EP1696108A1 - Alliage résistant aux températures élevées pour soupapes d'échappement durables à 900°C et soupapes d'échappement fabriquées dans cet alliage - Google Patents
Alliage résistant aux températures élevées pour soupapes d'échappement durables à 900°C et soupapes d'échappement fabriquées dans cet alliage Download PDFInfo
- Publication number
- EP1696108A1 EP1696108A1 EP06000958A EP06000958A EP1696108A1 EP 1696108 A1 EP1696108 A1 EP 1696108A1 EP 06000958 A EP06000958 A EP 06000958A EP 06000958 A EP06000958 A EP 06000958A EP 1696108 A1 EP1696108 A1 EP 1696108A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- exhaust valves
- heat resistant
- weight
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/20—Making machine elements valve parts
- B21K1/22—Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2303/00—Manufacturing of components used in valve arrangements
Definitions
- the present invention concerns exhaust valves for internal combustion engines, typically, automobile gasoline engines, which are durable at such a high temperature as 900°C and exhibit excellent fatigue properties and oxidation resistance.
- the invention concerns also a heat resistant alloy used as the material for the above-mentioned exhaust valves as well as the method of producing exhaust valves with the alloy.
- Ni-based heat resistant alloys such as NCF751 and NCF80A.
- NCF751 and NCF80A As the material for the exhaust valves of automobile gasoline engines there has been widely used Ni-based heat resistant alloys such as NCF751 and NCF80A.
- another Ni-based alloy Japanese Patent Disclosure 61-119640
- This alloy was proposed by the applicant with a co-applicant, and contains, in addition to the suitable amounts of C, Si and Mn, by wt %, Cr: 15-25%, Mo+0.5W: 0.5-5.0%, Nb+Ta: 0.3-3.0%, Ti: 1.5-3.5%, Al: 0.5-2.5% and B: 0.001-0.02%.
- Ni-based alloy Japanese Patent Disclosure 05-059472
- Japanese Patent Disclosure 05-059472 which contains, in addition to the suitable amounts of C, Si and Mn, by wt %, Co: 2.0-8.0%, Cr: 17.0-23.5%, Mo+0.5W: 2.0-5.5%, Al: 1.0-2.0%, Ti: 2.5-5.0%, B: 0.001-0.020% and Zr: 0.005-0.15%.
- the inventors intended to provide a heat resistant alloy which satisfies the heat resistant condition of "10 8 -cycles fatigue strength at 900°C being 245MPa or more" and, as the results of investigation, noted that materials for disks and blades of gas turbines have heat resistance higher than that of conventional alloys for exhaust valves. Detailed study on the properties of the alloys for gas turbines revealed that they could be generally used as the materials for the exhaust valves.
- the noted heat resistant alloys are named "Waspaloy” and "Udimet 520" having the following typical alloy compositions (by weight %): Waspaloy Ni-19Cr-4.3Mo-14Co-1.4Al-3Ti-0.003B Udimet 520 Ni-20Cr-6Mo-1W-12Co-2Al-3Ti-0.003B
- the inventors further learned that the durability of these alloys differs in the gas turbines and the exhaust valves of engines and that it is necessity to confront with the difference. More specifically, high temperature creep property is required for the gas turbine material, while the high temperature fatigue strength is essential for the exhaust valve materials, and therefore, not only the alloy composition but also conditions for processing and heat treatment must be so chosen to obtain the desired properties.
- the inventors sought the ways for improving the properties of the gas turbine materials, and discovered that, by choosing the Mo- and W- contents to such a relatively high ranges as Mo+W: 3-10%, choosing the Co-content to a suitable amount, and arranging the amounts of Al and Ti to be, by atomic %, Al+Ti: 6.3-8.5%, and the Ti/Al ratio to be 0.4-0.8, the above requirement for the fatigue strength, 10 8 -cycles bending fatigue strength is 245MPa or more, can be satisfied.
- the inventors also discovered that addition of a small amount of Cu is effective for improving the oxidation resistance at 900°C.
- the general object of the present invention is to provide, based on the above knowledge which the inventors obtained, a heat resistant alloy for exhaust valves which can be used at such a high temperature as 900°C and having high fatigue strength as well as oxidation resistance.
- the specific object of the present invention is to provide a heat resistant alloy having particularly high fatigue strength, in other words, an alloy exhibiting many more cycles of test at the same required strength level.
- To provide a method of producing exhaust valves with the present heat resistant alloy is also the object of the present invention.
- the heat resistant alloy for the exhaust valves achieving the above object, durable at the temperature of 900°C, according to the invention consists essentially of, by weight %, C: 0.01-0.15%, Si: up to 2.0%, Mn: up to 1.0%, P: up to 0.02%, S: up to 0.01%, Co: 0.1-15%, Cr: 15-25%, one or two of Mo: 0.1-10% and W: 0.1-5% in such amount as Mo+1/2W: 3-10%, Al: 1.0-3.0%, Ti: 2.0-3.5%, provided that, by atomic %, Al+Ti: 6.3-8.5% and Ti/Al ratio: 0.4-0.8, and further, by weight %, B: 0.001-0.01%, Fe: up to 3%, and the balance of Ni and inevitable impurities.
- the method of producing the exhaust valves using the above-mentioned heat resistant alloy as the material comprises processing the material to form an exhaust valve consisting of a stem and a head by hot forging at 1000-1200°C, and subjecting the processed intermediate product to solid solution treatment at 1000-1200°C, and aging treatment at 700-950°C.
- the heat resistant alloy for exhaust valves according to the invention may contain, in addition to the above-mentioned basic alloy components, by weight %, one or more of V: 0.5-1.5%, Nb: 0.5-1.5% and Ta: 0.5-1.5% in such amount that, by atomic %, Al+Ti+Nb+TA+V: 6.3-8.5%.
- the strength of the alloy will be enhances by addition of the element or elements.
- the heat resistant alloy for exhaust valves of the invention may further contain, in addition to the above mentioned components, one or more of Mg: 0.001-0.03%, Ca: 0.001-0.03%, Zr: 0.001-0.1% and REM: 0.001-0.1%.
- Mg 0.001-0.03%
- Ca 0.001-0.03%
- Zr 0.001-0.1%
- REM 0.001-0.1%.
- the present heat resistant alloy for exhaust valves may further contain Cu: 0.01-2%. Addition of Cu enhances the oxidation resistance of the product valves.
- Silicon is an element used as the deoxidizing agent at melting and refining the alloy, and may be used if necessary. Silicon is also useful for increasing oxidation resistance of the alloy. However, too high a content of Si lowers the toughness and the workability of the alloy, and the addition should be in an amount up to 2.0%. Mn: up to 1.0%
- Manganese also takes the role of deoxidizing agent like silicon, and may be added if necessary. Too much addition damages the workability and the high temperature oxidation resistance of the alloy, and therefore, the amount of addition should be chosen in the range up to 1.0%. P: up to 0.02%, S: up to 0.01%
- Phosphor and sulfur are inevitable impurities of the Ni-alloy of the invention and undesirable, because they lower the hot workability of the alloy.
- the practical range of processing conditions of hot working of the alloy of the invention is, due to the low Ni-content, narrow. From the view to ensure the hot workability the allowable limits of P and S are determined as above. Co: 0.1-15%
- Cobalt stabilizes ⁇ ' phase at high temperature and strengthen the matrix to contribute to improvement of fatigue strength.
- addition of much amount of cobalt results in increased costs, and moreover, excess cobalt makes the austenite phase unstable.
- amount of adding cobalt is in the above range, preferably 2-15%, more preferably, 8-14%.
- Cr 15-25%
- Chromium is essential for increasing the heat resistance of the alloy, and the necessary amount of addition for this purpose is at least 15%. Because addition of Cr exceeding 20% causes precipitation of ⁇ -phase, which results in decrease in toughness and high temperature strength, an amount up to 25% should be chosen. Preferable amount of Cr is in a relatively low range, 15-20%.
- Mo 0.1-10% and W: 0.1-5%, provided that Mo+0.5W: 3-10%
- Both molybdenum and tungsten are the elements which improve the high temperature strength of the alloy by enhancing solid solution of the matrix, and therefore, important components for high fatigue strength at 900°C intended by the inventors.
- both the elements are added in the respective amounts of at least 0.1%. Addition of large amounts causes increased costs and decreased workability, and thus, the upper limits as above are given.
- Preferable amount of Mo is usually in the higher range of 5-10%. However, excess addition is not advantageous due to decreased oxidation resistance.
- Aluminum is an important element in combining with nickel to form ⁇ '-phase. At an Al-content less than 1.0% precipitation of ⁇ '-phase is so insufficient that the desired high temperature strength cannot be obtained. On the other hand, at an Al-content exceeding 3.0% hot workability of the alloy is low.
- Titanium also combines with nickel to form ⁇ '-phase which is useful for improving the high temperature strength.
- the Ti-content is so small as less than 2.0%, solid solution temperature of the ⁇ '-phase becomes low, and as the result, sufficient high temperature strength cannot be obtained.
- Addition of Ti to such a large amount as more than 3.5% lowers the workability, and causes precipitation of ⁇ -phase (Ni 3 Ti), which lowers the high temperature strength and the toughness of the alloy. Also, hot processing of the alloy becomes difficult.
- the amount of Al+Ti(+Nb) is a measure for the amount of ⁇ '-phase at 900°C.
- the fatigue strength of the alloy is low, while in case where the amount is large, hot processing becomes difficult. This is the reason why the range, by atomic %, 6.3-8.5% is chosen.
- the Ti/Al ratio is an important factor for stabilizing the ⁇ '-phase at 900°C and increasing the fatigue strength. At such a low value of the ratio as less than 0.4, aging effect is so small that the sufficient strength may not be obtained. On the other hand, such a high value as more than 0.8 causes precipitation of the ⁇ -phase and the strength of the alloy will be low. Preferable ratio in the above range is 0.6-0.8, in which the intended improvement in the fatigue strength will be effectively achieved. B: 0.001-0.01%
- B Boron contributes to improvement in the hot workability of the alloy, and further, improves the fatigue strength by segregating at the grain boundaries to enhance the strength of the grain boundaries.
- B is added in an amount of 0.001% or more at which the above effects can be obtained. Excess addition of B lowers the melting point of the matrix to damage the hot workability, and therefore, addition amount should be up to 0.01%.
- Fe up to 3%
- Iron is a component which, depending on the choice of the materials, inevitably comes into the product alloy. If the Fe-content is large, then the strength of the alloy will be low, and therefore, a lower Fe-content is preferable. As the permissible limit the above 3% is given. It is recommended to limit the Fe-content to be less than 1%, which can be done by selecting the materials.
- V 0.2-1.0%
- Nb 0.5-1.5%
- Ta 0.5-1.5%
- Al+Ti+Nb+Ta+V 6.3-8.5%
- Niobium, tantalum and vanadium all combine with Al and Ni to strengthen the ⁇ '-phase. Vanadium also contributes to solution hardening. If these effects are expected, it is recommended to add one or more of these elements in an amount or amounts of the above lower limit or more. Because excess content or contents will decrease the toughness of the alloy, the addition should be made in the amount or amounts up to the respective upper limits and not exceeding the limited total amount.
- Mg 0.001-0.03%
- Ca 0.001-0.03%
- Zr 0.001-0.1%
- REM 0.001-0.1%
- addition of copper increases oxidation resistance of the alloy and improves the durability of the product valves. Addition in the amount of 0.01% or more is recommended. Excess addition of Cu results in decreased hot workability, and therefore, addition must be up to 2.0%
- the heat resistant alloy for exhaust valves according to the present invention exhibits, after being subjected to the solution treatment and the aging, 10 8 -cycles fatigue strength at 900°C of 245MPa or more, and the weight increase after being subjected to oxidation test by keeping at 900°C for 400 hours is 5mg/cm 2 or less.
- the exhaust valves made of the present alloy can withstand against such a high temperature as 900°C that the valves made of the conventional materials cannot withstand.
- the valves have high durability given by high fatigue strength and high oxidation resistance, and meet the demand for increased performance of automobile engines.
- Ni-based alloys having the alloy compositions shown in Table 1 (Working Examples) and Table 2 (Control Examples) were prepared in a 50kg HF-induction furnace and cast into ingots.
- the Ni-based alloys prepared for the comparison are those used or proposed for the material of the conventional exhaust valves, which are of the following steel marks.
- Control 1 NCF751
- Control 2 NCF80
- Control 3 Ni-based alloy disclosed in Japanese Patent
- Control 4 Ni-based alloy disclosed in Japanese Patent
- the respective ingots were forged and rolled to rods of diameter 16mm.
- the rods were subjected to solid solution treatment of heating at 1050°C for 1 hour followed by water quenching, and aging by heating at 750°C for 4 hours followed by air cooling.
- the obtained materials were subjected to tensile test and rotary bending fatigue test at 900°C and continuous oxidation test for 400 hours.
- the results are shown in Table 3 (Working Examples) and Table 4 (Control Examples) together with the values of Ti/Al ratios and atomic % of Al+Ti. Table 3 Test results, Working Examples No.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005012030 | 2005-01-19 | ||
JP2005341574A JP4830466B2 (ja) | 2005-01-19 | 2005-11-28 | 900℃での使用に耐える排気バルブ用耐熱合金およびその合金を用いた排気バルブ |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1696108A1 true EP1696108A1 (fr) | 2006-08-30 |
EP1696108B1 EP1696108B1 (fr) | 2007-10-17 |
Family
ID=36263922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06000958A Not-in-force EP1696108B1 (fr) | 2005-01-19 | 2006-01-17 | Alliage résistant aux températures élevées pour soupapes d'échappement durables à 900°C et soupapes d'échappement fabriquées dans cet alliage |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060157171A1 (fr) |
EP (1) | EP1696108B1 (fr) |
JP (1) | JP4830466B2 (fr) |
DE (1) | DE602006000160T2 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1837411A1 (fr) * | 2006-03-22 | 2007-09-26 | Daido Tokushuko Kabushiki Kaisha | Superalliage à base de Ni |
CN103789576A (zh) * | 2014-01-15 | 2014-05-14 | 常州大学 | 一种高晶界强度镍基合金及其制备方法 |
CN103938134A (zh) * | 2014-04-28 | 2014-07-23 | 钢铁研究总院 | 提高耐热合金厚壁挤压管径向组织均匀性的方法 |
CN102084014B (zh) * | 2008-04-10 | 2014-08-13 | 亨廷顿合金公司 | 超超临界锅炉集箱合金及制备方法 |
WO2015117583A1 (fr) * | 2014-02-04 | 2015-08-13 | VDM Metals GmbH | Alliage thermodurcissable de nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion et une aptitude au façonnage satisfaisantes |
WO2015117584A1 (fr) * | 2014-02-04 | 2015-08-13 | VDM Metals GmbH | Alliage thermodurcissable de nickel-chrome-fer-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion et une aptitude au façonnage satisfaisantes |
CN106103759A (zh) * | 2014-02-04 | 2016-11-09 | Vdm金属国际有限公司 | 具有良好耐磨性、耐蠕变性、耐腐蚀性和可加工性的硬质镍‑铬‑钛‑铝‑合金 |
WO2017105942A1 (fr) * | 2015-12-18 | 2017-06-22 | Borgwarner Inc. | Composant de soupape de décharge comprenant un nouvel alliage |
EP3208354A1 (fr) * | 2016-02-18 | 2017-08-23 | Daido Steel Co.,Ltd. | Superalliage à base de ni pour forgeage à chaud |
EP3109331A4 (fr) * | 2014-02-18 | 2017-10-11 | Shanghai Power Equipment Research Institute | Alliage à base de nickel haute température pour centrale électrique au charbon ultra-supercritique de niveau 700 °c et préparation de celui-ci |
WO2021019240A1 (fr) * | 2019-07-30 | 2021-02-04 | Alloyed Limited | Alliage à base de nickel |
EP3831967A1 (fr) * | 2019-12-06 | 2021-06-09 | Hyundai Motor Company | Procédé de préparation de soupape de moteur |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7651575B2 (en) * | 2006-07-07 | 2010-01-26 | Eaton Corporation | Wear resistant high temperature alloy |
KR101007582B1 (ko) | 2008-06-16 | 2011-01-12 | 한국기계연구원 | 파형 입계를 위한 니켈기 합금의 열처리 방법 및 그에 의한합금 |
FR2949234B1 (fr) * | 2009-08-20 | 2011-09-09 | Aubert & Duval Sa | Superalliage base nickel et pieces realisees en ce suparalliage |
CN101906557A (zh) * | 2010-09-15 | 2010-12-08 | 江苏天业合金材料有限公司 | 一种超低温焊接合金钢及其生产方法 |
US10266926B2 (en) * | 2013-04-23 | 2019-04-23 | General Electric Company | Cast nickel-base alloys including iron |
CN104278175B (zh) * | 2013-07-12 | 2018-10-02 | 大同特殊钢株式会社 | 高温强度优异的能够热锻造的Ni基超合金 |
CN103695826B (zh) * | 2013-12-20 | 2015-07-29 | 钢铁研究总院 | 大尺寸gh690镍基合金棒坯的细晶锻造方法 |
CN103924125B (zh) * | 2014-04-21 | 2016-03-23 | 西北工业大学 | 一种增加锆元素含量的k4169高温合金 |
JP5995158B2 (ja) * | 2014-09-29 | 2016-09-21 | 日立金属株式会社 | Ni基超耐熱合金 |
CN105583251B (zh) * | 2014-10-24 | 2017-11-10 | 中国科学院金属研究所 | 一种大规格Inconel690合金棒材的锻造方法 |
CN104451263A (zh) * | 2014-12-02 | 2015-03-25 | 常熟市良益金属材料有限公司 | 一种超耐热镍钴合金 |
CN104764352A (zh) * | 2015-03-05 | 2015-07-08 | 苏州市凯业金属制品有限公司 | 一种蒸汽发生器u型管 |
CN104988357A (zh) * | 2015-06-17 | 2015-10-21 | 上海大学兴化特种不锈钢研究院 | 超超临界汽轮机用镍基合金材料 |
CN106319296A (zh) * | 2015-06-30 | 2017-01-11 | 比亚迪股份有限公司 | 一种铝合金及其制备方法和应用 |
JP6733211B2 (ja) * | 2016-02-18 | 2020-07-29 | 大同特殊鋼株式会社 | 熱間鍛造用Ni基超合金 |
KR101836713B1 (ko) * | 2016-10-12 | 2018-03-09 | 현대자동차주식회사 | 배기계 부품용 니켈 합금 |
US10533240B2 (en) | 2016-12-23 | 2020-01-14 | Caterpillar Inc. | High temperature alloy for casting engine valves |
JP6960083B2 (ja) * | 2017-06-15 | 2021-11-05 | 日立金属株式会社 | 耐熱板材 |
JP6821147B2 (ja) * | 2018-09-26 | 2021-01-27 | 日立金属株式会社 | 航空機エンジンケース用Ni基超耐熱合金及びこれからなる航空機エンジンケース |
CN110093532B (zh) * | 2019-06-14 | 2020-04-21 | 中国华能集团有限公司 | 一种析出强化型镍基高铬高温合金及其制备方法 |
CN116000134B (zh) * | 2022-12-08 | 2023-10-27 | 北京钢研高纳科技股份有限公司 | Gh4738合金冷拔棒材及其制备方法和应用 |
CN116855779B (zh) * | 2023-07-28 | 2024-01-23 | 北京钢研高纳科技股份有限公司 | 一种高温用镍基合金的制备方法及高温用镍基合金 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119640A (ja) * | 1984-11-16 | 1986-06-06 | Honda Motor Co Ltd | 排気バルブ用合金 |
JPH0559472A (ja) * | 1991-08-28 | 1993-03-09 | Hitachi Metals Ltd | エンジンバルブ用耐熱合金 |
EP0889207A1 (fr) * | 1997-07-03 | 1999-01-07 | Daido Steel Company Limited | Procédé de fabrication de soupapes de moteur diesel |
US6139660A (en) * | 1997-02-07 | 2000-10-31 | Daido Tokushuko Kabushiki Kaisha | High corrosion resisting alloy for diesel engine valve and method for producing the valve |
US20020195175A1 (en) * | 2001-06-04 | 2002-12-26 | Kiyohito Ishida | Free-cutting Ni-base heat-resistant alloy |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907552A (en) * | 1971-10-12 | 1975-09-23 | Teledyne Inc | Nickel base alloys of improved properties |
US4140555A (en) * | 1975-12-29 | 1979-02-20 | Howmet Corporation | Nickel-base casting superalloys |
US4376650A (en) * | 1981-09-08 | 1983-03-15 | Teledyne Industries, Inc. | Hot workability of an age hardenable nickle base alloy |
JPS6293333A (ja) * | 1985-10-18 | 1987-04-28 | Mitsubishi Heavy Ind Ltd | Ni基合金 |
JP3671271B2 (ja) * | 1997-10-03 | 2005-07-13 | 大同特殊鋼株式会社 | エンジン排気バルブの製造方法 |
US6478897B1 (en) * | 1999-01-28 | 2002-11-12 | Sumitomo Electric Engineering, Ltd. | Heat-resistant alloy wire |
US7160400B2 (en) * | 1999-03-03 | 2007-01-09 | Daido Tokushuko Kabushiki Kaisha | Low thermal expansion Ni-base superalloy |
JP3781402B2 (ja) * | 1999-03-03 | 2006-05-31 | 三菱重工業株式会社 | 低熱膨張Ni基超合金 |
KR100372482B1 (ko) * | 1999-06-30 | 2003-02-17 | 스미토모 긴조쿠 고교 가부시키가이샤 | 니켈 베이스 내열합금 |
JP4382269B2 (ja) * | 2000-09-13 | 2009-12-09 | 日立金属株式会社 | 耐高温硫化腐食性に優れたNi基合金の製造方法 |
CA2396578C (fr) * | 2000-11-16 | 2005-07-12 | Sumitomo Metal Industries, Ltd. | Alliage refractaire a base de nickel (ni) et joint soude integrant celui-ci |
JP4277113B2 (ja) * | 2002-02-27 | 2009-06-10 | 大同特殊鋼株式会社 | 耐熱ばね用Ni基合金 |
JP2004256840A (ja) * | 2003-02-24 | 2004-09-16 | Japan Steel Works Ltd:The | 複合強化型Ni基超合金とその製造方法 |
US7481970B2 (en) * | 2004-05-26 | 2009-01-27 | Hitachi Metals, Ltd. | Heat resistant alloy for use as material of engine valve |
-
2005
- 2005-11-28 JP JP2005341574A patent/JP4830466B2/ja active Active
-
2006
- 2006-01-17 DE DE602006000160T patent/DE602006000160T2/de active Active
- 2006-01-17 EP EP06000958A patent/EP1696108B1/fr not_active Not-in-force
- 2006-01-19 US US11/334,583 patent/US20060157171A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119640A (ja) * | 1984-11-16 | 1986-06-06 | Honda Motor Co Ltd | 排気バルブ用合金 |
US4871512A (en) * | 1984-11-16 | 1989-10-03 | Daido Tokushuko K.K. | Alloys for exhaust valve |
JPH0559472A (ja) * | 1991-08-28 | 1993-03-09 | Hitachi Metals Ltd | エンジンバルブ用耐熱合金 |
US6139660A (en) * | 1997-02-07 | 2000-10-31 | Daido Tokushuko Kabushiki Kaisha | High corrosion resisting alloy for diesel engine valve and method for producing the valve |
EP0889207A1 (fr) * | 1997-07-03 | 1999-01-07 | Daido Steel Company Limited | Procédé de fabrication de soupapes de moteur diesel |
US20020195175A1 (en) * | 2001-06-04 | 2002-12-26 | Kiyohito Ishida | Free-cutting Ni-base heat-resistant alloy |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 010, no. 310 (C - 379) 22 October 1986 (1986-10-22) * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 373 (C - 1083) 14 July 1993 (1993-07-14) * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1837411A1 (fr) * | 2006-03-22 | 2007-09-26 | Daido Tokushuko Kabushiki Kaisha | Superalliage à base de Ni |
CN102084014B (zh) * | 2008-04-10 | 2014-08-13 | 亨廷顿合金公司 | 超超临界锅炉集箱合金及制备方法 |
CN103789576B (zh) * | 2014-01-15 | 2016-03-02 | 常州大学 | 一种高晶界强度镍基合金及其制备方法 |
CN103789576A (zh) * | 2014-01-15 | 2014-05-14 | 常州大学 | 一种高晶界强度镍基合金及其制备方法 |
CN106103759A (zh) * | 2014-02-04 | 2016-11-09 | Vdm金属国际有限公司 | 具有良好耐磨性、耐蠕变性、耐腐蚀性和可加工性的硬质镍‑铬‑钛‑铝‑合金 |
WO2015117584A1 (fr) * | 2014-02-04 | 2015-08-13 | VDM Metals GmbH | Alliage thermodurcissable de nickel-chrome-fer-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion et une aptitude au façonnage satisfaisantes |
WO2015117583A1 (fr) * | 2014-02-04 | 2015-08-13 | VDM Metals GmbH | Alliage thermodurcissable de nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion et une aptitude au façonnage satisfaisantes |
CN105899693A (zh) * | 2014-02-04 | 2016-08-24 | Vdm金属有限公司 | 具有良好耐磨性、耐蠕变性、耐腐蚀性和可加工性的硬化的镍-铬-钴-钛-铝-合金 |
US10870908B2 (en) | 2014-02-04 | 2020-12-22 | Vdm Metals International Gmbh | Hardening nickel-chromium-iron-titanium-aluminium alloy with good wear resistance, creep strength, corrosion resistance and processability |
US11098389B2 (en) | 2014-02-04 | 2021-08-24 | Vdm Metals International Gmbh | Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability |
CN105899693B (zh) * | 2014-02-04 | 2018-04-10 | Vdm金属有限公司 | 具有良好耐磨性、耐蠕变性、耐腐蚀性和可加工性的硬化的镍‑铬‑钴‑钛‑铝‑合金 |
EP3109331A4 (fr) * | 2014-02-18 | 2017-10-11 | Shanghai Power Equipment Research Institute | Alliage à base de nickel haute température pour centrale électrique au charbon ultra-supercritique de niveau 700 °c et préparation de celui-ci |
CN103938134B (zh) * | 2014-04-28 | 2015-09-30 | 钢铁研究总院 | 提高耐热合金厚壁挤压管径向组织均匀性的方法 |
CN103938134A (zh) * | 2014-04-28 | 2014-07-23 | 钢铁研究总院 | 提高耐热合金厚壁挤压管径向组织均匀性的方法 |
WO2017105942A1 (fr) * | 2015-12-18 | 2017-06-22 | Borgwarner Inc. | Composant de soupape de décharge comprenant un nouvel alliage |
CN108431258A (zh) * | 2015-12-18 | 2018-08-21 | 博格华纳公司 | 包含新型合金的废气门部件 |
CN108431258B (zh) * | 2015-12-18 | 2021-11-09 | 博格华纳公司 | 包含新型合金的废气门部件 |
US11306376B2 (en) | 2015-12-18 | 2022-04-19 | Borgwarner Inc. | Wastegate component comprising a novel alloy |
US10472701B2 (en) | 2016-02-18 | 2019-11-12 | Daido Steel Co., Ltd. | Ni-based superalloy for hot forging |
EP3208354A1 (fr) * | 2016-02-18 | 2017-08-23 | Daido Steel Co.,Ltd. | Superalliage à base de ni pour forgeage à chaud |
WO2021019240A1 (fr) * | 2019-07-30 | 2021-02-04 | Alloyed Limited | Alliage à base de nickel |
EP3831967A1 (fr) * | 2019-12-06 | 2021-06-09 | Hyundai Motor Company | Procédé de préparation de soupape de moteur |
US11597981B2 (en) | 2019-12-06 | 2023-03-07 | Hyundai Motor Company | Preparing method of engine valve |
Also Published As
Publication number | Publication date |
---|---|
JP2006225756A (ja) | 2006-08-31 |
DE602006000160T2 (de) | 2008-07-24 |
EP1696108B1 (fr) | 2007-10-17 |
US20060157171A1 (en) | 2006-07-20 |
DE602006000160D1 (de) | 2007-11-29 |
JP4830466B2 (ja) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1696108B1 (fr) | Alliage résistant aux températures élevées pour soupapes d'échappement durables à 900°C et soupapes d'échappement fabriquées dans cet alliage | |
EP1867740B1 (fr) | Superalliage à base de Ni à faible expansion thermique | |
US5779972A (en) | Heat resisting alloys, exhaust valves and knit meshes for catalyzer for exhaust gas | |
EP2157202B1 (fr) | Acier ferrite résistant à la chaleur | |
EP3208354B1 (fr) | Superalliage à base de ni pour forgeage à chaud | |
US20090081073A1 (en) | Alloys with high corrosion resistance for engine valve applications | |
US20110236247A1 (en) | Heat resistant steel for exhaust valve | |
JPH0830251B2 (ja) | 高温強度の優れたフェライト系耐熱鋼 | |
EP3208355B1 (fr) | Superalliage à base de ni pour forgeage à chaud | |
US5660938A (en) | Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer | |
JP3951943B2 (ja) | 耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金 | |
JP2000256770A (ja) | 低熱膨張Ni基超合金 | |
EP2749663B1 (fr) | Acier résistant à la chaleur pour soupapes d'échappement | |
JP4830443B2 (ja) | 高温における強度特性にすぐれた排気バルブ用耐熱合金 | |
US5567383A (en) | Heat resisting alloys | |
EP2447385B1 (fr) | Acier résistant à la chaleur pour soupape de moteur présentant une excellente résistance à des températures élevées | |
KR102319375B1 (ko) | 하이 엔트로피 Ni-Fe-Cr계 합금 | |
EP2503012B1 (fr) | Acier thermorésistant durci par précipitation | |
US8741215B2 (en) | Heat-resisting steel for engine valves excellent in high temperature strength | |
JP6745050B2 (ja) | Ni基合金およびそれを用いた耐熱板材 | |
JP2000204449A (ja) | 冷間加工性と高温加熱安定性に優れたFe基耐熱合金 | |
JP3840762B2 (ja) | 冷間加工性に優れた耐熱鋼 | |
JPH10130789A (ja) | 冷間加工性に優れた耐熱合金 | |
JPH04247853A (ja) | エンジンバルブ用耐熱鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20070215 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: UETA, SHIGEKI C/O DAIDO STEEL CO.,LTD. Inventor name: SHIMIZU, TETSUYA C/O DAIDO STEEL CO.,LTD. Inventor name: TOMINAGA, KATSUHIKO Inventor name: KURATA, SEIJI C/O DAIDO STEEL CO.,LTD. Inventor name: NODA, TOSHIHARU C/O DAIDO STEEL CO.,LTD. Inventor name: ASAMI, MAKOTO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REF | Corresponds to: |
Ref document number: 602006000160 Country of ref document: DE Date of ref document: 20071129 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080718 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602006000160 Country of ref document: DE Owner name: HONDA MOTOR CO., LTD., JP Free format text: FORMER OWNER: HONDA MOTOR CO., LTD., DAIDO STEEL CO., LTD., , JP Effective date: 20110309 Ref country code: DE Ref legal event code: R081 Ref document number: 602006000160 Country of ref document: DE Owner name: HONDA MOTOR CO., LTD., JP Free format text: FORMER OWNERS: HONDA MOTOR CO., LTD., TOKYO, JP; DAIDO STEEL CO., LTD., NAGOYA, AICHI, JP Effective date: 20110309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140115 Year of fee payment: 9 Ref country code: SE Payment date: 20140113 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140108 Year of fee payment: 9 Ref country code: IT Payment date: 20140121 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140115 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006000160 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150117 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150117 |