EP1635187A2 - Radar à ondes millimétriques avec un radome absorbant les lobes laterales - Google Patents
Radar à ondes millimétriques avec un radome absorbant les lobes laterales Download PDFInfo
- Publication number
- EP1635187A2 EP1635187A2 EP05026399A EP05026399A EP1635187A2 EP 1635187 A2 EP1635187 A2 EP 1635187A2 EP 05026399 A EP05026399 A EP 05026399A EP 05026399 A EP05026399 A EP 05026399A EP 1635187 A2 EP1635187 A2 EP 1635187A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- radome
- millimeter wave
- antenna
- electromagnetic wave
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 239000003575 carbonaceous material Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000001746 injection moulding Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract description 2
- 239000006096 absorbing agent Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000035699 permeability Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910002771 BaFe12O19 Inorganic materials 0.000 description 1
- 229910002402 SrFe12O19 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/027—Constructional details of housings, e.g. form, type, material or ruggedness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
- H01Q1/421—Means for correcting aberrations introduced by a radome
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/001—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/949—Radiation emitter using nanostructure
- Y10S977/95—Electromagnetic energy
Definitions
- the present invention relates to a millimeter wave radar mounted on a vehicle.
- a millimeter wave radar is used for the purpose of automatic operation or collision prevention of a vehicle.
- the millimeter wave radar is a system for transmitting a millimeter electromagnetic wave in a desired direction, receiving the reflection of the transmitted wave, and preliminarily detecting a body which may act as an obstacle.
- the millimeter wave radar has the problem that the side lobe of the transmitted electromagnetic wave is reflected by surrounding bodies, with the result that unnecessary bodies would also be detected.
- the present invention provides a millimeter wave radar comprising an antenna base having a transmission-reception antenna, a housing for fixing the antenna base, and/or a radome covering the antenna base, characterized in that the radome can be formed integral with an electromagnetic wave absorbing layer.
- Fig. 1 is a cross-sectional view of a millimeter wave radar.
- the millimeter wave radar shown in Fig. 1 includes a radome 2, an antenna base 3 in which a transmission-reception antenna is mounted, a control circuit 6, an RF module 5, and a housing 4 for fixing the antenna base 3 and accomodating the control circuit 6 and the RF module therein.
- Reference numeral 7 in Fig. 1 shows a main beam of the transmitted electromagnetic wave transmitted from the transmission-reception antenna
- reference numeral 8 shows a side lobe of the transmitted electromagnetic wave transmitted from the transmission-reception antenna, in the form of conceptual illustration for easier understanding.
- the transmission-reception antenna herein means an antenna arrangement so constituted as to be capable of transmission and reception, and the case where a transmission antenna and a reception antenna are separately arranged should be also included in the meaning of the term "transmission-reception antenna".
- the RF module 5 and the control circuit 6 are contained in the housing 4, and the radome 2 for protecting the antenna surface from flying stones, rain and the like is mounted over the entire surface on the front side of the antenna base 3.
- the radome must be formed of a material which transmits electromagnetic waves therethrough without reflection or absorption, and is selected to have a low dielectric constant and a low dielectric loss. More specifically, the material of the radome preferably has a dielectric constant at 76.5 GHz of not more than 3.0 and a dielectric loss tangent of not more than 0.003. Simultaneously, it is desirable that the material of the radome be excellent in chemical resistance, mechanical strength, cost, processability and the like.
- the millimeter wave radar is disposed in the inside of a vehicle. As shown in Fig. 1, however, the side lobe 8 of the electromagnetic wave transmitted from the transmission-reception antenna passed through a side surface portion of the radome to be reflected by members constituting the vehicle therearound, and the reflected wave again enters the radome to be received by the transmission-reception antenna, whereby unnecessary bodies may also be detected.
- Fig. 2 is a cross-sectional view of the millimeter wave radar according to the present embodiment.
- a layer having a dielectric loss higher than that of the radome or a magnetic loss layer 9 (electromagnetic wave absorbing layer) 2 is disposed at a part of the side surface portion of the radome 2, whereby the side lobe transmitted from the transmission-reception antenna is absorbed, and the permeating wave is reduced.
- the millimeter wave rador with a thickness necessary for absorbing the side lobe, without requiring the strength of the side lobe absorbing means itself, so that the problem of an increase in weight can be obviated.
- the means for absorbing the side lobe since the means for absorbing the side lobe is provided at a part of the radome, the side lobe can be absorbed without increasing the structure and production steps of the antenna unit (the antenna and peripheral members), and the antenna unit would not be exposed directly to winds and rain.
- the side lobe absorbing means electromagagnetic wave absorbing layer
- the radome are formed as one body with each other, so that the side lobe absorbing means is registered with the antenna base with ease.
- FIG. 3 A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Fig. 3.
- the permeating wave to the outside of the radome can be completely removed while restraining the reflection of the transmitted electromagnetic wave on the inside surface of the radome.
- Such a constitution is a constitution of a matching type electromagnetic wave absorber backed with a reflector.
- Absorption mechanisms include a multiple reflection effect by critical coupling between the surface reflection wave and the multiple reflection waves in the electromagnetic wave absorber, and an attenuating effect due to dielectric loss or magnetic loss in the electromagnetic wave absorber.
- a return loss (R.L. (dB)) of electromagnetic wave is expressed by the following equation, and the complex permitivity, the complex permeability and the thickness of the electromagnetic wave absorbing layer for obtaining a desired return loss are determined univocally.
- R . L - 20 log
- the layer having a dielectric loss higher than that of the radome is preferably formed of a carbon material, and the magnetic loss layer is preferably formed of a material obtained by dispersing a hexagonal ferrite in a material having an electric resistivity higher than that of the hexagonal ferrite.
- the dielectric loss tangent of the layer higher in dielectric loss than the radome is preferably not less than 0.003 at 76.5 GHz.
- the material having the higher electric resistivity is an insulating high molecular weight material such as rubber and resin
- the carbon material is more preferable than the hexagonal ferrite, in view of dispersibility of the filler.
- the carbon material is preferably selected from at least one among the group consisting of carbon nanotube, carbon microcoil, shungite carbon, carbon black, exfoliated graphite, and carbon fiber, and, in view of electromagnetic wave absorption characteristics, carbon nanotube, shungite carbon, and expanded graphite are more preferable.
- a hexagonal ferrite obtained by substituting a part of Fe in an M-type hexagonal ferrite with Ti, Mn, Al or the like, such as BaFe 12 O 19 and SrFe 12 O 19 , are preferable.
- the material having the higher electric resistivity may be the same material as that of the radome, which is convenient in view of producibility.
- a material having a high conductivity may be used without special limitations, and examples of the usable material include metallic materials, carbon materials, and materials obtained by dispersing these fillers in a high molecular weight material at a high filling content.
- a material in a mesh form is more preferable, from the viewpoints of lightness in weight and adhesion to the resin.
- the wavelength of the electromagnetic wave is ⁇
- the size of the mesh is set to be not more than ⁇ /4, the electromagnetic wave is not transmitted through the openings of the mesh, and the conductor layer can fully function as a reflector.
- the conductor layer is formed as a part of the radome, there are the merits that it is unnecessary to increase the thickness of the conductor layer excessively in consideration of the strength of the conductor layer itself, a decrease in weight can be contrived, and the antenna unit is fabricated with ease.
- FIG. 4 A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Fig. 4.
- the present embodiment resides in that the impedance to the transmitted electromagnetic wave of a layer higher in dielectric loss than the radome or a magnetic loss layer 9 is gradually reduced, from the side of the layer higher in dielectric loss than the radome or the magnetic loss layer 9 toward a conductor layer 10 (from the inside to the outside of the radome).
- the layer higher in dielectric loss than the radome or the magnetic loss layer 9 is composed of a multiplicity of layers differing in the impedance. With this constitution, it is possible to enhance the electromagnetic wave absorption characteristic for the electromagnetic wave transmitted from the transmission-reception antenna and obliquely incident on the inside surface of the radome (oblique incident wave).
- the conductor layer can be omitted. More specifically, it suffices to gradually increase the complex permitivity or complex permeability of the layer higher in dielectric loss than the radome or the magnetic loss layer, from the electromagnetic wave incidence side toward the side of the conductor layer 10. For this purpose, it suffices to gradually increase the filling content of the carbon material or the hexagonal ferrite in the material having an electric resistivity higher than that of the carbon material or the hexagonal ferrite.
- FIG. 5A and 5B A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Figs. 5A and 5B.
- the millimeter wave radar according to the present embodiment has a structure in which a layer higher in dielectric loss than the radome or a magnetic loss layer 9 is provided with recesses and projections in its surface. This allows to enhance the electromagnetic wave absorption characteristic for the oblique incident wave.
- this embodiment includes a mode in which the conductor layer is omitted, as shown in Embodiment 1.
- FIG. 6 A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Fig. 6.
- the millimeter wave radar according to the present embodiment has a structure in which a layer higher in dielectric loss than the radome or a magnetic loss layer 9 and the conductor layer 10 are inclined by an angle ⁇ , relative to the direction of normal to the antenna base 3. This allows to enhance the electromagnetic wave absorption characteristic for the oblique incident wave.
- this embodiment includes a mode in which the conductor layer is omitted, as shown in Embodiment 1.
- FIG. 7 A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Fig. 7.
- the millimeter wave radar according to the present embodiment has a structure in which a side surface portion of a radome is also inclined by an angle ⁇ , relative to the direction of normal to the plane of the antenna base 3.
- a side surface portion of a radome is also inclined by an angle ⁇ , relative to the direction of normal to the plane of the antenna base 3.
- the layer from covering the antenna base in order to secure the amount of a main beam emitted from the transmission-reception antenna in the antenna base 3. This is true in the case where the side surface portion of the radome is inclined and a front portion of the radome has an area larger than the antenna base 3 has, whereby the amount of the main beam can be secured more.
- FIG. 8 A cross-sectional view of a millimeter wave radar according to the present embodiment is shown in Fig. 8.
- the millimeter wave radar according to the present embodiment has a structure in which a layer higher in dielectric loss than a radome or a magnetic loss layer 9 is formed of a flexible material, and is disposed to extend up to the portion of joint between the radome 2 and a housing 4.
- the layer functions as a substitute for a packing which has been used for securing hermetic seal property of the inside of the radome and the inside of the housing, so that the production step for inserting the packing can be omitted.
- the present embodiments illustrate a method of making a millimeter wave radar according to the present invention.
- Examples of a method for making a layer higher in dielectric loss than a radome or a magnetic loss layer and a conductor layer on the inside surface of the radome include, for example, a method in which materials formed in a sheet shape are made to adhere to the inside surface of the radome by an adhesive or the like, and a method of applying coating materials to the radome. Where it is desired to retain the thickness of the radome, the method of adhesion to the inside surface of the radome or the method of applying the coating material is useful. From the viewpoints of producibility and production cost, however, a method of integrally molding the layer higher in dielectric loss than the radome or the magnetic loss layer and the conductor layer by injection molding or the like is more preferable.
- Fig. 9 shows a method of integrally molding a radome by injection molding.
- a conductor layer 10 is formed.
- the conductor layer 10 may be formed by inserting the conductor layer 10 onto the inside surface of the radome as it is, or by plating, ion plating, vapor deposition or the like. Thereafter, a layer higher in dielectric loss than the radome main body or a magnetic loss layer 9 is formed by injection molding and is then formed integral with the conductor layer 10. In the case where the conductor layer 10 is omitted, it is possible to cope with the case by omitting the relevant steps.
- the radome After the radome is formed by the above-mentioned steps, it is attached to a separately formed housing for accommodating an antenna base and a control circuit therein, and is fixed by a screw or the like, to complete a millimeter wave radar. Therefore, it is possible to provide a millimeter wave radar in which the layers can be integrally molded without complicating the structure or production step of the antenna base, in which it is easy to do positioning work between the antenna base and an electromagnetic wave absorbing layer, and which is inexpensive and excellent in weathering performance.
- a millimeter wave radar which is light in weight, excellent in weathering performance, inexpensive, and excellent in detection performance.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Details Of Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241292A JP2004077399A (ja) | 2002-08-22 | 2002-08-22 | ミリ波レーダ |
EP03005307A EP1398647A3 (fr) | 2002-08-22 | 2003-03-11 | Radar à ondes millimétriques avec un radome absorbant les lobes laterales |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03005307A Division EP1398647A3 (fr) | 2002-08-22 | 2003-03-11 | Radar à ondes millimétriques avec un radome absorbant les lobes laterales |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1635187A2 true EP1635187A2 (fr) | 2006-03-15 |
EP1635187A3 EP1635187A3 (fr) | 2006-05-31 |
EP1635187B1 EP1635187B1 (fr) | 2007-12-12 |
Family
ID=31884542
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05026399A Expired - Lifetime EP1635187B1 (fr) | 2002-08-22 | 2003-03-11 | Radar à ondes millimétriques avec un radome absorbant les lobes laterales |
EP03005307A Ceased EP1398647A3 (fr) | 2002-08-22 | 2003-03-11 | Radar à ondes millimétriques avec un radome absorbant les lobes laterales |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03005307A Ceased EP1398647A3 (fr) | 2002-08-22 | 2003-03-11 | Radar à ondes millimétriques avec un radome absorbant les lobes laterales |
Country Status (4)
Country | Link |
---|---|
US (1) | US6937184B2 (fr) |
EP (2) | EP1635187B1 (fr) |
JP (1) | JP2004077399A (fr) |
DE (1) | DE60318123T2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126728A1 (fr) | 2009-04-29 | 2010-11-04 | Raytheon Company | Mécanisme de dissipation thermique pour antenne |
EP2293382A1 (fr) * | 2009-08-28 | 2011-03-09 | Faltec Co., Ltd. | Procédé de fabrication de radome |
WO2011085237A1 (fr) | 2010-01-08 | 2011-07-14 | Ocas As | Éléments, systèmes, architectures et procédés de commande de faisceau d'antenne pour communication radar et autres applications |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10261027A1 (de) * | 2002-12-24 | 2004-07-08 | Robert Bosch Gmbh | Winkelauflösendes Antennensystem |
JP2004312696A (ja) | 2003-03-24 | 2004-11-04 | Hitachi Ltd | ミリ波レーダおよびその製造方法 |
US6940457B2 (en) * | 2003-09-09 | 2005-09-06 | Center For Remote Sensing, Inc. | Multifrequency antenna with reduced rear radiation and reception |
JPWO2005055366A1 (ja) * | 2003-11-14 | 2007-06-28 | 株式会社日立製作所 | 車載用レーダ |
JP2005348032A (ja) * | 2004-06-02 | 2005-12-15 | Yokohama Rubber Co Ltd:The | 車載用通信アンテナ |
JP4575044B2 (ja) * | 2004-06-23 | 2010-11-04 | タキロン株式会社 | 音波・電波吸収体 |
DE102004033760A1 (de) * | 2004-07-13 | 2006-02-02 | Daimlerchrysler Ag | Kraftfahrzeug mit einer Sensorvorrichtung |
EP1788040B1 (fr) * | 2004-08-06 | 2012-06-06 | Mitsubishi Gas Chemical Company, Inc. | Poudre ultrafine isolée et matériau composite de résine à constante diélectrique élevée |
WO2006091162A1 (fr) * | 2005-02-28 | 2006-08-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Procede et systeme de reduction de la section efficace en radar d'antennes integrees |
JP4113202B2 (ja) * | 2005-05-09 | 2008-07-09 | 三菱電線工業株式会社 | 電波吸収構造体 |
JP2007074662A (ja) * | 2005-09-09 | 2007-03-22 | Hitachi Ltd | ミリ波レーダ装置 |
JP2007240358A (ja) * | 2006-03-09 | 2007-09-20 | Honda Motor Co Ltd | 車両用外装部品 |
US8013775B2 (en) * | 2007-04-30 | 2011-09-06 | Viasat, Inc. | Radio frequency absorber |
KR100957092B1 (ko) | 2007-10-02 | 2010-05-13 | 현대자동차주식회사 | 차량용 전파 송수신 장치 |
US8378893B2 (en) * | 2007-10-11 | 2013-02-19 | Raytheon Company | Patch antenna |
US8159409B2 (en) * | 2009-01-20 | 2012-04-17 | Raytheon Company | Integrated patch antenna |
JP5396096B2 (ja) * | 2009-02-16 | 2014-01-22 | 本田技研工業株式会社 | 軸調整用ターゲット装置 |
CN102405421B (zh) * | 2009-02-27 | 2013-11-13 | 丰田自动车株式会社 | 车载雷达装置以及车载雷达装置用罩 |
US8654197B2 (en) * | 2009-03-04 | 2014-02-18 | Raytheon Company | System and method for occupancy detection |
DE102010038517A1 (de) * | 2010-07-28 | 2012-02-02 | Robert Bosch Gmbh | Radom für einen Radarsensor in einem Kraftfahrzeug und entsprechender Radarsensor |
JP5555087B2 (ja) * | 2010-07-30 | 2014-07-23 | 株式会社豊田中央研究所 | レーダ装置 |
US8698508B2 (en) * | 2011-08-23 | 2014-04-15 | Raytheon Company | Method and apparatus for detecting radome damage |
DE102011122346A1 (de) * | 2011-12-23 | 2013-06-27 | Valeo Schalter Und Sensoren Gmbh | Radareinrichtung für ein Kraftfahrzeug, Halter für ein Radargerät und Verfahren zum Herstellen eines Absorptionselements für ein Radargerät |
DE102012201986B4 (de) * | 2012-02-10 | 2024-10-10 | Robert Bosch Gmbh | Radarsensoreinrichtung mit Justierspiegel |
JP5953969B2 (ja) * | 2012-06-14 | 2016-07-20 | 株式会社デンソー | レーダ装置 |
DE102012025275A1 (de) | 2012-12-21 | 2013-08-01 | Daimler Ag | Radom für eine Radarvorrichtung |
JP6295516B2 (ja) * | 2013-04-23 | 2018-03-20 | 日本電気株式会社 | 航法援助装置 |
EP3017503B1 (fr) | 2013-10-01 | 2017-07-05 | Autoliv ASP, Inc. | Module radar automobile blindé compact et procédé associé |
JP6326920B2 (ja) * | 2014-04-04 | 2018-05-23 | 株式会社Soken | レーダ装置 |
JP6387789B2 (ja) * | 2014-10-28 | 2018-09-12 | シヤチハタ株式会社 | 電波吸収材、並びにその電波吸収材を具備する電子機器、自動料金収受システム、及び車載レーダー装置 |
WO2016073440A1 (fr) * | 2014-11-03 | 2016-05-12 | Commscope Technologies Llc | Cadre circonférentiel pour atténuation de lobe arrière et de lobe latéral d'antenne |
WO2016089623A1 (fr) * | 2014-12-02 | 2016-06-09 | Commscope Technologies Llc | Radôme d'antenne avec absorbeurs |
US10074907B2 (en) * | 2015-03-12 | 2018-09-11 | Veoneer Us, Inc. | Apparatus and method for mitigating multipath effects and improving absorption of an automotive radar module |
DE102015210464A1 (de) * | 2015-06-08 | 2016-12-08 | Conti Temic Microelectronic Gmbh | Gehäuse für einen Radarsensor für ein Fahrzeug |
EP3107151B1 (fr) * | 2015-06-17 | 2022-04-27 | Volvo Car Corporation | Support de radar à faible réflexion |
US9828036B2 (en) | 2015-11-24 | 2017-11-28 | Srg Global Inc. | Active grille shutter system with integrated radar |
WO2018106401A2 (fr) * | 2016-12-06 | 2018-06-14 | Commscope Technologies Llc | Enceintes de radôme d'antenne et structures d'antenne associées |
JP2018112528A (ja) * | 2017-01-13 | 2018-07-19 | 本田技研工業株式会社 | カバー部材およびセンサーアセンブリ |
US10754026B2 (en) * | 2017-06-05 | 2020-08-25 | Veoneer Us, Inc. | Surface treatment patterns to reduce radar reflection and related assemblies and methods |
KR20190085266A (ko) * | 2018-01-10 | 2019-07-18 | 주식회사 만도 | 차량용 레이더 장치 |
WO2019138142A1 (fr) * | 2018-01-10 | 2019-07-18 | Zanini Auto Grup, S.A. | Radôme pour véhicules |
TWI663774B (zh) * | 2018-01-19 | 2019-06-21 | 啓碁科技股份有限公司 | 天線罩及車用雷達裝置 |
CN111344590B (zh) * | 2018-01-30 | 2024-05-24 | 古野电气株式会社 | 雷达天线装置以及方位测定方法 |
EP3764471A4 (fr) * | 2018-03-07 | 2021-11-10 | NOK Corporation | Couvercle de radar à ondes millimétriques |
JP6693682B2 (ja) * | 2018-03-23 | 2020-05-13 | 三菱電機株式会社 | レーダ装置 |
TWI783148B (zh) * | 2018-06-04 | 2022-11-11 | 日商麥克賽爾股份有限公司 | 電磁波吸收體 |
US10871564B2 (en) * | 2018-08-03 | 2020-12-22 | Veoneer Us, Inc. | Vehicular radar assembly |
CN109473780A (zh) * | 2018-12-24 | 2019-03-15 | 雷象科技(北京)有限公司 | 相控阵雷达天线自动气帘防雨罩 |
FR3091419B1 (fr) * | 2018-12-28 | 2023-03-31 | Thales Sa | Procédé d’intégration d’une antenne « réseaux » dans un milieu de nature électromagnétique différente et antenne associée |
DE102019200912A1 (de) * | 2019-01-24 | 2020-07-30 | Robert Bosch Gmbh | Radombaugruppe für einen Radarsensor für Kraftfahrzeuge |
USD954688S1 (en) | 2019-03-06 | 2022-06-14 | Aptiv Technologies Limited | Radome |
DE102019204700A1 (de) * | 2019-04-02 | 2020-10-08 | Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg | Radarvorrichtung, Verfahren zum Herstellen einer Radarvorrichtung und Kraftfahrzeug |
WO2020230708A1 (fr) * | 2019-05-14 | 2020-11-19 | 富士フイルム株式会社 | Absorbeur d'ondes radioélectriques |
US11264712B2 (en) | 2019-06-21 | 2022-03-01 | Veoneer Us, Inc. | Radar sensor with radome having trenches for reducing coupling between transmit and receive antennas |
JP7313009B2 (ja) * | 2019-08-05 | 2023-07-24 | パナソニックIpマネジメント株式会社 | レーダ装置 |
US11226397B2 (en) * | 2019-08-06 | 2022-01-18 | Waymo Llc | Slanted radomes |
US11385325B2 (en) * | 2019-08-07 | 2022-07-12 | Waymo Llc | Corrugated radomes |
DE102019213170A1 (de) * | 2019-08-30 | 2021-03-04 | Robert Bosch Gmbh | Vorrichtung für ein Fahrzeug |
WO2021047772A1 (fr) * | 2019-09-11 | 2021-03-18 | Hella Saturnus Slovenija d.o.o. | Dispositif de fixation à une ouverture d'un véhicule et de recouvrement d'un émetteur et/ou d'un récepteur |
CN110940957B (zh) * | 2019-10-28 | 2022-03-22 | 惠州市德赛西威汽车电子股份有限公司 | 一种模块化毫米波雷达 |
WO2021176686A1 (fr) * | 2020-03-06 | 2021-09-10 | 三菱電機株式会社 | Dispositif radar à ondes millimétriques |
JP7338567B2 (ja) * | 2020-06-30 | 2023-09-05 | 豊田合成株式会社 | 電磁波透過カバー |
CN112310635B (zh) * | 2020-09-22 | 2024-03-12 | 东莞东石新材料开发有限公司 | 一种高强度高透波风阻小天线罩及其生产工艺 |
JP2022188944A (ja) * | 2021-06-10 | 2022-12-22 | スタンレー電気株式会社 | ランプ装置 |
WO2023013705A1 (fr) * | 2021-08-06 | 2023-02-09 | 日東電工株式会社 | Blindage et ensemble d'ondes électromagnétiques |
DE102022111880A1 (de) | 2022-05-12 | 2023-11-16 | Bayerische Motoren Werke Aktiengesellschaft | Abschirmvorrichtung für einen Radarsensor eines Fahrzeugs sowie Fahrzeug |
EP4287401A1 (fr) | 2022-06-01 | 2023-12-06 | Aptiv Technologies Limited | Radar doté d'un absorbeur optimisé de diffusion |
DE102022121312A1 (de) | 2022-08-23 | 2024-02-29 | Bayerische Motoren Werke Aktiengesellschaft | Reflektionsminimierter Radarabsorber, Radareinrichtung und Kraftfahrzeug |
JP7473611B2 (ja) | 2022-09-30 | 2024-04-23 | 本田技研工業株式会社 | 車両におけるレーダー装置保護構造 |
EP4415170A1 (fr) * | 2023-02-09 | 2024-08-14 | Aptiv Technologies AG | Radar à absorbeur optimisé |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196442A (en) * | 1959-12-14 | 1965-07-20 | Mcdonnell Aircraft Corp | Antenna with side lobe absorber mounted adjacent thereto |
US3810187A (en) * | 1972-04-21 | 1974-05-07 | Thomson Csf | Capped antenna of the offset cassegrainian type |
US4496950A (en) * | 1982-07-16 | 1985-01-29 | Hemming Leland H | Enhanced wide angle performance microwave absorber |
JPH10126146A (ja) * | 1996-10-16 | 1998-05-15 | Mitsubishi Electric Corp | ミリ波平面アンテナ |
US6111551A (en) * | 1997-02-26 | 2000-08-29 | Robert Bosch Gmbh | Housing with radar-absorbent properties |
JP2001127523A (ja) * | 1999-10-29 | 2001-05-11 | Mitsubishi Electric Corp | レドーム付きマイクロストリップアレーアンテナ |
EP1118872A2 (fr) * | 2000-01-19 | 2001-07-25 | Hitachi, Ltd. | Blindage pour un boitier de radar à ondes millimétriques pour supprimer des échos parasites du sol |
EP1146591A2 (fr) * | 2000-04-10 | 2001-10-17 | Hitachi, Ltd. | Absorbeur d'ondes électromagnétiques, le procédé de fabrication ainsi que l'appareil où on l'utilise |
US20010040524A1 (en) * | 2000-05-15 | 2001-11-15 | Hitachi, Ltd. | Vehicle-mounted radio wave radar |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296287A (ja) * | 1985-06-25 | 1986-12-27 | Tokyo Gas Co Ltd | 送受信アンテナ分離型地中探査レ−ダ |
US5085931A (en) * | 1989-01-26 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Microwave absorber employing acicular magnetic metallic filaments |
US5275880A (en) * | 1989-05-17 | 1994-01-04 | Minnesota Mining And Manufacturing Company | Microwave absorber for direct surface application |
US5099242A (en) * | 1990-01-04 | 1992-03-24 | The Trustees Of The University Of Pennsylvania | Novel shielding, reflection and scattering control using chiral materials |
JPH05121923A (ja) * | 1991-10-29 | 1993-05-18 | Mitsubishi Electric Corp | レドーム板およびその製造方法 |
JP2957463B2 (ja) * | 1996-03-11 | 1999-10-04 | 日本電気株式会社 | パッチアンテナおよびその製造方法 |
JP3419675B2 (ja) * | 1998-02-10 | 2003-06-23 | 三菱電機株式会社 | 車載用電波レーダ装置 |
JPH11258330A (ja) * | 1998-03-10 | 1999-09-24 | Nippon Signal Co Ltd:The | 応答器ケース |
JP3925835B2 (ja) * | 2000-04-10 | 2007-06-06 | 株式会社日立製作所 | 電磁波吸収材とその製造法及びそれを用いた各種用途 |
-
2002
- 2002-08-22 JP JP2002241292A patent/JP2004077399A/ja active Pending
-
2003
- 2003-03-11 DE DE60318123T patent/DE60318123T2/de not_active Expired - Fee Related
- 2003-03-11 EP EP05026399A patent/EP1635187B1/fr not_active Expired - Lifetime
- 2003-03-11 EP EP03005307A patent/EP1398647A3/fr not_active Ceased
- 2003-03-19 US US10/390,596 patent/US6937184B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3196442A (en) * | 1959-12-14 | 1965-07-20 | Mcdonnell Aircraft Corp | Antenna with side lobe absorber mounted adjacent thereto |
US3810187A (en) * | 1972-04-21 | 1974-05-07 | Thomson Csf | Capped antenna of the offset cassegrainian type |
US4496950A (en) * | 1982-07-16 | 1985-01-29 | Hemming Leland H | Enhanced wide angle performance microwave absorber |
JPH10126146A (ja) * | 1996-10-16 | 1998-05-15 | Mitsubishi Electric Corp | ミリ波平面アンテナ |
US6111551A (en) * | 1997-02-26 | 2000-08-29 | Robert Bosch Gmbh | Housing with radar-absorbent properties |
JP2001127523A (ja) * | 1999-10-29 | 2001-05-11 | Mitsubishi Electric Corp | レドーム付きマイクロストリップアレーアンテナ |
EP1118872A2 (fr) * | 2000-01-19 | 2001-07-25 | Hitachi, Ltd. | Blindage pour un boitier de radar à ondes millimétriques pour supprimer des échos parasites du sol |
EP1146591A2 (fr) * | 2000-04-10 | 2001-10-17 | Hitachi, Ltd. | Absorbeur d'ondes électromagnétiques, le procédé de fabrication ainsi que l'appareil où on l'utilise |
US20010040524A1 (en) * | 2000-05-15 | 2001-11-15 | Hitachi, Ltd. | Vehicle-mounted radio wave radar |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 10, 31 August 1998 (1998-08-31) -& JP 10 126146 A (MITSUBISHI ELECTRIC CORP), 15 May 1998 (1998-05-15) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 22, 9 March 2001 (2001-03-09) -& JP 2001 127523 A (MITSUBISHI ELECTRIC CORP), 11 May 2001 (2001-05-11) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126728A1 (fr) | 2009-04-29 | 2010-11-04 | Raytheon Company | Mécanisme de dissipation thermique pour antenne |
US8045329B2 (en) | 2009-04-29 | 2011-10-25 | Raytheon Company | Thermal dissipation mechanism for an antenna |
EP2293382A1 (fr) * | 2009-08-28 | 2011-03-09 | Faltec Co., Ltd. | Procédé de fabrication de radome |
US8974712B2 (en) | 2009-08-28 | 2015-03-10 | Faltec Co., Ltd. | Method of manufacturing radome |
WO2011085237A1 (fr) | 2010-01-08 | 2011-07-14 | Ocas As | Éléments, systèmes, architectures et procédés de commande de faisceau d'antenne pour communication radar et autres applications |
US9007254B2 (en) | 2010-01-08 | 2015-04-14 | Vestas Wind Systems, A/S | Antenna beam control elements, systems, architectures, and methods for radar, communications, and other applications |
Also Published As
Publication number | Publication date |
---|---|
EP1635187A3 (fr) | 2006-05-31 |
US20040036645A1 (en) | 2004-02-26 |
JP2004077399A (ja) | 2004-03-11 |
EP1398647A2 (fr) | 2004-03-17 |
US6937184B2 (en) | 2005-08-30 |
EP1398647A3 (fr) | 2004-04-07 |
EP1635187B1 (fr) | 2007-12-12 |
DE60318123D1 (de) | 2008-01-24 |
DE60318123T2 (de) | 2008-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1635187A2 (fr) | Radar à ondes millimétriques avec un radome absorbant les lobes laterales | |
EP1462817B1 (fr) | Radar à ondes millimétriques et son procédé de fabrication | |
US20200381815A1 (en) | Antenna apparatus housing and components for same | |
US5563616A (en) | Antenna design using a high index, low loss material | |
KR930008832B1 (ko) | 넓은 입사각에 대한 레이돔 및 렌즈용 2층 정합 유전체 | |
JP3419675B2 (ja) | 車載用電波レーダ装置 | |
US20030052810A1 (en) | Device to conceal a radar representing a pattern in relief, equipping especially a vehicle, and detection system comprising such a device | |
US20120105300A1 (en) | Radome incorporating partition wall for enhancing isolation between transmitted and received radar waves of radar apparatus | |
WO2005055366A1 (fr) | Radar monte sur un vehicule | |
EP3540851A1 (fr) | Dispositif d'antenne | |
JP4784115B2 (ja) | レドーム | |
US11374311B2 (en) | Millimeter-wave radar cover | |
WO2015094538A1 (fr) | Structure et techniques pour découplage d'antenne dans un capteur monté sur véhicule | |
EP3267530B1 (fr) | Dispositif d'antenne | |
CN111525256B (zh) | 异质异构共形低rcs机载天线罩 | |
CN111446547A (zh) | 一种天线罩和毫米波雷达装置 | |
JP2020053918A (ja) | アンテナ装置、及び車載ライト装置 | |
CN109839629A (zh) | 雷达装置 | |
JP2003243920A (ja) | レドーム | |
CN108400440A (zh) | 一种适用于车载毫米波雷达的宽角度天线罩及天线装置 | |
WO1998010484A1 (fr) | Antenne radar equipant un vehicule | |
JP2000506705A (ja) | 偏平状のアンテナを自動車のウィンドウの内側に取り付けるためのアンテナ装置 | |
US11646486B2 (en) | Antenna device | |
JPH0563419A (ja) | 自動車用アンテナ | |
CN113474944B (zh) | 交通工具玻璃板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1398647 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20061130 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SUZUKI, MITSUSHIGE Inventor name: FUJIEDA, TADASHI Inventor name: KURODA, HIROSHIC/O HITACHI LTD. IP GROUP Inventor name: NAKAZAWA, TERUMI |
|
AKX | Designation fees paid |
Designated state(s): DE FR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17Q | First examination report despatched |
Effective date: 20070425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KURODA, HIROSHIC/O HITACHI LTD. IP GROUP Inventor name: NAKAZAWA, TERUMI Inventor name: SUZUKI, MITSUSHIGE Inventor name: FUJIEDA, TADASHI |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1398647 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR |
|
REF | Corresponds to: |
Ref document number: 60318123 Country of ref document: DE Date of ref document: 20080124 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090219 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090217 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 |