EP1626101B1 - Acier austénitique inoxydable à haute teneur en azote - Google Patents

Acier austénitique inoxydable à haute teneur en azote Download PDF

Info

Publication number
EP1626101B1
EP1626101B1 EP05107313.8A EP05107313A EP1626101B1 EP 1626101 B1 EP1626101 B1 EP 1626101B1 EP 05107313 A EP05107313 A EP 05107313A EP 1626101 B1 EP1626101 B1 EP 1626101B1
Authority
EP
European Patent Office
Prior art keywords
mass
content
less
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05107313.8A
Other languages
German (de)
English (en)
Other versions
EP1626101A1 (fr
Inventor
Tetsuya Shimizu
Shuji Hamano
Toshiharu Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Publication of EP1626101A1 publication Critical patent/EP1626101A1/fr
Application granted granted Critical
Publication of EP1626101B1 publication Critical patent/EP1626101B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Definitions

  • This invention relates to a high-nitrogen austenitic stainless steel.
  • Austenitic stainless steel represented by SUS304, SUS316 and so forth are widely used as a steel excellent in corrosion resistance and workability.
  • SUS316 as an austenitic stainless steel, and SUS329 as a dual-phase stainless steel are generally used.
  • SUS836L also referred to as "super-austenitic stainless steel” having Ni and Mo contents increased therein to a considerable degree.
  • the high-nitrogen austenitic stainless steel is used for versatile applications including air shaft, ball bearing, shaft bush and mold for plastic products, and is also expectant as a biological material as disclosed in Japanese Laid-Open Patent Publication "Tokkaihei" No. 10-183303 .
  • the general austenitic stainless steels contain a considerable amount of Ni, which is possibly causative of Ni allergy problem in the field of biological materials, and is understood as one of an undesirable element to human body, whereas the high-nitrogen austenitic stainless steel, using nitrogen as a major austenitic phase stabilizing element, is successful in getting rid of most part of Ni, and is advantageous in keeping the hardness and corrosion resistance at an equivalent or higher level.
  • the austenitic stainless steel disclosed in Japanese Laid-Open Patent Publication "Tokkaihei" No. 10-183303 is, however, added with a relatively large amount of Mn in order to raise the amount of solubilization of nitrogen (the patent claims a range of Mn content as relatively wide as 2 to 26% by mass, but discloses Mn contents of as relatively high as 11 % by mass and 12% by mass in the embodiments). Adoption of such high Mn composition may result in a degraded corrosion resistance, and also in an insufficient strength.
  • EP-1 229 142 A1 discloses a high-strength, high corrosion-resistant and nonmagnetic stainless steel which is further excellent in strength and corrosion resistance and safe in the living body and also can stand against various corrosive environments.
  • This stainless steel comprises 0.15% by weight or less of C, 1.0% or less of Si, 3.0 to 12.0% of Mn, 0.030% or less of P, 0.50% or less of Ni, 15.0 to 21.0% of Cr, 0.70 to 1.50% of N, 0.020% or less of Al and 0.020% or less of O, and a remainder of Fe and inevitable impurities.
  • Tensile strengths over 1051 MPa can be attained, when at first forged or hot rolled and then solution treated. Further a pitting potential at least 1 V vs SCE can be attained.
  • Publication DE-196 07 828 A1 also discloses an austenitic steel having high strength, good toughness, corrosion resistance, tearing resistance and which is nonmagnetic.
  • the steel comprises, in weight-%, up to 0.1% C, 8-15% Mn, 13-18% Cr, 2.5-6% Mo, 0-5% Ni, 0.55-1.1 % N, and the rest Fe together with inevitable impurities. After hot working with subsequent solution treatment followed by cold working of at least 80% deformation it is attained a yield strength of at least 2500 MPa with an elongation to fracture over 8%.
  • a high-nitrogen austenitic stainless steel of this invention consists of :
  • the high-nitrogen austenitic stainless steel of this invention makes it possible to attain a good balance between the strength and corrosion resistance, by allowing a large amount of N (nitrogen) to solubilize while limiting Ni content, and by optimizing contents of the essential elements which comprise Cr, Mo, N and Mn within ranges specific to this invention.
  • N nitrogen
  • This consequently makes it possible to realize a high-nitrogen austenitic stainless steel superior to conventional one both in the corrosion resistance and strength, despite a low Ni content.
  • Cr functions to distinctively increase N solubility in the molten metal, largely contributes to the corrosion resistance and strength, and also effectively suppresses generation of nitrogen blow holes.
  • a Cr content of less than 25.0% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure satisfactory levels of corrosion resistance and strength, and makes the nitrogen blow holes more likely to occur.
  • the Cr content exceeding 35.0% by mass may destabilize the austenitic phase and may fail in keeping non-magnetism of the material due to ferrite-forming nature of Cr. It is also anticipated that ⁇ phase causative of degradation in the toughness and ductility becomes more likely to precipitate. It is therefore preferable to adjust the Cr content within a range from 25.0% by mass to 32.0% by mass, and more preferably from 25.0% by mass to 30.0% by mass.
  • Mo distinctively increases N solubility in the molten metal, but can exhibit a larger effect of improving the corrosion resistance than Cr can only with a smaller amount, and is successful in obtaining an effect of improving the strength through solid solution strengthening.
  • An amount of Mo addition of less than 0.05% by mass results in only a poor effect, whereas the amount of addition exceeding 8.0% by mass induces nitrogen blow holes and destabilizes the austenitic phase, and thereby makes it difficult to keep the non-magnetism. Formation of an embrittled phase degrades the toughness and ductility, and it becomes hazardous during the hot working. This also raises a problem of increasing insoluble Cr nitride during the solution heat treatment, and of considerably degrading the corrosion resistance.
  • the amount of Mo addition is therefore preferably adjusted to 0.05% or more and less than 5.0% by mass, and more preferably to 0.10% by mass or more and less than 2.5% by mass.
  • Mn is an austenite forming element, and contributes to stabilization of the austenitic phase and to lowering of the solid solution temperature of the Cr nitride described later. Also, Mn distinctively increases N solubility in the molten metal, it is effective in improving the strength and suppressing generation of the nitrogen blow holes. It is also effective as a deoxidation element or desulfurizing element.
  • a Mn content of less than 0.2% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure a satisfactory level of strength, and tends to cause nitrogen blow holes.
  • the Mn content exceeding 10.0% by mass degrades the corrosion resistance.
  • the Mn content is therefore preferably adjusted within a range from 0.2% by mass to 6.0% by mass, and more preferably from 0.2% by mass to 2.0% by mass, both ends inclusive.
  • Cu is an austenite forming element, and contributes to stabilization of the austenitic phase and to improvement in the corrosion resistance.
  • An amount of Cu addition of less than 0.01% by mass results in only a poor effect, and the addition exceeding 4.0% by mass raises a problem of lowering in the hot workability. This also increases residual amount of insoluble Cr nitride after the solution heat treatment, and undesirably degrades the corrosion resistance.
  • the amount of Cu addition is therefore preferably adjusted within a range from 0.02% by mass to 1.8% by mass, and still preferably from 0.05% by mass to 1.5% by mass, both ends inclusive.
  • N is an interstitial solid solution element into the austenitic phase, and is a basic additive element contributes all of improvement in the strength, stabilization of the austenitic phase, and improvement in the corrosion resistance.
  • the amount of N addition exceeding 1.5% by mass makes the nitrogen blow holes more likely to generate, allows a large amount of insoluble Cr nitride or other transition metal nitrides (e.g., nitrides of Ti, Nb, V and so forth, described later) to remain in the steel after the solution heat treatment, to thereby raise a problem of a considerable degradation in the corrosion resistance.
  • the amount of N addition is therefore preferably adjusted within a range from 0.8% by mass to 1.4% by mass, both ends inclusive.
  • Fe is a major component (i.e., 50% by mass or more) of the steel, and basically composes the residual portion of the steel other than five above-described essential additive elements, optional elements described below, and inevitable impurities.
  • is a compositional parameter expressed by: ⁇ ⁇ W Cr + 3.3 ⁇ W Mo + 16 ⁇ W N / W Mn where W Cr is Cr content (% by mass), W Mo is Mo content (% by mass), W N is N content (% by mass) and W Mn is Mn content (% by mass).
  • W Cr Cr content (% by mass)
  • W Mo Mo content (% by mass)
  • W N N content (% by mass)
  • W Mn Mn content (% by mass).
  • the numerator of ⁇ is obtained by quantifying effects of improving the corrosion resistance by Mo and N converted on the basis of Cr equivalent.
  • N, Cr and Mo contribute to improvement in the corrosion resistance, wherein the effect of improving the corrosion resistance by N measures surprisingly 16 times as large as that of Cr. It is finally indispensable to add Mn in order to dramatically increase the amount of N solubility in the austenitic phase, but excessive addition of Mn seems to partially cancel the net improvement in the corrosion resistance ascribable to thus-increased N, because Mn functions to degrade the corrosion resistance.
  • the ⁇ value having a numerator as a result of positive contribution by N, Cr and Mo to the corrosion resistance, and having a denominator as a result of negative contribution by Mn to the corrosion resistance, can be an effective parameter for generally predicting the corrosion resistance of the finally-obtained steel.
  • the present inventors found out, after extensive investigations, that the effect of improving the corrosion resistance could distinctively be optimized, and that it was even possible to ensure a level of corrosion resistance equivalent to, or superior to that of super-austenitic stainless steel SUS836L, by balancing the amounts of addition of N, Cr, Mo and Mn so as to adjust ⁇ to 5 or above.
  • C is an interstitial solid solution element, contributes to improvement in the strength, and is effectively functions, as an austenite forming element, to suppress formation of nitrogen blow holes.
  • the amount of addition thereof exceeding 0.20% by mass lowers the N solubility, decreases Cr content in the austenite phase through formation of Cr carbide, and thereby results in degradation in the corrosion resistance.
  • C is preferably added in an amount of 0.005% by mass or more in view of making the effect of intentional addition thereof distinct.
  • the C content is preferably adjusted within a range from 0.005% by mass to 0.15% by mass, and more preferably from 0.01% by mass to 0.10% by mass, both ends inclusive.
  • Si is an effective deoxidizing element.
  • Al is known as a deoxidizing element stronger than Si in the general steels, but in the high-nitrogen steel, it is causative of formation of AIN which considerably degrades the high-temperature strength, toughness and ductility. It is therefore preferable to use Si, together with the essential element Mn, as the major deoxidizing element.
  • the deoxidizing effect of Si becomes distinct when it is added in an amount of 0.01% by mass or more.
  • the amount of Si addition exceeding 2.0% by mass makes the steel more likely to cause undesirable as crack or something during the hot working, and also degrades the toughness and ductility.
  • the amount of Si addition is therefore more preferably adjusted within a range from 0.01% by mass to 1.0% by mass, and still more preferably from 0.01% by mass to 0.5% by mass, both ends inclusive.
  • P is one of hazardous impurities, and the content exceeding 0.03% by mass results in degradation of the hot workability, and also in degradation of the toughness and ductility due to lowered strength at the grain boundary. It is therefore preferable that P is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account.
  • S is one of hazardous impurities, and the content exceeding 0.05% by mass results in degradation of the hot workability, and also tends to degrade the corrosion resistance due to formation of MnS. It is therefore preferable that S is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account. It is preferably adjusted to 0.01% by mass or less.
  • Ni is intentionally suppressed in this invention in order to reduce the cost and to avoid adverse influences such as Ni allergy when applied to human body. It is therefore preferable that Ni is not contained as possible, but a content to as much as 0.5% by mass is allowable, because an unnecessarily high level of reduction undesirably increases the cost.
  • the Ni content is preferably limited to 0.3% by mass or less, and more preferably to 0.1 % by mass or less.
  • Al is effective as a deoxidizing element, but considerably lowers the corrosion resistance through formation of AIN in the high-nitrogen steel, even under a slight excess of the Al content.
  • the Al content is limited to 0.03% by mass or less, in view of avoiding the nonconformity and of raising the amount of N solubilization into the austenite phase as possible.
  • the Al content is preferably limited to 0.025% by mass or less, and more preferably to 0.020% by mass or less.
  • the O content is limited to 0.020% by mass or less, because an excess content lowers the cleanliness of the steel, and thereby degrades the corrosion resistance.
  • the O content is preferably limited to 0.015% by mass or less, and more preferably 0.010% by mass or less.
  • W not only contributes to improvement in the corrosion resistance, but also to improvement in the strength as a solid solution strengthening element.
  • An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 1.0% by mass degrades the toughness and ductility due to formation of an embrittled phase, and thereby induces a nonconformity which is hazardous for the hot working. This also increases insoluble Cr nitride during the solution treatment, and thereby considerably lowers the corrosion resistance.
  • the W content is preferably adjusted within a range from 0.05% by mass to 0.9% by mass, and more preferably from 0.1% by mass to 0.8% by mass, both ends inclusive.
  • Co contributes to improvement in the corrosion resistance and strength.
  • An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 5.0% by mass increases the cost, and undesirably increases insoluble Cr nitride during the solution heat treatment, and thereby considerably lowers the corrosion resistance.
  • the Co content is preferably adjusted within a range from 0.05% by mass to 4.5% by mass, and more preferably from 0.1% by mass to 4.0% by mass, both ends inclusive.
  • either one of, or both of W and Co can be added within the above-specified ranges.
  • All of Ti, Nb, V and Ta can bind with C and N, allow carbides or carbonitrides to precipitate, and thereby contribute to improvement in the strength.
  • the precipitation can suppress growth of the austenitic grain by the pinning effect, and consequently contribute to improvement in the strength and toughness through refinement of the grain.
  • Amounts of addition of these elements of less than 0.01 % by mass result only in poor effects, whereas the amounts of addition exceeding the respective upper limits considerably degrade the corrosion resistance through formation of hazardous oxides or nitrides in the steel, and also undesirably make the strength more likely to degrade through lowering of an effective amount of N solubility.
  • the Ti content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
  • the Nb content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
  • the V content is preferably adjusted within a range from 0.02% by mass to 0.9% by mass, and more preferably from 0.03% by mass to 0.8% by mass, both ends inclusive.
  • the Ta content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
  • (21) B 0.001 % by mass to 0.01 % by mass
  • B is an element effective for improving the strength and hot workability. An amount of addition of less than 0.001% by mass results in only a poor effect, whereas the content exceeding 0.01% by mass adversely affects the hot workability and also degrades the corrosion resistance.
  • the B content is preferably adjusted within a range from 0.001 % by mass to 0.008% by mass, and more preferably from 0.001 % by mass to 0.005% by mass, both ends inclusive.
  • Zr is an additive element effective for improving the strength. An amount of addition of less than 0.01% by mass results in only a limited effect, whereas the amount of addition exceeding 0.50% by mass degrades the toughness and ductility.
  • the Zr content is preferably adjusted within a range from 0.03% by mass to 0.40% by mass, and more preferably from 0.05% by mass to 0.30% by mass, both ends inclusive.
  • Both of Ca and Mg are additive elements effective for improving the hot workability. Excessive addition of the both degrades the corrosion resistance, toughness, ductility and hot workability. They are also effective in view of improving the machinability. Amounts of addition of the both less than 0.001% results in only poor effects, whereas the amounts of addition exceeding 0.01% by mass undesirably degrade the hot workability.
  • Each of the Ca and Mg contents is preferably adjusted within a range from 0.001% by mass to 0.008% by mass, and more preferably from 0.001 % by mass to 0.005% by mass, both ends inclusive.
  • Te and Se are additive elements effective for improving the machinability. Amounts of addition of the both less than the lower limits result in only poor effects, and the amounts of addition exceeding the upper limits undesirably degrade the corrosion resistance, toughness, ductility and hot workability.
  • the Te content is preferably adjusted within a range from 0.01% by mass to 0.04% by mass, both ends inclusive.
  • the Se content is preferably adjusted within a range from 0.02% by mass to 0.18% by mass, and more preferably from 0.05% by mass to 0.15% by mass, both ends inclusive.
  • the high-nitrogen austenitic stainless steel of this invention is preferably subjected to solution treatment at 1,100°C to 1,250°C, both ends inclusive (typically for 0.1 hours to 2 hours, both ends inclusive).
  • solution treatment typically for 0.1 hours to 2 hours, both ends inclusive.
  • the Cr nitride particularly having a diameter (expressed in this patent specification by a diameter of a circle having an area same as that of the projected area of the nitride grain (referred to as circle-converted diameter, hereinafter)) of 2 ⁇ m or larger remaining in the steel was found to largely affect the corrosion resistance.
  • circle-converted diameter hereinafter
  • solution heat treatment carried out within a temperature range from 1,100°C to 1,250°C does not always ensure disappearance of the Cr-base nitride of 2 ⁇ m or larger in diameter, and that the hazardous Cr-base nitride of 2 ⁇ m or larger in diameter can be suppressed to a satisfactory degree, only when an optimum solution heat treatment temperature is selected depending on steel composition within the above-described temperature range, which will be described later in Examples.
  • the steel of this invention can realize a strength of as large as 1,000 MPa on the tensile strength basis, after being subjected to the solution treatment carried out to an extent not causative of observable Cr-base nitride having a diameter of 2 ⁇ m or larger.
  • the high-nitrogen austenitic stainless steel of this invention can be worked so as to produce wire product or sheet product.
  • a more distinct level of strengthening is available by carrying out the area-reducing process at the final stage of the wire making or sheet making by cold wire drawing or cold rolling.
  • Cr-base nitride having a diameter of 2 ⁇ m or larger is observed neither in the section of a wire product 100, shown in FIG. 1 , normal to the axis thereof, nor in the section of a sheet product 150, shown in FIG. 2 , normal to the drawing direction thereof, and it is made possible to obtain the wire product or sheet product as having a mean grain size (in circle-converted diameter) of the austenitic matrix phase of 100 ⁇ m or smaller.
  • a specific attainable level of strength may be 1,500 MPa or more, or may be even 2,000 MPa or more (strengthening up to 2,500 MPa or around, for example, is attainable, with the upper limit value not specifically limited).
  • the finally-obtained grain size of the austenitic matrix phase of the wire product or sheet product is adjustable by working ratio (reduction of area for the wire product, and draft for the sheet product) in cold working which precedes the solution heat treatment.
  • the mean grain size exceeding 100 ⁇ m results in only a limited effect of improvement in the strength, whereas reduction in the mean grain size to as small as 2 ⁇ m or smaller is technically difficult, considering that re-crystallization can proceed to a certain degree during the solution heat treatment within the above-described temperature range.
  • Refinement of the structure may be more distinctive when any one or more of Ti, Nb, V and Ta, all of which being known to be effective in suppressing growth of the grain, are added within the above-described compositional ranges.
  • the high-nitrogen austenitic stainless steel of this invention is successful in achieving both of high corrosion resistance equivalent to that of SUS836L which is a super-austenitic stainless steel, and strength higher than that of SUS329J4L which is a dual-phase stainless steel, after being subjected to solution heat treatment.
  • the steel can realize a strength of as high as 1,500 MPa or more (or even as high as 2,000 MPa or more), when cold-worked in a form of wire product or sheet product after the solution heat treatment.
  • the high-nitrogen austenitic stainless steel of this invention can be processed into various forms of wire product, rod steel, sheet steel, plate product, pipe, forged product and shape steel. Specific applications will be listed below.
  • accessories such as necklace, pierce and ring; watch components such as back lid of wrist watch and band of wrist watch; spectacle components such as frame of a pair of spectacles; metal components for furniture or building interior such as door knob; cutlery and kitchen tools such as spoon, folk and ladle; metal components for home appliances; dental materials such as dental floss, artificial root and orthodontic wire; biological implant materials such as plate, bolt, nut, spring, screw, wire, electrode, artificial bone and artificial joint; and medical tools such as syringe needle, surgical knife, scalpel, saw, forceps and surgical drill.
  • the steel is applicable to general high-strength, high-corrosion-resistant materials, and preferable examples of the applications include bolt, nut, cylinder liner, shaft, hub, connecter, bearing, lathe, rail, gear, pin, screw, roll, turbine blade, mold, die, drill, valve, valve sheet, cutting edge, nozzle, gasket, ring, spring, ocean beach environmental components, industrial furnace components, chemical plant components, oil drilling components, oil refining plant components, waste incinerator components, steam turbine components, gas turbine components, nuclear reactor components (e.g., secondary cooling water piping components for pressurized water reactor), aircraft components, structural components for construction and civil engineering (e.g., bridge components such as bridge pier and suspension bridge components, electric pole and steel tower for power cable), and decorative components.
  • industrial furnace components chemical plant components, oil drilling components, oil refining plant components, waste incinerator components, steam turbine components, gas turbine components, nuclear reactor components (e.g., secondary cooling water piping components for pressurized water reactor), aircraft components, structural components for
  • the steel is also effectively applicable to high-strength, high-corrosion-resistant components which are necessarily non-magnetic, and examples of which include spring, shaft, bearing, lathe, pin, die and rail for precision electronic components; wire used for components for printed board production; mesh; biological implant electrode: MRI component; drug production components; hanger components; linear motor car components; components for semiconductor production apparatus; forceps, bearing; saw; and cutting edge.
  • high-strength, high-corrosion-resistant components which are necessarily non-magnetic, and examples of which include spring, shaft, bearing, lathe, pin, die and rail for precision electronic components; wire used for components for printed board production; mesh; biological implant electrode: MRI component; drug production components; hanger components; linear motor car components; components for semiconductor production apparatus; forceps, bearing; saw; and cutting edge.
  • Example 1 0.04 0.15 0.2 0.01 0.01 0.16 0. 21 30.0 1.00 0.15 0.20 0.008 0.01 0.002 1.38 Reference Example 2 0.03 0.20 1.5 0.02 0.01 0.05 0.20 * 24.0 6.02 1.52 0.46 0.007 0.05 0.003 1.20
  • Example 3 0.10 0.31 1.0 0.02 0.01 0.20 0.01 21.0 1.87 0.006 0.002 1.05
  • Reference Example 4 0.03 0.50 7.0 0.01 0.01 0.51 0.10 * 18.0 4.03 0.26 0.10 0.21 0.006 0.09 0.04 0.002 1.07
  • Example 5 0.02 0.11 9.0 0.02 0.01 0.32 0.30 26.0 2.50 0.98 0.48 0.005 0.06 0.002 1.33
  • Example6 0.03 0.19 2.0 0.02 0.01 0.16 0.20 25.0 1.50 0.34 0.14 0.01 0.006 0.001 1.20
  • Example7 0.05 0.16 3.0 0.01 0.01 1.50 0.08 26.0 2.01 0.13 0.004 0.003 0.
  • Each of steels having chemical compositions listed in Table 1 and Table 2 was melted under a pressurized atmosphere having a nitrogen partial pressure of 50 atm or less during melting in a pressurizable high-frequency induction furnace, and then cast to produce a 50-kg steel ingot.
  • a test piece was cut out from the bottom portion of the steel ingot, and visually observed for presence or absence of nitrogen blow holes.
  • the steel ingot was then homogenized under heating, and hot-forged to thereby produce a 24-mm-diameter round rod.
  • a rod was heated at a varied temperature from 1,100°C to 1,300°C for one hour, and water-cooled so as to accomplish the solution heat treatment.
  • Example 5 the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 12.5-mm-diameter wire product, subjected to solution heat treatment under the condition determined in the above, and cold-drawn with reductions of area of 50% and 70% so as to obtain wire products of 8.8 mm in diameter and 6.8 mm in diameter, respectively.
  • These wire products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above.
  • the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 5-mm-thick sheet product, subjected to solution heat treatment under the condition determined in the above, and cold-rolling with drafts of 50% and 70% so as to obtain sheet products of 2.5 mm thick and 1.5 mm thick, respectively.
  • These sheet products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above. Results are shown in Table 3 and Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (6)

  1. Acier inoxydable austénitique riche en azote se composant de :
    Cr : 25,0 % en masse à 35,0 % en masse ;
    Mo : 0,05 % en masse à 8,0 % en masse ;
    Mn : 0,2 % en masse à 10,0 % en masse ;
    Cu : 0,01 % en masse à 4,0 % en masse ;
    N : 0,8 % en masse à 1,5 % en masse,
    les deux extrémités étant incluses ;
    ayant une teneur en C inférieure ou égale à 0,20 % en masse, une teneur en Si inférieure ou égale à 2,0 % en masse, une teneur en P inférieure ou égale à 0,3 % en masse, une teneur en S inférieure ou égale à 0,05 % en masse, une teneur en Ni inférieure ou égale à 0,5 % en masse, une teneur en Al inférieure ou égale à 0,03 % en masse et une teneur en O inférieure ou égale à 0,020 % en masse ;
    et facultativement comprenant en outre un ou deux de :
    W : 0,01 % en masse à 1,0 % en masse ; et
    Co : 0,01 % en masse à 5,0 % en masse ;
    les deux extrémités étant incluses ;
    et facultativement comprenant en outre au moins un de :
    Ti : 0,01 % en masse à 0,5 % en masse ;
    Nb : 0,01 % en masse à 0,5 % en masse ;
    V : 0,01 % en masse à 1,0 % en masse ;
    Ta : 0,01 % en masse à 0,5 % en masse ;
    les deux extrémités étant incluses ;
    et facultativement comprenant en outre au moins un de :
    B : 0,001 % en masse à 0,01 % en masse ;
    Zr : 0,01 % en masse à 0,50 % en masse ;
    Ca : 0,001 % en masse à 0,01 % en masse ;
    Mg : 0,001 % en masse à 0,01 % en masse ;
    les deux extrémités étant incluses ;
    et facultativement comprenant en outre un ou les deux de :
    Te : 0,005 % en masse à 0,05 % en masse ; et
    Se : 0,01 % en masse à 0,20 % en masse ;
    les deux extrémités étant incluses ;
    et le reste étant Fe et des impuretés inévitables, dans lequel Fe est supérieur ou égal à 50 % en masse ;
    dans lequel les teneurs en Cr, Mo, N et Mn sont ajustées de sorte qu'un paramètre de composition η, exprimé par l'équation η W Cr + 3 , 3 W Mo + 16 W N / W Mn
    Figure imgb0005

    où WCr est la teneur en Cr (en % en masse), WMo est la teneur en Mo (en % en masse), WN est la teneur en N (en % en masse) et WMn est la teneur en Mn (en % en masse), ait une valeur supérieure ou égale à 5.
  2. Acier inoxydable austénitique riche en azote tel que défini selon la revendication 1, ledit acier ne comprenant pas de nitrure à base de Cr ayant un diamètre de 2 µm ou plus observé dans la structure sectionnelle après avoir été soumis à un traitement thermique en solution à 1100 °C à 1250 °C, les deux extrémités é tant incluses.
  3. Acier inoxydable austénitique riche en azote tel que défini selon la revendication 2, ledit acier ayant une contrainte de rupture supérieure ou égale à 1000 MPa après avoir été soumis à un traitement thermique en solution.
  4. Acier inoxydable austénitique riche en azote tel que défini selon l'une quelconque des revendications 1 à 2, ledit acier sous la forme d'un produit de type fil ouvré à froid ne comprenant pas de nitrure à base de Cr ayant un diamètre de 2 µm ou plus observé dans la structure sectionnelle de celui-ci qui apparait dans une section normale par rapport à l'axe du produit de type fil, et ayant une taille de grain moyenne de la phase matricielle austénitique inférieure ou égale à 100 µm.
  5. Acier inoxydable austénitique riche en azote tel que défini selon l'une quelconque des revendications 1 à 2, ledit acier sous la forme d'un produit de type fil ouvré à froid ne comprenant pas de nitrure à base de Cr ayant un diamètre de 2 µm ou plus observé dans la structure sectionnelle de celui-ci qui apparait dans une section normale par rapport au sens de tirage du produit de type feuille, et ayant une taille de grain moyenne de la phase matricielle austénitique inférieure ou égale à 100 µm.
  6. Acier inoxydable austénitique riche en azote tel que défini selon la revendication 4 ou 5, ledit acier ayant une contrainte de rupture supérieure ou égale à 1500 MPa.
EP05107313.8A 2004-08-13 2005-08-09 Acier austénitique inoxydable à haute teneur en azote Not-in-force EP1626101B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235880A JP4379804B2 (ja) 2004-08-13 2004-08-13 高窒素オーステナイト系ステンレス鋼

Publications (2)

Publication Number Publication Date
EP1626101A1 EP1626101A1 (fr) 2006-02-15
EP1626101B1 true EP1626101B1 (fr) 2015-01-28

Family

ID=35311901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05107313.8A Not-in-force EP1626101B1 (fr) 2004-08-13 2005-08-09 Acier austénitique inoxydable à haute teneur en azote

Country Status (3)

Country Link
US (1) US20060034724A1 (fr)
EP (1) EP1626101B1 (fr)
JP (1) JP4379804B2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608251C1 (ru) * 2015-11-18 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Хладостойкая аустенитная высокопрочная сталь
CN110042326A (zh) * 2019-05-21 2019-07-23 马鞍山市庄芝耐磨合金有限公司 一种离心铸造搅拌叶轮及方法
CN113249655A (zh) * 2021-05-13 2021-08-13 北京中科领德健康科技有限公司 高氮无镍低锰抗菌合金及其制备方法、医疗器械产品

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
JP4845109B2 (ja) * 2005-07-19 2011-12-28 独立行政法人物質・材料研究機構 ニッケルフリー高窒素ステンレス鋼、並びにこれを用いた生体用又は医療用のインプラント等、装身具等及び厨房用器具等
JP5223046B2 (ja) * 2005-11-02 2013-06-26 国立大学法人九州大学 生体用高窒素ニッケルフリーオーステナイト系ステンレス鋼の結晶粒微細化熱処理方法
JP4915202B2 (ja) * 2005-11-03 2012-04-11 大同特殊鋼株式会社 高窒素オーステナイト系ステンレス鋼
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
JP2007248397A (ja) * 2006-03-17 2007-09-27 Seiko Epson Corp 装飾品および時計
US7846272B2 (en) * 2006-04-28 2010-12-07 Gm Global Technology Operations, Inc. Treated austenitic steel for vehicles
US7658883B2 (en) 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
JP5176561B2 (ja) * 2007-07-02 2013-04-03 新日鐵住金株式会社 高合金管の製造方法
JP5217576B2 (ja) * 2008-04-02 2013-06-19 大同特殊鋼株式会社 耐熱部品用オーステナイト系ステンレス鋼及びこれを用いた耐熱部品
US20090250185A1 (en) * 2008-04-03 2009-10-08 Deepak Saha Methods for casting stainless steel and articles prepared therefrom
US8430075B2 (en) * 2008-12-16 2013-04-30 L.E. Jones Company Superaustenitic stainless steel and method of making and use thereof
EP2644734B1 (fr) * 2010-11-26 2018-03-28 National Institute for Materials Science Endoprothèse en acier inoxydable exempt de nickel
JP5616299B2 (ja) * 2011-08-09 2014-10-29 ガウス株式会社 ニッケル及びマンガンフリーの生体用又は医療用器材用高nオーステナイト系ステンレス鋼焼結用粉末及び該粉末を用いた生体用又は医療用焼結器材
DE102011082905A1 (de) * 2011-09-19 2013-03-21 Schaeffler Technologies AG & Co. KG Wälzlagerbauteil
JP5846555B2 (ja) * 2011-11-30 2016-01-20 国立研究開発法人物質・材料研究機構 ニッケルフリー高窒素ステンレス製材料の圧延・抽伸加工方法、ニッケルフリー高窒素ステンレス製シームレス細管及びその製造方法
CN103185263A (zh) * 2011-12-30 2013-07-03 北京谊安医疗系统股份有限公司 一种用于医用吊桥的环境照明灯装置
RU2499075C1 (ru) * 2012-08-21 2013-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Коррозионно-стойкая аустенитная сталь
CN103667861B (zh) * 2012-08-30 2016-10-05 日本活塞环株式会社 气缸套
EP2728028B1 (fr) * 2012-11-02 2018-04-04 The Swatch Group Research and Development Ltd. Alliage d'acier inoxydable sans nickel
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
JP6115935B2 (ja) * 2013-01-25 2017-04-19 セイコーインスツル株式会社 二相ステンレス鋼からなる時効熱処理加工材とそれを用いたダイヤフラムと圧力センサとダイヤフラムバルブ及び二相ステンレス鋼の製造方法
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
JP6095619B2 (ja) * 2014-08-19 2017-03-15 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびメタルガスケット
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US20170088910A1 (en) * 2015-09-29 2017-03-30 Exxonmobil Research And Engineering Company Corrosion and cracking resistant high manganese austenitic steels containing passivating elements
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
EP3390679B1 (fr) 2015-12-14 2022-07-13 Swagelok Company Pièces forgées en acier inoxydable fortement allié sans hypertrempe
EP3249059A1 (fr) 2016-05-27 2017-11-29 The Swatch Group Research and Development Ltd. Procédé de traitement thermique d'aciers austénitiques et aciers austénitiques ainsi obtenus
WO2018032406A1 (fr) * 2016-08-17 2018-02-22 华为技术有限公司 Acier inoxydable à teneur élevée en azote et son procédé de traitement thermique
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
CN107083519A (zh) * 2017-02-22 2017-08-22 广东鑫发精密金属科技有限公司 一种不锈钢冷轧精密弹簧钢带及其制备方法
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109642297A (zh) * 2017-03-20 2019-04-16 苹果公司 钢组合物及其不锈钢的固溶渗氮
CN107354399A (zh) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 一种合金耐磨钢
CN107587071B (zh) * 2017-08-30 2019-05-24 武汉钢铁有限公司 一种抗拉强度≥2100MPa桥梁缆索用钢及生产方法
CN109722612B (zh) * 2017-10-27 2021-02-26 宝武特种冶金有限公司 一种无氮气泡形成的高氮奥氏体不锈钢及其超大规格电渣锭的制造方法
WO2019168893A1 (fr) * 2018-02-27 2019-09-06 Somnio Global Holdings, Llc Articles avec couche de protection en alliage d'azote et procédés de fabrication de ceux-ci
CA3033698C (fr) * 2018-10-10 2024-06-04 Repeat Precision, Llc Outils et ensembles de reglage pour la mise en place d'un dispositif d'isolation de fond de trou tel qu'un bouchon de fracturation
CN109352274B (zh) * 2018-11-06 2019-10-01 湖北第二师范学院 一种可柔性弯折微创钨针电极手术刀及其生产方法
CH715726B1 (fr) * 2019-01-11 2022-10-14 Richemont Int Sa Procédé d'obtention d'un composant fonctionnel pour mouvement horloger.
WO2021026778A1 (fr) * 2019-08-13 2021-02-18 采纳科技股份有限公司 Matériau en acier inoxydable pouvant améliorer la rigidité et la ténacité d'une aiguille d'injection
WO2021070529A1 (fr) * 2019-10-07 2021-04-15 昭和電工株式会社 Élément résistant à la corrosion
CN111575596B (zh) * 2019-10-15 2021-11-09 哈尔滨工程大学 一种耐辐照含Cu纳米团簇强化高强度低合金钢及其制备方法
CN113088816B (zh) * 2021-03-27 2021-10-12 京泰控股集团有限公司 一种家具用钢制材料及其制备方法
CN113308635B (zh) * 2021-05-19 2021-11-30 北京科技大学 具有纳米析出相的低热中子吸收截面中熵合金及制备方法
GB2622172A (en) * 2021-08-06 2024-03-06 Halliburton Energy Services Inc High strength stainless steel material
CN114032461B (zh) * 2021-11-04 2022-05-27 华北理工大学 一种高强度低屈强比高耐蚀海工用高氮钢及其制备方法
WO2024056822A1 (fr) * 2022-09-14 2024-03-21 Danmarks Tekniske Universitet Procédés pour amélier la résistance à la corrosion et à l'usure et la résistance mécanique de composants en acier inoxydable austénitique à haute teneur en manganèse sensiblement exempts de nickel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
US4116683A (en) * 1973-04-11 1978-09-26 Institute Po Metaloznanie I Technologia Na Metalite Nickel-free austenitic corrosion-resistant steel
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
BG29797A1 (en) * 1979-06-27 1981-02-16 Rashev Austenite corrosion resistant steel
DE4023462C1 (fr) * 1989-10-12 1991-07-04 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
JP2591256B2 (ja) * 1990-05-21 1997-03-19 住友金属工業株式会社 高強度非磁性鋼
FR2672904B1 (fr) * 1991-02-14 1993-05-07 Aubert & Duval Acieries Acier inoxydable amagnetique a base manganese-chrome resistant a la corrosion sous contrainte, procede de fabrication d'une barre en acier amagnetique de grande longueur.
CH688862A5 (de) * 1995-01-03 1998-04-30 Basf Ag Korrosionsbestaendige Legierung zur Verwendung als Werkstoff fuer am oder im menschlichen Koerper verwendete Gegenstaende, insbesondere zur Vermeidung von Nickel-Allergie.
CH688914A5 (de) * 1995-01-12 1998-05-29 Basf Ag Korrosionsbeständige Legierung zur Verwendung als Werkstoff für am oder im menschlichen Körper verwendete Gegenstände, insbesondere zur Vermeidung von Nickel-Allergie.
DE19513407C1 (de) * 1995-04-08 1996-10-10 Vsg En & Schmiedetechnik Gmbh Verwendung einer austenitischen Stahllegierung für hautverträgliche Gegenstände
DE19607828C2 (de) * 1995-04-15 2003-06-18 Vsg En Und Schmiedetechnik Gmb Verfahren zum Herstellen eines austenitischen Cv-Mn-Stahls
CH694401A5 (de) * 1999-05-26 2004-12-31 Basf Ag Nickelarmer, molybdänarmer, biokompatibler, nicht Allergie auslösender, korrosionsbeständiger austenitischer Stahl.
JP4538966B2 (ja) * 2001-02-05 2010-09-08 大同特殊鋼株式会社 高強度高耐食非磁性ステンレス鋼

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608251C1 (ru) * 2015-11-18 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Хладостойкая аустенитная высокопрочная сталь
CN110042326A (zh) * 2019-05-21 2019-07-23 马鞍山市庄芝耐磨合金有限公司 一种离心铸造搅拌叶轮及方法
CN110042326B (zh) * 2019-05-21 2020-05-22 马鞍山市庄芝耐磨合金有限公司 一种离心铸造搅拌叶轮及方法
CN113249655A (zh) * 2021-05-13 2021-08-13 北京中科领德健康科技有限公司 高氮无镍低锰抗菌合金及其制备方法、医疗器械产品
CN113249655B (zh) * 2021-05-13 2021-09-24 北京中科领德健康科技有限公司 高氮无镍低锰抗菌合金及其制备方法、医疗器械产品

Also Published As

Publication number Publication date
JP4379804B2 (ja) 2009-12-09
US20060034724A1 (en) 2006-02-16
JP2006052452A (ja) 2006-02-23
EP1626101A1 (fr) 2006-02-15

Similar Documents

Publication Publication Date Title
EP1626101B1 (fr) Acier austénitique inoxydable à haute teneur en azote
EP1783240B1 (fr) Acier austénitique inoxydable à haute teneur en azote
JP5217576B2 (ja) 耐熱部品用オーステナイト系ステンレス鋼及びこれを用いた耐熱部品
EP1236809B1 (fr) Acier inoxydable martensitique à haute dureté, ayant une bonne résistance à la corrossion
EP1867745B1 (fr) Acier ferritique resistant a la chaleur
EP1956108A1 (fr) Acier haute resistance excellent en termes de proprietes de resistance a la rupture differee et boulons en metal
EP2341161A1 (fr) Tuyau en acier inoxydable à haute limite élastique présentant une résistance élevée à la corrosion fissurante en présence d'hydrogène sulfuré et une résistance à la corrosion en présence de dioxyde de carbone à haute température
EP2388341A1 (fr) Procédé de production de tuyau en acier inoxydable duplex
EP2060644A1 (fr) Acier inoxydable martensitique
EP1229142B1 (fr) Acier inoxydable non magnétique à haute résistance, présentant une grande résistance à la corrosion
JP2008127590A (ja) オーステナイト系ステンレス鋼
Jiang et al. Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels
EP2065483A1 (fr) Acier à outils pour formage à chaud présentant d'excellentes qualités de rigidité et de résistance à des températures élevées, et son procédé de production
JP2005344184A (ja) マルテンサイト系ステンレス鋼
JP2005248263A (ja) マルテンサイト系ステンレス鋼
US20030102057A1 (en) High-strength high-toughness precipitation-hardened steel
EP1469095B1 (fr) Alliage durcissable par precipitation à base de nickel-fer-chrome et procédé
US7128791B2 (en) Heat-resistant martensite alloy excellent in high-temperature creep rupture strength and ductility and process for producing the same
JP3768091B2 (ja) 高強度及び高耐食性のマルテンサイト系ステンレス鋼及びその製造方法
JP2007063658A (ja) マルテンサイト系ステンレス鋼
US20200123629A1 (en) Method of producing tube of duplex stainless steel
CN104357753B (zh) 一种稀土型0Cr17Ni4Cu4Nb化纤纤维喷丝板模具钢的制备工艺
JP3204080B2 (ja) 冷鍛性に優れた析出硬化型マルテンサイト系ステンレス鋼の製造方法
CN109280862A (zh) 一种汽车刹车盘用高耐磨不锈钢及其制造方法
WO2024057705A1 (fr) Acier inoxydable et son procédé de fabrication, et produit en acier inoxydable et son procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060616

AKX Designation fees paid

Designated state(s): AT DE FR SE

17Q First examination report despatched

Effective date: 20061025

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20140924BHEP

Ipc: C22C 38/20 20060101AFI20140924BHEP

Ipc: C22C 38/48 20060101ALI20140924BHEP

Ipc: C22C 38/22 20060101ALI20140924BHEP

Ipc: C22C 38/44 20060101ALI20140924BHEP

Ipc: C22C 38/52 20060101ALI20140924BHEP

Ipc: C22C 38/00 20060101ALI20140924BHEP

Ipc: C22C 38/42 20060101ALI20140924BHEP

Ipc: C22C 38/46 20060101ALI20140924BHEP

Ipc: C22C 38/60 20060101ALI20140924BHEP

Ipc: C21D 6/00 20060101ALI20140924BHEP

Ipc: C21D 8/06 20060101ALI20140924BHEP

Ipc: C22C 38/04 20060101ALI20140924BHEP

Ipc: C22C 38/38 20060101ALI20140924BHEP

Ipc: C22C 38/02 20060101ALI20140924BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141105

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHIMIZU, TETSUYA

Inventor name: HAMANO, SHUJI

Inventor name: NODA, TOSHIHARU

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHIMIZU, TETSUYA

Inventor name: NODA, TOSHIHARU

Inventor name: HAMANO, SHUJI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005045765

Country of ref document: DE

Effective date: 20150312

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 708276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005045765

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 708276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160802

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160712

Year of fee payment: 12

Ref country code: SE

Payment date: 20160811

Year of fee payment: 12

Ref country code: AT

Payment date: 20160725

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005045765

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 708276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170810

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831