EP1770127B1 - Verfahren zur Reduzierung der Oberflächenklebrigkeit eines gehärteten Silikongummiprodukts, flüssige Silikongummizusammensetzung für Halbleiter, mit Silikongummi versiegelter Halbleiter und Verfahren zur Herstellung eines Halbleiters - Google Patents

Verfahren zur Reduzierung der Oberflächenklebrigkeit eines gehärteten Silikongummiprodukts, flüssige Silikongummizusammensetzung für Halbleiter, mit Silikongummi versiegelter Halbleiter und Verfahren zur Herstellung eines Halbleiters Download PDF

Info

Publication number
EP1770127B1
EP1770127B1 EP06019916.3A EP06019916A EP1770127B1 EP 1770127 B1 EP1770127 B1 EP 1770127B1 EP 06019916 A EP06019916 A EP 06019916A EP 1770127 B1 EP1770127 B1 EP 1770127B1
Authority
EP
European Patent Office
Prior art keywords
component
silicone rubber
bonded
alkenyl groups
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06019916.3A
Other languages
English (en)
French (fr)
Other versions
EP1770127A1 (de
Inventor
Tsutomu Kashiwagi
Toshio Shiobara
Masanobu Sato
Koki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of EP1770127A1 publication Critical patent/EP1770127A1/de
Application granted granted Critical
Publication of EP1770127B1 publication Critical patent/EP1770127B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method of reducing the surface tackiness of a silicone rubber cured product, an addition reaction curable liquid silicone rubber composition for sealing semiconductors, and applications of that composition.
  • the invention relates to applications such as a silicone rubber-sealed semiconductor device that uses the above composition as a sealing material for a semiconductor element, and a method of producing such a device.
  • Silicone rubber compositions form cured products that exhibit excellent properties of weather resistance and heat resistance, and excellent rubber-like characteristics such as hardness and elongation, and are consequently used in all manner of applications. Furthermore, because excellent heat resistance and light resistance can be achieved by coating a target product with a silicone rubber, silicone rubbers are also being investigated as potential materials for all manner of packages.
  • the sealing (molding) of semiconductor elements using silicone cured products is already being conducted, but amongst the various possible silicone cured products, hard resins tend to be prone to cracking or bonding wire deformation problems, whereas soft rubbers exhibit surface tackiness, meaning they tend to be prone to dirt adhesion, and also suffer frequently from adhesion of the sealing resin (the molding resin) within the parts feeder.
  • a common countermeasure to these problems is a method in which a soft rubber or gel is used as an inner material, and the exterior of this inner material is then coated with a hard rubber or hard resin (patent reference 1).
  • the soft rubber or soft gel usually retains small quantities of residual vinyl groups within the cured polymer, it tends to be affected by the exterior hard rubber or hard resin, meaning the inner soft rubber or gel gradually hardens over time, increasing the likelihood of bonding wire breakage or deformation.
  • Patent Reference 2 ( EP 0 799 693 A2 ) discloses a silicone gel sheet having good handling properties and having a silicone rubber film on one and only one surface and a method for the preparation of said sheet.
  • Patent Reference 3 US 5,645,941 A , by curing or semi-curing an addition curable silicone resin composition comprising a phenyl-containing organopolysiloxane, placing an addition or peroxide curable silicone rubber composition in close contact with the cured or semi-cured resin, and heat curing the silicone rubber composition, there is prepared a composite material in which silicone resin and silicone rubber are firmly joined together.
  • an object of the present invention is to provide a method of reducing the surface tackiness of a soft rubber-type silicone cured product, while ensuring favorable stability of the elastomer characteristics of the cured product over an extended period of time.
  • Another object of the present invention is to provide a curable liquid silicone rubber composition that is ideal for the above method, as well as a silicone rubber-sealed semiconductor device that uses such a composition, and a method of producing such a semiconductor device.
  • the inventors of the present invention discovered that by using a specific addition reaction curable liquid silicone rubber composition, in which the balance of silicon atom-bonded hydrogen atoms (Si-H) that contribute to cross-linking in a soft rubber / silicon atom-bonded alkenyl groups represents a SiH excess, and which yields a cured product following curing with a predetermined type A hardness, and by then coating the surface of this soft rubber with a hard silicone resin with a predetermined hardness, the above objects could be achieved, and they were thus able to complete the present invention.
  • Si-H silicon atom-bonded hydrogen atoms
  • a first aspect of the present invention provides a method of reducing the surface tackiness of a silicone rubber cured product, comprising the steps of:
  • a second aspect of the present invention provides an addition reaction curable liquid silicone rubber composition for sealing a semiconductor, which is ideal as the soft silicone rubber-forming composition described in the first aspect, and comprises:
  • a third aspect of the present invention provides a silicone rubber-sealed semiconductor device, comprising a semiconductor element, and a sealing body that seals the semiconductor element, wherein
  • a fourth aspect of the present invention provides the above silicone rubber-sealed semiconductor device, wherein the curable silicone rubber composition used is the addition reaction curable liquid silicone rubber composition for sealing a semiconductor described above.
  • a fifth aspect of the present invention provides a method of producing a silicone rubber-sealed semiconductor device with reduced surface tackiness, comprising the steps of:
  • the tackiness of the surface of a silicone rubber cured product can be effectively suppressed, and adhesion of dirt to the surface can be prevented, while the occurrence of peeling or cracking of the hard resin coating layer is also effectively suppressed.
  • This method is useful for semiconductor element sealing processes and the like.
  • An addition reaction curable liquid silicone rubber composition of the present invention is not only ideal for use in the aforementioned method of reducing surface tackiness, but also yields a cured product with excellent transparency and extremely favorable adhesion to package materials such as LCPs and metal substrates, meaning it is useful as a semiconductor element sealing material, and can be used for producing highly reliable silicone rubber-sealed semiconductor devices. Furthermore, reducing the surface tackiness of a silicone rubber cured product using the present invention can be widely used in all manner of general purpose applications, including semiconductor packages such as photodiodes, CCD and CMOS that require favorable transparency and low stress properties.
  • Fig. 1 illustrates a longitudinal cross-sectional view showing a CCD package in which a semiconductor chip has been sealed.
  • type A hardness refers to the hardness measured using a type A durometer prescribed in JIS K6253
  • type D hardness refers to the hardness measured using a type D durometer prescribed in JIS K6253
  • a method of reducing surface tackiness according to the present invention comprises the steps of coating the surface of a cured product of a curable silicone rubber composition, which has a molar ratio within the composition of hydrogen atoms bonded to silicon atoms relative to alkenyl groups bonded to silicon atoms (hereafter, abbreviated as the "Si-H/Si-alkenyl molar ratio") of 1.0 or greater and exhibits a type A hardness of no more than 20, with a curable silicone resin which, following curing, exhibits a type D hardness of 30 or greater, and
  • the Si-H/Si-alkenyl molar ratio within the addition reaction curable silicone rubber composition is less than 1.0, then even if the surface of a cured product of the silicone rubber composition is coated with a cured product of a curable silicone resin (a hard silicone resin), the cross-linking agent of the curable silicone resin penetrates into the interior of the soft silicone rubber cured product, and as a result of reaction with residual alkenyl groups inside the silicone rubber cured product, the hardness of the soft silicone rubber cured product increases over time. If the type A hardness of the composition exceeds 20, then the danger of wire deformation or separation from the substrate increases significantly.
  • the curable silicone resin used can employ any silicone resin that following curing exhibits a surface type D hardness of 30 or greater, and preferably 40 or greater, and even more preferably 50 or greater. If this type D hardness is less than 30, then the surface tackiness of the molding resin increases. Although there are no particular restrictions on the upper limit for this hardness value, the type D hardness is typically no more than 90, and particularly 80 or less.
  • This method is useful for resolving the conventional technology problems associated with semiconductor sealing.
  • the aforementioned curable silicone rubber composition cured product (the soft silicone rubber) is a cured product that has been formed for the purposes of semiconductor sealing
  • the surface tackiness of the cured product can be decreased markedly, and problems that arise in semiconductor device production processes, such as the adhesion of dirt to the sealing material surface, or the adhesion of the molding resin to the parts feeder, can be effectively prevented.
  • this composition comprises components (A) through (D) as essential components. As follows is a description of each of these components.
  • This component (A) is an organopolysiloxane that contains two alkenyl groups bonded to silicon atoms within each molecule, and is the principal component (the base polymer) within the silicone rubber composition of the present invention.
  • This organopolysiloxane contains two silicon atom-bonded alkenyl groups of 2 to 8 carbon atoms, and particularly of 2 to 6 carbon atoms, such as vinyl groups or allyl groups, within each molecule.
  • the viscosity at 25°C is typically within a range from 10 to 1,000,000 mPa ⁇ s, and viscosity values within a range from 100 to 100,000 mPa ⁇ s offer particularly favorable workability and curability, and are consequently preferred.
  • straight-chain organopolysiloxanes represented by a general formula (1) shown below, in which the principal chain, which has a single alkenyl group bonded to the silicon atom at each molecular chain terminal, is formed from repeating diorganosiloxane units that contain no alkenyl groups, and both molecular chain terminals are blocked with triorganosiloxy groups, and as described above, compounds for which the viscosity at 25°C is within a range from 10 to 1,000,000 mPa ⁇ s are preferred in terms of workability and curability.
  • This straight-chain organopolysiloxane may also include a small quantity of branched structures (trifunctional siloxane units) within the molecular chain.
  • each R 1 represents, independently, an identical or different unsubstituted or substituted monovalent hydrocarbon group that contains no aliphatic unsaturated bonds
  • R 2 represents an alkenyl group
  • k represents 0 or a positive integer that yields a viscosity at 25°C for the organopolysiloxane that falls within a range from 10 to 1,000,000 mPa ⁇ s
  • the unsubstituted or substituted monovalent hydrocarbon group that contains no aliphatic unsaturated bonds represented by R 1 is preferably a group of 1 to 10, and even more preferably 1 to 6, carbon atoms, and specific examples of suitable groups include alkyl groups such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group or decyl group, aryl groups such as a phenyl group, tolyl group, xylyl group or naphthyl group, aralkyl groups such as a benzyl group, phenylethyl group or phenylpropyl group, and groups in which either a portion of, or all of, the hydrogen atoms within these groups
  • the alkenyl group of R 2 is preferably a group of 2 to 6, and even more preferably 2 to 3, carbon atoms, and specific examples of suitable groups include a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, hexenyl group or cyclohexenyl group, although a vinyl group is preferred.
  • k is typically either 0 or an positive integer that satisfies: 0 ⁇ k ⁇ 10,000, and is preferably an integer that satisfies 5 ⁇ k ⁇ 2,000, and even more preferably an integer that satisfies 10 ⁇ k ⁇ 1,200.
  • organopolysiloxane of the component (A) include the compounds shown below. (In each formula, each t represents, independently, an integer within a range from 8 to 2,000.)
  • the organopolysiloxane of the component (B) is an organopolysiloxane that contains 3 or more, and typically from 3 to 30, and preferably from approximately 3 to 20, silicon atom-bonded alkenyl groups of 2 to 8 carbon atoms, and particularly of 2 to 6 carbon atoms, such as vinyl groups or allyl groups, within each molecule.
  • the molecular structure may be a straight-chain, cyclic, branched or three dimensional network structure.
  • This component is preferably a straight-chain organopolysiloxane in which the principal chain is formed from repeating diorganosiloxane units, both molecular chain terminals are blocked with triorganosiloxy groups, and for which the viscosity at 25°C is within a range from 10 to 1,000,000 mPa ⁇ s, and particularly from 100 to 100,000 mPa ⁇ s.
  • the alkenyl groups may be bonded to silicon atoms at the molecular chain terminals or to non-terminal silicon atoms (within the molecular chain), or both these types of alkenyl groups may exist within a single molecule.
  • straight-chain organopolysiloxanes represented by a general formula (2) shown below in which each molecular chain terminal silicon atom bears from 1 to 3 alkenyl groups (although in those cases where the combined total of these molecular chain terminal silicon atom-bonded alkenyl groups across both terminals is less than 3, there is at least one alkenyl group bonded to a non-terminal silicon atom (within the molecular chain) (for example, in the form of a substituent group within a diorganosiloxane unit)) are preferred, and as described above, compounds for which the viscosity at 25°C is within a range from 10 to 1,000,000 mPa ⁇ s are particularly desirable in terms of workability and curability.
  • This straight-chain organopolysiloxane may also include a small quantity of branched structures (trifunctional siloxane units) within the molecular chain.
  • each R 3 represents, independently, an identical or different unsubstituted or substituted monovalent hydrocarbon group, of which at least one is an alkenyl group
  • each R 4 represents, independently, an identical or different unsubstituted or substituted monovalent hydrocarbon group that contains no aliphatic unsaturated bonds
  • R 5 represents an alkenyl group
  • 1 and m each represent either 0 or a positive integer
  • 1+m represents a number that yields a viscosity at 25°C for the organopolysiloxane that falls within a range from 10 to 1,000,000 mPa ⁇ s
  • the monovalent hydrocarbon group represented by R 3 is preferably a group of 1 to 10, and even more preferably 1 to 6, carbon atoms, and specific examples of suitable groups include alkyl groups such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group or decyl group, aryl groups such as a phenyl group, tolyl group, xylyl group or naphthyl group, aralkyl groups such as a benzyl group, phenylethyl group or phenylpropyl group, alkenyl groups such as a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group,
  • the monovalent hydrocarbon group represented by R 4 is also preferably a group of 1 to 10, and even more preferably 1 to 6, carbon atoms, and specific examples of suitable groups include the same groups as those listed above in relation to R 3 , excluding the alkenyl groups.
  • the alkenyl group represented by R 5 is preferably a group of 2 to 6, and even more preferably 2 to 3, carbon atoms, and specific examples of suitable groups include the same groups as those listed above in relation to R 2 in the formula (1), and preferably a vinyl group.
  • 1 and m are typically either 0 or positive integers that satisfy: 0 ⁇ 1+m ⁇ 10,000, and are preferably integers that satisfy 5 ⁇ 1+m ⁇ 2,000 and even more preferably 10 ⁇ 1+m ⁇ 1,200, and also preferably satisfy 0 ⁇ l/(1+m) 5 0.2 and even more preferably 0.001 ⁇ l/(1+m) ⁇ 0.1
  • organopolysiloxane of the component (B) include the specific examples shown below.
  • organopolysiloxanes with resin structures can also be used as the component (B), or may also be used in combination with the above type of straight-chain organopolysiloxane.
  • the SiO 2 units are termed a units
  • the R 30 n R 4 p SiO 0.5 units are termed b units
  • the R 30 q R 4 r SiO 0.5 units are termed c units
  • the number of mols of each unit are expressed by a, b, and c respectively
  • this organopolysiloxane of the component (B) preferably has a polystyrene equivalent weight average molecular weight, determined by gel permeation chromatography (GPC), that falls within a range from 500 to 10,000.
  • GPC gel permeation chromatography
  • organopolysiloxane may also include small quantities of bifunctional siloxane units and trifunctional siloxane units (that is, organosilsesquioxane units), provided such inclusion does not impair the objects of the present invention.
  • This type of resin structure organopolysiloxane can be synthesized readily using conventional methods, by combining the compounds that act as the sources for the various units in the desired molar ratio described above, and then conducting, for example, a cohydrolysis reaction in the presence of an acid.
  • Examples of the source for the aforementioned unit a include sodium silicate, alkyl silicates, polyalkyl silicates, and silicon tetrachloride.
  • Examples of the source for the aforementioned unit b include the compounds shown below.
  • examples of the source for the aforementioned unit c include the compounds shown below.
  • the organopolysiloxane of the component (B) is added to regulate the hardness of the cured product, and as described above, is typically added in a blend quantity within a range from 0.1 to 50 parts by mass per 100 parts by mass of the component (A).
  • a preferred blend quantity is within a range from 1 to 30 parts by mass.
  • the organohydrogenpolysiloxane of the component (C) functions as a cross-linking agent, and the SiH groups within this component undergo an addition reactive (a hydrosilylation) with the alkenyl groups within the component (A) and the component (B), thereby forming the cured product.
  • This organohydrogenpolysiloxane may be any structure that includes two hydrogen atoms bonded to silicon atoms (namely, SiH groups) within each molecule, and although the molecular structure of the organohydrogenpolysiloxane may be a straight-chain, cyclic, branched or three dimensional network structure, the use of structures in which the number of silicon atoms within a single molecule (that is, the polymerization degree) is within a range from 2 to 1,000, and particularly from approximately 2 to 300, is preferred.
  • silicon atoms there are no particular restrictions on the positions of the silicon atoms to which the hydrogen atoms are bonded, and either the molecular chain terminals or non-terminal positions (within the chain) are suitable. Furthermore, besides the hydrogen atoms, examples of other organic groups bonded to silicon atoms include the same unsubstituted or substituted monovalent hydrocarbon groups that contain no aliphatic unsaturated bonds described in relation to R 1 in the above general formula (1).
  • organohydrogenpolysiloxane of the component (C) examples include the hydrogenorganosiloxanes with the structures shown below.
  • R represents at least one organic group selected from an epoxy group, acryloyl group, methacryloyl group, and alkoxy group.
  • L represents an integer from 0 to 1,000, and particularly from 0 to 300, and M represents an integer from 1 to 200.
  • organohydrogenpolysiloxanes can be obtained using conventional methods, for example either by conducting a hydrolysis-condensation of a chlorosilane such as R 5 SiHCl 2 , (R 5 ) 3 SiCl, (R 5 ) 2 SiCl 2 or (R 5 ) 2 SiHCl (wherein, R 5 represents an alkyl group such as a methyl group or ethyl group, or an aryl group such as a phenyl group), or by conducting a hydrolysis, and then conducting an equilibration of the resulting siloxane.
  • a chlorosilane such as R 5 SiHCl 2 , (R 5 ) 3 SiCl, (R 5 ) 2 SiCl 2 or (R 5 ) 2 SiHCl (wherein, R 5 represents an alkyl group such as a methyl group or ethyl group, or an aryl group such as a phenyl group
  • the blend quantity of this organohydrogenpolysiloxane must be sufficient that the molar ratio of the silicon atom-bonded hydrogen atoms within this component relative to the combined total of silicon atom-bonded alkenyl groups within the component (A) and the component (B) (in other words, the Si-H/Si-alkenyl molar ratio) is 1.0 or greater, and is preferably within a range from 1.0 to 4.0, even more preferably from 1.0 to 3.0, and most preferably from 1.0 to 2.0.
  • this molar ratio is less than 1.0, then even if the surface of the cured product of the silicone rubber composition (the soft silicone rubber) is coated with a cured product of a curable silicone resin (hard silicone resin) that cures via a hydrosilylation reaction to form a cured product with a type D hardness of 30 or greater, the cross-linking agent of the curable silicone resin penetrates into the interior of the cured silicone rubber, and as a result of reaction with residual alkenyl groups inside the cured silicone rubber, the hardness of the cured silicone rubber increases over time. If this molar ratio is too high, then because large quantities of unreacted SiH groups will remain within the silicone rubber cured product, the physical properties of the cured silicone rubber may alter over time.
  • a curable silicone resin hard silicone resin
  • the platinum group metal-based curing catalyst of the component (D) is added to effect the addition curing reaction of the composition of the present invention, and can use any of the conventional so-called hydrosilylation reaction catalysts.
  • the catalyst include platinum-based, palladium-based and rhodium-based catalysts, although from the viewpoint of factors such as cost, platinum-based catalysts of platinum, platinum black and chloroplatinic acid are preferred, and suitable examples include platinum compounds such as H 2 PtCl 6 ⁇ mH 2 O, K 2 PtCl 6 , KHPtCl 6 ⁇ mH 2 O, K 2 PtCl 4 , K 2 PtCl 4 ⁇ mH 2 O, and PtO 2 ⁇ mH 2 O (wherein, m represents a positive integer), and complexes of these platinum compounds with hydrocarbons such as olefins, alcohols, or vinyl group-containing organopolysiloxanes.
  • These catalysts may be used either alone, or in combinations of two or more different catalyst
  • the blend quantity of the catalyst of the component (D) need only be an effective quantity, and a typical quantity, calculated as a (mass referenced) quantity of platinum group metal relative to the combined mass of the aforementioned components (A) through (C), is within a range from 0.1 to 1,000 ppm, and preferably from 0.5 to 200 ppm.
  • components other than the components (A) through (D) can also be added to the composition of the present invention.
  • a description of particularly representative optional components is provided below.
  • An adhesion assistant may be added to improve the adhesion of the composition of the present invention to substrates.
  • preferred adhesion assistants include organosilicon compounds containing a silicon atom-bonded alkoxy group and an alkenyl group or a silicon atom-bonded hydrogen atom (SiH group) within each molecule, as well as organooxysilyl-modified isocyanurate compounds represented by a general formula (3) shown below, and/or hydrolysis-condensation products thereof (namely, organosiloxane-modified isocyanurate compounds).
  • each R 6 represents, independently, an organic group represented by a formula (4) shown below: (wherein, R 7 represents a hydrogen atom or a monovalent hydrocarbon group of 1 to 6 carbon atoms, and s represents an integer from 1 to 6, and particularly from 1 to 4), or a monovalent hydrocarbon group that contains an aliphatic unsaturated bond, although at least one of the R 6 groups represents an organic group of the formula (4)]
  • examples of the monovalent hydrocarbon group containing an aliphatic unsaturated bond represented by R 6 include alkenyl groups of 2 to 8 carbon atoms, and particularly of 2 to 6 carbon atoms, such as a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group or cyclohexenyl group.
  • examples of the monovalent hydrocarbon group represented by R 7 include monovalent hydrocarbon groups of 1 to 8 carbon atoms, and particularly of 1 to 6 carbon atoms, including alkyl groups such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group or cyclohexyl group, the same alkenyl groups as those listed above in relation to R 6 , such as a vinyl group, allyl group, propenyl group or isopropenyl group, and aryl groups such as a phenyl group.
  • alkyl groups such as a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group or cyclohexyl group, the same alkenyl
  • n each represent, independently, an integer from 0 to 200, although m+n is typically an integer from 2 to 50, and preferably from 4 to 20
  • organosilicon compounds that contain a silicon atom-bonded alkoxy group and an alkenyl group or a silicon atom-bonded hydrogen atom (SiH group) within each molecule are preferred as they yield cured products with particularly superior adhesion.
  • the blend quantity of the above adhesion assistant is typically no more than 10 parts by mass (namely, from 0 to 10 parts by mass), preferably from 0.01 to 5 parts by mass, and even more preferably from 0.1 to 1 part by mass per 100 parts by mass of the combination of the components (A), (B), and (C). Blend quantities of the adhesion assistant that are too high can have an adverse effect on the hardness and the surface tackiness of the cured product.
  • a curing retarder can also be added to the composition of the present invention.
  • Any of the compounds known as hydrosilylation reaction retarders can be used as the curing retarder, and suitable examples include acetylene alcohols.
  • the composition can be prepared as a one-pot composition.
  • optional components can also be added to the composition of the present invention, provided such addition does not impair the actions or effects of the present invention.
  • these other optional components include inorganic fillers, inorganic phosphors, age resistors, radical inhibitors, ultraviolet absorbers, adhesion improvers, flame retardants, surfactants, storage stability improvers, antiozonants, photostabilizers, thickeners, plasticizers, coupling agents, antioxidants, thermal stabilizers, conductivity imparting agents, antistatic agents, radiation blockers, nucleating agents, phosphorus-based peroxide decomposition agents, lubricants, pigments, metal deactivators, physical property modifiers, and organic solvents.
  • These optional components may be used either alone, or in combinations of two or more different materials.
  • the composition described above can be prepared by mixing together the components (A) through (D) described above, together with any optional components, using a conventional method.
  • the composition can be prepared as either a one-pot or two-pot composition using conventional methods known to those skilled in the art.
  • the composition is cured by heating at a temperature within a range from room temperature (23°C) to 200°C, preferably from 60 to 180°C, and even more preferably from 80 to 160°C.
  • the addition reaction curable liquid silicone rubber composition of the present invention described above is useful as a semiconductor element sealing material.
  • the present invention provides a silicone rubber-sealed semiconductor device described above, comprising a semiconductor element, and a cured product of an aforementioned silicone rubber composition (in other words, a silicone rubber cured product or a silicone rubber) that seals the semiconductor element.
  • the present invention also provides a silicone rubber-sealed semiconductor device, which exhibits reduced surface tackiness, and in which the surface of the cured product that seals the semiconductor element is coated with a cured silicone resin layer with a thickness of no more than 0.5 mm and a type D hardness prescribed in JIS K6253 of 30 or greater.
  • the present invention also provides a method of producing a semiconductor device with reduced surface tackiness, comprising the steps of:
  • suitable semiconductor elements include light emitting diodes, photodiodes, CCD, CMOS, image sensors, phototransistors, IR sensors, and laser diodes.
  • Examples of the curable silicone resin with a type D hardness following curing of 30 or greater that can be used as a coating for reducing the surface tackiness of the silicone rubber cured product include any silicone resins that satisfy the above hardness condition and undergo curing by a hydrosilylation reaction. Of such resins, silicone resins that contain alkenyl groups (and preferably vinyl groups) are particularly desirable. Examples of such alkenyl group-containing silicon resins include resins that contain a silicone resin with a three dimensional structure as the principal component.
  • An organohydrogenpolysiloxane described as the component (C) and a curing catalyst described as the component (D) can be used as a cross-linking agent for this alkenyl group-containing organopolysiloxane.
  • the curable silicone resin composition is usually used in the form of a solution produced by dissolving the resin in an organic solvent with a boiling point of 150°C or lower.
  • the solvent may be any solvent capable of producing a solution that can be applied uniformly to the surface of the silicone rubber cured product.
  • aromatic hydrocarbon-based solvents such as toluene or xylene, and silicon-based solvents such as trimethyldisiloxane are preferred.
  • the concentration of the silicone resin composition solution preferably falls within a range from 10 to 90% by mass.
  • the film thickness of the coating is preferably at least 50 ⁇ m but no more than 0.5 mm, and is even more preferably at least 50 ⁇ m but no more than 300 ⁇ m. Thickness values that are at least 50 ⁇ m but no more than 200 ⁇ m are particularly desirable.
  • the coating In those cases where the hardness of the silicone rubber cured product that acts as the base material is low, if the thickness of the coating exceeds 0.5 mm then the coated silicone resin tends to be prone to cracking. Furthermore, if the coating is too thin, it becomes prone to rupture.
  • a uniform application can be achieved by, for example, spray application or immersing the base material in the solution.
  • a silicone rubber cured product with reduced surface tackiness in other words, a silicone rubber cured product having a cross-linked structure of a specific composition, that has been surface-coated with a silicone resin layer having a specific thickness and a specific hardness
  • VF1 dimethylpolysiloxane
  • VF2 dimethylpolysiloxane
  • VMQ vinylmethylsiloxane
  • a resin structure comprising 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 3 SiO 0.5 units
  • composition obtained above was heat molded for 1 hour at 150°C, yielding a silicone rubber cured product with dimension of 10 mm x 50 mm x 2 mm (thickness).
  • the tensile strength and elongation of this cured product were measured in accordance with JIS K 6301.
  • the type A hardness was measured in accordance with JIS K6253.
  • the above cured product was immersed in a 20% by mass toluene solution of a curable silicone resin KJR-632 (a product name, manufactured by Shin-Etsu Chemical Co., Ltd., type D hardness following curing: 70) used for generating a hard, transparent resin, thereby coating the surface of the cured product. Subsequently, the coating film was dried for 1 hour at room temperature, and then cured by heating at 120°C for 1 hour. The thickness of the coating formed from the hard resin was 200 ⁇ m.
  • a curable silicone resin KJR-632 a product name, manufactured by Shin-Etsu Chemical Co., Ltd., type D hardness following curing: 70
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was measured in the same manner as described above.
  • Silver powder was sprinkled onto the cured product that had been coated with the hard resin, and onto the uncoated cured product surface, and when air was blown onto the samples in an attempt to remove the silver powder, the silver powder was able to be completely removed from the hard resin-coated sample, whereas in the case of the uncoated sample, a large quantity of the silver powder remained adhered to the surface.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 1.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 1.
  • the hard resin layer showed no cracking.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 1.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 1.
  • the hard resin layer showed no cracking.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 1.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 1.
  • the hard resin layer showed no cracking.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 1.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 1.
  • the hard resin layer showed no cracking.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 2.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 2.
  • the hard resin layer showed no cracking.
  • composition was used to produce a silicone rubber cured product in the same manner as the example 1, and the tensile strength, the elongation, and the type A hardness were measured in the same manner as the example 1. The results are shown in Table 2.
  • the type A hardness of the silicon rubber cured product 24 hours after coating with the hard resin was also measured in the same manner as the example 1. The result is shown in Table 2.
  • the hard resin layer showed no cracking.
  • Fig. 1 is a longitudinal cross-sectional view showing a CCD package 1 in which a semiconductor chip 2 has been sealed.
  • the semiconductor chip 2 is mounted inside a concave section within the package 1, and following bonding of wiring 3 to a lead frame 6, an addition curable liquid silicone rubber composition 4 is injected into, and used to fill, the concave section, and this composition is then cured.
  • a curable silicone resin solution is applied to the top of the silicone rubber cured product 4 and cured, thereby forming a hard resin layer 5, and completing preparation of a silicone rubber-sealed semiconductor device of the present invention.
  • the silicone rubber compositions prepared in the examples 1 through 5 and the comparative examples 1 and 2 were used as the curable silicone rubber composition, and a toluene solution of KJR-632 that acted as the curable silicone resin solution was applied by spraying so as to form a thin film with a thickness of approximately 200 ⁇ m, which was subsequently cured. 20 packages using each composition were thus prepared, and the resulting packages were then subjected to moisture reflow testing in accordance with MSL level 2.
  • Example 1 Example 2
  • Example 3 Example 4
  • Comparative example 1 Comparative example 2 After curing 0/20 0/20 0/20 0/20 0/20 0/20 0/20 2/20 1/20 260 reflow / 1st repetition 0/20 0/20 0/20 0/20 0/20 16/20 16/20 260 reflow / 2nd repetition 0/20 0/20 0/20 0/20 0/20 0/20 20/20 20/20 260 reflow / 3rd repetition 0/20 0/20 0/20 0/20 0/20 0/20 260 reflow / 4th repetition 1/20 0/20 0/20 0/20 0/20 0/20 260 reflow / 5th repetition 1/20 0/20 0/20 0/20 0/20 0/20 Wire deformation 0/20 0/20 0/20 0/20 0/20 0/20 20/20 20/20 20/20 1/20 260 reflow / 1st repetition 0/20 0/20 0/20 0/20 0/20 0/20 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)
  • Silicon Polymers (AREA)

Claims (13)

  1. Verfahren zur Verringerung der Oberflächenklebrigkeit eines gehärteten Silikonkautschukprodukts, bei dem man
    - eine Oberfläche eines gehärteten Produkts aus einer härtbaren Silikonkautschukzusammensetzung, die ein Molverhältnis in der Zusammensetzung von an Siliciumatome gebundenen Wasserstoffatomen zu an Siliciumatome gebundenen Alkenylgruppen von 1,0 oder mehr aufweist und die nach Härtung eine Typ-A-Härte gemäß JIS K6253 von 5 bis 20 aufweist, mit einer härtbaren Silikonharzschicht, die nach Härtung eine Typ-D-Härte gemäß JIS K6253 von 30 oder mehr aufweist, beschichtet
    und
    - anschließend das Silikonharz zur Bildung einer gehärteten Silikonharzschicht mit einer Dicke von höchstens 0,5 mm härtet;
    wobei die härtbare Silikonkautschukzusammensetzung
    (A) ein Organopolysiloxan mit zwei an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (B) ein Organopolysiloxan mit drei oder mehr an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (C) ein Organohydrogenpolysiloxan mit zwei an Siliciumatome gebundenen Wasserstoffatomen in jedem Molekül
    und
    (D) einen Katalysator auf Platingruppenmetall-Basis
    umfasst.
  2. Verfahren zur Verringerung der Oberflächenklebrigkeit eines gehärteten Silikonkautschukprodukts nach Anspruch 1, bei dem
    - es sich bei der Komponente (A) um ein geradkettiges Organopolysiloxan handelt, das siliciumatomgebundene Alkenylgruppen mit 2 bis 8 Kohlenstoffatomen an beiden Enden enthält und durch die allgemeine Formel (1) wiedergegeben wird:
    Figure imgb0058
    wobei R1 jeweils unabhängig für eine gleiche oder verschiedene unsubstituierte oder substituierte einwertige Kohlenwasserstoffgruppe, die keine aliphatischen ungesättigten Bindungen enthält, steht, R2 für eine Alkenylgruppe steht und k für 0 oder eine positive ganze Zahl steht, die für das Organopolysiloxan eine Viskosität bei 25°C ergibt, die im Bereich von 10 bis 1.000.000 mPa·s liegt,
    - es sich bei der Komponente (B) um ein Organopolysiloxan handelt, das drei oder mehr siliciumatomgebundene Alkenylgruppen enthält und eine geradkettige, cyclische, verzweigte oder dreidimensionale Netzwerkstruktur aufweist,
    und
    - es sich bei der Komponente (C) um ein Organohydrogenpolysiloxan mit geradkettiger, cyclischer, verzweigter oder dreidimensionaler Netzwerkstruktur handelt, wobei die Zahl von Siliciumatomen in einem einzigen Molekül (d.h. der Polymerisationsgrad) im Bereich von 2 bis 1000 liegt.
  3. Verfahren zur Verringerung der Oberflächenklebrigkeit eines gehärteten Silikonkautschukprodukts nach Anspruch 1 oder 2, bei dem die härtbare Silikonkautschukzusammensetzung
    - die Komponente (B) in einer Menge im Bereich von 0,1 bis 50 Massenteilen pro 100 Massenteile der Komponente (A),
    - die Komponente (C) in einer solchen Menge, dass das Molverhältnis der siliciumatom gebundenen Wasserstoffatome in dieser Komponente zu der kombinierten Summe von siliciumatomgebundenen Alkenylgruppen in der Komponente (A) und der Komponente (B) im Bereich von 1,0 bis 4,0 liegt,
    und
    - die Komponente (D) in einer als (massenbezogene) Menge von Platingruppenmetall berechneten Menge, bezogen auf die kombinierte Masse der oben aufgeführten Komponenten (A) bis (C), im Bereich von 0,1 bis 1000 ppm umfasst.
  4. Verfahren zur Verringerung der Oberflächenklebrigkeit eines gehärteten Silikonkautschukprodukts nach Anspruch 1, 2 oder 3, bei dem das gehärtete Produkt der härtbaren Silikonkautschukzusammensetzung zum Versiegeln eines Halbleiters gebildet wird.
  5. Durch Additionsreaktion härtbare flüssige Silikonkautschukzusammensetzung zum Versiegeln eines Halbleiters, umfassend
    (A) ein Organopolysiloxan mit zwei an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (B) ein Organopolysiloxan mit drei oder mehr an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (C) ein Organohydrogenpolysiloxan mit zwei an Siliciumatome gebundenen Wasserstoffatomen in jedem Molekül
    und
    (D) einen Katalysator auf Platingruppenmetall-Basis,
    wobei die Zusammensetzung ein Molverhältnis von an Siliciumatome gebundenen Wasserstoffatomen zu an Siliciumatome gebundenen Alkenylgruppen von 1,0 oder mehr aufweist und nach Härtung eine Typ-A-Härte gemäß JIS K6253 von 5 bis 20 aufweist.
  6. Durch Additionsreaktion härtbare flüssige Silikonkautschukzusammensetzung nach Anspruch 5, wobei
    - es sich bei der Komponente (A) um ein geradkettiges Organopolysiloxan handelt, das siliciumatomgebundene Alkenylgruppen mit 2 bis 8 Kohlenstoffatomen an beiden Enden enthält und durch die allgemeine Formel (1) wiedergegeben wird:
    Figure imgb0059
    wobei R1 jeweils unabhängig für eine gleiche oder verschiedene unsubstituierte oder substituierte einwertige Kohlenwasserstoffgruppe, die keine aliphatischen ungesättigten Bindungen enthält, steht, R2 für eine Alkenylgruppe steht und k für 0 oder eine positive ganze Zahl steht, die für das Organopolysiloxan eine Viskosität bei 25°C ergibt, die im Bereich von 10 bis 1.000.000 mPa·s liegt,
    - es sich bei der Komponente (B) um ein Organopolysiloxan handelt, das drei oder mehr siliciumatomgebundene Alkenylgruppen enthält und eine geradkettige, cyclische, verzweigte oder dreidimensionale Netzwerkstruktur aufweist,
    und
    - es sich bei der Komponente (C) um ein Organohydrogenpolysiloxan mit geradkettiger, cyclischer, verzweigter oder dreidimensionaler Netzwerkstruktur handelt, wobei die Zahl von Siliciumatomen in einem einzigen Molekül (d.h. der Polymerisationsgrad) im Bereich von 2 bis 1000 liegt.
  7. Durch Additionsreaktion härtbare flüssige Silikonkautschukzusammensetzung nach Anspruch 5 oder 6, bei dem die härtbare Silikonkautschukzusammensetzung
    - die Komponente (B) in einer Menge im Bereich von 0,1 bis 50 Massenteilen pro 100 Massenteile der Komponente (A),
    - die Komponente (C) in einer solchen Menge, dass das Molverhältnis der siliciumatomgebundenen Wasserstoffatome in dieser Komponente zu der kombinierten Summe von siliciumatomgebundenen Alkenylgruppen in der Komponente (A) und der Komponente (B) im Bereich von 1,0 bis 4,0 liegt,
    und
    - die Komponente (D) in einer als (massenbezogene) Menge von Platingruppenmetall berechneten Menge, bezogen auf die kombinierte Masse der oben aufgeführten Komponenten (A) bis (C), im Bereich von 0,1 bis 1000 ppm umfasst.
  8. Mit Silikonkautschuk versiegelte Halbleitervorrichtung, umfassend ein Halbleiterelement und einen das Halbleiterelement versiegelnden Versiegelungskörper, wobei
    - der Versiegelungskörper ein erstes Versiegelungsglied, das das Halbleiterelement bedeckt, und ein zweites Versiegelungsglied, dass das erste Versiegelungsglied bedeckt, umfasst,
    - das erste Versiegelungsglied ein gehärtetes Produkt aus einer härtbaren flüssigen Silikonkautschukzusammensetzung, die ein Molverhältnis von an Siliciumatome gebundenen Wasserstoffatomen zu an Siliciumatome gebundenen Alkenylgruppen von 1,0 oder mehr aufweist und die nach Härtung eine Typ-A-Härte gemäß JIS K6253 von 5 bis 20 aufweist, umfasst,
    - das zweite Versiegelungsglied eine härtbare Silikonharzschicht, die eine Typ-D-Härte gemäß JIS K6253 von 30 oder mehr aufweist und eine Dicke von höchstens 0,5 mm aufweist, umfasst
    und
    - die härtbare Silikonkautschukzusammensetzung
    (A) ein Organopolysiloxan mit zwei an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (B) ein Organopolysiloxan mit drei oder mehr an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (C) ein Organohydrogenpolysiloxan mit zwei an Siliciumatome gebundenen Wasserstoffatomen in jedem Molekül
    und
    (D) einen Katalysator auf Platingruppenmetall-Basis
    umfasst.
  9. Mit Silikonkautschuk versiegelte Halbleitervorrichtung nach Anspruch 8, wobei
    - es sich bei der Komponente (A) um ein geradkettiges Organopolysiloxan handelt, das siliciumatomgebundene Alkenylgruppen mit 2 bis 8 Kohlenstoffatomen an beiden Enden enthält und durch die allgemeine Formel (1) wiedergegeben wird:
    Figure imgb0060
    wobei R1 jeweils unabhängig für eine gleiche oder verschiedene unsubstituierte oder substituierte einwertige Kohlenwasserstoffgruppe, die keine aliphatischen ungesättigten Bindungen enthält, steht, R2 für eine Alkenylgruppe steht und k für 0 oder eine positive ganze Zahl steht, die für das Organopolysiloxan eine Viskosität bei 25°C ergibt, die im Bereich von 10 bis 1.000.000 mPa·s liegt,
    - es sich bei der Komponente (B) um ein Organopolysiloxan handelt, das drei oder mehr siliciumatomgebundene Alkenylgruppen enthält und eine geradkettige, cyclische, verzweigte oder dreidimensionale Netzwerkstruktur aufweist,
    und
    - es sich bei der Komponente (C) um ein Organohydrogenpolysiloxan mit geradkettiger, cyclischer, verzweigter oder dreidimensionaler Netzwerkstruktur handelt, wobei die Zahl von Siliciumatomen in einem einzigen Molekül (d.h. der Polymerisationsgrad) im Bereich von 2 bis 1000 liegt.
  10. Mit Silikonkautschuk versiegelte Halbleitervorrichtung nach Anspruch 8 oder 9, bei dem die härtbare Silikonkautschukzusammensetzung
    - die Komponente (B) in einer Menge im Bereich von 0,1 bis 50 Massenteilen pro 100 Massenteile der Komponente (A),
    - die Komponente (C) in einer solchen Menge, dass das Molverhältnis der siliciumatomgebundenen Wasserstoffatome in dieser Komponente zu der kombinierten Summe von siliciumatomgebundenen Alkenylgruppen in der Komponente (A) und der Komponente (B) im Bereich von 1,0 bis 4,0 liegt,
    und
    - die Komponente (D) in einer als (massenbezogene) Menge von Platingruppenmetall berechneten Menge, bezogen auf die kombinierte Masse der oben aufgeführten Komponenten (A) bis (C), im Bereich von 0,1 bis 1000 ppm umfasst.
  11. Verfahren zur Herstellung einer mit Silikonkautschuk versiegelten Halbleitervorrichtung mit verringerter Oberflächenklebrigkeit, bei dem man
    - ein Halbleiterelement mit einem gehärteten Produkt der durch Additionsreaktion härtbaren flüssigen Silikonkautschukzusammensetzung, umfassend
    (A) ein Organopolysiloxan mit zwei an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (B) ein Organopolysiloxan mit drei oder mehr an Siliciumatome gebundenen Alkenylgruppen in jedem Molekül,
    (C) ein Organohydrogenpolysiloxan mit zwei an Siliciumatome gebundenen Wasserstoffatomen in jedem Molekül
    und
    (D) einen Katalysator auf Platingruppenmetall-Basis,
    versiegelt, wobei die Zusammensetzung ein Molverhältnis von an Siliciumatome gebundenen Wasserstoffatomen zu an Siliciumatome gebundenen Alkenylgruppen von 1,0 oder mehr aufweist und nach Härtung eine Typ-A-Härte gemäß JIS K6253 von 5 bis 20 aufweist;
    - auf eine Oberfläche des für das Versiegeln gebildeten gehärteten Produkts ein härtbares Silikonharz, das nach Härtung eine Typ-D-Härte gemäß JIS K6253 von 30 oder mehr aufweist, aufbringt
    und
    - eine aufgebrachte Beschichtung des härtbaren Silikonharzes unter Bildung einer gehärteten Silikonharzschicht mit einer Dicke von höchstens 0,5 mm härtet.
  12. Verfahren zur Herstellung einer mit Silikonkautschuk versiegelten Halbleitervorrichtung nach Anspruch 11, bei dem
    - es sich bei der Komponente (A) um ein geradkettiges Organopolysiloxan handelt, das siliciumatomgebundene Alkenylgruppen mit 2 bis 8 Kohlenstoffatomen an beiden Enden enthält und durch die allgemeine Formel (1) wiedergegeben wird:
    Figure imgb0061
    wobei R1 jeweils unabhängig für eine gleiche oder verschiedene unsubstituierte oder substituierte einwertige Kohlenwasserstoffgruppe, die keine aliphatischen ungesättigten Bindungen enthält, steht, R2 für eine Alkenylgruppe steht und k für 0 oder eine positive ganze Zahl steht, die für das Organopolysiloxan eine Viskosität bei 25°C ergibt, die im Bereich von 10 bis 1.000.000 mPa·s liegt,
    - es sich bei der Komponente (B) um ein Organopolysiloxan handelt, das drei oder mehr siliciumatomgebundene Alkenylgruppen enthält und eine geradkettige, cyclische, verzweigte oder dreidimensionale Netzwerkstruktur aufweist,
    und
    - es sich bei der Komponente (C) um ein Organohydrogenpolysiloxan mit geradkettiger, cyclischer, verzweigter oder dreidimensionaler Netzwerkstruktur handelt, wobei die Zahl von Siliciumatomen in einem einzigen Molekül (d.h. der Polymerisationsgrad) im Bereich von 2 bis 1000 liegt.
  13. Verfahren zur Herstellung einer mit Silikonkautschuk versiegelten Halbleitervorrichtung nach Anspruch 11 oder 12, bei dem die härtbare Silikonkautschukzusammensetzung
    - die Komponente (B) in einer Menge im Bereich von 0,1 bis 50 Massenteilen pro 100 Massenteile der Komponente (A),
    - die Komponente (C) in einer solchen Menge, dass das Molverhältnis der siliciumatomgebundenen Wasserstoffatome in dieser Komponente zu der kombinierten Summe von siliciumatomgebundenen Alkenylgruppen in der Komponente (A) und der Komponente (B) im Bereich von 1,0 bis 4,0 liegt,
    und
    - die Komponente (D) in einer als (massenbezogene) Menge von Platingruppenmetall berechneten Menge, bezogen auf die kombinierte Masse der oben aufgeführten Komponenten (A) bis (C), im Bereich von 0,1 bis 1000 ppm umfasst.
EP06019916.3A 2005-09-30 2006-09-22 Verfahren zur Reduzierung der Oberflächenklebrigkeit eines gehärteten Silikongummiprodukts, flüssige Silikongummizusammensetzung für Halbleiter, mit Silikongummi versiegelter Halbleiter und Verfahren zur Herstellung eines Halbleiters Active EP1770127B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288916A JP4684835B2 (ja) 2005-09-30 2005-09-30 シリコーンゴム硬化物の表面タック性を低減する方法、半導体封止用液状シリコーンゴム組成物、シリコーンゴム封止型半導体装置、及び該半導体装置の製造方法

Publications (2)

Publication Number Publication Date
EP1770127A1 EP1770127A1 (de) 2007-04-04
EP1770127B1 true EP1770127B1 (de) 2016-05-04

Family

ID=37682587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06019916.3A Active EP1770127B1 (de) 2005-09-30 2006-09-22 Verfahren zur Reduzierung der Oberflächenklebrigkeit eines gehärteten Silikongummiprodukts, flüssige Silikongummizusammensetzung für Halbleiter, mit Silikongummi versiegelter Halbleiter und Verfahren zur Herstellung eines Halbleiters

Country Status (6)

Country Link
US (1) US8057906B2 (de)
EP (1) EP1770127B1 (de)
JP (1) JP4684835B2 (de)
KR (1) KR101322987B1 (de)
CN (1) CN1944499B (de)
TW (1) TWI415899B (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157589B2 (en) 2004-11-24 2012-04-17 John Mezzalingua Associates, Inc. Connector having a conductively coated member and method of use thereof
US8071174B2 (en) * 2009-04-03 2011-12-06 John Mezzalingua Associates, Inc. Conductive elastomer and method of applying a conductive coating to elastomeric substrate
TWI428396B (zh) * 2006-06-14 2014-03-01 Shinetsu Chemical Co 填充磷光體之可固化聚矽氧樹脂組成物及其固化產物
MY150038A (en) * 2007-09-19 2013-11-29 Toray Industries Adhesive composition for electronic components, and adhesive sheet for electronic components using the same
JP5344848B2 (ja) * 2008-04-09 2013-11-20 株式会社カネカ 触感が良好である樹脂成形体およびその製造方法
CN102007073B (zh) * 2008-04-30 2014-10-08 电气化学工业株式会社 氧化铝粉末、其制造方法以及使用该氧化铝粉末的树脂组合物
JP2009272488A (ja) * 2008-05-08 2009-11-19 Sharp Corp 撮像デバイスおよび撮像デバイスの製造方法
US8062063B2 (en) 2008-09-30 2011-11-22 Belden Inc. Cable connector having a biasing element
JP2010129744A (ja) * 2008-11-27 2010-06-10 Murata Mfg Co Ltd 光センサモジュール
JP5499774B2 (ja) 2009-03-04 2014-05-21 信越化学工業株式会社 光半導体封止用組成物及びそれを用いた光半導体装置
US8816205B2 (en) * 2009-04-03 2014-08-26 Ppc Broadband, Inc. Conductive elastomer and method of applying a conductive coating to a cable
US8113879B1 (en) 2010-07-27 2012-02-14 John Mezzalingua Associates, Inc. One-piece compression connector body for coaxial cable connector
US8157588B1 (en) 2011-02-08 2012-04-17 Belden Inc. Cable connector with biasing element
US8342879B2 (en) 2011-03-25 2013-01-01 John Mezzalingua Associates, Inc. Coaxial cable connector
US8465322B2 (en) 2011-03-25 2013-06-18 Ppc Broadband, Inc. Coaxial cable connector
KR101594343B1 (ko) 2011-12-20 2016-02-16 제이에스알 가부시끼가이샤 경화성 조성물 및 그의 제조 방법, 경화물, 및 광반도체 장치
TWI510554B (zh) 2012-07-27 2015-12-01 Lg Chemical Ltd 可固化組成物
US9023915B2 (en) 2013-03-15 2015-05-05 Abbott Medical Optics Inc. Surface treatment of silicone materials
JP5579304B2 (ja) * 2013-05-13 2014-08-27 株式会社朝日ラバー 太陽電池アセンブリ
US10103037B2 (en) 2014-05-09 2018-10-16 Intel Corporation Flexible microelectronic systems and methods of fabricating the same
DE102015103335A1 (de) * 2015-03-06 2016-09-08 Osram Opto Semiconductors Gmbh Optoelektronische Vorrichtung und Verfahren zur Herstellung einer optoelektronischen Vorrichtung
TW201722699A (zh) 2015-12-30 2017-07-01 聖高拜塑膠製品公司 複合管及其製造與使用方法
JP6874333B2 (ja) * 2016-11-08 2021-05-19 信越化学工業株式会社 硬化性シリコーンゲル組成物、シリコーンゲル硬化物並びに電気・電子部品の保護方法
JP7081255B2 (ja) * 2018-03-26 2022-06-07 三菱ケミカル株式会社 蛍光体含有シリコーンゴム成形体及びその製造方法並びに蛍光体含有シリコーンゴム成形体を含む発光装置
JP6965840B2 (ja) * 2018-07-13 2021-11-10 信越化学工業株式会社 含フッ素ポリシロキサン硬化性組成物、該組成物の硬化物で被覆されたゴム硬化物又はゲル硬化物、該被覆されたゴム硬化物又はゲル硬化物を有する電気・電子部品及び光半導体装置、並びにゴム硬化物又はゲル硬化物の表面粘着性を低減する方法
CN111864332B (zh) * 2020-08-03 2021-10-22 中国电子科技集团公司第九研究所 一种高功率环行器/隔离器内填硅橡胶快速固化的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284406A (en) * 1963-12-18 1966-11-08 Dow Corning Organosiloxane encapsulating resins
US3485662A (en) * 1967-10-30 1969-12-23 Dow Corning Method of rendering translucent silicone rubber articles transparent
US4448815A (en) * 1983-01-17 1984-05-15 General Electric Company Multi-component solventless silicone release coating system
US4780260A (en) * 1986-09-24 1988-10-25 Toray Silicone Company, Ltd. Method for producing silicone rubber moldings having a hard exterior layer
JP2594142B2 (ja) * 1988-11-30 1997-03-26 東芝シリコーン株式会社 電子部品の製造方法
JPH0645222B2 (ja) * 1989-12-07 1994-06-15 信越化学工業株式会社 シリコーン一体成形物及びその製造法
US5645941A (en) * 1992-11-19 1997-07-08 Shin-Etsu Chemical Co., Ltd. Silicone resin/silicone rubber composite material
JPH07335790A (ja) * 1994-06-06 1995-12-22 Toray Dow Corning Silicone Co Ltd 半導体素子保護用組成物および半導体装置
US5599894A (en) 1994-06-07 1997-02-04 Shin-Etsu Chemical Co., Ltd. Silicone gel compositions
JPH0853622A (ja) * 1994-06-07 1996-02-27 Shin Etsu Chem Co Ltd シリコーンゲル組成物
JP3280224B2 (ja) * 1996-02-06 2002-04-30 東レ・ダウコーニング・シリコーン株式会社 熱伝導性シリコーンゲルシートおよびその製造方法
JPH10330622A (ja) * 1997-05-30 1998-12-15 Toray Dow Corning Silicone Co Ltd 硬化性シリコーン組成物
JP3425521B2 (ja) * 1998-01-09 2003-07-14 信越化学工業株式会社 低硬度熱伝導性シリコーンゴムシートの表面粘着性低減方法
WO2000006512A1 (en) * 1998-07-31 2000-02-10 Ppg Industries Ohio, Inc. Transparency with coating having primer for edge seal
JP4114037B2 (ja) * 2001-09-25 2008-07-09 信越化学工業株式会社 電気・電子部品の硫化防止又は遅延用シリコーンゴム封止・シール材及び硫化防止又は遅延方法
JP4314454B2 (ja) * 2002-09-20 2009-08-19 信越化学工業株式会社 自己接着性加熱硬化型液状シリコーンゴム組成物
JP2004133286A (ja) * 2002-10-11 2004-04-30 Canon Inc トナー定着部材
US7883643B2 (en) * 2002-10-21 2011-02-08 Chi-Ming Chan Overvoltage protection materials and process for preparing same
JP4503271B2 (ja) 2003-11-28 2010-07-14 東レ・ダウコーニング株式会社 シリコーン積層体の製造方法
JP4343787B2 (ja) * 2004-07-20 2009-10-14 シンジーテック株式会社 定着部材
JP4569753B2 (ja) * 2004-11-10 2010-10-27 信越化学工業株式会社 自己接着性加熱硬化促進型液状シリコーンゴム組成物

Also Published As

Publication number Publication date
US8057906B2 (en) 2011-11-15
CN1944499A (zh) 2007-04-11
TW200720358A (en) 2007-06-01
JP2007099835A (ja) 2007-04-19
EP1770127A1 (de) 2007-04-04
TWI415899B (zh) 2013-11-21
JP4684835B2 (ja) 2011-05-18
CN1944499B (zh) 2011-12-28
KR101322987B1 (ko) 2013-10-29
KR20070037405A (ko) 2007-04-04
US20070077360A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
EP1770127B1 (de) Verfahren zur Reduzierung der Oberflächenklebrigkeit eines gehärteten Silikongummiprodukts, flüssige Silikongummizusammensetzung für Halbleiter, mit Silikongummi versiegelter Halbleiter und Verfahren zur Herstellung eines Halbleiters
EP1878768B1 (de) Härtbare Silikon-Gummi-Zusammensetzungen und gehärtetes Produkt daraus
EP2857457B1 (de) Härtbare harzzusammensetzung und gehärtetes produkt, dichtmittel und optisches halbleiterbauelement damit
EP2508569B1 (de) Silikonharzzusammensetzung und diese Zusammensetzung verwendendes optisches Halbleiterbauelement
EP2944675B1 (de) Härtbare harzzusammensetzung und gehärtetes produkt daraus
US8420762B2 (en) Silicone resin composition and a cured product thereof
KR100591875B1 (ko) 실리콘 조성물, 이의 제조방법 및 실리콘 탄성중합체
JP4586967B2 (ja) 発光半導体被覆保護材及び発光半導体装置
EP3061783B1 (de) Additionshärtbare silikonharzzusammensetzung und chipbondmaterial für ein optisches halbleiterbauelement
KR100988590B1 (ko) 실리콘 수지 조성물로 봉지된 반도체 장치 및 반도체 장치봉지용 실리콘 수지 타블렛
JP5652387B2 (ja) 高信頼性硬化性シリコーン樹脂組成物及びそれを使用した光半導体装置
WO2006077667A1 (ja) 発光素子封止用シリコーン組成物及び発光装置
US7592399B2 (en) Epoxy/silicone hybrid resin composition and optical semiconductor device
EP1381650B1 (de) Additionsvernetzbare silikonzusammensetzung gelartiger konsistenz
EP2985317A1 (de) Härtbare harzzusamensetzung und gehärtetes produkt daraus, verkapselungsstoff und halbleiterbauelement
EP3950846A1 (de) Härtbare silikonzusammensetzung, gehärtetes produkt daraus und verfahren zur herstellung davon
US6969554B2 (en) Semiconductor sealing silicone composition and semiconductor device
JP2003327833A (ja) 自己接着性オルガノポリシロキサン組成物
US20080287603A1 (en) Addition curing silicone composition for cipg that yields cured product with excellent compression set, and method of reducing compression set of cured product of the composition
CN111138860B (zh) 加成固化型硅酮树脂组合物、其固化物及光半导体装置
CN111117256B (zh) 加成固化型硅酮树脂组合物、其固化物及光半导体装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071004

17Q First examination report despatched

Effective date: 20071107

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN2 Information on inventor provided after grant (corrected)

Inventor name: SATO, MASANOBU

Inventor name: KASHIWAGI, TSUTOMU

Inventor name: MATSUMOTO, KOKI

Inventor name: SHIOBARA, TOSHIO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006048930

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006048930

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240730

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240801

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240808

Year of fee payment: 19