EP1696108B1 - Hitzbeständige Legierung für bei 900°C nachhaltige Auslassventile und Auslassventile aus dieser Legierung - Google Patents
Hitzbeständige Legierung für bei 900°C nachhaltige Auslassventile und Auslassventile aus dieser Legierung Download PDFInfo
- Publication number
- EP1696108B1 EP1696108B1 EP06000958A EP06000958A EP1696108B1 EP 1696108 B1 EP1696108 B1 EP 1696108B1 EP 06000958 A EP06000958 A EP 06000958A EP 06000958 A EP06000958 A EP 06000958A EP 1696108 B1 EP1696108 B1 EP 1696108B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- exhaust valves
- heat resistant
- weight
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 73
- 239000000956 alloy Substances 0.000 title claims description 73
- 230000003647 oxidation Effects 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000013067 intermediate product Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 229910000734 martensite Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 239000010955 niobium Substances 0.000 description 13
- 239000011651 chromium Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910001247 waspaloy Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- -1 by wt % Substances 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/20—Making machine elements valve parts
- B21K1/22—Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2303/00—Manufacturing of components used in valve arrangements
Definitions
- the present invention concerns exhaust valves for internal combustion engines, typically, automobile gasoline engines, which are durable at such a high temperature as 900°C and exhibit excellent fatigue properties and oxidation resistance.
- the invention concerns also a heat resistant alloy used as the material for the above-mentioned exhaust valves as well as the method of producing exhaust valves with the alloy.
- Ni-based heat resistant alloys such as NCF751 and NCF80A.
- NCF751 and NCF80A As the material for the exhaust valves of automobile gasoline engines there has been widely used Ni-based heat resistant alloys such as NCF751 and NCF80A. To meet the demand for higher strength another Ni-based alloy ( Japanese Patent Disclosure 61-119640 ) is suitable. This alloy was proposed by the applicant with a co-applicant, and contains, in addition to the suitable amounts of C, Si and Mn, by wt %, Cr: 15-25%, Mo+0.5W: 0.5-5.0%, Nb+Ta: 0.3-3.0%, Ti: 1.5-3.5%, Al: 0.5-2.5% and B: 0.001-0.02%.
- Ni-based alloy ( Japanese Patent Disclosure 05-059472 ), which contains, in addition to the suitable amounts of C, Si and Mn, by wt %, Co: 2.0-8.0%, Cr: 17.0-23.5%, Mo+0.5W: 2.0-5.5%, Al: 1.0-2.0%, Ti: 2.5-5.0%, B: 0.001-0.020% and Zr: 0.005-0.15%.
- the inventors intended to provide a heat resistant alloy which satisfies the heat resistant condition of "10 8 -cycles fatigue strength at 900°C being 245MPa or more" and, as the results of investigation, noted that materials for disks and blades of gas turbines have heat resistance higher than that of conventional alloys for exhaust valves. Detailed study on the properties of the alloys for gas turbines revealed that they could be generally used as the materials for the exhaust valves.
- the noted heat resistant alloys are named "Waspaloy” and "Udimet 520" having the following typical alloy compositions (by weight %): Waspaloy Ni-19Cr-4.3Mo-14Co-1.4Al-3Ti-0.003B Udimet 520 Ni-20Cr-6Mo-1W-12Co-2Al-3Ti-0.003B
- the inventors further learned that the durability of these alloys differs in the gas turbines and the exhaust valves of engines and that it is necessity to confront with the difference. More specifically, high temperature creep property is required for the gas turbine material, while the high temperature fatigue strength is essential for the exhaust valve materials, and therefore, not only the alloy composition but also conditions for processing and heat treatment must be so chosen to obtain the desired properties.
- the inventors sought the ways for improving the properties of the gas turbine materials, and discovered that, by choosing the Mo- and W- contents to such a relatively high ranges as Mo+W: 3-10%, choosing the Co-content to a suitable amount, and arranging the amounts of Al and Ti to be, by atomic %, Al+Ti: 6.3-8.5%, and the Ti/Al ratio to be 0.4-0.8, the above requirement for the fatigue strength, 10 8 -cycles bending fatigue strength is 245MPa or more, can be satisfied.
- the inventors also discovered that addition of a small amount of Cu is effective for improving the oxidation resistance at 900°C.
- the general object of the present invention is to provide, based on the above knowledge which the inventors obtained, a heat resistant alloy for exhaust valves which can be used at such a high temperature as 900°C and having high fatigue strength as well as oxidation resistance.
- the specific object of the present invention is to provide a heat resistant alloy having particularly high fatigue strength, in other words, an alloy exhibiting many more cycles of test at the same required strength level.
- To provide a method of producing exhaust valves with the present heat resistant alloy is also the object of the present invention.
- the heat resistant alloy for the exhaust valves achieving the above object, durable at the temperature of 900°C, according to the invention consists essentially of, by weight %, C: 0.01-0.15%, Si: up to 2.0%, Mn: up to 1.0%, P: up to 0.02%, S: up to 0.01%, Co: 0.1-15%, Cr: 15-25%, one or two of Mo: 0.1-10% and W: 0.1-5% in such amount as Mo+1/2W: 3-10%, Al: 1.0-3.0%, Ti: 2.0-3.5%, provided that, by atomic %, Al+Ti: 6.3-8.5% and Ti/Al ratio: 0.4-0.8, and further, by weight %, B: 0.001-0.01%, Fe: up to 3%, and the balance of Ni and inevitable impurities.
- the method of producing the exhaust valves using the above-mentioned heat resistant alloy as the material comprises processing the material to form an exhaust valve consisting of a stem and a head by hot forging at 1000-1200°C, and subjecting the processed intermediate product to solid solution treatment at 1000-1200°C, and aging treatment at 700-950°C.
- the heat resistant alloy for exhaust valves according to the invention may contain, in addition to the above-mentioned basic alloy components, by weight %, one or more of V: 0.5-1.5%, Nb: 0.5-1.5% and Ta: 0.5-1.5% in such amount that, by atomic %, Al+Ti+Nb+TA+V: 6.3-8.5%.
- the strength of the alloy will be enhances by addition of the element or elements.
- the heat resistant alloy for exhaust valves of the invention may further contain, in addition to the above mentioned components, one or more of Mg: 0.001-0.03%, Ca: 0.001-0.03%, Zr: 0.001-0.1% and REM: 0.001-0.1%.
- Mg 0.001-0.03%
- Ca 0.001-0.03%
- Zr 0.001-0.1%
- REM 0.001-0.1%.
- the present heat resistant alloy for exhaust valves may further contain Cu: 0.01-2%. Addition of Cu enhances the oxidation resistance of the product valves.
- Carbon combines with Ti, Nb and Ta to form MC carbides, and with Cr, Mo and W to form M 23 C 6 , M 6 C carbides, which are useful for preventing coarsening of the grains and enhancing the grain boundaries.
- MC carbides Cr, Mo and W
- M 23 C 6 , M 6 C carbides which are useful for preventing coarsening of the grains and enhancing the grain boundaries.
- To obtain these merits at least 0.01% of carbon is necessary. Too much carbon forms too large amount of carbides, which lowers the workability at forming the valves, the toughness and the ductility of the alloy. Thus, 0.15% is the upper limit of C-content.
- Silicon is an element used as the deoxidizing agent at melting and refining the alloy, and may be used if necessary. Silicon is also useful for increasing oxidation resistance of the alloy. However, too high a content of Si lowers the toughness and the workability of the alloy, and the addition should be in an amount up to 2.0%.
- Manganese also takes the role of deoxidizing agent like silicon, and may be added if necessary. Too much addition damages the workability and the high temperature oxidation resistance of the alloy, and therefore, the amount of addition should be chosen in the range up to 1.0%.
- Phosphor and sulfur are inevitable impurities of the Ni-alloy of the invention and undesirable, because they lower the hot workability of the alloy.
- the practical range of processing conditions of hot working of the alloy of the invention is, due to the low Ni-content, narrow. From the view to ensure the hot workability the allowable limits of P and S are determined as above.
- Cobalt stabilizes ⁇ ' phase at high temperature and strengthen the matrix to contribute to improvement of fatigue strength.
- addition of much amount of cobalt results in increased costs, and moreover, excess cobalt makes the austenite phase unstable.
- amount of adding cobalt is in the above range, preferably 2-15%, more preferably, 8-14%.
- Chromium is essential for increasing the heat resistance of the alloy, and the necessary amount of addition for this purpose is at least 15%. Because addition of Cr exceeding 20% causes precipitation of ⁇ -phase, which results in decrease in toughness and high temperature strength, an amount up to 25% should be chosen. Preferable amount of Cr is in a relatively low range, 15-20%.
- Mo 0.1-10% and W: 0.1-5%, provided that Mo+0.5W: 3-10%
- Both molybdenum and tungsten are the elements which improve the high temperature strength of the alloy by enhancing solid solution of the matrix, and therefore, important components for high fatigue strength at 900°C intended by the inventors.
- both the elements are added in the respective amounts of at least 0.1%. Addition of large amounts causes increased costs and decreased workability, and thus, the upper limits as above are given.
- Preferable amount of Mo is usually in the higher range of 5-10%. However, excess addition is not advantageous due to decreased oxidation resistance.
- Aluminum is an important element in combining with nickel to form ⁇ '-phase. At an Al-content less than 1.0% precipitation of ⁇ '-phase is so insufficient that the desired high temperature strength cannot be obtained. On the other hand, at an Al-content exceeding 3.0% hot workability of the alloy is low.
- Titanium also combines with nickel to form ⁇ '-phase which is useful for improving the high temperature strength.
- the Ti-content is so small as less than 2.0%, solid solution temperature of the ⁇ '-phase becomes low, and as the result, sufficient high temperature strength cannot be obtained.
- Addition of Ti to such a large amount as more than 3.5% lowers the workability, and causes precipitation of ⁇ -phase (Ni 3 Ti), which lowers the high temperature strength and the toughness of the alloy. Also, hot processing of the alloy becomes difficult.
- the amount of Al+Ti(+Nb) is a measure for the amount of ⁇ '-phase at 900°C.
- the fatigue strength of the alloy is low, while in case where the amount is large, hot processing becomes difficult. This is the reason why the range, by atomic %, 6.3-8.5% is chosen.
- the Ti/Al ratio is an important factor for stabilizing the ⁇ '-phase at 900°C and increasing the fatigue strength. At such a low value of the ratio as less than 0.4, aging effect is so small that the sufficient strength may not be obtained. On the other hand, such a high value as more than 0.8 causes precipitation of the ⁇ -phase and the strength of the alloy will be low. Preferable ratio in the above range is 0.6-0.8, in which the intended improvement in the fatigue strength will be effectively achieved.
- B Boron contributes to improvement in the hot workability of the alloy, and further, improves the fatigue strength by segregating at the grain boundaries to enhance the strength of the grain boundaries.
- B is added in an amount of 0.001% or more at which the above effects can be obtained. Excess addition of B lowers the melting point of the matrix to damage the hot workability, and therefore, addition amount should be up to 0.01%.
- Iron is a component which, depending on the choice of the materials, inevitably comes into the product alloy. If the Fe-content is large, then the strength of the alloy will be low, and therefore, a lower Fe-content is preferable. As the permissible limit the above 3% is given. It is recommended to limit the Fe-content to be less than 1%, which can be done by selecting the materials.
- V 0.2-1.0%
- Nb 0.5-1.5%
- Ta 0.5-1.5%
- Al+Ti+Nb+Ta+V 6.3-8.5%
- Niobium, tantalum and vanadium all combine with Al and Ni to strengthen the ⁇ '-phase. Vanadium also contributes to solution hardening. If these effects are expected, it is recommended to add one or more of these elements in an amount or amounts of the above lower limit or more. Because excess content or contents will decrease the toughness of the alloy, the addition should be made in the amount or amounts up to the respective upper limits and not exceeding the limited total amount.
- Mg 0.001-0.03%
- Ca 0.001-0.03%
- Zr 0.001-0.1%
- REM 0.001-0.1%
- addition of copper increases oxidation resistance of the alloy and improves the durability of the product valves. Addition in the amount of 0.01% or more is recommended. Excess addition of Cu results in decreased hot workability, and therefore, addition must be up to 2.0%
- the heat resistant alloy for exhaust valves according to the present invention exhibits, after being subjected to the solution treatment and the aging, 10 8 -cycles fatigue strength at 900°C of 245MPa or more, and the weight increase after being subjected to oxidation test by keeping at 900°C for 400 hours is 5mg/cm 2 or less.
- the exhaust valves made of the present alloy can withstand against such a high temperature as 900°C that the valves made of the conventional materials cannot withstand.
- the valves have high durability given by high fatigue strength and high oxidation resistance, and meet the demand for increased performance of automobile engines.
- Ni-based alloys having the alloy compositions shown in Table 1 (Working Examples) and Table 2 (Control Examples) were prepared in a 50kg HF-induction furnace and cast into ingots.
- the Ni-based alloys prepared for the comparison are those used or proposed for the material of the conventional exhaust valves, which are of the following steel marks.
- the respective ingots were forged and rolled to rods of diameter 16mm.
- the rods were subjected to solid solution treatment of heating at 1050°C for 1 hour followed by water quenching, and aging by heating at 750°C for 4 hours followed by air cooling.
- the obtained materials were subjected to tensile test and rotary bending fatigue test at 900°C and continuous oxidation test for 400 hours.
- the results are shown in Table 3 (Working Examples) and Table 4 (Control Examples) together with the values of Ti/Al ratios and atomic % of Al+Ti. TABLE 1 Alloy Composition (Working Examples Weight %, balance Ni) No.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Claims (7)
- Hitzebeständige Legierung für Auslassventile, welche bei 900°C beständig sind, welche im Gewichtsanteil im Wesentlichen enthält: C: 0,01-0,15%, Si: bis zu 2,0%, Mn: bis zu 1,0%, P: bis zu 0,02%, S: bis zu 0,01%, Co: 0,1-15%, Cr: 15-25%, ein oder zwei aus Mo: 0,1-10% und W: 0,1-5%, in einer Größe von: Mo+1/2W: 3-10%, Al: 1,0-3,0%, Ti: 2,0-3,5%, mit der Maßgabe, dass im Atomaranteil ein Al+Ti: 6,3-8,5% und ein Ti/Al Verhältnis gilt von 0,4-0,8, und ferner durch ein Gewichtsanteil von B:0,001-0,01%, Fi: bis zu 3%, und die Ausgeglichenheit von Ni und unvermeidbaren Fremdkörpern.
- Hitzebeständige Legierung für Auslassventile nach Anspruch 1, wobei die Legierung ferner im Gewichtsanteil ein oder mehreres aus V: 0,2-1,0%, Nb: 0,5-1,5% und Ta: 0,5-1,5% in einer solchen Größe, wie im Atomanteil von Al+Ti+Nb+TA+V: 6,3-8,5% enthält.
- Hitzebeständige Legierung für Auslassventile nach Anspruch 1 oder Anspruch 2, wobei die Legierung ferner im Gewichtsanteil ein oder mehreres aus Mg: 0,001-0,0.3%, Ca: 0,001-0,3%, Zr: 0,001-0,1% und REM: 0,001-0,1% enthält.
- Hitzebeständige Legierung für Auslassventile nach einem der Ansprüche 1 bis 3, wobei die Legierung ferner im Gewichtsanteil Cu: 0,01-2% enthält.
- Hitzebeständige Legierung für Auslassventile nach einem der Ansprüche 1 bis 4, wobei die Legierung nach einer Behandlung durch eine feste Lösung und einer Alterung eine 108-Zyklen Ermüdungsfestigkeit bei 900°C von 245MPa oder mehr aufweist, und die Gewichtszunahme nach einem Unterwerfen eines Oxidationstests bei einer Beibehaltung von 900°C für 400 Stunden gleich 5mg/cm2 oder kleiner ist.
- Verfahren zum Herstellen eines Auslassventils, welches ein Verarbeiten der Legierung nach einem der Ansprüche 1 bis 4 durch ein Schmieden bei 1000°C bis 1200°C, um ein Zwischenprodukt auszubilden, welches die Form von einem Auslassventil hat, welches einen Schaft und einen Kopf enthält, und dann ein Unterwerfen des Zwischenprodukts einer feste Lösung Behandlung durch ein Erhitzen bei 1000°C bis 1200°C, und eine Alterungsbehandlung durch Erhitzen auf 700°C bis 950°C enthält.
- Verfahren zum Herstellen einer Auslassventils, welches ein Zusammenführen von einer Schaftspitze, welche aus martensitisch oder austenitisch hitzebeständigem Stahl gemacht ist, an das Schaftende von dem Zwischenprodukt des Auslassventils, welches durch das Verfahren nach Anspruch 6 gemacht ist, durch eine Reibbindung enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005012030 | 2005-01-19 | ||
JP2005341574A JP4830466B2 (ja) | 2005-01-19 | 2005-11-28 | 900℃での使用に耐える排気バルブ用耐熱合金およびその合金を用いた排気バルブ |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1696108A1 EP1696108A1 (de) | 2006-08-30 |
EP1696108B1 true EP1696108B1 (de) | 2007-10-17 |
Family
ID=36263922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06000958A Not-in-force EP1696108B1 (de) | 2005-01-19 | 2006-01-17 | Hitzbeständige Legierung für bei 900°C nachhaltige Auslassventile und Auslassventile aus dieser Legierung |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060157171A1 (de) |
EP (1) | EP1696108B1 (de) |
JP (1) | JP4830466B2 (de) |
DE (1) | DE602006000160T2 (de) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4972972B2 (ja) * | 2006-03-22 | 2012-07-11 | 大同特殊鋼株式会社 | Ni基合金 |
US7651575B2 (en) * | 2006-07-07 | 2010-01-26 | Eaton Corporation | Wear resistant high temperature alloy |
US10041153B2 (en) | 2008-04-10 | 2018-08-07 | Huntington Alloys Corporation | Ultra supercritical boiler header alloy and method of preparation |
KR101007582B1 (ko) | 2008-06-16 | 2011-01-12 | 한국기계연구원 | 파형 입계를 위한 니켈기 합금의 열처리 방법 및 그에 의한합금 |
FR2949234B1 (fr) * | 2009-08-20 | 2011-09-09 | Aubert & Duval Sa | Superalliage base nickel et pieces realisees en ce suparalliage |
CN101906557A (zh) * | 2010-09-15 | 2010-12-08 | 江苏天业合金材料有限公司 | 一种超低温焊接合金钢及其生产方法 |
US10266926B2 (en) * | 2013-04-23 | 2019-04-23 | General Electric Company | Cast nickel-base alloys including iron |
CN104278175B (zh) * | 2013-07-12 | 2018-10-02 | 大同特殊钢株式会社 | 高温强度优异的能够热锻造的Ni基超合金 |
CN103695826B (zh) * | 2013-12-20 | 2015-07-29 | 钢铁研究总院 | 大尺寸gh690镍基合金棒坯的细晶锻造方法 |
CN103789576B (zh) * | 2014-01-15 | 2016-03-02 | 常州大学 | 一种高晶界强度镍基合金及其制备方法 |
DE102014001328B4 (de) * | 2014-02-04 | 2016-04-21 | VDM Metals GmbH | Aushärtende Nickel-Chrom-Eisen-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
DE102014001330B4 (de) | 2014-02-04 | 2016-05-12 | VDM Metals GmbH | Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
DE102014001329B4 (de) * | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
CN103898371B (zh) * | 2014-02-18 | 2016-04-06 | 上海发电设备成套设计研究院 | 700℃等级超超临界燃煤电站用镍基高温合金及其制备 |
CN103924125B (zh) * | 2014-04-21 | 2016-03-23 | 西北工业大学 | 一种增加锆元素含量的k4169高温合金 |
CN103938134B (zh) * | 2014-04-28 | 2015-09-30 | 钢铁研究总院 | 提高耐热合金厚壁挤压管径向组织均匀性的方法 |
JP5995158B2 (ja) * | 2014-09-29 | 2016-09-21 | 日立金属株式会社 | Ni基超耐熱合金 |
CN105583251B (zh) * | 2014-10-24 | 2017-11-10 | 中国科学院金属研究所 | 一种大规格Inconel690合金棒材的锻造方法 |
CN104451263A (zh) * | 2014-12-02 | 2015-03-25 | 常熟市良益金属材料有限公司 | 一种超耐热镍钴合金 |
CN104764352A (zh) * | 2015-03-05 | 2015-07-08 | 苏州市凯业金属制品有限公司 | 一种蒸汽发生器u型管 |
CN104988357A (zh) * | 2015-06-17 | 2015-10-21 | 上海大学兴化特种不锈钢研究院 | 超超临界汽轮机用镍基合金材料 |
CN106319296A (zh) * | 2015-06-30 | 2017-01-11 | 比亚迪股份有限公司 | 一种铝合金及其制备方法和应用 |
KR20180095557A (ko) * | 2015-12-18 | 2018-08-27 | 보르그워너 인코퍼레이티드 | 신규한 합금을 포함하는 웨이스트 게이트 부품 |
JP6733210B2 (ja) | 2016-02-18 | 2020-07-29 | 大同特殊鋼株式会社 | 熱間鍛造用Ni基超合金 |
JP6733211B2 (ja) * | 2016-02-18 | 2020-07-29 | 大同特殊鋼株式会社 | 熱間鍛造用Ni基超合金 |
KR101836713B1 (ko) * | 2016-10-12 | 2018-03-09 | 현대자동차주식회사 | 배기계 부품용 니켈 합금 |
US10533240B2 (en) | 2016-12-23 | 2020-01-14 | Caterpillar Inc. | High temperature alloy for casting engine valves |
JP6960083B2 (ja) * | 2017-06-15 | 2021-11-05 | 日立金属株式会社 | 耐熱板材 |
JP6821147B2 (ja) * | 2018-09-26 | 2021-01-27 | 日立金属株式会社 | 航空機エンジンケース用Ni基超耐熱合金及びこれからなる航空機エンジンケース |
CN110093532B (zh) * | 2019-06-14 | 2020-04-21 | 中国华能集团有限公司 | 一种析出强化型镍基高铬高温合金及其制备方法 |
GB2586036B (en) * | 2019-07-30 | 2022-06-01 | Alloyed Ltd | A nickel-based alloy |
KR20210071623A (ko) * | 2019-12-06 | 2021-06-16 | 현대자동차주식회사 | 엔진 밸브의 제조방법 |
CN116000134B (zh) * | 2022-12-08 | 2023-10-27 | 北京钢研高纳科技股份有限公司 | Gh4738合金冷拔棒材及其制备方法和应用 |
CN116855779B (zh) * | 2023-07-28 | 2024-01-23 | 北京钢研高纳科技股份有限公司 | 一种高温用镍基合金的制备方法及高温用镍基合金 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907552A (en) * | 1971-10-12 | 1975-09-23 | Teledyne Inc | Nickel base alloys of improved properties |
US4140555A (en) * | 1975-12-29 | 1979-02-20 | Howmet Corporation | Nickel-base casting superalloys |
US4376650A (en) * | 1981-09-08 | 1983-03-15 | Teledyne Industries, Inc. | Hot workability of an age hardenable nickle base alloy |
JPS61119640A (ja) * | 1984-11-16 | 1986-06-06 | Honda Motor Co Ltd | 排気バルブ用合金 |
JPS6293333A (ja) * | 1985-10-18 | 1987-04-28 | Mitsubishi Heavy Ind Ltd | Ni基合金 |
JPH0559472A (ja) * | 1991-08-28 | 1993-03-09 | Hitachi Metals Ltd | エンジンバルブ用耐熱合金 |
JPH10219377A (ja) * | 1997-02-07 | 1998-08-18 | Daido Steel Co Ltd | ディーゼルエンジンの高耐食性吸排気バルブ用合金及び吸排気バルブの製造方法 |
JPH1122427A (ja) * | 1997-07-03 | 1999-01-26 | Daido Steel Co Ltd | ディーゼルエンジンバルブの製造方法 |
JP3671271B2 (ja) * | 1997-10-03 | 2005-07-13 | 大同特殊鋼株式会社 | エンジン排気バルブの製造方法 |
US6478897B1 (en) * | 1999-01-28 | 2002-11-12 | Sumitomo Electric Engineering, Ltd. | Heat-resistant alloy wire |
US7160400B2 (en) * | 1999-03-03 | 2007-01-09 | Daido Tokushuko Kabushiki Kaisha | Low thermal expansion Ni-base superalloy |
JP3781402B2 (ja) * | 1999-03-03 | 2006-05-31 | 三菱重工業株式会社 | 低熱膨張Ni基超合金 |
KR100372482B1 (ko) * | 1999-06-30 | 2003-02-17 | 스미토모 긴조쿠 고교 가부시키가이샤 | 니켈 베이스 내열합금 |
JP4382269B2 (ja) * | 2000-09-13 | 2009-12-09 | 日立金属株式会社 | 耐高温硫化腐食性に優れたNi基合金の製造方法 |
CA2396578C (en) * | 2000-11-16 | 2005-07-12 | Sumitomo Metal Industries, Ltd. | Ni-base heat-resistant alloy and weld joint thereof |
JP4895434B2 (ja) * | 2001-06-04 | 2012-03-14 | 清仁 石田 | 快削性Ni基耐熱合金 |
JP4277113B2 (ja) * | 2002-02-27 | 2009-06-10 | 大同特殊鋼株式会社 | 耐熱ばね用Ni基合金 |
JP2004256840A (ja) * | 2003-02-24 | 2004-09-16 | Japan Steel Works Ltd:The | 複合強化型Ni基超合金とその製造方法 |
US7481970B2 (en) * | 2004-05-26 | 2009-01-27 | Hitachi Metals, Ltd. | Heat resistant alloy for use as material of engine valve |
-
2005
- 2005-11-28 JP JP2005341574A patent/JP4830466B2/ja active Active
-
2006
- 2006-01-17 DE DE602006000160T patent/DE602006000160T2/de active Active
- 2006-01-17 EP EP06000958A patent/EP1696108B1/de not_active Not-in-force
- 2006-01-19 US US11/334,583 patent/US20060157171A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2006225756A (ja) | 2006-08-31 |
DE602006000160T2 (de) | 2008-07-24 |
EP1696108A1 (de) | 2006-08-30 |
US20060157171A1 (en) | 2006-07-20 |
DE602006000160D1 (de) | 2007-11-29 |
JP4830466B2 (ja) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1696108B1 (de) | Hitzbeständige Legierung für bei 900°C nachhaltige Auslassventile und Auslassventile aus dieser Legierung | |
EP1867740B1 (de) | Nickel-Superlegierung mit geringer Wärmeausdehnung | |
CN107075629B (zh) | 奥氏体系不锈钢板 | |
EP2725112B1 (de) | Aufkohlungsresistentes metallmaterial und anwendungen des aufkohlungsresistenten metallmaterials | |
EP2430204B1 (de) | Legierung auf nickelbasis für ventilsitzeinsätze | |
EP0384433B1 (de) | Hitzebeständiger ferritischer Stahl mit ausgezeichneter Festigkeit bei hohen Temperaturen | |
EP2157202B1 (de) | Hitzebeständiger ferritstahl | |
EP2039789A1 (de) | Legierung auf Nickelbasis für einen Turbinenrotor einer Dampfturbine und Turbinenrotor für Dampfturbine | |
EP1975267A1 (de) | Metallmaterial mit hervorragender metal-dusting-beständigkeit | |
EP3208354B1 (de) | Ni-basierte superlegierung zum warmschmieden | |
US20110236247A1 (en) | Heat resistant steel for exhaust valve | |
EP3208355B1 (de) | Ni-basierte superlegierung zum warmschmieden | |
US6193822B1 (en) | Method of manufacturing diesel engine valves | |
US20040184946A1 (en) | High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance | |
EP2749663B1 (de) | Wärmebeständiger stahl für auslassventile | |
EP2447385B1 (de) | Hitzebeständiger stahl für ein motorventil mit hervorragender hochtemperaturfestigkeit | |
KR102319375B1 (ko) | 하이 엔트로피 Ni-Fe-Cr계 합금 | |
EP2503012B1 (de) | Ausscheidungsgehärteter, hitzebeständiger Stahl | |
US8741215B2 (en) | Heat-resisting steel for engine valves excellent in high temperature strength | |
JP6745050B2 (ja) | Ni基合金およびそれを用いた耐熱板材 | |
JP2000204449A (ja) | 冷間加工性と高温加熱安定性に優れたFe基耐熱合金 | |
JP3840762B2 (ja) | 冷間加工性に優れた耐熱鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20070215 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UETA, SHIGEKI C/O DAIDO STEEL CO.,LTD. Inventor name: SHIMIZU, TETSUYA C/O DAIDO STEEL CO.,LTD. Inventor name: TOMINAGA, KATSUHIKO Inventor name: KURATA, SEIJI C/O DAIDO STEEL CO.,LTD. Inventor name: NODA, TOSHIHARU C/O DAIDO STEEL CO.,LTD. Inventor name: ASAMI, MAKOTO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REF | Corresponds to: |
Ref document number: 602006000160 Country of ref document: DE Date of ref document: 20071129 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080718 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602006000160 Country of ref document: DE Owner name: HONDA MOTOR CO., LTD., JP Free format text: FORMER OWNER: HONDA MOTOR CO., LTD., DAIDO STEEL CO., LTD., , JP Effective date: 20110309 Ref country code: DE Ref legal event code: R081 Ref document number: 602006000160 Country of ref document: DE Owner name: HONDA MOTOR CO., LTD., JP Free format text: FORMER OWNERS: HONDA MOTOR CO., LTD., TOKYO, JP; DAIDO STEEL CO., LTD., NAGOYA, AICHI, JP Effective date: 20110309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140115 Year of fee payment: 9 Ref country code: SE Payment date: 20140113 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140108 Year of fee payment: 9 Ref country code: IT Payment date: 20140121 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140115 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006000160 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150117 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150117 |