO 2 composition coatings, composition hitherto inaccessible for conventional processes; and
  • obtaining mechanically resistant and adherent coatings.

La présente invention trouve des applications dans tous les domaines techniques où il est nécessaire d'obtenir un revêtement nanostructuré, car elle permet la fabrication d'un tel revêtement d'excellente qualité en termes de finesse, d'homogénéité, d'épaisseur et de taille des particules. A titre d'exemples non exhaustifs, la présente invention peut être utilisée dans les applications suivantes :

  • Le revêtement de métaux et d'oxydes pour les rendre résistants à la corrosion. Pour cella, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans le document [8] pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements composites résistants à l'abrasion. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans les documents [8], [9], [10] et l'exemple 2 ci-dessous pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements résistants à haute température, tels que les dépôts de matériaux réfractaires et de revêtements composites. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans les documents [8], [9], [10] et l'exemple 2 ci-dessous pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements qui interviennent dans des interactions de surfaces en mouvement relatif (tribologie), tels que les revêtements composites résistants à l'abrasion et/ou lubrifiants. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans le document [10] pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements qui interviennent dans la conversion et le stockage d'énergie, tels que :
    • les revêtements qui interviennent dans la conversion photothermique de l'énergie solaire. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans l'exemple 2 ci-dessous pour mettre en oeuvre le procédé de l'invention.
    • les revêtements sous forme d'empilements de matériaux actifs, par exemple pour les électrodes et les électrolytes, par exemple pour pile à combustible à oxyde solide, les générateurs électrochimiques, par exemple les batteries au plomb, les batteries Li-ion, les supercondensateurs, etc. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans les documents [8] et [17] pour mettre en oeuvre le procédé de l'invention.
  • Les revêtements qui interviennent dans des réactions de catalyse, par exemple pour la fabrication de catalyseurs supportés pour la dépollution des gaz, la combustion ou la synthèse. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans les documents [8] et l'exemple 2 ci-dessous pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements qui interviennent en tant que microréacteurs chimiques ou biologiques. Pour cela, on peut utiliser par exemple un sol colloïdal tel que ceux décrits dans le document [10] pour mettre en oeuvre le procédé de l'invention.
  • Le dépôt de revêtements sur des systèmes micro-électromécaniques (MEMS) ou micro-opto-électromécaniques (MOEMS), par exemple dans les domaines de L'automobile, des télécommunications, de l'astronomie, de l'avionique, et les dispositifs d'analyse biologique et médical.
The present invention has applications in all technical fields where it is necessary to obtain a nanostructured coating, because it allows the manufacture of such a coating of excellent quality in terms of fineness, homogeneity, thickness and particle size. By way of non-exhaustive examples, the present invention may be used in the following applications:
  • The coating of metals and oxides to make them resistant to corrosion. For this purpose, it is possible to use, for example, a colloidal sol such as those described in document [8] for carrying out the process of the invention.
  • The deposition of composite coatings resistant to abrasion. For this, one can use for example a colloidal sol such as those described in documents [8], [9], [10] and Example 2 below to implement the method of the invention.
  • Deposition of high temperature resistant coatings, such as refractory deposits and composite coatings. For this purpose, it is possible to use, for example, a colloidal sol such as those described in documents [8], [9], [10] and Example 2 below to implement the method of the invention.
  • The deposition of coatings that intervene in relative motion surface interactions (tribology), such as abrasion-resistant composite coatings and / or lubricants. For this, one can use for example a colloidal sol such as those described in document [10] to implement the method of the invention.
  • The deposition of coatings involved in the conversion and storage of energy, such as:
    • coatings involved in the photothermal conversion of solar energy. For this purpose, it is possible to use for example a colloidal sol such as those described in Example 2 below to implement the process of the invention.
    • coatings in the form of stacks of active materials, for example for electrodes and electrolytes, for example for solid oxide fuel cells, electrochemical generators, for example lead-acid batteries, Li-ion batteries, supercapacitors, etc. For this, one can use for example a colloidal sol such as those described in documents [8] and [17] to implement the method of the invention.
  • The coatings involved in catalysis reactions, for example for the manufacture of supported catalysts for gas depollution, combustion or synthesis. For this we can use for example a colloidal sol such as those described in documents [8] and Example 2 below to implement the method of the invention.
  • The deposition of coatings that act as chemical or biological microreactors. For this, one can use for example a colloidal sol such as those described in document [10] to implement the method of the invention.
  • The deposition of coatings on micro-electromechanical systems (MEMS) or micro-optoelectromechanical systems (MOEMS), for example in the fields of automobiles, telecommunications, astronomy, avionics, and biological and medical analysis.

La présente invention se rapporte donc également à un dispositif optique et/ou électronique comprenant un revêtement nanostructuré susceptible d'être obtenu par le procédé de l'invention, c'est-à-dire présentant les caractéristiques physiques et chimiques des revêtements obtenus par le procédé de l'invention.The present invention thus also relates to an optical and / or electronic device comprising a nanostructured coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.

La présente invention se rapporte donc également à une Pile à combustible comprenant un revêtement nanostructuré susceptible d'être obtenu par le procédé de l'invention, c'est-à-dire présentant les caractéristiques physiques et chimiques des revêtements obtenus par le procédé de l'invention.The present invention thus also relates to a fuel cell comprising a nanostructured coating obtainable by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the process of the invention. 'invention.

La présente invention se rapporte donc également à une barrière thermique comprenant un revêtement susceptible d'être obtenu par le procédé de l'invention, c'est-à-dire présentant les caractéristiques physiques et chimiques des revêtements obtenus par le procédé de l'invention.The present invention therefore also relates to a thermal barrier comprising a coating that can be obtained by the method of the invention, that is to say having the physical and chemical characteristics of the coatings obtained by the method of the invention.

D'autres caractéristiques et avantages de l'invention pourront apparaître à la lecture des exemples suivants donnés à titre illustratif et non limitatif en référence aux dessins annexés.Other features and advantages of the invention may appear on reading the following examples given for illustrative and non-limiting with reference to the accompanying drawings.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

  • La figure 1 présente un schéma simplifié d'une partie du dispositif de mise en oeuvre du procédé de l'invention permettant d'injecter le sol colloïdal de nanoparticules dans un jet de plasma.The figure 1 presents a simplified diagram of a part of the device for implementing the method of the invention for injecting the colloidal sol of nanoparticles in a plasma jet.
  • La figure 2 présente un schéma simplifié d'un mode d'injection du sol colloïdal de nanoparticules dans un jet de plasma avec une représentation schématique de la torche à plasma.The figure 2 presents a simplified diagram of a method of injecting the colloidal sol of nanoparticles into a plasma jet with a schematic representation of the plasma torch.
  • La figure 3 présente un diagramme de diffraction des rayons X sur poudre d'une zircone.The figure 3 presents an X-ray powder diffraction pattern of a zirconia.
  • La figure 4 présente deux photographies obtenues par microscopie électronique à transmission sur un sol de zircone.The figure 4 presents two photographs obtained by transmission electron microscopy on a zirconia sol.
  • La figure 5 est un graphique de comparaison par diffraction des rayons X de la structure cristalline d'un revêtement déposé par le procédé de la présente invention et du sol de nanoparticules de ZrO2 de départ.The figure 5 is an X-ray diffraction comparison graph of the crystalline structure of a coating deposited by the method of the present invention and the soil of ZrO 2 nanoparticles of departure.
  • Les figures 6a et 6b présentent des photographies prises en microscopie électronique à transmission du dépôt de zircone : a. à la surface du dépôt de zircone, et b. en coupe transversale.The Figures 6a and 6b present photographs taken by transmission electron microscopy of the zirconia deposit: a. on the surface of the zirconia deposit, and b. in cross section.
EXEMPLESEXAMPLES Exemple 1 : procédé de l'invention et revêtement obtenu à partir d'un sol de zirconeEXAMPLE 1 Process of the invention and coating obtained from a zirconia sol

Un sol aqueux de zircone (ZrO2) à 10% est injecté dans un plasma d'arc soufflé d'argon-hydrogène (75% en volume d'Ar).An aqueous sol of zirconia (ZrO 2 ) at 10% is injected into an argon-hydrogen blown arc plasma (75% by volume of Ar).

Le montage expérimental qui a permis de réaliser les dépôts nanostructurés de zircone est est représenté sur les figures 1 et 2. Il est constitué :

  • d'une torche à plasma (3) à courant continu Sulzer-Metco F4 VB (marque de commerce), munie d'une anode de diamètre interne 6 mm,
  • du système d'injection de liquide décrit sur la figure 1, et
  • d'un dispositif (9) permettant de fixer et de déplacer le substrat à revêtir par rapport à la torche à une distance donnée (figure 2).
The experimental setup which made it possible to produce the nanostructured zirconia deposits is represented on the Figures 1 and 2 . It consists :
  • a Sulzer-Metco F4 VB (trademark) continuous plasma (3) plasma torch with an anode of 6 mm internal diameter,
  • of the liquid injection system described on the figure 1 , and
  • a device (9) for fixing and moving the substrate to be coated with respect to the torch at a given distance ( figure 2 ).

Concernant le système d'injection, il comprend un réservoir (R) contenant le sol colloïdal (7) et un réservoir nettoyant (N), contenant un liquide de nettoyage (L) de l'injecteur et de la tuyauterie (v). Il comprend également des tuyaux (v) permettant d'acheminer les liquides des réservoirs vers l'injecteur (I), des manodétendeurs (m) permettant d'ajuster la pression dans les réservoirs (pression < 2x106 Pa). L'ensemble est relié à un gaz de compression (G), ici de l'air, permettant de créer dans les tuyaux un réseau d'air comprimé. Sous l'effet de la pression, le liquide est acheminé jusqu'à l'injecteur.Regarding the injection system, it comprises a reservoir (R) containing the colloidal sol (7) and a cleaning tank (N), containing a cleaning liquid (L) of the injector and the pipe (v). It also includes pipes (v) for conveying liquids from the tanks to the injector (I), pressure regulators (m) allowing to adjust the pressure in the tanks (pressure <2x10 6 Pa). The assembly is connected to a compression gas (G), here air, to create in the pipes a network of compressed air. Under the effect of pressure, the liquid is conveyed to the injector.

Concernant l'injection de liquide, le diamètre de l'orifice de sortie (t) de l'injecteur (I) est de 150 µm et la pression dans le réservoir (R) contenant le sol est de 0,4 MPa, ce qui implique un débit de liquide de 20 ml/min et une vitesse de 16 m/s. Le sol sort de l'injecteur sous forme d'un jet de liquide qui se fragmente mécaniquement sous la forme de grosses gouttes de diamètre calibré allant de 2 µm à 1 mm, en moyenne deux fois supérieur au diamètre du trou circulaire de sortie. L'injecteur (figure 2) peut être incliné par rapport à l'axe du jet de plasma de 20 à 160°. Dans les essais, on a utilisé une inclinaison de 90°.With regard to the injection of liquid, the diameter of the outlet orifice (t) of the injector (I) is 150 μm and the pressure in the reservoir (R) containing the soil is 0.4 MPa, which involves a liquid flow of 20 ml / min and a speed of 16 m / s. The soil exits the injector in the form of a jet of liquid that mechanically fragments in the form of large drops of calibrated diameter ranging from 2 microns to 1 mm, on average two times greater than the diameter of the circular exit hole. The injector ( figure 2 ) can be inclined with respect to the axis of the plasma jet from 20 to 160 °. In the tests, a 90 ° inclination was used.

Concernant le sol initial, il est obtenu suivant le procédé décrit dans le document [8]. Dans ce sol, les particules de zircone sont cristallisées sous deux phases, une monoclinique (ZrO2 m) et l'autre quadratique (ZrO2 q) plus minoritaire, comme le montre le diagramme de diffraction des rayons X présenté sur la figure 3 (« 1 » = intensité).Regarding the initial soil, it is obtained according to the process described in document [8]. In this soil, the zirconia particles are crystallized in two phases, a monoclinic (ZrO 2 m) and the other quadratic (ZrO 2 q) more minority, as shown by the X-ray diffraction diagram presented on the figure 3 ("1" = intensity).

Le diamètre moyen des cristallites, observé en microscopie électronique en transmission, est d'environ 9 nm comme le montrent les photographies de la figure 4 (voir exemple 2 ci-dessous).The average diameter of the crystallites, observed in transmission electron microscopy, is about 9 nm as shown by the photographs of the figure 4 (see example 2 below).

Les dépôts de zircone issus de la projection plasma sont obtenus à 70 mm de l'intersection entre le jet de liquide et le jet de plasma. Différents types de substrats ont été testés pour être revêtus : plaquettes d'aluminium, plaquettes de silicium (« wafers ») ou plaques de verre.The zirconia deposits from the plasma projection are obtained at 70 mm from the intersection between the jet of liquid and the plasma jet. Different types of substrates have been tested to be coated: aluminum plates, silicon wafers or glass plates.

La vitesse de dépôt était de 0,3 µm à chaque passage de la torche devant le substrat.The deposition rate was 0.3 μm each time the torch passed the substrate.

Selon la durée de la projection, l'épaisseur des dépôts obtenus était comprise entre 4 µm et 100 µm.Depending on the duration of the projection, the thickness of the deposits obtained was between 4 μm and 100 μm.

La figure 5 est un graphique de comparaison par diffraction des rayons X (« I » = intensité) de la structure cristalline d'un revêtement déposé par le procédé de la présente invention (dp) et du sol de nanoparticules de ZrO2 de départ (Sol).The figure 5 is an X-ray diffraction comparison graph ("I" = intensity) of the crystalline structure of a coating deposited by the process of the present invention (dp) and the soil of starting ZrO 2 nanoparticles (Sol).

Habituellement en projection plasma, la zircone projetée se trouve dans le dépôt sous la forme quadratique, avec une faible quantité de monoclinique correspondant aux particules infondues ou partiellement fondues , quelle que soit la phase initiale. Ici, la structure et la proportion des phases cristallines présentes dans le dépôt sont quasiment les mêmes que celles du sol de départ :

  • 61% de monoclinique et 39% de quadratique au départ, et
  • 65% de monoclinique et 35% de quadratique dans le revêtement obtenu.
Usually in plasma projection, the projected zirconia is in the deposit in the quadratic form, with a small amount of monoclinic corresponding to the unmelted or partially melted particles, irrespective of the initial phase. Here, the structure and the proportion of the crystalline phases present in the deposit are almost the same as those of the starting soil:
  • 61% monoclinic and 39% quadratic at baseline, and
  • 65% monoclinic and 35% quadratic in the coating obtained.

La taille des cristaux dans le revêtement (dépôt) est comprise entre 10 et 20 nm ; elle est très voisine de celle dés particules du sol de départ.The size of the crystals in the coating (deposit) is between 10 and 20 nm; it is very close to that of particles of the starting soil.

Les observations en microscopie électronique à transmission (MET) de l'interface entre le substrat en silicium et le dépôt (coupe transversale) montrent une bonne adhérence des particules de zircone sur la surface polie miroir.Transmission electron microscopy (TEM) observations of the interface between the silicon substrate and the deposition (cross section) show a good adhesion of the zirconia particles to the mirror polished surface.

En outre, l'état de surface du substrat n'intervient pas sur l'adhérence du dépôt plasma.In addition, the surface condition of the substrate does not interfere with the adhesion of the plasma deposit.

Exemple 2Example 2

Le sol de zircone de l'exemple 1, présentant des propriétés spécifiques de la présente invention (dispersion et stabilisation), est projeté dans un jet de plasma comme décrit dans l'exemple 1.The zirconia sol of Example 1, having specific properties of the present invention (dispersion and stabilization), is projected into a plasma jet as described in Example 1.

Ce sol de zircone est constitué de nanoparticules cristallisées en phase monoclinique et en phase quadratique. Une distribution de taille a été réalisée à partir de clichés de microscopie électronique en transmission (MET) du sol de zircone. Le diamètre moyen des particules de zircone est de 9 nm. La photographie de droite sur la figure 4 annexée présente une photographie prise en microscopie électronique à transmission sur ce sol de zircone utilisé. Le trait en bas à gauche indique l'échelle du cliché. Ce trait représente 10 nm sur la photographie.This zirconia sol consists of crystalline nanoparticles in the monoclinic phase and in the quadratic phase. A size distribution was made from transmission electron microscopy (TEM) micrographs of the zirconia sol. The average diameter of the zirconia particles is 9 nm. The right photograph on the figure 4 annexed presents a photograph taken by transmission electron microscopy on this zirconia sol used. The line at the bottom left indicates the scale of the shot. This line represents 10 nm in the photograph.

Le dépôt réalisé par projection plasma dudit sol selon le procédé de l'invention est constitué, d'après l'analyse par microscopie à transmission (MET) réalisée en surface et en épaisseur, de nanoparticules de zircone de morphologie similaire à scelles du sol de départ et de diamètre moyen de 10 nm. Ces mesures sont déductibles à partir des figures 6a et 6b annexées. Le trait en bas à droite de ces clichés indique l'échelle du cliché. Ce trait représente 100 nm sur la photographie du haut (figure 6a), et 50 nm sur la photographie du bas (figure 6b).The deposition carried out by plasma spraying of said sol according to the process of the invention consists, according to the surface and thickness transmission microscopy (TEM) analysis, of zirconia nanoparticles of morphology similar to those of starting and average diameter of 10 nm. These measures are deductible from Figures 6a and 6b attached. The line at the bottom right of these snapshots indicates the scale of the snapshot. This line represents 100 nm on the top photograph ( figure 6a ), and 50 nm on the bottom photograph ( figure 6b ).

Il n'y a donc pas de modification chimique des particules projetées grâce au procédé de la présente invention.There is therefore no chemical modification of the projected particles by the process of the present invention.

Une analyse par diffraction des rayons X des particules du sol de zircone de départ (sol) (trait discontinu) est comparée à celle du dépôt obtenu par projection plasma de ce même sol de zircone (dp) (trait continu). Cette analyse est représentée sur la figure 5 annexée (abscisse : intensité ; ordonnée : θ). La taille des cristallites et la répartition des phases cristallines ont été déterminées par résolution des diagrammes de rayon X selon la méthode Rietveld.An X-ray diffraction analysis of the particles of the starting zirconia soil (soil) (discontinuous line) is compared with that of the deposit obtained by plasma projection of the same zirconia sol (dp) (solid line). This analysis is represented on the figure 5 appended (abscissa: intensity, ordinate: θ). The size of the crystallites and the distribution of the crystalline phases were determined by resolution of X-ray diagrams according to the Rietveld method.

Le sol de zircone, comme le dépôt de zircone issu de ce sol présentent des cristallites de diamètre identique et cristallisées selon les mêmes deux phases monoclinique et quadratique. Le tableau suivant rassemble la répartition en % de ces phases cristallines présente dans le sol de zircone et le dépôt de zircone, ainsi que leur taille. Matériaux Répartition des phases cristallines Tailles des cristallites Monoclinique Quadratique Monoclinique Quadratique Sol ZrO2 65% 35% 11,8 nm 8,9 nm Dépôt ZrO2 61% 39% 12 nm 8,9 nm The zirconia sol, like the zirconia deposit resulting from this sol, has crystallites of identical diameter and crystallized according to the same two monoclinic and quadratic phases. The following table shows the distribution in% of these crystalline phases present in the zirconia sol and the zirconia deposit, as well as their size. Materials Distribution of crystalline phases Sizes of crystallites monoclinic Quadratic monoclinic Quadratic Sol ZrO 2 65% 35% 11.8 nm 8.9 nm ZrO 2 deposit 61% 39% 12 nm 8.9 nm

Ces résultats démontrent bien que la taille et la proportion des nanoparticules cristallisées en phase monoclinique et en phase quadratique sont typiquement les mêmes dans le sol de départ et le dépôt projeté. Cette spécificité innovante de conservation des propriétés intrinsèques du sol dans le dépôt plasma est le résultat de l'utilisation, selon le procédé de la présente invention, d'une suspension colloïdale dispersée et stabilisée qui n'évolue pas lors de la projection thermique.These results clearly demonstrate that the size and proportion of crystallized nanoparticles in the monoclinic phase and in the quadratic phase are typically the same in the starting soil and the projected deposit. This innovative specificity of conservation of the intrinsic properties of the sol in the plasma deposition is the result of the use, according to the process of the present invention, of a dispersed and stabilized colloidal suspension which does not evolve during thermal spraying.

Exemple 3 : préparation d'un sol de nanaoparticulesExample 3 Preparation of Nanoparticle Soil

Cet exemple illustre un des nombreux modes de préparation d'un sol de nanoparticules utilisable pour mettre en oeuvre la présente invention.This example illustrates one of the many modes of preparation of a nanoparticle sol that can be used to implement the present invention.

Une solution colloïdale d'oxyde de titane TiO2 est préparée en additionnant goutte à goutte une solution de tétra-isopropoxide de titane (0,5 g) dissous dans 7,85 g d'isopropanol à 100 mL d'une solution d'acide chlorhydrique diluée (pH= 1,5) sous forte agitation. Le mélange obtenu est maintenu sous agitation magnétique pendant 12 heures.A colloidal solution of titanium dioxide TiO 2 is prepared by adding dropwise a solution of titanium tetraisopropoxide (0.5 g) dissolved in 7.85 g of isopropanol to 100 ml of an acid solution. dilute hydrochloric acid (pH = 1.5) with vigorous stirring. The mixture obtained is kept under magnetic stirring for 12 hours.

Des observations de microscopie électronique en transmission révèlent un diamètre moyen des colloïdes de 10 nm environ. Le diagramme des rayons X est caractéristique de celui de l'oxyde de titane sous forme anatase.Transmission electron microscopy observations reveal an average colloid diameter of about 10 nm. The X-ray pattern is characteristic of that of titanium oxide in anatase form.

Le pH de ce sol est d'environ 2 et la concentration massique en TiO2 est amenée à 10% par distillation (100°C, 105Pa).The pH of this sol is about 2 and the mass concentration of TiO 2 is brought to 10% by distillation (100 ° C, 10 5 Pa).

Avant d'être utilisé dans le procédé de l'invention, la solution colloïdale de nanoparticules peut être filtrée, par exemple à 0,45 µm.Before being used in the process of the invention, the colloidal solution of nanoparticles can be filtered, for example to 0.45 μm.

REFERENCES BIBLIOGRAPHIQUESBIBLIOGRAPHIC REFERENCES

  • [1][1] US-A-5,032,568, Lau et al, 1991US-A-5,032,568, Lau et al, 1991 ..
  • [2][2] US-A-4,982,067, Marantz et al, 1991US-A-4,982,067, Marantz et al, 1991 ..
  • [3][3] US-A-5,413,821, Ellis et al, 1995US-A-5,413,821, Ellis et al, 1995 ..
  • [4][4] US-A-5,609,921, Gitzhofer et al, 1997US-A-5,609,921, Gitzhofer et al, 1997 ..
  • [5][5] US-A-6,447,848, Chow et al, 2002US-A-6,447,848, Chow et al, 2002 ..
  • [6][6] WO-A-97/18341, Kear et al, 1997WO-A-97/18341, Kear et al, 1997 ..
  • [7] Rao N.P., Lee H.J., Hansen D.J., Heberlein J.V.R., McMurry P.H., Girshick S.L., « Nanostructured Materials production by Hypersonic Plasma Particle Deposition », Nanostructured Materials, 1997, 9, pp. 129-132 . [7] Rao NP, Lee HJ, Hansen DJ, Heberlein JVR, McMurry PH, Girshick SL, "Nanostructured Materials Production by Hypersonic Plasma Particle Deposition", Nanostructured Materials, 1997, 9, pp. 129-132 .
  • [8] FR-A-2 707 763 (CEA), H. Floch & P. Belleville, « Matériau composite à indice de réfraction élevé, procédé de fabrication de ce matériau composite et matériau optiquement actif comrpenant ce matériau composite ».[8] FR-A-2,707,763 (CEA), H. Floch & P. Belleville, "Composite material with high refractive index, process for producing this composite material and optically active material comprising this composite material".
  • [9] FR-A-2 682 486 (CEA), H. Floch & M. Berger, « Miroir diélectrique interférentiel et procédé de fabrication d'un tel miroir ».[9] FR-A-2,682,486 (CEA), H. Floch & M. Berger, "Interferential dielectric mirror and method of manufacturing such a mirror".
  • [10] FR-A-2 703 791 (CEA), P. Belleville & H. Floch, « Procédé de fabrication de couches minces présentant des propriétés optiques et de résistance à l'abrasion ».[10] FR-A-2,703,791 (CEA), P. Belleville & H. Floch, "Thin film manufacturing process with optical properties and abrasion resistance".
  • [11] Fievet, F., Polyol process. Fine particles : Synthesis, Characterization and Mechanisms of Grwoth, 2000, 92 : pp. 460-496 .[11] Fievet, F., Polyol process. Fine particles: Synthesis, Characterization and Mechanisms of Grwoth, 2000, 92: pp. 460-496 .
  • [12] W. Stöber, A. Fink & E. Bohn, Journal of Colloid and Interface Science, 26, 1968, pp. 62-69 .[12] W. Stöber, A. Fink & E. Bohn, Journal of Colloid and Interface Science, 26, 1968, pp. 62-69 .
  • [13] « Functional Hybrid Materials », P. Gomez-Romero & C. Sanchez, Wiley-VCH Publishers, 2004 .[13] Functional Hybrid Materials, P. Gomez-Romero & C. Sanchez, Wiley-VCH Publishers, 2004 .
  • [14] « Plasmas thermiques », Production et applications, P. Fauchais, Techniques de l'ingénieur, traité génie électrique, D2820-1 à D2820-25 .[14] "Thermal Plasmas", Production and Applications, P. Fauchais, Engineering Techniques, Electrical Engineering Contract, D2820-1 to D2820-25 .
  • [15] « Characterizations of LPPS processes under various spray conditions for potentiel applications », A. Refke, G. Barbezat, JL. Dorier, M. Gindrat, C. Hollenstein, Proc. Of International Thermal Spray, Conference 2003, Orlando, Florida, USA, 5-8 May 2003 .[15] "Characterizations of LPPS processes under various conditions for potential applications", A. Refke, G. Barbezat, JL. Dorier, M. Gindrat, C. Hollenstein, Proc. Of International Thermal Spray, 2003 Conference, Orlando, Florida, USA, 5-8 May 2003 .
  • [16] « New applications and new product qualities by radiofrequency plasma spraying », R. Henne, V. Borck, M. Müller, R. Ruckdäsch, G. Schiller, Proc. of Tagunsband Proceedings, United Thermal Spray Conference, Düsseldorf, 17-19 mars 1999 .[16] "New applications and new product qualities by radiofrequency plasma spraying", R. Henne, V. Borck, M. Müller, R. Ruckdäsch, G. Schiller, Proc. of Proceedings, United Thermal Spray Conference, Düsseldorf, 17-19 March 1999 .
  • [17] Somiya S., Yoshimura M., Nakai Z., Hishinuma K., Kumati T., « Hydrothermal processing of ultrafine single crystal zirconia and hafnia powders with homogeneous dopants », Advances in ceramics, 21, 1987, pp. 43-55 .[17] Somiya S., Yoshimura M., Nakai Z., Hishinuma K., Kumati T., "Hydrothermal processing of ultrafine single crystal zirconia and hafnia powders with homogeneous dopants", Advances in ceramics, 21, 1987, pp. 43-55 .

Claims (22)

  1. Method of coating a surface of a substrate with nanoparticles, characterized in that it comprises an injection of a colloidal sol wherein said nanoparticles are dispersed and stabilized, into a thermal plasma jet that sprays them onto said surface; in that said nanoparticles are of a metal oxide chosen from the group comprising SiO2, ZrO2, TiO2, Ta2O5, HfO2, ThO2, SnO2, VO2, In2O3, CeO2, ZnO, Nb2O5, V2O5, Al2O3, Sc2O3, Ce2O3, NiO, MgO, Y2O3, WO3, BaTiO3, Fe2O3, Fe3O4, Sr2O3, (PbZr)TiO3, (BaSr)TiO3, Co2O3, Cr2O3, Mn2O3, Mn3O4, Cr3O4, MnO2, RuO2 or a combination of these oxides by doping the particles or by mixing; and in that said nanoparticles have been stabilized directly in the solvent used during their synthesis or peptized subsequent to their synthesis.
  2. Method according to Claim 1, in which the nanoparticles have a size from 1 to 100 nm.
  3. Method according to Claim 1, in which the sol is prepared by precipitation in an aqueous medium or by sol-gel synthesis in an organic medium from a nanoparticles precursor.
  4. Method according to Claim 3, in which the nanoparticles precursor is chosen from the group comprising a metalloid salt, a metal salt, a metal alkoxyde, or a mixture thereof.
  5. Method according to Claim 4, in which the metal or metalloid of the salt or of the metal alkoxyde of the nanoparticles precursor is chosen from the group comprising silicon, titanium, zirconium, hafnium, aluminium, tantalum, niobium, cerium, nickel, iron, zinc, chromium, magnesium, cobalt, vanadium, barium, strontium, tin, scandium, indium, lead, yttrium, tungsten, manganese, gold, silver, platinum, palladium, nickel, copper, cobalt, ruthenium, rhodium, europium and other rare earths.
  6. Method according to Claim 1, in which the sol is a mixed sol.
  7. Method according to Claim 1, in which the sol further includes metal nanoparticles of a metal chosen from the group comprising gold, silver, platinum, palladium, nickel, ruthenium and rhodium, or a mixture of various metal nanoparticles consisting of these metals.
  8. Method according to Claim 1, in which the sol further includes organic molecules.
  9. Method according to Claim 8, in which the organic molecules are molecules for stabilizing the nanoparticles in the sol and/or molecules that functionalize the nanoparticles.
  10. Method according to Claim 1, in which the colloidal sol is injected into the plasma jet in the form of drops.
  11. Method according to Claim 1, in which the plasma jet is an arc-plasma jet.
  12. Method according to Claim 1, in which the plasma jet is such that it causes partial melting of the injected nanoparticles.
  13. Method according to Claim 1, in which the plasma constituting the jet has a temperature ranging from 5000 K to 15000 K.
  14. Method according to Claim 1, in which the plasma constituting the jet has a viscosity ranging from 10-4 to 5 × 10-4 kg/m.s.
  15. Method according to Claim 1, in which the plasma jet is generated from a plasma-forming gas chosen from the group comprising Ar, H2, He and N2.
  16. Method according to any one of the preceding claims, wherein the coating is a nanostructured coating.
  17. Method according to Claim 16, wherein the coating has a thickness ranging from 0.1 to 50 µm.
  18. Method according to Claim 16 or 17, wherein the coating consists of grains with a size of less than or of the order of 1 micron.
  19. Method according to any one of claims 16 to 18, wherein said substrate consists of an organic, inorganic or hybrid material.
  20. Method according to any one of claims 16 to 19, wherein the nanostructured coating is part of an optical and/or electronic device.
  21. Method according to any one of claims 16 to 19, wherein the nanostructured coating is part of a fuel cell.
  22. Method according to any one of claims 16 to 19, wherein the nanostructured coating is part of a thermal barrier.
EP05815486A 2004-10-21 2005-10-20 Coating method Active EP1802783B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452390A FR2877015B1 (en) 2004-10-21 2004-10-21 NANOSTRUCTURE COATING AND COATING PROCESS.
PCT/FR2005/050870 WO2006043006A1 (en) 2004-10-21 2005-10-20 Nanostructured coating and coating method

Publications (2)

Publication Number Publication Date
EP1802783A1 EP1802783A1 (en) 2007-07-04
EP1802783B1 true EP1802783B1 (en) 2012-03-21

Family

ID=34951338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815486A Active EP1802783B1 (en) 2004-10-21 2005-10-20 Coating method

Country Status (7)

Country Link
US (1) US20080090071A1 (en)
EP (1) EP1802783B1 (en)
JP (1) JP5970147B2 (en)
AT (1) ATE550452T1 (en)
ES (1) ES2384263T3 (en)
FR (1) FR2877015B1 (en)
WO (1) WO2006043006A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005775A1 (en) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermal spraying with colloidal suspension
FR2900351B1 (en) * 2006-04-26 2008-06-13 Commissariat Energie Atomique PROCESS FOR PREPARING A NANOPOROUS LAYER OF NANOPARTICLES AND THE LAYER THUS OBTAINED
JP2008031529A (en) * 2006-07-28 2008-02-14 Fujitsu Ltd Nanoparticle deposition method and nanoparticle deposition apparatus
EP1895818B1 (en) 2006-08-30 2015-03-11 Sulzer Metco AG Plasma spraying device and a method for introducing a liquid precursor into a plasma gas system
ES2534215T3 (en) 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Plasma spray device and a method for introducing a liquid precursor into a plasma gas system
US20080254258A1 (en) * 2007-04-12 2008-10-16 Altairnano, Inc. Teflon® replacements and related production methods
JP2009021214A (en) * 2007-06-12 2009-01-29 Panasonic Corp Manufacturing method for electrode of nonaqueous electrolyte secondary battery
EP2093305A1 (en) * 2008-02-14 2009-08-26 Universite Libre De Bruxelles Method of depositing nanoparticles on a support
CA2696081A1 (en) * 2007-08-14 2009-02-19 Universite Libre De Bruxelles Method for depositing nanoparticles on a support
FI121990B (en) * 2007-12-20 2011-07-15 Beneq Oy Device for producing fogs and particles
US7520951B1 (en) 2008-04-17 2009-04-21 International Business Machines (Ibm) Corporation Method of transferring nanoparticles to a surface
US20090280386A1 (en) * 2008-05-09 2009-11-12 Universitat Duisburg-Essen Metallic bipolar plate for fuel cell
CN102046303A (en) * 2008-05-29 2011-05-04 西北美泰克公司 Method and system for producing coatings from liquid feedstock using axial feed
DE102008026101B4 (en) 2008-05-30 2010-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally sprayed Al 2 O 3 layers with a high content of corundum without property-reducing additives and process for their preparation
KR101045793B1 (en) * 2008-09-08 2011-07-04 재단법인 철원플라즈마 산업기술연구원 Coating method and device
JP5548991B2 (en) * 2009-02-02 2014-07-16 独立行政法人物質・材料研究機構 TiO2 nanoparticles
WO2010122855A1 (en) * 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
JP5146402B2 (en) * 2009-05-19 2013-02-20 トヨタ自動車株式会社 Method for forming carbon particle-containing coating, heat transfer member, power module, and vehicle inverter
US20110086178A1 (en) * 2009-10-14 2011-04-14 General Electric Company Ceramic coatings and methods of making the same
JP5987150B2 (en) * 2010-03-04 2016-09-07 イマジニアリング株式会社 Film forming device
FR2959244B1 (en) * 2010-04-23 2012-06-29 Commissariat Energie Atomique PROCESS FOR PREPARING A MULTILAYER COATING ON A SURFACE OF A SUBSTRATE BY THERMAL PROJECTION
FR2961350B1 (en) 2010-06-11 2012-08-03 Commissariat Energie Atomique PROCESS FOR THE PRODUCTION OF ELEMENTARY ELECTROCHEMICAL CELLS FOR ELECTROCHEMICAL SYSTEMS PRODUCING ENERGY OR HYDROGEN, IN PARTICULAR OF THE SOFC AND EHT TYPE
FR2966455B1 (en) 2010-10-25 2013-05-17 Commissariat Energie Atomique METHOD FOR COATING A PART OF A COATING AGAINST OXIDATION
FR2967992B1 (en) 2010-11-26 2015-05-29 Commissariat Energie Atomique SOIL PREPARATION OF STABLE METAL OXIDES USEFUL IN THE MANUFACTURE OF THIN FILMS WITH OPTICAL AND ABRASION RESISTANT PROPERTIES
ES2793954T3 (en) * 2010-12-15 2020-11-17 Sulzer Metco Us Inc Pressure Based Liquid Feed System for Suspension Plasma Spray Coatings
CA2830027C (en) 2011-03-31 2016-04-26 Pfizer Inc. Novel bicyclic pyridinones
US20120258254A1 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods For Providing High-Surface Area Coatings To Mitigate Hydrocarbon Deposits On Engine And Powertrain Components
WO2012172449A1 (en) 2011-06-13 2012-12-20 Pfizer Inc. Lactams as beta secretase inhibitors
ES2605565T3 (en) 2011-08-31 2017-03-15 Pfizer Inc Hexahydropyran [3,4-D] [1,3] thiazin-2-amine compounds
ZA201202480B (en) * 2011-10-17 2012-11-28 Int Advanced Res Centre For Power Metallurgy And New Mat (Arci) Dept Of Science And Tech Govt Of Ind An improved hybrid methodology for producing composite,multi-layered and graded coatings by plasma spraying utitilizing powder and solution precurrsor feedstock
FR2983192B1 (en) 2011-11-25 2014-05-23 Commissariat Energie Atomique METHOD FOR COATING A COATING OF A COATING AGAINST OXIDATION BY A CHEMICAL VAPOR DEPOSITION TECHNIQUE, AND COATING AND ROOM
EP2636763B1 (en) * 2012-03-05 2020-09-02 Ansaldo Energia Switzerland AG Method for applying a high-temperature stable coating layer on the surface of a component and component with such a coating layer
KR101775548B1 (en) 2012-08-01 2017-09-06 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery
UA110688C2 (en) 2012-09-21 2016-01-25 Пфайзер Інк. Bicyclic pirydynony
FR2999457B1 (en) 2012-12-18 2015-01-16 Commissariat Energie Atomique METHOD FOR COATING A SUBSTRATE WITH A CERAMIC ABRADABLE MATERIAL, AND COATING THUS OBTAINED
PE20151332A1 (en) 2013-02-19 2015-09-20 Pfizer AZABENZIMIDAZOLE COMPOUNDS
JP6161943B2 (en) * 2013-04-22 2017-07-12 株式会社セイワマシン Nanoparticle-containing slurry spraying apparatus and thermal spraying apparatus
ES2742078T3 (en) 2013-10-04 2020-02-13 Pfizer Novel bicyclic pyridones as gamma-secretase modulators
JP5894198B2 (en) * 2014-01-06 2016-03-23 株式会社フジミインコーポレーテッド Thermal spray slurry and method of forming thermal spray coating
JP6367567B2 (en) 2014-01-31 2018-08-01 吉川工業株式会社 Corrosion-resistant thermal spray coating, method for forming the same, and thermal spraying apparatus for forming the same
US9718075B2 (en) 2014-06-12 2017-08-01 United Technologies Corporation Suspension plasma injector system and method of flushing the system
JP5987097B2 (en) * 2015-09-07 2016-09-06 株式会社フジミインコーポレーテッド Thermal spray coating
RU2688755C2 (en) * 2017-02-28 2019-05-22 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Method of producing pure aqueous colloidal solutions of crystalline nanoparticles of tungsten trioxide
US10724132B2 (en) * 2017-04-04 2020-07-28 General Electric Company Method of preparing aerogel particles and aerogel coated component
KR102032413B1 (en) * 2018-02-21 2019-10-15 인하대학교 산학협력단 Method for preparation of graphene composites
JP2019178389A (en) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド Slurry for spray
CN111153440B (en) * 2019-12-31 2022-04-22 陕西斯瑞新材料股份有限公司 Fe for improving thermal emissivity3O4Preparation method and application of coating
CN113185326A (en) * 2021-04-02 2021-07-30 武汉科技大学 Kiln furniture spray coating for roasting lithium battery anode material and preparation method thereof
CN114918057B (en) * 2022-03-16 2023-03-03 清华大学 Gas-phase synthesis in-situ coating device and method for core-shell nanoparticles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777759B1 (en) * 1994-08-26 1999-03-31 Université de Sherbrooke Suspension plasma spray deposition

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931779A (en) * 1952-06-21 1960-04-05 Monsanto Chemicals Preparation of alumina sols
US3865547A (en) * 1971-07-28 1975-02-11 Shell Oil Co Preventing corrosion during the pipeline transportation of coal slurries
JPS5141017B2 (en) * 1972-12-26 1976-11-08
US3879515A (en) * 1973-10-18 1975-04-22 Yoshishige Morita Method of manufacturing porous articles of synthetic resins
US4612138A (en) * 1983-08-04 1986-09-16 Nalco Chemical Company Stable acidic and alkaline metal oxide sols
FR2628655B1 (en) * 1988-03-16 1990-07-20 Pro Catalyse CATALYST SUPPORT AND CATALYST FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES AND MANUFACTURING METHOD THEREOF
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5032568A (en) * 1989-09-01 1991-07-16 Regents Of The University Of Minnesota Deposition of superconducting thick films by spray inductively coupled plasma method
US5037579A (en) * 1990-02-12 1991-08-06 Nalco Chemical Company Hydrothermal process for producing zirconia sol
JPH04323358A (en) * 1991-01-16 1992-11-12 Sumitomo Metal Ind Ltd Plasma spraying method
JPH059005A (en) * 1991-06-28 1993-01-19 Toyo Ink Mfg Co Ltd Manufacture of ceramic thin film
JPH05202460A (en) * 1991-07-01 1993-08-10 Onoda Cement Co Ltd Method for thermally spraying perovskite type oxide, thermal-sprayed film, solid electrolyte type fuel cell and manufacture thereof
JPH05156315A (en) * 1991-12-05 1993-06-22 Ngk Insulators Ltd Production of powder for plasma spraying
WO1994007969A1 (en) * 1992-09-25 1994-04-14 Minnesota Mining And Manufacturing Company Abrasive grain including rare earth oxide therein
US5413821A (en) * 1994-07-12 1995-05-09 Iowa State University Research Foundation, Inc. Process for depositing Cr-bearing layer
JPH08158033A (en) * 1994-12-02 1996-06-18 Nisshin Steel Co Ltd Production of fine-structure thick film material and device therefor
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
CA2237588A1 (en) * 1995-11-13 1997-05-22 The University Of Connecticut Nanostructured feeds for thermal spray
US5578349A (en) * 1995-11-30 1996-11-26 Caterpillar Inc. Process for coating a ceramic glow plug portion with a corrosion inhibiting material
WO1999010120A1 (en) * 1997-08-22 1999-03-04 Inframat Corporation Grain growth inhibitor for nanostructured materials
JP3511128B2 (en) * 1998-03-02 2004-03-29 日立造船株式会社 Method for producing metal fine particles and method for supporting fine particles on porous carrier
US6004889A (en) * 1998-04-28 1999-12-21 Kabushiki Kaisya Nippankenkyusyo Composition for antistatic finish
JP2000328223A (en) * 1999-05-25 2000-11-28 Agency Of Ind Science & Technol Laminated structure, powdery raw material for the same and piezoelectric actuator
SI1198630T1 (en) * 1999-06-24 2009-06-30 Paroc Oy Ab Method for manufacturing a binder and use thereof
JP3705052B2 (en) * 1999-12-07 2005-10-12 住友金属鉱山株式会社 Method for producing ultrafine conductor paste
EP1134302A1 (en) * 2000-03-17 2001-09-19 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS)
US20030219544A1 (en) * 2002-05-22 2003-11-27 Smith William C. Thermal spray coating process with nano-sized materials
JP2004081952A (en) * 2002-08-26 2004-03-18 Ricoh Co Ltd Coating equipment for electrophotographic photoreceptor
FR2900351B1 (en) * 2006-04-26 2008-06-13 Commissariat Energie Atomique PROCESS FOR PREPARING A NANOPOROUS LAYER OF NANOPARTICLES AND THE LAYER THUS OBTAINED

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777759B1 (en) * 1994-08-26 1999-03-31 Université de Sherbrooke Suspension plasma spray deposition

Also Published As

Publication number Publication date
EP1802783A1 (en) 2007-07-04
FR2877015B1 (en) 2007-10-26
FR2877015A1 (en) 2006-04-28
ATE550452T1 (en) 2012-04-15
JP2008517159A (en) 2008-05-22
US20080090071A1 (en) 2008-04-17
ES2384263T3 (en) 2012-07-03
WO2006043006A1 (en) 2006-04-27
JP5970147B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
EP1802783B1 (en) Coating method
EP2010308B1 (en) Method for the preparation of a nanoporous layer of nanoparticles
EP2155923B1 (en) Method and device for preparing a multilayered coating on a substrate
US6358567B2 (en) Colloidal spray method for low cost thin coating deposition
AU2006344096B2 (en) Manufacturing methods for nanomaterial dispersion and products thereof
Kashyap et al. Deposition of thin films by chemical solution-assisted techniques
WO2007131990A1 (en) Method of synthesising coated organic or inorganic particles
FR2984305A1 (en) PROCESS FOR THE PREPARATION OF A SOL-GEL OF AT LEAST THREE SALTS OF METALS AND IMPLEMENTATION OF THE PROCESS FOR PREPARING A CERAMIC MEMBRANE
Mimura et al. Fabrication of dielectric nanocubes in ordered structure by capillary force assisted self-assembly method and their piezoresponse properties
EP2764569B1 (en) Method for preparing a material on a substrate by sol-gel means
EP2183406A1 (en) Method for preparation of a nanocomposite material by vapour phase chemical deposition
EP2935641A1 (en) Process for coating a substrate with an abradable ceramic material, and coating thus obtained
JP2002286962A (en) Method for manufacturing particle thin film
EP1644300A2 (en) Method of preparing layers of oxides of metallic elements
EP3696203A1 (en) Method for manufacturing hybrid metal/polymer nanoparticles with low distribution of sizes by polymerisation in mini-emulsion
Bohac et al. Chemical spray deposition of ceramic films
Pham et al. Colloidal spray method for low cost thin coating deposition
Zyryanov et al. Fabrication of coatings by the charged aerosol deposition method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLEIN, FRANCK

Inventor name: WITTMANN-TENEZE, KARINE

Inventor name: BELLEVILLE, PHILIPPE

Inventor name: BIANCHI, LUC

Inventor name: VALLE, KARINE

17Q First examination report despatched

Effective date: 20071018

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

RTI1 Title (correction)

Free format text: COATING METHOD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 550452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005033312

Country of ref document: DE

Effective date: 20120516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2384263

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120703

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 550452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

26N No opposition filed

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005033312

Country of ref document: DE

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120621

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161027

Year of fee payment: 12

Ref country code: BE

Payment date: 20161027

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 19

Ref country code: FR

Payment date: 20231023

Year of fee payment: 19

Ref country code: DE

Payment date: 20231018

Year of fee payment: 19