EP2093305A1 - Method of depositing nanoparticles on a support - Google Patents

Method of depositing nanoparticles on a support Download PDF

Info

Publication number
EP2093305A1
EP2093305A1 EP08151463A EP08151463A EP2093305A1 EP 2093305 A1 EP2093305 A1 EP 2093305A1 EP 08151463 A EP08151463 A EP 08151463A EP 08151463 A EP08151463 A EP 08151463A EP 2093305 A1 EP2093305 A1 EP 2093305A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
support
atmospheric plasma
colloidal solution
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08151463A
Other languages
German (de)
French (fr)
Inventor
François RENIERS
Frédéric Demoisson
Jean-Jacques Pireaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Libre de Bruxelles ULB
Original Assignee
Universite Libre de Bruxelles ULB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Libre de Bruxelles ULB filed Critical Universite Libre de Bruxelles ULB
Priority to EP08151463A priority Critical patent/EP2093305A1/en
Priority to EP08787216.4A priority patent/EP2179071B1/en
Priority to US12/673,437 priority patent/US20120003397A1/en
Priority to KR1020107005411A priority patent/KR20100072184A/en
Priority to CN200880111576A priority patent/CN101821421A/en
Priority to JP2010520582A priority patent/JP2010535624A/en
Priority to CA2696081A priority patent/CA2696081A1/en
Priority to PCT/EP2008/060676 priority patent/WO2009021988A1/en
Publication of EP2093305A1 publication Critical patent/EP2093305A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the present invention relates to a method for depositing and fixing nanoparticles on any support.
  • nanoparticle describes an aggregate of small molecules, or an assembly of a few tens to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer, that is to say say less than 1000nm (1 ⁇ ). Because of their size, these particles possess particular physical, electrical, chemical and magnetic properties and give the supports on which they are applied new physical, electrical, chemical, magnetic and mechanical properties.
  • Nanoparticles are of growing interest because of their involvement in the development of many devices used in very different fields, such as the detection of biological or chemical compounds, the detection of chemical gases or vapors, the elaboration of batteries. fuel or hydrogen storage devices, the production of electronic or optical nanostructures, new chemical catalysts, biosensors, or so-called intelligent coatings, such as self-cleaning coatings or which have a particular biological activity, antibacterial for example.
  • the present invention aims to propose a method of depositing nanoparticles on a support which does not have the drawbacks of the state of the art.
  • the present invention aims to provide a fast, inexpensive process and easy implementation.
  • the present invention also discloses the use of a colloidal solution of nanoparticles for the deposition of nanoparticles on a support, and the use of an atmospheric plasma for the deposition of nanoparticles on a support, which do not have the disadvantages of state of the art.
  • nanoparticle means an aggregate of small molecules, or an assembly of a few hundred to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer, generally less than 100 nm.
  • colloidal solution is intended to mean a homogeneous suspension of particles in which the solvent is a liquid and the solute a solid that is homogeneously dispersed in the form of very fine particles.
  • Colloidal solutions can take various forms, liquid, gel or paste.
  • the colloidal solutions are intermediate between the suspensions, which are heterogeneous media comprising microscopic particles dispersed in a liquid, and the true solutions, in which the solute (s) are in the state of molecular division in the solvent.
  • “Atmospheric plasma” is understood to mean a partially or totally ionized gas which comprises electrons, ions (molecular or atomic), atoms or molecules, and radicals, out of thermodynamic equilibrium, whose electron temperature is significantly greater. to that of ions and neutrals, and whose pressure is between about 1 mbar and about 1200 mbar.
  • the present invention also discloses the use of a colloidal solution of nanoparticles for depositing nanoparticles on a support using an atmospheric plasma.
  • the present invention also describes the use of an atmospheric plasma for the deposition of nanoparticles on a support, said nanoparticles being in the form of a colloidal solution of nanoparticles, and said colloidal solution being nebulized on the surface of said support in said atmospheric plasma.
  • the figure 1 represents the size distribution of the gold particles of a colloidal solution.
  • the figure 2 represents an image obtained by transmission electron microscopy (TEM) of a colloidal solution of gold particles.
  • TEM transmission electron microscopy
  • the figure 3 schematically represents an atmospheric plasma torch.
  • the figure 4 represents X-ray photoelectron spectroscopy (XPS) spectra of the surface of HOPG graphite after plasma gold nanoparticle deposition.
  • XPS X-ray photoelectron spectroscopy
  • the figure 5 represents atomic force microscopy (AFM) images of a HOPG graphite sample a) before, and b) after deposition of gold nanoparticles.
  • AFM atomic force microscopy
  • the figure 6 represents high resolution electron microscopy images of secondary electrons (FEG-SEM) of a HOPG graphite sample a) before, b) and c) after depositing gold nanoparticles.
  • FEG-SEM secondary electrons
  • magnification x 2000 magnification x 2000
  • magnification x 25000 magnification x 80000.
  • EDS Energy dispersive analysis
  • the figure 7 represents the comparison of the experimental XPS spectrum of Au 4f level presented in Figure 4 (b) and spectrum modeled using a Volmer-Weber growth model.
  • the figure 8 represents an X-ray photoelectron spectroscopy spectrum (XPS) of the surface of HOPG graphite after deposition of gold nanoparticles without the use of a plasma.
  • XPS X-ray photoelectron spectroscopy spectrum
  • the figure 9 represents a high-resolution electron microscopy image of secondary electrons (FEG-SEM) of a HOPG graphite sample after the deposition of gold nanoparticles without the use of a plasma.
  • FEG-SEM secondary electrons
  • the figure 10 represents an image (magnification x 100000) obtained by high resolution electron microscopy of secondary electrons (FEG-SEM) of a steel sample after deposition of gold nanoparticles.
  • the figure 11 represents an image (magnification ⁇ 3000) obtained by high-resolution electron microscopy of secondary electrons (FEG-SEM) of a glass sample after deposition of gold nanoparticles.
  • the figure 12 represents an image (magnification x 50000) obtained by high-resolution electron microscopy of secondary electrons (FEG-SEM) of a sample of PVC polymer after deposition of gold nanoparticles
  • the figure 13 represents an image (magnification ⁇ 10000) obtained by high resolution electron microscopy of the secondary electrons (FEG-SEM) of a sample of HDPE polymer after deposition of gold nanoparticles.
  • the method for deposition of nanoparticles according to the invention involves a colloidal solution or suspension of nanoparticles which is deposited on any support with the aid of an atmospheric plasma, said atmospheric plasma being able to be generated by any suitable device making use of of an atmospheric plasma.
  • the deposition of nanoparticles according to the invention uses only a low energy consumption.
  • the deposition of nanoparticles is rapid because the activation of the support and the nebulization of the nanoparticles, and possibly also the prior cleaning of the support, are carried out in the atmospheric plasma, or in the flow of the atmospheric plasma, in a single step or one continuous process.
  • the process according to the invention allows a strong adhesion of the nanoparticles to the support.
  • This technique makes it possible to control the properties of the interface and to adjust the deposition of the nanoparticles on the support.
  • this method does not require expensive installations and is easily implemented industrially.
  • the colloidal solution of nanoparticles can be prepared by any technique and / or any suitable means.
  • the support, on which the colloidal solution of nanoparticles is deposited is any suitable material that can be covered with nanoparticles, any material whatever its nature and / or its shape.
  • it is a solid support, a gel or a nano-structured material.
  • the plasma is any suitable atmospheric plasma. It is a plasma generated at a pressure of between about 1 mbar and about 1200 mbar. Preferably, it is an atmospheric plasma whose macroscopic temperature of the gas can vary for example between room temperature and about 400 ° C. Preferably, the plasma is generated by an atmospheric plasma torch.
  • An atmospheric plasma does not use vacuum, which makes it inexpensive and easy to maintain.
  • the atmospheric plasma makes it possible to clean and activate the surface of the support, either by functionalizing it, for example by creating oxygen, nitrogen, sulfur, and / or hydrogenated groups, or by creating surface defects, for example gaps, steps, and / or stings.
  • the activation of the support and the nebulization of the colloidal solution are concomitant, namely in the plasma, or in the plasma flow, generated by a device making use of an atmospheric plasma.
  • the nebulization of the colloidal solution occurs at the same time, or immediately after, the activation of the support by the atmospheric plasma.
  • the nebulization of the colloidal solution can be done either in the discharge zone or in the post-discharge zone of the atmospheric plasma.
  • the nebulization of the colloidal solution is in the post-discharge zone of the plasma because, in certain cases, this can present additional benefits. This may not contaminate the device generating the plasma. This may make it possible to facilitate the treatment of polymeric supports, to avoid the degradation of the support to be coated, and also, for example, not to cause melting, oxidation, degradation and / or aggregation of the nanoparticles.
  • the nebulization of the colloidal solution is any nebulization adequate and can be done in any orientation with respect to the surface of the support.
  • the nebulization is substantially parallel to the support, but it can also be done for example at an angle of about 45 °, or for example at an angle of about 75 °.
  • gold nanoparticles have been deposited on highly oriented pyrolytic graphite (HOPG), a support which has chemical properties similar to those of multiwall carbon nanotubes (MWCNTs).
  • HOPG highly oriented pyrolytic graphite
  • HOPG Highly Oriented Pyrolytic Graphite
  • HOPG Highly Oriented Pyrolytic Graphite
  • this graphite with a size of 10 mm x 10 mm x 1 mm, has an angle called "mosaic spread angle" of 0.8 ° ⁇ 0.2 ° and a lateral grit size. greater than 1 mm.
  • Some surface layers of the graphite are previously detached with adhesive tape, before the graphite sample is immersed in an ethanol solution for 5 minutes, advantageously under ultrasonication.
  • the colloidal suspension is prepared for example according to the method of thermal reduction of citrate as described in the article by Turkevich et al. J. Faraday Discuss. Chem. Soc. (1951), page 11 55, according to the following reaction: 6 HAuCl 4 + K 3 C 6 H 5 O 7 + 5 H 2 O ⁇ 6 Au + 6 CO 2 + 21 HCl + 3 KCl, in which the citrate acts as a reducing agent and as a stabilizer.
  • a gold solution is prepared by adding 95 ml of a 134 mM aqueous solution of tetrachloroauric acid (HAuCl 4 , 3H 2 O, Merck) and 5 ml of a 34 mM aqueous solution of trisodium citrate ( C 6 Hg0 7 Na 3 , 2H 2 O, Merck) with 900 mL of distilled water. The solution thus obtained is then boiled for 15 minutes. In a pale yellow color, the gold solution then changes to a red color in the space of one to three minutes.
  • HuCl 4 tetrachloroauric acid
  • trisodium citrate C 6 Hg0 7 Na 3 , 2H 2 O, Merck
  • This method of thermal reduction of the citrate makes it possible to obtain a stable dispersion of gold particles, whose gold concentration is 134 mM, and whose particles have an average diameter of approximately 10 nm and approximately 10% of polydispersity ( Figure 1 ).
  • the deposition of the gold colloidal suspension on the highly oriented pyrolytic graphite is effected, for example, using an AtomfloTM-250 plasma source (Surfx Technologies LLC).
  • the diffuser of the plasma torch comprises two perforated aluminum electrodes, 33 mm in diameter, and separated by a gap of 1.6 mm wide.
  • the diffuser is placed inside a sealed chamber, preferably under an argon atmosphere, preferably at room temperature.
  • the upper electrode of the plasma source is connected to a radio frequency generator, for example 13.56 MHz, while the lower electrode is grounded.
  • the plasma torch operates at 80 W and the plasma is formed by feeding the torch upstream of the electrodes with the plasma gas, which is preferably argon, at a flow rate of 30 L / min for example.
  • the space between the graphite sample HOPG and the lower electrode is 6 ⁇ 1 mm. This space is under atmospheric pressure.
  • the graphite support is subjected to the plasma flow of the plasma torch, for for example about 2 minutes, which allows cleaning and activating the support.
  • the colloidal suspension for example 3 to 5 ml, is nebulized, preferably in the post-discharge zone of the plasma torch, preferably substantially parallel to the sample ( Figure 3 ).
  • the colloidal suspension is injected for about 5 minutes, by periodic pulsations of about one second, spaced apart for about 15 seconds.
  • the samples are then washed in an ethanol solution under ultrasonication for about 5 minutes.
  • XPS X-ray photoelectron spectroscopy
  • the charge effects on the measured binding energy positions were corrected by setting the binding energy of the carbon spectral envelope, C (1s), to 284.6 eV, a generally accepted value for contamination. accidental carbon surface.
  • C (1s) carbon spectral envelope
  • the spectra of carbon, oxygen and gold have been deconvolved in using a baseline model of Shirley and a Gaussian-Lorentzian model.
  • FIG. figure 4 The XPS spectra of the surface of HOPG graphite coated with nanoparticles are represented in FIG. figure 4 .
  • the figure 4 a) shows the presence of carbon at a percentage of 77.8%, oxygen at a percentage of 14.9%, potassium at a percentage of 3.2% and gold at a percentage of 1.0%. Traces of silica were also detected; these are impurities incorporated in the HOPG graphite samples.
  • This analysis indicates a high gold adhesion to HOPG graphite although the samples were washed in an ethanol solution under ultrasonication. It should be noted that with or without the ultrasonic ethanol cleaning step, the amount of gold deposited on the HOPG graphite is similar.
  • the surface morphology of HOPG graphite coated with nanoparticles was studied by performing Atomic Force Microscopy (AFM) images recorded using a PicoSPM® LE instrument with a functioning Nanoscope IIIa (Digital Instruments, Veeco) controller. under ambient conditions.
  • the microscope is equipped with a 25 ⁇ m analyzer and operates in contact mode.
  • the cantilever used is a Nanosensors NC-AFM Pointprobe® low-frequency silica probe (Wetzlar-Blankenfeld, Germany) having an integrated pyramidal end with a radius of curvature of 110 nm.
  • the spring constant of the cantilever is between 30 and 70 N m -1 and its free resonance frequency measurement is 163.1 kHz.
  • the images were recorded at scan rates of 0.5 to 1 line per second.
  • Atomic force microscopy images (1 ⁇ m x 1 ⁇ m) before and after the deposition of the nanoparticles by plasma treatment are represented in FIG. figure 5 .
  • the graphite is covered with clusters, or islands, of gold that are either isolated, and have a diameter less than 0.003 ⁇ m, or branched, and have a diameter greater than 0.1 ⁇ m. These islands are dispersed homogeneously with a recovery rate of about 12%.
  • the graphite samples are first deposited on a copper strip of a sample holder before being introduced into the analysis chamber under a pressure of approximately 10 -8 mbar.
  • Table 1 summarizes the characteristics of the structure of the islands of gold on the HOPG graphite resulting from the analysis of three Au4f spectra by the QUASES-Tougaard software, which express themselves in recovery rate and height of the islands of gold.
  • the growth mode is of the Volmer-Weber type (3D structure in islands) Table 1: Samples Height of islands of gold h (nm) Percentage of recovery (%) Thickness of carbon (contamination layer) (nm) AT 10.6 9.9 1.0 B 11.1 15.0 0.6 VS 9.2 6, 0 0.2
  • the height of the islands of gold varies between 9.2 and 10.6 nm, values substantially identical to the average diameter of the nanoparticles of the colloidal suspension ( Figure 1 ).
  • the surface of the support is covered with islands of gold of about 10 nm.
  • a gold coverage percentage of about 10% is in agreement with the recovery rate determined by atomic force microscopy and scanning electron microscopy.
  • a comparative test was carried out between a deposit of gold nanoparticles on HOPG according to the process of the invention and a deposit of gold nanoparticles on HOPG by nebulization of a colloidal solution of gold without the use of atmospheric plasma. ( Figures 8 and 9 ). After the deposition of the nanoparticles and before analysis, the samples, obtained with or without plasma treatment, were washed with ethanol for about 5 minutes with ultrasound.
  • gold nanoparticles are deposited on a steel support ( Figure 10 ) according to the method of the invention.
  • gold nanoparticles are deposited on a glass support ( Figure 11 ) according to the method of the invention.
  • gold nanoparticles are deposited on a polymer support, ie PVC ( Figure 12 ) or HDPE ( Figure 13 ) according to the method of the invention.
  • the microscopy images of Figures 12 and 13 were obtained after covering the samples with a metal layer.

Abstract

Process for depositing nanoparticles on a support, comprises taking a solution or a colloidal suspension of nanoparticles, and nebulizing the solution or a colloidal suspension of nanoparticles on a surface of the support in an atmospheric plasma.

Description

Objet de l'inventionObject of the invention

La présente invention se rapporte à un procédé de dépôt et de fixation de nanoparticules sur un support quelconque.The present invention relates to a method for depositing and fixing nanoparticles on any support.

Etat de la techniqueState of the art

Il est généralement admis que le terme « nanoparticule » décrit un agrégat de petites molécules, ou un assemblage de quelques dizaines à quelques milliers d'atomes, formant une particule dont les dimensions sont de l'ordre du nanomètre, c'est-à-dire inférieures à 1000nm (1µ). De par leur taille, ces particules possèdent des propriétés physiques, électriques, chimiques et magnétiques particulières et confèrent aux supports sur lesquels elles sont appliquées de nouvelles propriétés physiques, électriques, chimiques, magnétiques et mécaniques.It is generally accepted that the term "nanoparticle" describes an aggregate of small molecules, or an assembly of a few tens to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer, that is to say say less than 1000nm (1μ). Because of their size, these particles possess particular physical, electrical, chemical and magnetic properties and give the supports on which they are applied new physical, electrical, chemical, magnetic and mechanical properties.

Les nanoparticules présentent un intérêt grandissant du fait de leur implication dans le développement de nombreux dispositifs utilisés dans des domaines très différents, comme par exemple la détection de composés biologiques ou chimiques, la détection de gaz ou de vapeurs chimiques, l'élaboration de piles à combustible ou de dispositifs de stockage d'hydrogène, la réalisation de nanostructures électroniques ou optiques, de nouveaux catalyseurs chimiques, de bio-senseurs, ou de revêtements dits intelligents, tels des revêtements autonettoyants ou qui possèdent une activité biologique particulière, antibactérienne par exemple.Nanoparticles are of growing interest because of their involvement in the development of many devices used in very different fields, such as the detection of biological or chemical compounds, the detection of chemical gases or vapors, the elaboration of batteries. fuel or hydrogen storage devices, the production of electronic or optical nanostructures, new chemical catalysts, biosensors, or so-called intelligent coatings, such as self-cleaning coatings or which have a particular biological activity, antibacterial for example.

Il existe de nombreuses techniques permettant le dépôt de nanoparticules de différente nature, sur divers supports. Il existe des procédés de chimie en solution comme décrits par exemple dans l'article « Deposition of PbS particles from a nonaqueous chemical bath at room temperature » de T. Chaudhuri et al. Materials Letters (2005), 59 (17) pp 2191-2193 , et l'article « Deposition of gold nanoparticles on silica spheres by electroless metal plating technique » de Y. Kobayashi et al., Journal of Colloid and Interface Science (2005), 283 (2) pp 601-604 .There are many techniques allowing the deposition of nanoparticles of different nature, on various supports. There are methods of chemistry in solution as described for example in the article "Deposition of PbS particles from a nonaqueous chemical bath at room temperature" by T. Chaudhuri et al. Materials Letters (2005), 59 (17) pp 2191-2193 , and the article "Deposition of gold nanoparticles on silica spheres by electroless metal plating technique" by Y. Kobayashi et al., Journal of Colloid and Interface Science (2005), 283 (2) pp. 601-604 .

Il existe également des procédés d'électrochimie comme celà est décrit par exemple dans l'article « Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis » de G. Sine et al., Journal of Applied Electrochemistry, (2006) 36 (8) pp 847-862 , et dans l'article « Deposition of platinuim nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cell » de M. Waje et al., Nanotechnology (2005), 16 (7) pp 395-400 .There are also electrochemical methods as described for example in the article "Deposition of clusters and nanoparticles on boron-doped diamond electrodes for electrocatalysis" by G. Sine et al., Journal of Applied Electrochemistry, (2006) 36 (8) pp 847-862 and in the article "Deposition of platinuim nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cell" by M. Waje et al., Nanotechnology (2005), 16 (7) pp 395-400 .

Il peut s'agir également de techniques de dépôt sous vide faisant intervenir un plasma comme celà est décrit en particulier dans l'article « Platinum nanoparticles interaction with chemically modified highly oriented pyrolytic graphite surfaces » de D. Yang et al., Chemistry of materials (2006) 18 (7) pp 1811-1816 , et dans l'article « Au nanoparticles supported on HOPG: An XPS characterization », de D. Barreca et al. Surface Science Spectra (2005) 10 pp 164-169 .It may also be vacuum deposition techniques involving a plasma as described in particular in the article "Platinum nanoparticles interaction with chemically modified highly oriented pyrolytic graphite surfaces" by D. Yang et al., Chemistry of Materials (2006) 18 (7) pp 1811-1816 and in the article "Nanoparticles supported on HOPG: An XPS characterization" by D. Barreca et al. Surface Science Spectra (2005) 10 pp 164-169 .

Ces techniques présentent de nombreux inconvénients, qui peuvent être par exemple des problèmes liés à la reproductibilité du procédé utilisé, des problèmes de distribution, d'homogénéité et de régularité du dépôt de nanoparticules. Ces techniques sont également d'une mise en oeuvre complexe. Elles sont, d'une manière générale, onéreuses, du fait, entre autre, de devoir générer un vide même partiel, et sont difficilement applicables à une échelle industrielle. De plus, le dépôt de nanoparticules comprend habituellement une étape d'activation du support, qui, dans les techniques décrites précédemment, requiert un traitement préalable qui est bien souvent complexe et qui peut prendre plusieurs heures, voir des jours.These techniques have many disadvantages, which can be for example problems related to the reproducibility of the process used, problems of distribution, homogeneity and regularity deposition of nanoparticles. These techniques are also of a complex implementation. They are, in general, expensive, because, among other things, to have to generate even a partial vacuum, and are difficult to apply on an industrial scale. In addition, the deposition of nanoparticles usually comprises a support activation step, which, in the techniques described above, requires a pretreatment that is often complex and may take several hours, or even days.

En outre, toutes ces techniques posent des problèmes environnementaux, pour la chimie en solution ainsi que l'électrochimie, du fait notamment de l'utilisation de solvants et de réactifs chimiques polluant, et des problèmes de forte consommation d'énergie, pour ce qui concerne les techniques sous vide utilisant un plasma.In addition, all these techniques pose environmental problems for solution chemistry and electrochemistry, in particular because of the use of pollutant solvents and chemical reagents, and problems of high energy consumption, for example. relates to vacuum techniques using a plasma.

Buts de l'inventionGoals of the invention

La présente invention vise à proposer un procédé de dépôt de nanoparticules sur un support qui ne présente pas les inconvénients de l'état de la technique.The present invention aims to propose a method of depositing nanoparticles on a support which does not have the drawbacks of the state of the art.

La présente invention vise à proposer un procédé rapide, peu onéreux et d'une mise en oeuvre facilitée.The present invention aims to provide a fast, inexpensive process and easy implementation.

Résumé de l'inventionSummary of the invention

La présente invention divulgue également l'utilisation d'une solution colloïdale de nanoparticules pour le dépôt de nanoparticules sur un support, et l'utilisation d'un plasma atmosphérique pour le dépôt de nanoparticules sur un support, qui ne présentent pas les inconvénients de l'état de la technique.The present invention also discloses the use of a colloidal solution of nanoparticles for the deposition of nanoparticles on a support, and the use of an atmospheric plasma for the deposition of nanoparticles on a support, which do not have the disadvantages of state of the art.

La présente invention décrit un procédé de dépôt de nanoparticules sur un support comprenant les étapes suivantes :

  1. a) prendre une solution colloïdale de nanoparticules,
  2. b) vaporiser ladite solution colloïdale de nanoparticules sur la surface dudit support dans un plasma atmosphérique.
The present invention describes a method for depositing nanoparticles on a support comprising the following steps:
  1. a) take a colloidal solution of nanoparticles,
  2. b) vaporizing said colloidal solution of nanoparticles on the surface of said support in an atmospheric plasma.

On entend par « nanoparticule » un agrégat de petites molécules, ou un assemblage de quelques centaines à quelques milliers d'atomes, formant une particule dont les dimensions sont de l'ordre du nanomètre, généralement inférieures à 100nm.The term "nanoparticle" means an aggregate of small molecules, or an assembly of a few hundred to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer, generally less than 100 nm.

On entend par « solution colloïdale » une suspension homogène de particules dans laquelle le solvant est un liquide et le soluté un solide disséminé de manière homogène sous forme de très fines particules. Les solutions colloïdales peuvent prendre des formes diverses, liquide, gel ou pâte. Les solutions colloïdales sont intermédiaires entre les suspensions, qui sont des milieux hétérogènes comprenant des particules microscopiques dispersées dans un liquide, et les solutions vraies, dans lesquelles le ou les soluté(s) sont à l'état de division moléculaire dans le solvant.The term "colloidal solution" is intended to mean a homogeneous suspension of particles in which the solvent is a liquid and the solute a solid that is homogeneously dispersed in the form of very fine particles. Colloidal solutions can take various forms, liquid, gel or paste. The colloidal solutions are intermediate between the suspensions, which are heterogeneous media comprising microscopic particles dispersed in a liquid, and the true solutions, in which the solute (s) are in the state of molecular division in the solvent.

On entend par « plasma atmosphérique » un gaz partiellement ou totalement ionisé qui comprend des électrons, des ions (moléculaires ou atomiques), des atomes ou molécules, et des radicaux, hors de l'équilibre thermodynamique, dont la température des électrons est significativement supérieure à celle des ions et des neutres, et dont la pression est comprise entre environ 1 mbar et environ 1200 mbar."Atmospheric plasma" is understood to mean a partially or totally ionized gas which comprises electrons, ions (molecular or atomic), atoms or molecules, and radicals, out of thermodynamic equilibrium, whose electron temperature is significantly greater. to that of ions and neutrals, and whose pressure is between about 1 mbar and about 1200 mbar.

Selon des formes particulières de réalisation, le procédé comporte l'une ou plusieurs des caractéristiques suivantes :

  • le procédé comprend en outre une étape d'activation de la surface du support en soumettant ladite surface dudit support au plasma atmosphérique,
  • l'activation de la surface du support et la nébulisation de la solution colloïdale sont concomitantes,
  • l'activation de la surface du support est précédée par une étape de nettoyage de ladite surface dudit support,
  • la nébulisation de la solution colloïdale de nanoparticules se fait dans la zone décharge ou dans la zone post-décharge du plasma atmosphérique,
  • le plasma est généré par une torche à plasma atmosphérique,
  • la nébulisation de la solution colloïdale de nanoparticules se fait sensiblement parallèlement à la surface du support,
  • les nanoparticules sont des nanoparticules d'un métal, d'un oxyde métallique d'un alliage métallique ou leur mélange,
  • les nanoparticules sont des nanoparticules d'au moins un métal de transition, de son oxyde correspondant, d'un alliage de métaux de transition ou leur mélange.
  • les nanoparticules sont choisies dans le groupe formé par le magnésium (Mg), le strontium (Sr), le titane (Ti), le zirconium (Zr), le lanthane (La), le vanadium (V), le niobium (Nb), le tantale (Ta), le chrome (Cr), le molybdène (Mo), le tungstène (W), le manganèse (Mn), le rhénium (Re), le fer (Fe), le ruthénium (Ru), l'osmium (Os), le cobalt (Co), le rhodium (Rh), l'iridium (Ir), le nickel (Ni), le palladium (Pd), le platine (Pt), le cuivre (Cu), l'argent (Ag), l'or (Au), le zinc (Zn), le cadmium (Cd), l'aluminium (Al), l'iridium (In), l'étain (Sn), le plomb (Pb), leurs oxydes correspondants, ou un alliage de ces métaux.
  • les nanoparticules sont choisies dans le groupe formé par le dioxyde de titane (titane (Ti02), l'oxyde de cuivre (CuO), l'oxyde de fer (F2O), l'oxyde de fer Fe2O3, l'oxyde de fer Fe3O4, le dioxyde d'iridium (IrO2), de dioxyde de zirconium (ZrO2), l'oxyde d'aluminium (Al2O3).
  • les nanoparticules sont choisies dans le groupe formé par un alliage or/platine (AuPt), platine/ruthénium (PtRu), cadmium/soufre (CdS), ou plomb/souffre (PbS).
  • le support est un support solide, un gel ou un matériau nano-structuré.
  • le support est choisi parmi le groupe formé par un support carboné, des nanotubes de carbone, un métal, un alliage métallique, un oxyde métallique, une zéolite, un semi-conducteur, un polymère, du verre et/ou de la céramique.
  • le support est de la silice, du carbone, du titane, de l'alumine, ou des nanotubes de carbone multi-parois.
  • le plasma atmosphérique est généré à partir d'un gaz plasmagène choisi parmi le groupe formé par l'argon, l'hélium, l'azote, l'hydrogène, l'oxygène, du dioxyde de carbone, de l'air ou leur mélange.
According to particular embodiments, the method comprises one or more of the following features:
  • the method further comprises a step of activating the surface of the support by subjecting said surface of said support to atmospheric plasma,
  • the activation of the surface of the support and the nebulization of the colloidal solution are concomitant,
  • the activation of the surface of the support is preceded by a step of cleaning said surface of said support,
  • the nebulization of the colloidal solution of nanoparticles is done in the discharge zone or in the post-discharge zone of the atmospheric plasma,
  • the plasma is generated by an atmospheric plasma torch,
  • the nebulization of the colloidal solution of nanoparticles is substantially parallel to the surface of the support,
  • the nanoparticles are nanoparticles of a metal, a metal oxide of a metal alloy or their mixture,
  • the nanoparticles are nanoparticles of at least one transition metal, its corresponding oxide, a transition metal alloy or their mixture.
  • the nanoparticles are chosen from the group formed by magnesium (Mg), strontium (Sr), titanium (Ti), zirconium (Zr), lanthanum (La), vanadium (V), niobium (Nb) , tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), rhenium (Re), iron (Fe), ruthenium (Ru), l osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), zinc (Zn), cadmium (Cd), aluminum (Al), iridium (In), tin (Sn), lead (Pb) ), their corresponding oxides, or an alloy of these metals.
  • the nanoparticles are chosen from the group formed by titanium dioxide (titanium (TiO 2), copper oxide (CuO), iron oxide (F 2 O), iron oxide Fe 2 O 3 , iron oxide Fe 3 O 4 , iridium dioxide (IrO 2 ), zirconium dioxide ( ZrO 2 ), aluminum oxide (Al 2 O 3 ).
  • the nanoparticles are chosen from the group formed by a gold / platinum (AuPt), platinum / ruthenium (PtRu), cadmium / sulfur (CdS) or lead / sulfur (PbS) alloy.
  • the support is a solid support, a gel or a nano-structured material.
  • the support is selected from the group consisting of a carbon support, carbon nanotubes, a metal, a metal alloy, a metal oxide, a zeolite, a semiconductor, a polymer, glass and / or ceramic.
  • the support is silica, carbon, titanium, alumina, or multi-walled carbon nanotubes.
  • the atmospheric plasma is generated from a plasma gas selected from the group consisting of argon, helium, nitrogen, hydrogen, oxygen, carbon dioxide, air or their mixture .

La présente invention divulgue par ailleurs l'utilisation d'une solution colloïdale de nanoparticules pour le dépôt de nanoparticules sur un support à l'aide d'un plasma atmosphérique.The present invention also discloses the use of a colloidal solution of nanoparticles for depositing nanoparticles on a support using an atmospheric plasma.

Selon des formes particulières de réalisation, l'utilisation de la solution colloïdale de nanoparticule comporte l'une ou plusieurs des caractéristiques suivantes :

  • la solution colloïdale est nébulisée dans la zone décharge ou post-décharge du plasma atmosphérique.
  • le plasma atmosphérique est généré par une torche à plasma atmosphérique.
According to particular embodiments, the use of the colloidal nanoparticle solution comprises one or more of the following characteristics:
  • the colloidal solution is nebulized in the discharge or post-discharge zone of the atmospheric plasma.
  • the atmospheric plasma is generated by an atmospheric plasma torch.

La présente invention décrit également l'utilisation d'un plasma atmosphérique pour le dépôt de nanoparticules sur un support, lesdites nanoparticules étant sous la forme d'une solution colloïdale de nanoparticules, et ladite solution colloïdale étant nébulisée à la surface dudit support dans la ledit plasma atmosphérique.The present invention also describes the use of an atmospheric plasma for the deposition of nanoparticles on a support, said nanoparticles being in the form of a colloidal solution of nanoparticles, and said colloidal solution being nebulized on the surface of said support in said atmospheric plasma.

Selon des formes particulières de réalisation, d'un plasma atmosphérique pour le dépôt de nanoparticules sur un support comporte l'une ou plusieurs des caractéristiques suivantes :

  • la solution colloïdale est nébulisée dans la zone décharge ou post-décharge du plasma atmosphérique.
  • le plasma atmosphérique est généré par une torche à plasma atmosphérique
According to particular embodiments, an atmospheric plasma for the deposition of nanoparticles on a support comprises one or more of the following characteristics:
  • the colloidal solution is nebulized in the discharge or post-discharge zone of the atmospheric plasma.
  • the atmospheric plasma is generated by an atmospheric plasma torch

Brève description des figuresBrief description of the figures

La figure 1 représente la distribution en taille des particules d'or d'une solution colloïdale.The figure 1 represents the size distribution of the gold particles of a colloidal solution.

La figure 2 représente une image obtenue par microscopie électronique à transmission (MET) d'une solution colloïdale des particules d'or.The figure 2 represents an image obtained by transmission electron microscopy (TEM) of a colloidal solution of gold particles.

La figure 3 représente schématiquement une torche à plasma atmosphérique.The figure 3 schematically represents an atmospheric plasma torch.

La figure 4 représente des spectres de spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG après dépôt de nanoparticules d'or par plasma. (a) spectre global, (b) spectre déconvolué du niveau Au 4f, (c) spectre déconvolué du niveau O 1s, (d) spectre déconvolué du niveau C 1s.The figure 4 represents X-ray photoelectron spectroscopy (XPS) spectra of the surface of HOPG graphite after plasma gold nanoparticle deposition. (a) global spectrum, (b) deconvolved spectrum of the Au 4f level, (c) deconvolved spectrum of the O 1s level, (d) deconvolved spectrum of the C 1s level.

La figure 5 représente des images de microscopie à force atomique (AFM) d'un échantillon de graphite HOPG a)avant, et b) après dépôt de nanoparticules d'or.The figure 5 represents atomic force microscopy (AFM) images of a HOPG graphite sample a) before, and b) after deposition of gold nanoparticles.

La figure 6 représente des images de microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de graphite HOPG a)avant, b) et c) après dépôt de nanoparticules d'or. (a) grossissement x 2000, (b) grossissement x 25000, (c) grossissement x 80000. L'analyse par dispersion d'énergie (EDS) est collectée sur des nanoparticules.The figure 6 represents high resolution electron microscopy images of secondary electrons (FEG-SEM) of a HOPG graphite sample a) before, b) and c) after depositing gold nanoparticles. (a) magnification x 2000, (b) magnification x 25000, (c) magnification x 80000. Energy dispersive analysis (EDS) is collected on nanoparticles.

La figure 7 représente la comparaison du spectre XPS expérimental du niveau Au 4f présenté en figure 4(b) et du spectre modélisé en utilisant un modèle de croissance de type Volmer-Weber.The figure 7 represents the comparison of the experimental XPS spectrum of Au 4f level presented in Figure 4 (b) and spectrum modeled using a Volmer-Weber growth model.

La figure 8 représente un spectre de spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG après dépôt de nanoparticules d'or sans l'utilisation d'un plasma.The figure 8 represents an X-ray photoelectron spectroscopy spectrum (XPS) of the surface of HOPG graphite after deposition of gold nanoparticles without the use of a plasma.

La figure 9 représente une image de microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de graphite HOPG après le dépôt de nanoparticules d'or sans l'utilisation d'un plasma.The figure 9 represents a high-resolution electron microscopy image of secondary electrons (FEG-SEM) of a HOPG graphite sample after the deposition of gold nanoparticles without the use of a plasma.

La figure 10 représente une image (grossissement x 100000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon d'acier après dépôt de nanoparticules d'or.The figure 10 represents an image (magnification x 100000) obtained by high resolution electron microscopy of secondary electrons (FEG-SEM) of a steel sample after deposition of gold nanoparticles.

La figure 11 représente une image (grossissement x 3000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de verre après dépôt de nanoparticules d'or.The figure 11 represents an image (magnification × 3000) obtained by high-resolution electron microscopy of secondary electrons (FEG-SEM) of a glass sample after deposition of gold nanoparticles.

La figure 12 représente une image (grossissement x 50000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de polymère PVC après dépôt de nanoparticules d'orThe figure 12 represents an image (magnification x 50000) obtained by high-resolution electron microscopy of secondary electrons (FEG-SEM) of a sample of PVC polymer after deposition of gold nanoparticles

La figure 13 représente une image (grossissement x 10000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de polymère HDPE après dépôt de nanoparticules d'or.The figure 13 represents an image (magnification × 10000) obtained by high resolution electron microscopy of the secondary electrons (FEG-SEM) of a sample of HDPE polymer after deposition of gold nanoparticles.

Description détaillée de plusieurs formes d'exécution de l'inventionDetailed description of several embodiments of the invention

Le procédé de dépôt de nanoparticules selon l'invention fait intervenir une solution, ou suspension, colloïdale de nanoparticules qui est déposée sur un support quelconque à l'aide d'un plasma atmosphérique, ledit plasma atmosphérique pouvant être généré par tout dispositif adéquate faisant usage d'un plasma atmosphérique.The method for deposition of nanoparticles according to the invention involves a colloidal solution or suspension of nanoparticles which is deposited on any support with the aid of an atmospheric plasma, said atmospheric plasma being able to be generated by any suitable device making use of of an atmospheric plasma.

Ce procédé présente de nombreux avantages. Par exemple, il permet d'effectuer un dépôt dit «propre», c'est-à-dire sans utilisation de solvants dits «polluant». Avantageusement, le dépôt de nanoparticules selon l'invention ne fait appel qu'à une faible consommation d'énergie. De manière surprenante, le dépôt de nanoparticules est rapide car l'activation du support et la nébulisation des nanoparticules, éventuellement également le nettoyage préalable du support, sont réalisés dans le plasma atmosphérique, ou dans le flux du plasma atmosphérique, en une seule étape ou un seul processus continu.This method has many advantages. For example, it allows a so-called "clean" deposit, that is to say without the use of solvents called "pollutant". Advantageously, the deposition of nanoparticles according to the invention uses only a low energy consumption. Surprisingly, the deposition of nanoparticles is rapid because the activation of the support and the nebulization of the nanoparticles, and possibly also the prior cleaning of the support, are carried out in the atmospheric plasma, or in the flow of the atmospheric plasma, in a single step or one continuous process.

De manière surprenante, le procédé selon l'invention permet une forte adhésion des nanoparticules au support. Cette technique permet de contrôler les propriétés de l'interface et d'ajuster le dépôt des nanoparticules sur le support. De plus, ce procédé ne requiert pas d'installations onéreuses et il est facilement mis en oeuvre industriellement.Surprisingly, the process according to the invention allows a strong adhesion of the nanoparticles to the support. This technique makes it possible to control the properties of the interface and to adjust the deposition of the nanoparticles on the support. In addition, this method does not require expensive installations and is easily implemented industrially.

La solution colloïdale de nanoparticules peut être préparée par toute technique et/ou tout moyen adéquat.The colloidal solution of nanoparticles can be prepared by any technique and / or any suitable means.

Dans le procédé selon l'invention, le support, sur lequel la solution colloïdale de nanoparticules est déposée, est tout matériau adéquat pouvant être recouvert de nanoparticules, tout matériau quel que soit sa nature et/ou sa forme. De préférence, il s'agit d'un support solide, d'un gel ou d'un matériau nano-structuré.In the process according to the invention, the support, on which the colloidal solution of nanoparticles is deposited, is any suitable material that can be covered with nanoparticles, any material whatever its nature and / or its shape. Preferably, it is a solid support, a gel or a nano-structured material.

Dans le procédé selon l'invention, le plasma est tout plasma atmosphérique adéquat. Il s'agit d'un plasma généré à une pression comprise entre environ 1 mbar et environ 1200 mbar. De préférence, il s'agit d'un plasma atmosphérique dont la température macroscopique du gaz peut varier par exemple entre la température ambiante et environ 400°C. De préférence, le plasma est généré par une torche à plasma atmosphérique.In the process according to the invention, the plasma is any suitable atmospheric plasma. It is a plasma generated at a pressure of between about 1 mbar and about 1200 mbar. Preferably, it is an atmospheric plasma whose macroscopic temperature of the gas can vary for example between room temperature and about 400 ° C. Preferably, the plasma is generated by an atmospheric plasma torch.

Un plasma atmosphérique ne fait pas appel au vide, ce qui permet d'être peu onéreux et d'un entretien facilité. Le plasma atmosphérique permet de nettoyer et d'activer la surface du support, soit en la fonctionnalisant, en créant par exemple des groupements oxygénés, azotés, soufrés, et/ou hydrogénés, soit en créant des défauts en surface, par exemple des lacunes, des marches, et/ou des piqûres.An atmospheric plasma does not use vacuum, which makes it inexpensive and easy to maintain. The atmospheric plasma makes it possible to clean and activate the surface of the support, either by functionalizing it, for example by creating oxygen, nitrogen, sulfur, and / or hydrogenated groups, or by creating surface defects, for example gaps, steps, and / or stings.

De préférence, dans le procédé selon l'invention, l'activation du support et la nébulisation de la solution colloïdale se font de manière concomitante, à savoir dans le plasma, ou dans le flux du plasma, généré par un dispositif faisant usage d'un plasma atmosphérique. Ainsi la nébulisation de la solution colloïdale se produit en même temps, ou bien immédiatement après, l'activation du support par le plasma atmosphérique.Preferably, in the method according to the invention, the activation of the support and the nebulization of the colloidal solution are concomitant, namely in the plasma, or in the plasma flow, generated by a device making use of an atmospheric plasma. Thus the nebulization of the colloidal solution occurs at the same time, or immediately after, the activation of the support by the atmospheric plasma.

La nébulisation de la solution colloïdale peut se faire soit dans la zone décharge ou dans la zone post décharge du plasma atmosphérique. De préférence, la nébulisation de la solution colloïdale se fait dans la zone post décharge du plasma car, dans certains cas, cela peut présenter des avantages supplémentaires. Cela peut permettre de ne pas contaminer le dispositif générant le plasma. Cela peut permettre de faciliter le traitement de supports polymériques, d'éviter la dégradation du support à recouvrir, et aussi, par exemple, ne pas causer la fusion, l'oxydation, la dégradation et/ou l'agrégation des nanoparticules.The nebulization of the colloidal solution can be done either in the discharge zone or in the post-discharge zone of the atmospheric plasma. Preferably, the nebulization of the colloidal solution is in the post-discharge zone of the plasma because, in certain cases, this can present additional benefits. This may not contaminate the device generating the plasma. This may make it possible to facilitate the treatment of polymeric supports, to avoid the degradation of the support to be coated, and also, for example, not to cause melting, oxidation, degradation and / or aggregation of the nanoparticles.

La nébulisation de la solution colloïdale est toute nébulisation adéquate et peut se faire sous n'importe quelle orientation par rapport à la surface du support. De préférence, la nébulisation se fait sensiblement parallèle au support, mais elle peut également se faire par exemple sous un angle d'environ 45°, ou par exemple sous un angle d'environ 75°.The nebulization of the colloidal solution is any nebulization adequate and can be done in any orientation with respect to the surface of the support. Preferably, the nebulization is substantially parallel to the support, but it can also be done for example at an angle of about 45 °, or for example at an angle of about 75 °.

Dans une première forme de réalisation particulière, des nanoparticules d'or ont été déposées sur du graphite pyrolytique hautement orienté (HOPG), un support qui présente des propriétés chimiques similaires à celles des nanotubes de carbone multiparois(MWCNTs).In a first particular embodiment, gold nanoparticles have been deposited on highly oriented pyrolytic graphite (HOPG), a support which has chemical properties similar to those of multiwall carbon nanotubes (MWCNTs).

Le graphite pyrolytique hautement orienté (HOPG) est commercialement disponible (MikroMasch - Axesstech, France). D'une qualité ZYB, ce graphite, d'une taille de 10 mm x 10 mm x 1 mm, présente un angle appelé « mosaic spread angle » de 0,8°±0,2° et une taille de « lateral grain » supérieur à 1 mm. Quelques couches de surface du graphite sont préalablement détachées à l'aide de ruban adhésif, avant que l'échantillon de graphite ne soit immergé dans une solution d'éthanol pendant 5 minutes, avantageusement sous ultrasonication.Highly Oriented Pyrolytic Graphite (HOPG) is commercially available (MikroMasch - Axesstech, France). With a ZYB quality, this graphite, with a size of 10 mm x 10 mm x 1 mm, has an angle called "mosaic spread angle" of 0.8 ° ± 0.2 ° and a lateral grit size. greater than 1 mm. Some surface layers of the graphite are previously detached with adhesive tape, before the graphite sample is immersed in an ethanol solution for 5 minutes, advantageously under ultrasonication.

La suspension colloïdale est préparée par exemple selon la méthode de réduction thermique du citrate comme décrite dans l'article de Turkevich et al. J. Faraday Discuss. Chem. Soc. (1951), 11 page 55, d'après la réaction suivante : 6 HAuCl4 + K3C6H5O7 + 5 H2O → 6 Au + 6 CO2 + 21 HCl + 3 KCl, dans laquelle le citrate agissant comme réducteur et comme stabilisant. Classiquement, une solution d'or est préparée en additionnant 95 mL d'une solution aqueuse à 134 mM d'acide tetrachloroaurique (HAuCl4, 3H2O, Merck) et 5 mL d'une solution aqueuse à 34 mM de citrate trisodique (C6Hg07Na3,2H20, Merck) avec 900 mL d'eau distillée. La solution ainsi obtenue est alors portée à ébullition pendant 15 minutes. D'une couleur jaune pâle, la solution d'or passe alors à une couleur rouge en l'espace d'une à trois minutes.The colloidal suspension is prepared for example according to the method of thermal reduction of citrate as described in the article by Turkevich et al. J. Faraday Discuss. Chem. Soc. (1951), page 11 55, according to the following reaction: 6 HAuCl 4 + K 3 C 6 H 5 O 7 + 5 H 2 O → 6 Au + 6 CO 2 + 21 HCl + 3 KCl, in which the citrate acts as a reducing agent and as a stabilizer. Conventionally, a gold solution is prepared by adding 95 ml of a 134 mM aqueous solution of tetrachloroauric acid (HAuCl 4 , 3H 2 O, Merck) and 5 ml of a 34 mM aqueous solution of trisodium citrate ( C 6 Hg0 7 Na 3 , 2H 2 O, Merck) with 900 mL of distilled water. The solution thus obtained is then boiled for 15 minutes. In a pale yellow color, the gold solution then changes to a red color in the space of one to three minutes.

Cette méthode de réduction thermique du citrate permet d'obtenir une dispersion stable de particules d'or, dont la concentration en or est de 134mM, et dont les particules ont un diamètre moyen d'environ 10 nm et environ 10 % de polydispersité (Figure 1).This method of thermal reduction of the citrate makes it possible to obtain a stable dispersion of gold particles, whose gold concentration is 134 mM, and whose particles have an average diameter of approximately 10 nm and approximately 10% of polydispersity ( Figure 1 ).

Le dépôt de la suspension colloïdale d'or sur le graphite pyrolytique hautement orienté s'effectue, par exemple, à l'aide d'une source plasma AtomfloTM-250 (Surfx Technologies LLC). Comme décrit à la figure 3, le diffuseur de la torche à plasma comprend deux électrodes perforées en aluminium, de 33 mm de diamètre, et séparées par un espace de 1,6 mm de large. Dans cet exemple précis, le diffuseur est placé à l'intérieur d'une chambre hermétique, de préférence sous atmosphère d'argon, de préférence à température ambiante. L'électrode supérieure de la source plasma est connectée à un générateur de radiofréquence, par exemple de 13,56MHz, alors que l'électrode inférieure est mise à la terre.The deposition of the gold colloidal suspension on the highly oriented pyrolytic graphite is effected, for example, using an AtomfloTM-250 plasma source (Surfx Technologies LLC). As described in figure 3 , the diffuser of the plasma torch comprises two perforated aluminum electrodes, 33 mm in diameter, and separated by a gap of 1.6 mm wide. In this specific example, the diffuser is placed inside a sealed chamber, preferably under an argon atmosphere, preferably at room temperature. The upper electrode of the plasma source is connected to a radio frequency generator, for example 13.56 MHz, while the lower electrode is grounded.

De préférence, la torche à plasma fonctionne à 80 W et le plasma est formé en alimentant la torche en amont des électrodes avec le gaz plasmagène, qui est de préférence de l'argon, à un débit de 30 L/min par exemple. De préférence, l'espace entre l'échantillon de graphite HOPG et l'électrode inférieure est de 6 ± 1 mm. Cet espace est sous pression atmosphérique.Preferably, the plasma torch operates at 80 W and the plasma is formed by feeding the torch upstream of the electrodes with the plasma gas, which is preferably argon, at a flow rate of 30 L / min for example. Preferably, the space between the graphite sample HOPG and the lower electrode is 6 ± 1 mm. This space is under atmospheric pressure.

Avant le dépôt des nanoparticules, le support graphite est soumis au flux de plasma de la torche à plasma, pendant par exemple environ 2 minutes, ce qui permet de nettoyer et d'activer le support. La suspension colloïdale, par exemple 3 à 5 mL, est nébulisée, de préférence dans la zone post-décharge de la torche à plasma, de préférence, sensiblement parallèlement à l'échantillon (Figure 3). Avantageusement, la suspension colloïdale est injectée pendant environ 5 minutes, par pulsations périodiques d'environ une seconde, espacées d'environ 15 secondes. De préférence, les échantillons sont ensuite lavés dans une solution d'éthanol sous ultrasonication pendant environ 5 minutes.Before the deposition of the nanoparticles, the graphite support is subjected to the plasma flow of the plasma torch, for for example about 2 minutes, which allows cleaning and activating the support. The colloidal suspension, for example 3 to 5 ml, is nebulized, preferably in the post-discharge zone of the plasma torch, preferably substantially parallel to the sample ( Figure 3 ). Advantageously, the colloidal suspension is injected for about 5 minutes, by periodic pulsations of about one second, spaced apart for about 15 seconds. Preferably, the samples are then washed in an ethanol solution under ultrasonication for about 5 minutes.

Une analyse par spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG recouvert de nanoparticules a été réalisée sur un appareil ThermoVG Microlab 350, avec une chambre analytique à une pression de 10-9 mbar et une source de rayons-X Al Kα (hγ =1486.6 eV) fonctionnant à 300 W. Les spectres ont été mesurés avec un angle d'enregistrement de 90° et ont été enregistrés avec une énergie de passage dans l'analyseur de 100 eV et une taille de faisceau de rayons-X de 2 mm x 5 mm. La détermination de l'état chimique a été faite, quant à elle, avec une énergie de passage dasn l'analyseur de 20 eV. Les effets de charge sur les positions de l'énergie de liaison mesurées ont été corrigés en fixant l'énergie de liaison de l'enveloppe spectrale du carbone, C(1s), à 284,6 eV, une valeur généralement admise pour une contamination accidentelle de la surface du carbone. Les spectres du carbone, de l'oxygène et de l'or ont été déconvolués en utilisant un modèle de ligne de base de Shirley et un modèle Gaussien-Lorentzien.An X-ray photoelectron spectroscopy (XPS) analysis of the surface of the nanoparticle-coated HOPG graphite was carried out on a ThermoVG Microlab 350, with an analytical chamber at a pressure of 10 -9 mbar and an Al Kα X-ray source. (hγ = 1486.6 eV) operating at 300 W. The spectra were measured at a recording angle of 90 ° and were recorded with 100 eV analyzer pass energy and X-ray beam size 2 mm x 5 mm. The determination of the chemical state was made, for its part, with an energy of passage in the analyzer of 20 eV. The charge effects on the measured binding energy positions were corrected by setting the binding energy of the carbon spectral envelope, C (1s), to 284.6 eV, a generally accepted value for contamination. accidental carbon surface. The spectra of carbon, oxygen and gold have been deconvolved in using a baseline model of Shirley and a Gaussian-Lorentzian model.

Les spectres XPS de la surface du graphite HOPG recouvert de nanoparticules sont représentés à la figure 4. La figure 4 a) montre la présence de carbone à un pourcentage de 77,8%, d'oxygène à un pourcentage de 14,9%, de potassium à un pourcentage de 3,2% et d'or à un pourcentage de 1,0%. Des traces de silice ont été également détectées ; il s'agit d'impuretés incorporées aux échantillons de graphite HOPG. Cette analyse indique une forte adhésion de l'or sur le graphite HOPG bien que les échantillons aient été lavés dans une solution d'éthanol sous ultrasonication. Il est à noter qu'avec ou sans l'étape de nettoyage à l'éthanol par ultrasons, la quantité d'or déposée sur le graphite HOPG est similaire.The XPS spectra of the surface of HOPG graphite coated with nanoparticles are represented in FIG. figure 4 . The figure 4 a) shows the presence of carbon at a percentage of 77.8%, oxygen at a percentage of 14.9%, potassium at a percentage of 3.2% and gold at a percentage of 1.0%. Traces of silica were also detected; these are impurities incorporated in the HOPG graphite samples. This analysis indicates a high gold adhesion to HOPG graphite although the samples were washed in an ethanol solution under ultrasonication. It should be noted that with or without the ultrasonic ethanol cleaning step, the amount of gold deposited on the HOPG graphite is similar.

Le spectre de l'or, Au(4f) (Figure 4 b), a été déconvolué par rapport aux doublets spin-orbite Au4f5/2- Au4f7/2 avec un rapport d'intensité fixe de 0,75:1 et avec une énergie de séparation de 3,7 eV. La composante unique Au4f7/2 est localisée à 83,7 eV, ce qui permet de l'attribuer sans ambigüité à de l'or métallique. Cela signifie que les amas d'or n'ont pas été significativement oxydés durant le traitement avec le plasma.The spectrum of gold, Au (4f) ( Figure 4 (b) was deconvolved relative to the Au4f5 / 2- Au4f7 / 2 spin-orbit doublets with a fixed intensity ratio of 0.75: 1 and with a separation energy of 3.7 eV. The unique Au4f7 / 2 component is located at 83.7 eV, allowing unambiguous attribution to metallic gold. This means that the gold clusters have not been significantly oxidized during plasma treatment.

Le spectre du carbone, C(1s), représenté à la Figure 4 d) comprend un pic principal à 283,7 eV qui est attribué à une liaison carbone-carbone (sp2). Les pics localisés à 284,6 eV, 285,8 eV et 288,6 eV peuvent être attribués respectivement aux liaisons C-C (sp3), C-O, et OC=O. La présence de liaisons C-O et O-C=O observées provient probablement, soit de la brève exposition des échantillons à l'oxygène ambiant durant leur manipulation, soit de la présence d'une faible quantité d'oxygène durant le traitement plasma comme le suggère la caractérisation post-décharge par spectrométrie optique d'émission (données non représentées). Cette explication est en accord avec le spectre de l'oxygène, O(1s), qui montre la présence de liaisons O-C (533,5 eV) et O=C (531,9 eV).The carbon spectrum, C (1s), represented at Figure 4 d) includes a main peak at 283.7 eV which is attributed to a carbon-carbon bond (sp2). Peaks at 284.6 eV, 285.8 eV and 288.6 eV can be attributed to the CC (sp3), CO, and OC = O bonds, respectively. The presence of observed CO and OC = O bonds is probably due either to the brief exposure of the samples to ambient oxygen during handling, or to the presence of a small amount of oxygen during the plasma treatment as suggested by the characterization post-discharge by optical emission spectrometry (data not represented). This explanation is consistent with the oxygen spectrum, O (1s), which shows the presence of OC bonds (533.5 eV) and O = C (531.9 eV).

La morphologie de la surface du graphite HOPG recouvert de nanoparticules a été étudiée en réalisant des images de microscopie à force atomique (AFM) enregistrées à l'aide d'un appareil PicoSPM® LE avec un contrôleur Nanoscope IIIa (Digital Instruments, Veeco) fonctionnant dans les conditions du milieu ambiant. Le microscope est équipé d'un analyseur de 25 µm et fonctionne en mode contact. Le cantilever utilisé est une sonde silice basse fréquence NC-AFM Pointprobe® de Nanosensors (Wetzlar-Blankenfeld, Germany) ayant une extrémité pyramidale intégrée avec un rayon de courbure de 110 nm. La constante de ressort du cantilever se situe entre 30 et 70 N m-1 et sa mesure de fréquence de résonnance libre est de 163,1 kHz. Les images ont été enregistrées à des fréquences de balayage de 0,5 à 1 ligne par seconde.The surface morphology of HOPG graphite coated with nanoparticles was studied by performing Atomic Force Microscopy (AFM) images recorded using a PicoSPM® LE instrument with a functioning Nanoscope IIIa (Digital Instruments, Veeco) controller. under ambient conditions. The microscope is equipped with a 25 μm analyzer and operates in contact mode. The cantilever used is a Nanosensors NC-AFM Pointprobe® low-frequency silica probe (Wetzlar-Blankenfeld, Germany) having an integrated pyramidal end with a radius of curvature of 110 nm. The spring constant of the cantilever is between 30 and 70 N m -1 and its free resonance frequency measurement is 163.1 kHz. The images were recorded at scan rates of 0.5 to 1 line per second.

Les images de microscopie à force atomique (1µm x 1µm) avant et après le dépôt des nanoparticules par traitement plasma sont représentées en figure 5. Comme le montre la figure 5 b), le graphite est recouvert d'amas, ou d'ilots, d'or qui sont soit isolés, et qui ont un diamètre inférieur à 0,003µm, soit ramifiés, et qui ont un diamètre supérieur à 0,1µm. Ces ilots sont dispersés de façon homogène avec un taux de recouvrement d'environ 12%.Atomic force microscopy images (1 μm x 1 μm) before and after the deposition of the nanoparticles by plasma treatment are represented in FIG. figure 5 . As shown in figure 5 b ), the graphite is covered with clusters, or islands, of gold that are either isolated, and have a diameter less than 0.003μm, or branched, and have a diameter greater than 0.1μm. These islands are dispersed homogeneously with a recovery rate of about 12%.

Afin de confirmer la nature des ilots et afin d'en obtenir des images à fort grossissement, des images de microscopie électronique à balayage couplée à un spectromètre rayons-X à dispersion d'énergie (EDS) ont été réalisées grâce à un appareil JEOL JSM-7000F équipé d'un spectromètre (EDS, JED-2300F). Cet instrument, en fonctionnant à une tension d'accélération de 15kV et avec un grossissement de 80000 fois, permet non seulement d'analyser la morphologie des structures de surface, qui peuvent être ainsi observées avec un contraste optimal, mais aussi de déterminer la distribution de la taille des ilots. L'analyse par spectrométrie rayons-X à dispersion d'énergie (EDS) permet, quant à elle, d'appréhender leur composition chimique.In order to confirm the nature of the islands and to obtain high magnification images, scanning electron microscopy images coupled to an energy dispersive X-ray spectrometer (EDS) were made using a JEOL JSM device. -7000F equipped with a spectrometer (EDS, JED-2300F). This instrument, operating at an acceleration voltage of 15kV and with a magnification of 80000 times, not only allows to analyze the morphology of the surface structures, which can thus be observed with optimal contrast, but also to determine the size distribution of the islands. Analysis by energy dispersive X-ray spectrometry (EDS) makes it possible to understand their chemical composition.

Avant leur analyse, les échantillons de graphite sont préalablement déposés sur une bande de cuivre d'un porte échantillon avant d'être introduits dans la chambre d'analyse sous une pression d'environ 10-8 mbar.Before their analysis, the graphite samples are first deposited on a copper strip of a sample holder before being introduced into the analysis chamber under a pressure of approximately 10 -8 mbar.

Comme le montre la figure 6a, à l'état initial, plusieurs marches sont observables à un grossissement de 20000 fois. De plus, comme le montre la figure 6 b) de nombreux amas, représentés par des points brillants, et ayant une distribution homogène, sont présents à la surface du graphite après le dépôt de nanoparticules selon le procédé de l'invention. A un grossissement plus important (80000 fois, Figure 6c)) il est facile d'apercevoir des agrégats et des nanoparticules isolées d'un diamètre d'environ 10 nm. Une analyse par spectrométrie rayons-X à dispersion d'énergie (Figure 6 d)) confirme que les points brillants sont des nanoparticules d'or. Il est également important de noter que les agrégats sont organisés en paquet de grappes de nanoparticules d'or qui ont le même diamètre de particule que celles de la suspension colloïdale initiale (Figure 1).As shown in figure 6a in the initial state, several steps are observable at a magnification of 20000 times. In addition, as shown in figure 6 b ) many clusters, represented by bright spots, and having a homogeneous distribution, are present on the surface of the graphite after the deposition of nanoparticles according to the method of the invention. At a higher magnification (80000 times, Figure 6c )) it is easy to see isolated aggregates and nanoparticles with a diameter of about 10 nm. An analysis by energy dispersive X-ray spectrometry ( Figure 6 d )) confirms that the bright dots are gold nanoparticles. It is also important to note that the aggregates are organized into clusters of gold nanoparticles that have the same particle diameter as those of the original colloidal suspension ( Figure 1 ).

La morphologie du dépôt, à une résolution de profondeur de l'ordre du nanomètre, a également été quantifiée par l'analyse du signal du pic Au 4f (Figure 7), une méthode proposée par Tougaard et collaborateurs dans un article de J. Vac. Sci. Technol (1996) 14 page 1415 .The morphology of the deposit, at a depth resolution of the order of a nanometer, was also quantified by Au 4f peak signal analysis ( Figure 7 ), a method proposed by Tougaard et al. in an article by J. Vac. Sci. Technol (1996) 14 page 1415 .

Le tableau 1 résume les caractéristiques de la structure des ilots d'or sur le graphite HOPG résultant de l'analyse de trois spectres Au4f par le logiciel QUASES-Tougaard, qui s'expriment en taux de recouvrement et hauteur des ilots d'or. Le mode de croissance est de type Volmer-Weber (structure 3D en ilots) Tableau 1 : Echantillons Hauteur des ilots d'or h (nm) Pourcentage de recouvrement (%) Epaisseur de carbone (couche de contamination) (nm) A 10,6 9,9 1,0 B 11,1 15,0 0,6 C 9,2 6, 0 0,2 Table 1 summarizes the characteristics of the structure of the islands of gold on the HOPG graphite resulting from the analysis of three Au4f spectra by the QUASES-Tougaard software, which express themselves in recovery rate and height of the islands of gold. The growth mode is of the Volmer-Weber type (3D structure in islands) Table 1: Samples Height of islands of gold h (nm) Percentage of recovery (%) Thickness of carbon (contamination layer) (nm) AT 10.6 9.9 1.0 B 11.1 15.0 0.6 VS 9.2 6, 0 0.2

De façon surprenante, la hauteur des ilots d'or (h) varie entre 9,2 et 10,6 nm, des valeurs sensiblement identiques au diamètre moyen des nanoparticules de la suspension colloïdale (Figure 1). De plus, il apparaît qu'environ 12 % de la surface du support est recouvert avec des ilots d'or d'environ 10nm. Il convient de noter qu'un pourcentage de couverture en or d'environ 10% est en accord avec le taux de recouvrement déterminé par microscopie à force atomique et par microscopie électronique à balayage. Ainsi, l'analyse de la courbe spectrale Au 4f par le logiciel QUASES met en évidence une bonne corrélation entre données expérimentales et théoriques.Surprisingly, the height of the islands of gold (h) varies between 9.2 and 10.6 nm, values substantially identical to the average diameter of the nanoparticles of the colloidal suspension ( Figure 1 ). In addition, it appears that about 12% of the surface of the support is covered with islands of gold of about 10 nm. It should be noted that a gold coverage percentage of about 10% is in agreement with the recovery rate determined by atomic force microscopy and scanning electron microscopy. Thus, the analysis of the Au 4f spectral curve by the QUASES software shows a good correlation between experimental and theoretical data.

Un test comparatif a été effectué entre un dépôt de nanoparticules d'or sur HOPG selon le procédé de l'invention et un dépôt de nanoparticules d'or sur HOPG par nébulisation d'une solution colloïdale d'or sans l'utilisation du plasma atmosphérique (Figures 8 et 9). Après le dépôt des nanoparticules et avant analyse, les échantillons, obtenus avec ou sans traitement plasma, ont été lavés à l'éthanol pendant environ 5 minutes aux ultrasons.A comparative test was carried out between a deposit of gold nanoparticles on HOPG according to the process of the invention and a deposit of gold nanoparticles on HOPG by nebulization of a colloidal solution of gold without the use of atmospheric plasma. ( Figures 8 and 9 ). After the deposition of the nanoparticles and before analysis, the samples, obtained with or without plasma treatment, were washed with ethanol for about 5 minutes with ultrasound.

Comme le montre la figure 8, comparée à la figure 4a, le spectre XPS de l'échantillon obtenu après la nébulisation de la solution colloïdale d'or sans l'utilisation du plasma atmosphérique, démontre la présence de carbone et d'oxygène, et l'absence d'or ; ce qui est confirmé par l'image de microscopie à force atomique (AFM) de l'échantillon en question (figure 9 comparée aux figures 5b ou 6b).As shown in figure 8 , compared to the figure 4a the XPS spectrum of the sample obtained after nebulization of the colloidal gold solution without the use of atmospheric plasma, demonstrates the presence of carbon and oxygen, and the absence of gold; which is confirmed by the Atomic Force Microscopy (AFM) image of the sample in question ( figure 9 compared to figures 5b or 6b ).

Dans une seconde forme de réalisation de l'invention, des nanoparticules d'or sont déposés sur un support en acier (Figure 10) selon le procédé de l'invention.In a second embodiment of the invention, gold nanoparticles are deposited on a steel support ( Figure 10 ) according to the method of the invention.

Dans une troisième forme de réalisation de l'invention, des nanoparticules d'or sont déposés sur un support en verre (Figure 11) selon le procédé de l'invention.In a third embodiment of the invention, gold nanoparticles are deposited on a glass support ( Figure 11 ) according to the method of the invention.

Dans une quatrième forme de réalisation de l'invention, des nanoparticules d'or sont déposés sur un support en polymère, soit PVC (Figure 12) ou HDPE (Figure 13) selon le procédé de l'invention. Les images de microscopies des figures 12 et 13 ont été obtenues après avoir recouvert les échantillons d'une couche métallique.In a fourth embodiment of the invention, gold nanoparticles are deposited on a polymer support, ie PVC ( Figure 12 ) or HDPE ( Figure 13 ) according to the method of the invention. The microscopy images of Figures 12 and 13 were obtained after covering the samples with a metal layer.

Claims (22)

Procédé de dépôt de nanoparticules sur un support comprenant les étapes suivantes : a) Prendre une solution colloïdale de nanoparticules b) Nébuliser ladite solution colloïdale de nanoparticules sur la surface dudit support dans un plasma atmosphérique. A process for depositing nanoparticles on a support comprising the following steps: a) Take a colloidal solution of nanoparticles b) Nebulizing said colloidal solution of nanoparticles on the surface of said support in an atmospheric plasma. Procédé selon la revendication 1 comprenant en outre une étape d'activation de la surface du support en soumettant ladite surface dudit support au plasma atmosphérique.The method of claim 1 further comprising a step of activating the surface of the support by subjecting said surface of said carrier to atmospheric plasma. Procédé selon l'une quelconque des revendications précédentes dans lequel l'activation de la surface du support et la nébulisation de la solution colloïdale sont concomitantes.A process according to any one of the preceding claims wherein the activation of the surface of the support and the nebulization of the colloidal solution are concomitant. Procédé selon l'une quelconque des revendications précédentes dans lequel l'étape d'activation de la surface du support est précédée par une étape de nettoyage de ladite surface dudit support.A method as claimed in any one of the preceding claims wherein the step of activating the surface of the support is preceded by a step of cleaning said surface of said support. Procédé selon l'une quelconque des revendications précédentes dans lequel la nébulisation de la solution colloïdale de nanoparticules se fait dans la zone décharge ou dans la zone post-décharge du plasma atmosphérique.A method according to any one of the preceding claims wherein the nebulization of the colloidal solution of nanoparticles is in the discharge zone or in the post-discharge region of the atmospheric plasma. Procédé selon l'une quelconque des revendications précédentes dans lequel le plasma est généré par une torche à plasma atmosphérique.A method as claimed in any one of the preceding claims wherein the plasma is generated by an atmospheric plasma torch. Procédé selon l'une quelconque des revendications précédentes dans lequel la nébulisation de la solution colloïdale de nanoparticules se fait sensiblement parallèlement à la surface du support.A method according to any one of the preceding claims wherein the nebulization of the colloidal solution of nanoparticles is substantially parallel to the surface of the support. Procédé selon l'une quelconque des revendications précédentes dans lequel les nanoparticules sont des nanoparticules d'un métal, d'un oxyde métallique d'un alliage métallique ou leur mélange.Process according to any one of the preceding claims wherein the nanoparticles are nanoparticles of a metal, a metal oxide of a metal alloy or a mixture thereof. Procédé selon l'une quelconque des revendications précédentes dans lequel les nanoparticules sont des nanoparticules d'au moins un métal de transition, de son oxyde correspondant, d'un alliage de métaux de transition ou leur mélange.A process according to any one of the preceding claims wherein the nanoparticles are nanoparticles of at least one transition metal, its corresponding oxide, a transition metal alloy, or a mixture thereof. Procédé selon l'une quelconque des revendications précédentes dans lequel les nanoparticules sont choisies dans le groupe formé par le magnésium (Mg), le strontium (Sr), le titane (Ti), le zirconium (Zr), le lanthane (La), le vanadium (V), le niobium (Nb), le tantale (Ta), le chrome (Cr), le molybdène (Mo), le tungstène (W), le manganèse (Mn), le rhénium (Re), le fer (Fe), le ruthénium (Ru), l'osmium (Os), le cobalt (Co), le rhodium (Rh), l'iridium (Ir), le nickel (Ni), le palladium (Pd), le platine (Pt), le cuivre (Cu), l'argent (Ag), l'or (Au), le zinc (Zn), le cadmium (Cd), l'aluminium (Al), l'iridium (In), l'étain (Sn), le plomb (Pb), leurs oxydes correspondants, ou un alliage de ces métaux.A process according to any one of the preceding claims wherein the nanoparticles are selected from the group consisting of magnesium (Mg), strontium (Sr), titanium (Ti), zirconium (Zr), lanthanum (La), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), zinc (Zn), cadmium (Cd), aluminum (Al), iridium (In), tin (Sn), lead (Pb), their corresponding oxides, or an alloy of these metals. Procédé selon la revendication 10 dans lequel les nanoparticules sont choisies dans le groupe formé par le dioxyde de titane (TiO2), l'oxyde de cuivre (CuO), l'oxyde de fer (F2O), l'oxyde de fer Fe2O3, l'oxyde de fer Fe3O4, le dioxyde d'iridium (IrO2), de dioxyde de zirconium (ZrO2), l'oxyde d'aluminium (Al2O3).The process of claim 10 wherein the nanoparticles are selected from the group consisting of titanium dioxide (TiO2), copper oxide (CuO), iron oxide (F 2 O), iron oxide Fe 2 O 3 , iron oxide Fe 3 O 4 , iridium dioxide (IrO 2 ), zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ). Procédé selon la revendication 10 dans lequel les nanoparticules sont choisies dans le groupe formé par un alliage or/platine (AuPt), platine/ruthénium (PtRu), cadmium/soufre (CdS), ou plomb/souffre (PbS).The method of claim 10 wherein the nanoparticles are selected from the group consisting of a gold / platinum (AuPt), platinum / ruthenium (PtRu), cadmium / sulfur (CdS), or lead / sulfur (PbS) alloy. Procédé selon l'une quelconque des revendications précédentes dans lequel le support est un support solide, un gel ou un matériau nano-structuré.A method as claimed in any one of the preceding claims wherein the support is a solid support, a gel or a nano-structured material. Procédé selon l'une quelconque des revendications précédentes dans lequel le support est choisi parmi le groupe formé par un support carboné, des nanotubes de carbone, un métal, un alliage métallique, un oxyde métallique, une zéolite, un semi-conducteur, un polymère, du verre et/ou de la céramique.Process according to any one of the preceding claims, in which the support is chosen from the group formed by a carbon support, carbon nanotubes, a metal, a metal alloy, a metal oxide, a zeolite, a semiconductor, a polymer , glass and / or ceramics. Procédé selon la revendication 14 dans lequel le support est de la silice, du carbone, de l'oxyde de titane, de l'alumine, ou des nanotubes de carbone multi-parois.The method of claim 14 wherein the support is silica, carbon, titanium oxide, alumina, or multiwall carbon nanotubes. Procédé selon l'une quelconque des revendications précédentes dans lequel le plasma atmosphérique est généré à partir d'un gaz plasmagène choisi parmi le groupe formé par l'argon, l'hélium, l'azote, l'hydrogène, l'oxygène, du dioxyde de carbone, de l'air ou leur mélange.A process according to any one of the preceding claims wherein the atmospheric plasma is generated from a plasmagenic gas selected from the group consisting of argon, helium, nitrogen, hydrogen, oxygen, carbon dioxide, air or their mixture. Utilisation d'une solution colloïdale de nanoparticules pour le dépôt desdites nanoparticules sur un support à l'aide d'un plasma atmosphérique.Use of a colloidal solution of nanoparticles for depositing said nanoparticles on a support using an atmospheric plasma. Utilisation selon la revendication 17 dans laquelle la solution colloïdale est nébulisée dans la zone décharge ou post-décharge du plasma atmosphérique.Use according to claim 17 wherein the colloidal solution is nebulized in the discharge or post-discharge region of the atmospheric plasma. Utilisation selon l'une quelconque des revendications 17 ou 18 dans laquelle le plasma atmosphérique est généré par une torche à plasma atmosphérique.Use according to any of claims 17 or 18 wherein the atmospheric plasma is generated by an atmospheric plasma torch. Utilisation d'un plasma atmosphérique pour le dépôt de nanoparticules sur un support, lesdites nanoparticules étant sous la forme d'une solution colloïdale de nanoparticules, et ladite solution colloïdale étant nébulisée à la surface dudit support dans ledit plasma atmosphérique.Use of an atmospheric plasma for the deposition of nanoparticles on a support, said nanoparticles being in the form of a colloidal solution of nanoparticles, and said colloidal solution being nebulized on the surface of said support in said atmospheric plasma. Utilisation selon la revendication 20 dans laquelle la solution colloïdale est nébulisée dans la zone décharge ou post-décharge du plasma atmosphérique.Use according to claim 20 wherein the colloidal solution is nebulized in the discharge or post-discharge region of the atmospheric plasma. Utilisation selon l'une quelconque des revendications 20 ou 21 dans laquelle le plasma atmosphérique est généré par une torche à plasma atmosphérique.Use according to any of claims 20 or 21 wherein the atmospheric plasma is generated by an atmospheric plasma torch.
EP08151463A 2007-08-14 2008-02-14 Method of depositing nanoparticles on a support Withdrawn EP2093305A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP08151463A EP2093305A1 (en) 2008-02-14 2008-02-14 Method of depositing nanoparticles on a support
EP08787216.4A EP2179071B1 (en) 2007-08-14 2008-08-14 Method of depositing nanoparticles on a support
US12/673,437 US20120003397A1 (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support
KR1020107005411A KR20100072184A (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support
CN200880111576A CN101821421A (en) 2007-08-14 2008-08-14 Method of depositing nanoparticles on support
JP2010520582A JP2010535624A (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support
CA2696081A CA2696081A1 (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support
PCT/EP2008/060676 WO2009021988A1 (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08151463A EP2093305A1 (en) 2008-02-14 2008-02-14 Method of depositing nanoparticles on a support

Publications (1)

Publication Number Publication Date
EP2093305A1 true EP2093305A1 (en) 2009-08-26

Family

ID=39367527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08151463A Withdrawn EP2093305A1 (en) 2007-08-14 2008-02-14 Method of depositing nanoparticles on a support

Country Status (1)

Country Link
EP (1) EP2093305A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499797A (en) * 2016-02-22 2016-04-20 上海拓宝机电科技有限公司 Supporting device for laser cladding of large side-holed thin-walled workpiece
EP3960703A1 (en) * 2020-08-26 2022-03-02 Institute Jozef Stefan Method for in-situ synthesis and deposition of metal oxide nanoparticles with atmospheric pressure plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035496A2 (en) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
US20050031876A1 (en) * 2003-07-18 2005-02-10 Songwei Lu Nanostructured coatings and related methods
FR2877015A1 (en) * 2004-10-21 2006-04-28 Commissariat Energie Atomique NANOSTRUCTURE COATING AND COATING PROCESS.
DE102006005775A1 (en) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermal spraying with colloidal suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035496A2 (en) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article having nano-scaled structures and a process for making such article
US20050031876A1 (en) * 2003-07-18 2005-02-10 Songwei Lu Nanostructured coatings and related methods
FR2877015A1 (en) * 2004-10-21 2006-04-28 Commissariat Energie Atomique NANOSTRUCTURE COATING AND COATING PROCESS.
DE102006005775A1 (en) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermal spraying with colloidal suspension

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
D. BARRECA ET AL.: "Au nanoparticles supported on HOPG: An XPS characterization", SURFACE SCIENCE SPECTRA, vol. 10, 2005, pages 164 - 169
D. YANG ET AL.: "Platinum nanoparticles interaction with chemically modified highly oriented pyrolytic graphite surfaces", CHEMISTRY OF MATERIALS, vol. 18, no. 7, 2006, pages 1811 - 1816
DE-QUANG Y., EDWARD SACHER: "PLATINUM NANOPARTICLE INTERACTION WITH CHEMICALLY MODIFIED HIGLY ORIENTED PYROLITIC GRAPHITE SURFACES", CHEMISTRY OF MATERIALS, vol. 18, no. 7, 2006, pages 1811 - 1816, XP002504555 *
G. SINE ET AL.: "Deposition of clusters and nanoparticles onto boron-doped diamond electrodes for electrocatalysis", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 36, no. 8, 2006, pages 847 - 862
J. VAC. SCI. TECHNOL, vol. 14, 1996, pages 1415
M. WAJE ET AL.: "Deposition of platinuim nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cell", NANOTECHNOLOGY, vol. 16, no. 7, 2005, pages 395 - 400
T. CHAUDHURI ET AL.: "Deposition of PbS particles from a nonaqueous chemical bath at room température", MATERIALS LETTERS, vol. 59, no. 17, 2005, pages 2191 - 2193, XP025257371, DOI: doi:10.1016/j.matlet.2005.02.064
TURKEVICH ET AL., J. FARADAY DISCUSS. CHEM. SOC, vol. 11, 1951, pages 55
XIANGHUI H. , KWANG-LEONG C.: "PROCESSING AND APPLICATIONS OF AEROSOL ASSISTED CHEMICAL VAPOR DEPOSITION", CHEMICAL VAPOR DEPOSITION, vol. 12, 1 December 2006 (2006-12-01), pages 583 - 596, XP002504382 *
Y. KOBAYASHI ET AL.: "Deposition of gold nanoparticles on silica spheres by electroless metal plating technique", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 283, no. 2, 2005, pages 601 - 604, XP004753442, DOI: doi:10.1016/j.jcis.2004.09.002

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499797A (en) * 2016-02-22 2016-04-20 上海拓宝机电科技有限公司 Supporting device for laser cladding of large side-holed thin-walled workpiece
CN105499797B (en) * 2016-02-22 2017-04-19 安徽拓宝增材制造科技有限公司 Supporting device for laser cladding of large side-holed thin-walled workpiece
EP3960703A1 (en) * 2020-08-26 2022-03-02 Institute Jozef Stefan Method for in-situ synthesis and deposition of metal oxide nanoparticles with atmospheric pressure plasma

Similar Documents

Publication Publication Date Title
EP2179071B1 (en) Method of depositing nanoparticles on a support
Xu et al. Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition
Biggs et al. Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy
Luo et al. Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electrooxidation
Somorjai New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions
US6656339B2 (en) Method of forming a nano-supported catalyst on a substrate for nanotube growth
Ohta et al. Adsorption and electroreduction of oxygen on gold in acidic media: in situ spectroscopic identification of adsorbed molecular oxygen and hydrogen superoxide
WO2018224771A1 (en) Porous material in the form of iridium and/or iridium oxide based microspheres, the preparation method thereof and the uses thereof
Dudin et al. Electro-oxidation of hydrazine at gold nanoparticle functionalised single walled carbon nanotube network ultramicroelectrodes
US11231372B2 (en) Surface plasmon-mediated chemical deposition and plasmonic structures
Orive et al. “Naked” gold nanoparticles supported on HOPG: melanin functionalization and catalytic activity
EP2093305A1 (en) Method of depositing nanoparticles on a support
WO2016009328A1 (en) Method for the synthesis of nanocomposites based on tio2 and carbonated nanostructures
Losic et al. Atomically flat gold for biomolecule immobilization and imaging
Kordás et al. Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates
Tabet-Aoul et al. Rhodium thin film-carbon nanotube nanostructures: Synthesis, characterization and electron transfer properties
Demoisson et al. Characterization of gold nanoclusters deposited on HOPG by atmospheric plasma treatment
US20190217382A1 (en) Methods for synthesizing silver nanowires
Gatin et al. Effect of the electric potential on the interaction of gold nanoparticles deposited on a graphite substrate with molecular hydrogen
FR2918214A1 (en) DISPERSION OF COMPOSITE MATERIALS, ESPECIALLY FOR FUEL CELLS
Saidani et al. Synthesis, characterization of nanostructured rhodium films and their electrochemical behavior towards carbon monoxide oxidation
Bastl et al. Nickel nanoparticle assembly on single-crystal support: formation, composition and stability
EP1305610B1 (en) Method of preparing the sensing element of a reducing gas molecule sensor
Elsenberg et al. Tuning Aerosol Deposition of BiVO4 Films for Effective Sunlight Harvesting
Borodinova et al. Growth of Gold Nanostructures on the MoS2 Surface Modified with Polyvinylpyrrolidone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100227