EP1577146A2 - Système de commande de vitesse adaptatif avec limitation de l'accélération latérale - Google Patents
Système de commande de vitesse adaptatif avec limitation de l'accélération latérale Download PDFInfo
- Publication number
- EP1577146A2 EP1577146A2 EP05075612A EP05075612A EP1577146A2 EP 1577146 A2 EP1577146 A2 EP 1577146A2 EP 05075612 A EP05075612 A EP 05075612A EP 05075612 A EP05075612 A EP 05075612A EP 1577146 A2 EP1577146 A2 EP 1577146A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- speed
- lateral acceleration
- turn
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 84
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 54
- 230000008859 change Effects 0.000 claims abstract description 32
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
- B60K31/0066—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature
- B60K31/0083—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature responsive to centrifugal force acting on vehicle due to the path it is following
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
- B60W30/17—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18145—Cornering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
- B60W2520/125—Lateral acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/804—Relative longitudinal speed
Definitions
- the present invention generally relates to a vehicle which contains an adaptive cruise control ("ACC") system. Specifically, this invention relates to a method and system for controlling a vehicle having an ACC system.
- ACC adaptive cruise control
- Cruise control systems for automotive vehicles are widely known in the art.
- the driver of a vehicle attains a desired vehicle speed and initiates the cruise control system at a set speed.
- the vehicle then travels at the set speed until the driver applies the brakes or turns off the system.
- ACC systems are not only capable of maintaining a set vehicle speed, but they also include object sensing technology, such as radar, laser, or other types of sensing systems, that will detect a vehicle in the path of the vehicle that contains the ACC (or other form of cruise control) system (i.e., "host vehicle”). Accordingly, ACC is an enhancement to traditional cruise control by automatically adjusting a set speed to allow a vehicle to adapt to moving traffic.
- object sensing technology such as radar, laser, or other types of sensing systems
- the ACC system Under normal driving conditions the ACC system is engaged with a set speed equal to a maximum speed that is desired by the vehicle driver, and the ACC system operates in a conventional cruise control mode. If the host vehicle is following too closely behind a vehicle in the path of the host vehicle ("in-path vehicle"), the ACC system automatically reduces the host vehicle's speed by reducing the throttle and/or applying the brakes to obtain a predetermined safe following interval. When the in-path vehicle approaches slow traffic and the ACC system reduces the speed of the host vehicle below a minimum speed for ACC operation, the ACC automatically disengages and the driver manually follows slower in-path vehicles in the slow traffic.
- in-path vehicle approaches slow traffic and the ACC system reduces the speed of the host vehicle below a minimum speed for ACC operation
- the driver When the slow traffic is no longer in front of the host-vehicle, the driver must manually accelerate the host vehicle to a speed above the minimum speed for ACC operation before the ACC system is able to resume acceleration to the set speed.
- objects moving at approximately 30% (thirty percent) or less of the host vehicle's speed are disregarded for braking purposes (i.e., the vehicle's brakes are not applied, the throttle is not reduced, and no other action is taken to slow down the host vehicle).
- Stop-and-go ACC systems are an enhanced form of ACC that overcome some of the shortcomings of ACC systems. Stop-and-go ACC systems enable the host vehicle to follow an in-path vehicle in slower traffic conditions such as stop and go traffic. Therefore, while ACC stop-and-go systems improve the performance of traditional ACC systems, both ACC and ACC stop-and-go systems still provide problems for the driver of the vehicle.
- a first problem presented by ACC and ACC stop-and-go systems is that because there may be an abundance of out-of-path stationary targets encountered by a vehicle during a turn, braking for each of these targets can cause driver discomfort.
- Current ACC and ACC stop-and-go systems are not capable of disregarding the stationary targets not within the vehicle's path (i.e., "out-of-path” targets).
- An example is shown in Fig. 1, in which vehicle 102 utilizes a prior art ACC or ACC stop-and-go system. Vehicle 102 is shown at three (4) different times - time one ("T1"), time two ("T2"), time three ("T3 ”) and time four ("T4").
- In-path indicator 103 highlights objects that are in the path of vehicle 102 as vehicle 102 travels.
- in-path indicator 103 illustrates that stationary object 110 is within vehicle's 102 path.
- Object 110 may be any stationary object, for example, a traffic light, a stopped vehicle, construction equipment, a person, an animal, a sign, or any other object. Since object 110 is in the path of vehicle 102, the ACC or ACC stop-and-go system contained by vehicle 102 appropriately instructs vehicle 102 to either brake or reduce its speed in some fashion. This situation, however, is an unnecessary braking situation because vehicle 110 is not a threat to vehicle 102 at T2.
- vehicle 102 detects stationary object 112, as highlighted by in-path indicator 103. Because object 112 is in the path of vehicle 102, vehicle's 102 ACC or ACC stop-and-go system brakes and reduces vehicle's 102 speed. Object 112, however, like object 110, is non-threatening to vehicle 102. Therefore, in making turn 106, vehicle's 102 ACC or ACC stop-and-go system unnecessarily reduces the speed of vehicle 102. This excessive braking may annoy and provide discomfort to the driver of vehicle 102.
- Fig. 1 Another problem presented by current ACC and ACC stop-and-go systems is that the systems' maintenance of a set cruise speed in turning situations may cause excessive lateral acceleration and the possible loss of control of the host vehicle.
- Fig. 1 An example is shown in Fig. 1.
- Vehicle 102 As vehicle 102 enters turn 106, maintaining the cruise speed may cause excessive lateral acceleration.
- Vehicle 102 shown at T4, illustrates how the excessive lateral acceleration can cause vehicle's 102 tail to careen out of vehicle's 102 desired turn 106. Excessive lateral acceleration such as that described in this example may result in injury to the driver of vehicle 102 as well as to nearby vehicle drivers or pedestrians.
- the method and system of the present invention provides smooth vehicle control in turning situations both by limiting lateral acceleration during the vehicle turn and by eliminating braking for out-of-path targets.
- a method of controlling a vehicle having an adaptive cruise control system capable of obtaining the vehicle's lateral acceleration including the steps of determining when the vehicle is in a turn based on a detected change in the vehicle's lateral acceleration; and reducing the vehicle's speed according to the vehicle's position in the turn.
- a method of controlling a vehicle including the steps of operating the vehicle in an adaptive cruise control mode such that the vehicle is traveling at a set speed; determining whether the vehicle is in a turn in the vehicle's path by detecting change in the vehicle's lateral acceleration; and when the vehicle is determined to be in the turn, reducing the vehicle's speed according to the vehicle's position in the turn, monitoring for objects and maintaining the vehicle's speed if an object is positioned out of the path of the vehicle.
- the present invention provides a method of controlling a vehicle operating in an adaptive cruise control mode and traveling at a set speed, the method including the steps of estimating a path for the vehicle in a turn; associating the vehicle path with a first zone area, the first zone area including the turn; and reducing the vehicle's speed when a detected object is determined to be in the first zone area and maintaining the vehicle's speed when a detected object is determined to be outside of the first zone area.
- a system for use in controlling a vehicle, the system including an adaptive cruise control system; a controller in communication with the adaptive cruise control system and capable of determining when the vehicle is in a turn, the controller operative to reduce the vehicle's speed according to the vehicle's position in the turn; at least one lateral acceleration sensor for generating a signal corresponding to the vehicle's lateral acceleration, the lateral acceleration sensor in electrical communication with the controller and operative to detect a change in the vehicle's lateral acceleration; and at least one object detection sensor for detecting an object in the path of the vehicle during the turn, the object detection sensor in electrical communication with the controller, wherein the controller includes control logic operative to determine whether the object is in the vehicle's path during the turn and ignoring the object for braking purposes when the object is not determined to be in the vehicle's path.
- a method of controlling a vehicle in a turn including the steps of measuring the vehicle's speed; measuring the vehicle's lateral acceleration; estimating the radius of curvature of the vehicle's path based on the vehicle's speed and lateral acceleration; and when the combination of the vehicle's speed and the vehicle path's radius of curvature exceeds a predetermined maximum lateral acceleration limit, reducing the vehicle's speed.
- Fig. 2 shows the inventive stop-and-go adaptive cruise control (ACC) system 210 of the present invention. While system 210 is described within the context of an ACC stop-and-go system, it is contemplated that system 210 may also be used in a traditional ACC system.
- System 210 is implemented in host vehicle 200 that has braking system 212 and engine management system 214.
- System 210 includes vehicle speed sensor 215 for measuring vehicle's 200 speed, lateral acceleration sensor 216 for measuring the acceleration of vehicle 200 in the direction of vehicle's 200 lateral axis in a turn, and yaw rate sensor 218 for measuring the rate that vehicle 200 is rotating about its vertical axis.
- vehicle speed sensor 215 for measuring vehicle's 200 speed
- lateral acceleration sensor 216 for measuring the acceleration of vehicle 200 in the direction of vehicle's 200 lateral axis in a turn
- yaw rate sensor 218 for measuring the rate that vehicle 200 is rotating about its vertical axis.
- System 210 also includes sensor 220 for generating a range signal corresponding to a distance between host vehicle 200 and a target, and a target range rate signal corresponding to a rate that the distance between host vehicle 200 and the target is changing.
- Controller 222 is in electronic communication with sensors 215, 216, 218, 220 over communication bus 224.
- Braking system 212 may include any braking system that is capable of reducing the speed of vehicle 200.
- Such braking mechanisms include a transmission controller that is capable of downshifting a transmission of vehicle 200, a throttle that may be reduced to decrease the speed of vehicle 200, a brake booster controller equivalent to the vehicle's driver applying the brakes, etc.
- Engine management system 214 may include any known vehicle component or system that may be used to adjust the acceleration of vehicle 200. Such components and/or systems may include a vehicle accelerator, a fuel and air intake control system, or an engine timing controller.
- Sensor 220 may include any object detecting sensor known in the art, including a radar sensor (e.g., doppler or microwave radar), a laser radar (LIDAR) sensor, an ultrasonic radar, a forward looking IR (FLIR), a stereo imaging system, or a combination of a radar sensor and a camera system.
- Sensor 220 functions to detect objects positioned in the path of vehicle 200.
- in-path indicators 103, 303 depict sensor's 220 capability to detect an object in the path of vehicles 103, 303, respectively.
- Sensor 220 may be used alone or in combination with other sensors, and depending on the type of sensor 220 used, sensor 220 may also be mounted alone or in multiples.
- sensor 220 is front mounted so as to provide a wide sensor field of view (FOV) covering a minimum turn radius of ten (10) meters.
- FOV wide sensor field of view
- Sensor 220 may also be used in some embodiments of system 210 to gather additional information useful to controller 222 in determining the threat of the object to vehicle 200 and the appropriate actions to carry out. This additional information includes the target angle of the object relative to vehicle 200 and the yaw rate of the object relative to vehicle 200.
- sensors other than sensor 220 may be provided to measure both the target angle and the yaw rate of the object (i.e., target).
- Controller 222 may be a microprocessor-based controller such as a computer having a central processing unit, random access and/or read-only memory, and associated input and output busses. Controller 222 may be a portion of a main control unit such as vehicle's 200 main controller, or controller 222 may be a stand-alone controller. Controller 222 contains logic for enabling vehicle 200 to reduce its speed in a turn as well as to ignore objects positioned outside of a specific zone area, as will be described in further detail below with regards to Figs. 3 and 4.
- Figs. 3 and 4 will now be used in conjunction to describe the method and system of the present invention.
- vehicle 302 implementing system 210 (Fig. 2) of the present invention.
- Vehicle 302 is shown in Fig. 3 at T1, T2, T3 and T4.
- T1 vehicle 302 is displayed traveling at a cruise speed in the direction of arrow 309 on road 304.
- controller 222 executes the logic steps illustrated in Fig. 4.
- controller 222 stores the logic steps in memory as instructions to be executed by a processor.
- controller 222 continuously monitors vehicle's 302 speed, lateral acceleration and yaw rate, each of which is provided to controller 222 as signals from sensors 215, 216, 218 (Fig. 2).
- controller 222 obtains and stores vehicle's 302 lateral acceleration data, yaw rate data and vehicle speed data.
- controller 222 uses a time lag filter to filter the raw lateral acceleration, yaw rate and vehicle speed data, and at step 406, controller 222 processes this filtered data.
- Charted in Fig. 5 is the lateral acceleration of a vehicle in a turn versus the time it takes for the vehicle to complete the turn.
- the X axis denotes the duration of time it takes the vehicle to complete the turn.
- the Y axis denotes the lateral acceleration of the vehicle during the turn.
- the actual path of a vehicle in the turn is illustrated as curve 500.
- Curve 500 exhibits the path that a vehicle follows in a turn.
- Curve 500 may be broken into three (3) sections - entry section 502, middle section 504 and exit section 506. At entry section 502 of turn 500, a vehicle enters the turn. At midsection 504 of turn 500, the vehicle completes the middle of the turn, and at exit section 506, the vehicle completes the turn.
- Controller 222 may contain logic enabling it to use known characteristics of curve 500 to predict not only whether vehicle 302 is in a turn, but also to determine the position in which vehicle 302 is located in the turn, e.g., in the entry of a turn, in the middle of a turn, or in the exit of a turn.
- Curve 520 depicts a vehicle's lateral acceleration during the turn illustrated by curve 500. At entry section 522 of curve 520, the vehicle's lateral acceleration increases from zero (0) Gs to about 0.15 Gs at a steady rate. At midsection 504 of curve 520, the lateral acceleration of the vehicle increases less over time and, when charted, has close to a constant curve.
- the lateral acceleration of the vehicle reaches its maximum value, 0.20 Gs, during midsection 524 of curve 520.
- the lateral acceleration becomes nearly constant before decreasing back to zero (0) as the turn is completed.
- the following characteristics of a vehicle's lateral acceleration in a turn may be derived: 1) in the entry of a turn, the lateral acceleration of a vehicle is likely to rapidly increase from zero (0) Gs over time; 2) in the middle of a turn, the lateral acceleration of a vehicle is likely to show a constant increase before reaching a maximum value; and 3) in the exit of a turn, the lateral acceleration of a vehicle is likely to remain steady for a short period of time before decreasing.
- These characteristics may be used to program controller 222 both to deduce when a vehicle is in a turning situation and to determine at what position the vehicle is in within the turn.
- Controller 222 also uses other data obtained from vehicle 302 to predict whether vehicle 302 is in a turn.
- This data includes vehicle's 302 yaw rate, which is obtained from yaw rate sensor 218; vehicle's 302 yaw rate of change, which controller 222 calculates based on the yaw rate; and vehicle's 302 speed, which is obtained from vehicle speed sensor 215.
- Yaw rate basically indicates that vehicle 302 is turning on the axis that runs vertically through the center of the vehicle.
- Vehicle speed data may be combined with lateral acceleration data to indicate the radius of curvature (ROC) or a road, i.e., how tight the turn is.
- ROC radius of curvature
- controller 222 determines at step 408 that vehicle 302 is not turning, then controller 222 continues to monitor vehicle's 302 lateral acceleration, yaw rate and vehicle speed by obtaining lateral acceleration, yaw rate and vehicle speed data at step 402. However, if controller 222 determines that vehicle 302 is turning, at step 410 controller 222 determines the position of vehicle 302 in the turn.
- controller 222 determines vehicle's 302 position within the turn by using programmed instructions that recognize patterns exhibited in lateral acceleration data when a vehicle is in the entry of a turn, in the middle of a turn, or exiting a turn. After controller 222 determines at step 410 where in turn 306 vehicle 302 is positioned, controller 222 then instructs braking system 212 at step 412 to preemptively reduce vehicle's 302 speed so that vehicle's 302 lateral acceleration speed is reduced o a predetermined maximum limit according to vehicle's 302 position in the turn. For example, vehicle 302 may have been set at a cruise speed of fifty (50) miles per hour (MPH) at T2.
- MPH miles per hour
- controller 222 may contain program instructions that indicate that when vehicle 302 is in the entry of a turn, vehicle's 302 speed should be reduced inversely as the ROC of the turn is reduced. For the same speed, a tighter turn increases the lateral acceleration. For a constant curve, an increase in speed increases the lateral acceleration.
- controller 222 may use vehicle's 302 lateral acceleration, yaw rate, yaw rate of change and speed data to estimate the path of vehicle 302 in turn 306 at step 414.
- Path estimation is a projection of where vehicle 302 will be at the next sample time.
- Vehicle's 302 path estimation is a vector whose longitudinal component is based on vehicle's 302 current speed plus the change in vehicle's 302 speed (delta speed).
- the angle component of vehicle's 302 path estimation is based on vehicle's 302 lateral acceleration, lateral acceleration rate of change, yaw rate and yaw rate of change. The net result is an estimate of the new position of vehicle 302 at time zero (0) plus the change in time (delta time).
- Controller 222 does not instruct braking system 212 to brake or reduce vehicle's 302 speed in turn 306 when an object detected by sensor 220 (Fig. 2) is outside of projected path boundaries 308a, 308b. Further, in the case that the projected path of vehicle 302 is not accurate and boundaries 308a, 308b are incorrectly determined, controller 222 may also determine a safety zone outside of path boundaries 308a, 308b.
- the safety zone bounded by safety zone boundaries 310a, 310b, is similar to boundaries 308a, 308b in that controller 222 does not instruct braking system 212 to brake or reduce vehicle's 302 speed based upon sensor's 220 detection of an object outside of safety zone boundaries 310a, 310b.
- controller 222 After controller projects the path of vehicle 302 at step 414, controller 222 obtains sensor data from sensor 220 at step 416 to determine whether stationary object 310 has been detected.
- in-path indicator 303 depicts what, if anything, is detected by sensor 220 as being in the path of vehicle 302. As vehicle 302 enters turn 306, in-path indicator 303 highlights stopped vehicle 302, thus indicating at step 418 that vehicle's sensor 220 detects vehicle 302 as being in vehicle's 302 path. If sensor 220 does not detect target 310, then controller 222 re-executes the logic steps of Fig. 4 beginning at step 402.
- controller 222 Upon detecting target 310, controller 222 verifies at step 420 that stopped vehicle 302 is valid by subjecting target 310 to persistence filtering.
- the persistence filtering includes using vehicle's 302 yaw rate, yaw rate of change, speed, range (i.e., signal corresponding to a distance between vehicle 302 and target 310), range rate (i.e., signal corresponding to a rate that the distance between vehicle 302 and target 310 is changing), the angle of target 310 and the ROC of turn 306 to verify target 310.
- Target 310 has a range rate equal to but opposite vehicle's 302 speed. By subtracting the range and angle data from vehicle's 302 speed, controller 222 can determine the actual speed and location of target 310. If the range decreases and the range rate changes inversely to vehicle's 302 delta speed, then target 310 is stationary.
- controller 222 determines that target 310 is stationary multiple times, then target 310 is considered to be verified. If target 310 is not directly in front of vehicle 302, e.g., in a curve, then controller 222 performs the same verification test using vector geometry.
- controller 222 When controller 222 has verified that stopped vehicle 302 is a valid target, controller 222 next determines at step 422 whether vehicle 302 out-of-path. Because vehicle 302 is neither within projected path boundaries 308a, 308b nor within safety zone boundaries 310a, 310b, controller 222 determines that vehicle 302 is out-of-path. Accordingly, whereas a prior art ACC or ACC stop-and-go system would cause vehicle 302 to reduce its speed because of detected vehicle 302, controller 222 eliminates system's 210 braking system at step 424 because stopped vehicle 302 is outside of both projected path boundaries 308a, 308b and safety zone boundaries 310a, 310b.
- Controller 222 determines at step 410 that vehicle 302 is midway through turn 306 and adjusts vehicle's 302 speed according to programmed instructions that provide a predetermined lateral acceleration limit for vehicle 302 midway through its turn. After projecting vehicle's 302 path at step 414, controller 222 then obtains sensor signal data from sensor 220 at step 416. In-path indicator 303 highlights a corner of target 312, thus indicating that target 312 has been detected at step 418. Once controller 222 verifies at step 420 that target 312 is a valid target, controller 222 determines at step 422 whether target 312 is out-of-path.
- inventive system 210 does not instruct braking system 212 to brake or otherwise reduce vehicle's 302 speed because target 312 is out-of-path. If controller 222 had determined that target 312 was in path, it would have instructed braking system 212 to initiate its brake routine.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
- Controls For Constant Speed Travelling (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Feedback Control In General (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Traffic Control Systems (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07075766A EP1872998B1 (fr) | 2004-03-19 | 2005-03-14 | Limitation d'accélération latérale automatique et rejet de cibles non menaçantes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US804745 | 2004-03-19 | ||
US10/804,745 US7512475B2 (en) | 2004-03-19 | 2004-03-19 | Automatic lateral acceleration limiting and non threat target rejection |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07075766A Division EP1872998B1 (fr) | 2004-03-19 | 2005-03-14 | Limitation d'accélération latérale automatique et rejet de cibles non menaçantes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1577146A2 true EP1577146A2 (fr) | 2005-09-21 |
EP1577146A3 EP1577146A3 (fr) | 2006-08-16 |
EP1577146B1 EP1577146B1 (fr) | 2008-03-19 |
Family
ID=34838943
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05075612A Active EP1577146B1 (fr) | 2004-03-19 | 2005-03-14 | Système de commande de vitesse adaptatif avec limitation de l'accélération latérale |
EP07075766A Active EP1872998B1 (fr) | 2004-03-19 | 2005-03-14 | Limitation d'accélération latérale automatique et rejet de cibles non menaçantes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07075766A Active EP1872998B1 (fr) | 2004-03-19 | 2005-03-14 | Limitation d'accélération latérale automatique et rejet de cibles non menaçantes |
Country Status (4)
Country | Link |
---|---|
US (2) | US7512475B2 (fr) |
EP (2) | EP1577146B1 (fr) |
AT (2) | ATE389559T1 (fr) |
DE (2) | DE602005005373T2 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006740A1 (fr) * | 2006-07-13 | 2008-01-17 | Robert Bosch Gmbh | Procédé et dispositif de régulation de la vitesse d'un véhicule |
EP2050642A3 (fr) * | 2007-10-16 | 2009-09-30 | Hitachi Ltd. | Dispositif de contrôle pour le freinage/la conduite et véhicule automobile disposant du dispositif |
EP2405416A1 (fr) * | 2010-07-08 | 2012-01-11 | Volvo Car Corporation | Procédé de régulation adaptative de vitesse et système de régulation de la vitesse des véhicules |
CN104520779A (zh) * | 2012-08-07 | 2015-04-15 | 卡特彼勒公司 | 用于为机器规划转弯路径的方法和系统 |
CN106103228A (zh) * | 2014-03-20 | 2016-11-09 | 奥托立夫开发公司 | 一种车辆控制系统 |
US9650043B2 (en) | 2015-04-30 | 2017-05-16 | GM Global Technology Operations LLC | Real-time anticipatory speed control |
TWI621075B (zh) * | 2015-12-09 | 2018-04-11 | Adaptive object classification device with parallel architecture and method thereof |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7974778B2 (en) * | 2004-09-17 | 2011-07-05 | Honda Motor Co., Ltd. | Vehicular control object determination system and vehicular travel locus estimation system |
DE102005050277A1 (de) * | 2005-10-20 | 2007-04-26 | Robert Bosch Gmbh | Abstands- und Geschwindigkeitsregler mit Stauerkennung |
JP4648282B2 (ja) * | 2006-10-06 | 2011-03-09 | 本田技研工業株式会社 | 車両用走行制御装置 |
EP2144217B1 (fr) * | 2007-03-29 | 2013-08-14 | Toyota Jidosha Kabushiki Kaisha | Dispositif d'acquisition de possibilité de collision, et procédé d'acquisition de possibilité de collision |
JP5336052B2 (ja) * | 2007-05-28 | 2013-11-06 | 株式会社デンソー | クルーズ制御装置、プログラム、及び目標車速の設定方法 |
JP4450023B2 (ja) | 2007-07-12 | 2010-04-14 | トヨタ自動車株式会社 | 自車両危険度取得装置 |
JP2010030404A (ja) * | 2008-07-28 | 2010-02-12 | Visteon Global Technologies Inc | 先行車両の位置検出方法及び位置検出装置並びにデータフィルタリング方法 |
DE102009006472B4 (de) * | 2009-01-28 | 2019-06-13 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Kraftfahrzeug |
JP4748232B2 (ja) * | 2009-02-27 | 2011-08-17 | トヨタ自動車株式会社 | 運転支援装置 |
JP5363906B2 (ja) * | 2009-08-05 | 2013-12-11 | 株式会社アドヴィックス | 車両の速度制御装置 |
US9626867B2 (en) | 2012-07-18 | 2017-04-18 | Ford Global Technologies, Llc | False warning suppression in a collision avoidance system |
DE102012213933A1 (de) * | 2012-08-07 | 2014-02-13 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Steuerung eines Geschwindigkeitsregelsystems |
US9085236B2 (en) | 2013-05-09 | 2015-07-21 | Robert Bosch Gmbh | Adaptive cruise control with stationary object recognition |
KR102200121B1 (ko) * | 2014-02-17 | 2021-01-08 | 삼성전자 주식회사 | 차량 흐름 예측 방법 및 장치 |
US9393963B2 (en) | 2014-09-19 | 2016-07-19 | Paccar Inc | Predictive cruise control system with advanced operator control and feedback |
KR101514928B1 (ko) * | 2014-09-24 | 2015-04-23 | 주식회사 만도 | 자동 주행 제어 시스템 및 방법 |
JP6298772B2 (ja) * | 2015-01-14 | 2018-03-20 | 日立オートモティブシステムズ株式会社 | 車載用制御装置、自車位置姿勢特定装置、車載用表示装置 |
JP6650635B2 (ja) * | 2016-02-29 | 2020-02-19 | パナソニックIpマネジメント株式会社 | 判定装置、判定方法、および判定プログラム |
CN106184207B (zh) * | 2016-07-12 | 2018-06-12 | 大连理工大学 | 四轮独立驱动电动汽车自适应巡航控制系统力矩分配方法 |
JP6638619B2 (ja) * | 2016-10-25 | 2020-01-29 | トヨタ自動車株式会社 | 車線逸脱抑制装置 |
DE102017221619A1 (de) * | 2017-11-30 | 2019-06-06 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zum Anzeigen einer Durchführbarkeit eines zumindest teilweise automatisch durchführbaren Fahrmanövers in einem Fahrzeug |
US11511745B2 (en) | 2018-04-27 | 2022-11-29 | Huawei Technologies Co., Ltd. | Method and system for adaptively controlling object spacing |
US11254311B2 (en) | 2018-10-31 | 2022-02-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Lateral adaptive cruise control |
US11524679B2 (en) | 2021-02-08 | 2022-12-13 | Ford Global Technologies, Llc | Adaptive cruise control with user-defined lateral acceleration threshold |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3164439B2 (ja) * | 1992-10-21 | 2001-05-08 | マツダ株式会社 | 車両用障害物検出装置 |
JP3116738B2 (ja) * | 1994-07-28 | 2000-12-11 | トヨタ自動車株式会社 | 車輌の挙動制御装置 |
EP0778507B1 (fr) | 1995-12-04 | 2002-02-27 | Volkswagen Aktiengesellschaft | Procédé pour commander la vitesse d'un véhicule |
JPH10141102A (ja) * | 1996-11-12 | 1998-05-26 | Honda Motor Co Ltd | 車両制御装置 |
JP3388132B2 (ja) * | 1997-04-09 | 2003-03-17 | 本田技研工業株式会社 | 車両制御装置 |
JPH1178465A (ja) * | 1997-09-10 | 1999-03-23 | Nissan Motor Co Ltd | ロール剛性制御装置 |
FR2776786B1 (fr) | 1998-03-24 | 2004-07-16 | Renault | Procede de controle du comportement dynamique d'un vehicule routier |
JP3651259B2 (ja) * | 1998-05-01 | 2005-05-25 | 日産自動車株式会社 | 先行車追従制御装置 |
DE19848236A1 (de) | 1998-10-20 | 2000-04-27 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Begrenzung der Geschwindigkeit eines Fahrzeugs |
US6212465B1 (en) * | 1999-12-22 | 2001-04-03 | Visteon Global Technologies Inc. | Method and system for controlling vehicle speed based on vehicle yaw rate and yaw acceleration |
DE10018557A1 (de) * | 2000-04-14 | 2001-10-18 | Bosch Gmbh Robert | Verfahren zur Regelung der Geschwindigkeit eines Fahrzeugs |
DE10018556A1 (de) * | 2000-04-14 | 2001-10-18 | Bosch Gmbh Robert | Verfahren zur Regelung der Geschwindigkeit eines Fahrzeugs |
US7051827B1 (en) * | 2001-03-13 | 2006-05-30 | Thomas W Cardinal | Cruise control safety disengagement system |
KR20020097360A (ko) * | 2001-06-20 | 2002-12-31 | 현대자동차주식회사 | 자동차의 지능형 정속주행 시스템의 물체 인식방법 |
DE10149146A1 (de) | 2001-10-05 | 2003-04-17 | Bosch Gmbh Robert | Geschwindigkeitsregler mit Abstandsregelfunktion |
US6560525B1 (en) * | 2002-01-02 | 2003-05-06 | Ford Global Technologies, Llc | Integrated queue assist and adaptive cruise control |
JP4043276B2 (ja) * | 2002-04-24 | 2008-02-06 | 株式会社日立製作所 | レーダ装置 |
US6968266B2 (en) * | 2002-04-30 | 2005-11-22 | Ford Global Technologies, Llc | Object detection in adaptive cruise control |
US6753804B2 (en) * | 2002-05-21 | 2004-06-22 | Visteon Global Technologies, Inc. | Target vehicle identification based on the theoretical relationship between the azimuth angle and relative velocity |
JP4208516B2 (ja) * | 2002-08-06 | 2009-01-14 | 株式会社アドヴィックス | 車両の運動制御装置 |
US6580996B1 (en) * | 2002-08-07 | 2003-06-17 | Visteon Global Technologies, Inc. | Vehicle adaptive cruise control system and method |
-
2004
- 2004-03-19 US US10/804,745 patent/US7512475B2/en active Active
-
2005
- 2005-03-14 AT AT05075612T patent/ATE389559T1/de not_active IP Right Cessation
- 2005-03-14 DE DE602005005373T patent/DE602005005373T2/de active Active
- 2005-03-14 DE DE602005019479T patent/DE602005019479D1/de active Active
- 2005-03-14 AT AT07075766T patent/ATE457891T1/de not_active IP Right Cessation
- 2005-03-14 EP EP05075612A patent/EP1577146B1/fr active Active
- 2005-03-14 EP EP07075766A patent/EP1872998B1/fr active Active
-
2009
- 2009-02-16 US US12/371,792 patent/US7925416B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006740A1 (fr) * | 2006-07-13 | 2008-01-17 | Robert Bosch Gmbh | Procédé et dispositif de régulation de la vitesse d'un véhicule |
EP2050642A3 (fr) * | 2007-10-16 | 2009-09-30 | Hitachi Ltd. | Dispositif de contrôle pour le freinage/la conduite et véhicule automobile disposant du dispositif |
EP2405416A1 (fr) * | 2010-07-08 | 2012-01-11 | Volvo Car Corporation | Procédé de régulation adaptative de vitesse et système de régulation de la vitesse des véhicules |
CN104520779A (zh) * | 2012-08-07 | 2015-04-15 | 卡特彼勒公司 | 用于为机器规划转弯路径的方法和系统 |
CN104520779B (zh) * | 2012-08-07 | 2018-04-10 | 卡特彼勒公司 | 用于为机器规划转弯路径的方法和系统 |
CN106103228A (zh) * | 2014-03-20 | 2016-11-09 | 奥托立夫开发公司 | 一种车辆控制系统 |
CN106103228B (zh) * | 2014-03-20 | 2018-11-06 | 维宁尔瑞典公司 | 一种车辆控制系统 |
US9650043B2 (en) | 2015-04-30 | 2017-05-16 | GM Global Technology Operations LLC | Real-time anticipatory speed control |
TWI621075B (zh) * | 2015-12-09 | 2018-04-11 | Adaptive object classification device with parallel architecture and method thereof |
Also Published As
Publication number | Publication date |
---|---|
US7512475B2 (en) | 2009-03-31 |
DE602005005373D1 (de) | 2008-04-30 |
US7925416B2 (en) | 2011-04-12 |
EP1577146A3 (fr) | 2006-08-16 |
ATE457891T1 (de) | 2010-03-15 |
DE602005005373T2 (de) | 2009-04-02 |
EP1577146B1 (fr) | 2008-03-19 |
ATE389559T1 (de) | 2008-04-15 |
DE602005019479D1 (de) | 2010-04-01 |
EP1872998B1 (fr) | 2010-02-17 |
EP1872998A2 (fr) | 2008-01-02 |
US20050209766A1 (en) | 2005-09-22 |
US20090150039A1 (en) | 2009-06-11 |
EP1872998A3 (fr) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7925416B2 (en) | Automatic lateral acceleration limiting and non threat target rejection | |
CN107472246B (zh) | 自适应巡航控制系统及其操作方法 | |
KR101883063B1 (ko) | 차량 주행 제어 장치 | |
CN106114422B (zh) | 自主跟车系统及其最小安全车间距的控制方法 | |
CN105518762B (zh) | 超车辅助系统 | |
US9738280B2 (en) | Adaptive cruise control with on-ramp detection | |
JP4571757B2 (ja) | 車両の走行速度を制御するための方法及び装置 | |
US8396642B2 (en) | Adaptive cruise control system | |
US7715972B2 (en) | Driving assisting system for a vehicle and a vehicle installed with the system | |
US20140032072A1 (en) | Driving support system | |
WO2013183117A1 (fr) | Dispositif d'estimation de caractéristiques de conduite et système d'assistance de conducteur | |
JP2016197464A (ja) | 交通をモニタリングするための方法及び制御ユニット | |
US9238464B2 (en) | Vehicle travel assistance device | |
CN103718061A (zh) | 使用radar和视频的改进的驾驶员辅助系统 | |
CN108778886A (zh) | 行驶辅助装置 | |
US6778897B2 (en) | Adaptive cruise control system and strategy | |
CN111768651B (zh) | 一种预防车辆碰撞的预警方法及装置 | |
CN112677972A (zh) | 自适应巡航方法及装置、设备及介质 | |
JP3602337B2 (ja) | 車両走行制御装置 | |
KR101316306B1 (ko) | 차량의 스마트 크루즈 컨트롤 시스템 및 그 제어방법 | |
JP3885500B2 (ja) | 先行車追従走行制御装置 | |
JP2013056650A (ja) | 車両の走行制御装置 | |
JP3733768B2 (ja) | 車載装置 | |
JP7508945B2 (ja) | 車両の制御方法および制御装置 | |
CN116691660A (zh) | 一种车辆及其弯道制动控制方法、系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20070216 |
|
17Q | First examination report despatched |
Effective date: 20070327 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 602005005373 Country of ref document: DE Date of ref document: 20080430 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080630 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080719 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
26N | No opposition filed |
Effective date: 20081222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090316 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: GLOBAL ID TECHNOLOGY, LLC, ANNANDALE, US Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US Effective date: 20150319 Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE Effective date: 20150319 Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: LADON SOLUTIONS LLC, ANNANDALE, US Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US Effective date: 20150319 Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: INTELLECTUAL DISCOVERY CO., LTD., KR Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US Effective date: 20150319 Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE Effective date: 20150319 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150409 AND 20150415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: CARRUM TECHNOLOGIES, LLC, HOBOKEN, US Free format text: FORMER OWNER: GLOBAL ID TECHNOLOGY, LLC, ANNANDALE, VA., US Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: DEHNS, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: LADON SOLUTIONS LLC, ANNANDALE, US Free format text: FORMER OWNER: GLOBAL ID TECHNOLOGY, LLC, ANNANDALE, VA., US Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: INTELLECTUAL DISCOVERY CO., LTD., KR Free format text: FORMER OWNER: GLOBAL ID TECHNOLOGY, LLC, ANNANDALE, VA., US Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180215 AND 20180221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: CARRUM TECHNOLOGIES, LLC, HOBOKEN, US Free format text: FORMER OWNER: LADON SOLUTIONS LLC, ANNANDALE, VA., US Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: DEHNS, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: INTELLECTUAL DISCOVERY CO., LTD., KR Free format text: FORMER OWNER: LADON SOLUTIONS LLC, ANNANDALE, VA., US |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190503 AND 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: DEHNS, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005005373 Country of ref document: DE Owner name: CARRUM TECHNOLOGIES, LLC, HOBOKEN, US Free format text: FORMER OWNER: INTELLECTUAL DISCOVERY CO., LTD., SEOUL, KR Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: DEHNS PATENT AND TRADEMARK ATTORNEYS, DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 20 Ref country code: GB Payment date: 20240320 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240320 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R039 Ref document number: 602005005373 Country of ref document: DE Ref country code: DE Ref legal event code: R008 Ref document number: 602005005373 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005005373 Country of ref document: DE Representative=s name: DTS PATENT- UND RECHTSANWAELTE PARTMBB, DE |