EP1563544A1 - Grille mise a la terre et techniques d'isolation visant a reduire le courant d'obscurite dans des capteurs d'images cmos - Google Patents
Grille mise a la terre et techniques d'isolation visant a reduire le courant d'obscurite dans des capteurs d'images cmosInfo
- Publication number
- EP1563544A1 EP1563544A1 EP03786643A EP03786643A EP1563544A1 EP 1563544 A1 EP1563544 A1 EP 1563544A1 EP 03786643 A EP03786643 A EP 03786643A EP 03786643 A EP03786643 A EP 03786643A EP 1563544 A1 EP1563544 A1 EP 1563544A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- region
- isolation
- trench
- forming
- image sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 199
- 238000000034 method Methods 0.000 title claims abstract description 67
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000004020 conductor Substances 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 36
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 239000011810 insulating material Substances 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 238000011049 filling Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 93
- 238000012546 transfer Methods 0.000 claims description 40
- 238000009792 diffusion process Methods 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 19
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 16
- 229920005591 polysilicon Polymers 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 7
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 239000002344 surface layer Substances 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 230000008569 process Effects 0.000 description 21
- 239000012634 fragment Substances 0.000 description 20
- 238000009825 accumulation Methods 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000007943 implant Substances 0.000 description 11
- 239000002019 doping agent Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 238000001020 plasma etching Methods 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- -1 for example Substances 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910018999 CoSi2 Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910020968 MoSi2 Inorganic materials 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14687—Wafer level processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14689—MOS based technologies
Definitions
- the present invention relates generally to semiconductor devices, and more particularly, to trench isolation technology for use in semiconductor devices, including CMOS image sensors.
- CMOS image sensor In silicon integrated circuit (IC) fabrication, it is often necessary to isolate semiconductor devices formed in the substrate. This is true for many semiconductor memory devices, for example, DRAM, flash memory, SRAM, microprocessors, DSP and ASIC. The individual pixels of a CMOS image sensor also need to be isolated from each other.
- a CMOS image sensor circuit includes a focal plane array of pixel cells, each one of the cells including a photogate, photoconductor, or photodiode overlying a charge accumulation region within a substrate for accumulating photo- generated charge.
- Each pixel cell may include a transistor for transferring charge from the charge accumulation region to a floating difFusion node and a transistor, for resetting the diffusion node to a predetermined charge level prior to charge transference.
- the pixel cell may also include a source follower transistor for receiving and amplifying charge from the diffusion node and an access transistor for controlling the readout of the cell contents from the source follower transistor.
- CMOS image sensor the active elements of a pixel cell perform the necessary functions of: (1) photon to charge conversion; (2) accumulation of image charge; (3) transfer of charge to the floating diffusion node accompanied by charge amplification; (4) resetting the floating diffusion node to a known state before the transfer of charge to it; (5) selection of a pixel for readout; and (6) output and amplification of a signal representing pixel charge from the floating diffusion node.
- Photo charge may be amplified when it moves from the initial charge accumulation region to the floating diffusion node.
- the charge at the floating diffusion node is typically converted to a pixel output voltage by a source follower output transistor.
- CMOS image sensor pixel is typically either a depleted p-n junction photodiode or a field induced depletion region beneath a photogate.
- a photon impinging on a particular pixel of a photosensitive device may diffuse to an adjacent pixel, resulting in detection of the photon by the wrong pixel, i.e. cross-talk. Therefore, CMOS image sensor pixels must be isolated from one another to avoid pixel cross talk.
- CMOS image sensors which are intentionally fabricated to be sensitive to light, it is advantageous to provide both electrical and optical isolation between pixels.
- CMOS image sensors of the type discussed above are generally known as discussed, for example, in Nixon et al., "256. times.256 CMOS Active Pixel Sensor Camera-on-a-Chip," IEEE Journal of Solid-State Circuits, Vol. 31(12), pp. 2046-2050 (1996); and Mendis et al., "CMOS Active Pixel Image Sensors,” IEEE Transactions on Electron Devices, Vol. 41(3), pp. 452-453 (1994). See also U.S. Patent Nos. 6,177,333 and 6,204,524, which describe operation of conventional CMOS image sensors, the contents of which are incorporated herein by reference.
- Shallow trench isolation is one technique, which can be used to isolate pixels, devices or circuitry from one another.
- a trench is etched into the substrate and filled with a dielectric to provide a physical and electrical barrier between adjacent pixels, devices, or circuitry.
- Refilled trench structures for example, are formed by etching a trench by a dry anisotropic or other etching process and then filling it with a dielectric such as a chemical vapor deposited (CVD) silicon dioxide (Si0 2 ).
- CVD chemical vapor deposited
- Si0 2 silicon dioxide
- the filled trench is then planarized by an etch-back process so that the dielectric remains only in the trench and its top surface remains level with that of the silicon substrate.
- the depth of a shallow trench is generally from about 2000 to about 2500 Angstroms.
- CMOS image sensors One drawback associated with shallow trench isolation in the case of CMOS image sensors is cross-talk from a photon impinging on a particular pixel of a photosensitive device causing changes that may diffuse under the shallow trench isolation structure to an adjacent pixel. Another drawback is that a hole accumulation layer along the sidewall of the trench is relatively small since it is limited by the depth of the shallow trenches.
- ions can be implanted in the silicon substrate in the area directly beneath the trench.
- a drawback associated with ion implantation beneath the trench is that ion implantation beneath the trench can result in high current leakage.
- current leakage can occur at the junction between the active device regions and the trench.
- the dominant crystallographic planes along the trench sidewalls which have a higher silicon density, create a higher density of trap sites along the trench sidewalls compared to silicon/gate oxide interface of a transistor at the silicon surface.
- Trap sites on dangling bonds or broken bonds can exist at the gate electrode/oxide interface, in the bulk oxide film, the oxide substrate interface, and/or the trench insulation/active layer interface.
- the trap sites are normally uncharged but become energetic when electrons and holes become trapped in the trap sites. Highly energetic electrons or holes are called hot carriers. Trapped hot carriers can contribute to the fixed charge of the device and change the threshold voltage and other electrical characteristics of the device.
- the invention provides an isolation gate formed over an isolation trench formed in an image sensor substrate for biasing the substrate at the sidewalls of the trench and providing improved isolation between adjacent pixels.
- the invention provides a substrate biasing isolation gate formed over a substantial portion of an isolation trench formed in an image sensor substrate and formed surrounding a substantial portion of a photosensitive region of an image sensor pixel formed in the substrate.
- the invention provides a structure for isolating areas in a semiconductor device having a trench filled with a conductive material containing silicon formed in an active layer of a substrate to isolate adjacent regions.
- the conductive material containing silicon may be doped with n-type or p- type dopants prior to or after deposition of the material.
- Preferred conductive materials containing silicon include polysilicon and silicon-germanium.
- the invention provides forming a trench adjacent an active layer of a substrate, growing an epitaxial layer to partially fill the trench and depositing an insulating material over the epitaxial layer and within the trench to completely fill the trench.
- FIG. 1A is a top plan view of an exemplary CMOS image sensor fragment
- FIG. IB is a diagrammatic side sectional view of the FIG. 1A image sensor fragment taken along line IB- IB;
- FIG. 2A is a top plan view of a CMOS image sensor fragment in accordance with a first exemplary embodiment of the invention
- FIG. 2B is a diagrammatic side sectional view of the FIG. 2A image sensor fragment taken along line 2B-2B;
- FIG. 3A is a top plan view of a CMOS image sensor fragment showing a 2x2 pixel layout in accordance with another exemplary embodiment of the invention.
- FIG. 3B is a diagrammatic side sectional view of the FIG. 3A image sensor fragment taken along line 3B-3B;
- FIG. 4 is a representative pixel layout showing a 1 x 1 pixel layout according to an embodiment of the invention.
- FIG. 5 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench in process in accordance with another embodiment of the invention.
- FIG. 6 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 3;
- FIG. 7 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 6;
- FIG. 8 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 6;
- FIG. 9 is a diagrammatic side sectional view of a CMOS image sensor fragment incorporating the trench of FIGS. 7 and 8;
- FIG. 10 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench in process in accordance with another exemplary embodiment of the present invention.
- FIG. 11 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 10;
- FIG. 12 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 11;
- FIG. 13 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 12;
- FIG. 14 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench at a processing step subsequent to that shown in FIG. 13;
- FIG. 15 is a diagrammatic side sectional view of a CMOS image sensor fragment showing a trench in process in accordance with yet another exemplary embodiment of the present invention at a processing step subsequent to that shown in FIG. 13;
- FIG. 16 is a diagrammatic side sectional view of a CMOS image sensor fragment incorporating the trench of FIG. 15;
- FIG. 17 is a diagrammatic side sectional view of a CMOS image sensor fragment incorporating the trench of FIG. 16;
- FIG. 18 is a schematic diagram of a processor system incorporating a CMOS image sensor constructed in accordance with the invention.
- wafer and substrate are to be understood as including silicon, silicon-on-insulator (SOI), or silicon-on-sapphire (SOS) technology, doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures.
- SOI silicon-on-insulator
- SOS silicon-on-sapphire
- doped and undoped semiconductors doped and undoped semiconductors
- epitaxial layers of silicon supported by a base semiconductor foundation and other semiconductor structures.
- previous process steps may have been utilized to form regions or junctions in the base semiconductor structure or foundation.
- the semiconductor need not be silicon-based, but could be based on silicon-germanium, germanium, or gallium- arsenide.
- pixel refers to a picture element unit cell contairiing a photosensor and transistors for converting electromagnetic radiation to an electrical signal.
- a representative pixel is illustrated in the figures and description herein, and typically fabrication of all pixels in an image sensor will proceed simultaneously in a similar fashion.
- CMOS image sensor pixel is described first with reference to FIGS. 1A and IB.
- the invention is not limited to CMOS image sensors and may be used in any suitable device, for example, a DRAM, flash memory, SRAM, microprocessor, DSP or ASIC.
- FIGS. 1A and IB a semiconductor wafer fragment of an exemplary CMOS image sensor four- transistor (4T) pixel, generally designated by reference numeral 10, is shown.
- FIGS. 1A-1B show the use of a transfer gate 50 and associated transistor, the transfer gate 50 provides advantages, but is not required.
- the invention may be used in any CMOS imager including, for example, a three transistor (3T) environment where the transfer gate is omitted and an n-type charge collection region of a photodiode is connected with an n-type diffusion region 21.
- the CMOS image sensor 10 ' generally comprises a charge collection region 21 for collecting charges generated by light incident on the pixel and transfer gate 50 for transferring photoelectric charges from the collection region 21 to a sensing node, typically a floating diffusion region 25.
- the floating diffusion region is electrically connected to the gate of an output source follower transistor.
- the pixel also includes a reset transistor 40 for resetting the sensing node to a predetermined voltage before sensing a signal, a source follower transistor 60, which receives at its gate an electrical signal from the floating diffusion region 25, and a row select transistor 80 for outputting a signal from the source follower transistor 60 to an output terminal in response to an address signal.
- the exemplary CMOS image sensor uses a pinned photodiode as the charge collection region 21.
- the pinned photodiode is termed such since the potential in the photodiode is pinned to a constant value when the photodiode is fully depleted.
- the pinned photodiode has a photosensitive or p-n-p junction region comprising a p-type surface layer 24 and an n-type photodiode region 26 V ⁇ thin a p-type active layer 20.
- the pinned photodiode includes two p-type regions 20, 24 so that the n-type photodiode region is fully depleted at a pinning voltage.
- Impurity doped source/drain regions 22, preferably having n-type conductivity, are provided about the transistor gates 40, 60, 80.
- the floating diffusion region 25 adjacent to transfer gate 50 is also preferable n-type.
- trench isolation regions 28 formed in the active layer 20 are used to isolate the pixels.
- FIG. IB illustrates typical STI isolation trenches 28.
- the trench isolation regions 28 are formed using a typical STI process and are generally formed by etching a trench in the doped active layer or substrate 20 via a directional etching process, such as Reactive Ion Etching (RIE), or etching with a preferential anisotropic etchant used to etch into the doped active layer 20 to a sufficient depth, generally about 1000 to 5000 Angstroms.
- RIE Reactive Ion Etching
- the trenches are then filled with an insulating material, for example, silicon dioxide, silicon nitride, ON (oxide-nitride), NO (nitride-oxide), or ONO (oxide-nitride-oxide).
- the insulating materials may be formed by various chemical vapor deposition (CVD) techniques such as low pressure chemical vapor deposition (LPCVD), high density plasma (HDP) deposition, or any other suitable method for depositing an insulating material within a trench.
- CVD chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- HDP high density plasma
- a planarizing process such as chemical mechanical polishing is used to planarize the structure. While the trench isolation regions 28 are formed by the STI process, it should be understood that the isolation regions 28 may instead be formed using the Local Oxidation of Silicon (LOCOS) process.
- LOCS Local Oxidation of Silicon
- the gate stacks for the pixel transistors are formed before or after the trench is etched.
- the order of these preliminary process steps may be varied as is required or convenient for a particular process flow, for example, if a known photogate sensor (not shown) which overlaps the transfer gate is desired, the gate stacks must be formed before the photogate, but if a non- overlapping photogate is desired, the gate stacks may be formed after photogate formation.
- a translucent or transparent insulating layer 30 is formed over the
- CMOS image sensor Conventional processing methods are then carried out to form, for example, contacts 32 (shown in FIG. 1A) in the insulating layer 30 to provide an electrical connection to the source/drain regions 22, the floating diffusion region 25, and other wiring to connect gate lines and other connections in the pixel 10.
- the entire surface may then be covered with a passivation layer of e.g., silicon dioxide, BSG, PSG, or BPSG, which is planarized and etched to provide contact holes, which are then metallized to provide contacts to the photogate (if used), reset gate, and transfer gate.
- a passivation layer e.g., silicon dioxide, BSG, PSG, or BPSG
- CMOS image sensor pixels depicted in FIGS. 1A and IB electrons are generated by light incident externally and stored in the n-type photodiode region 26. These charges are transferred to the diffusion region 25 by the gate structure 50 of the transfer transistor.
- the source follower transistor produces an output signal from the transferred charges.
- a maximum output signal is proportional to the number of electrons extracted from the n-type photodiode region 26. The maximum output signal increases with increased electron capacitance or acceptability of the photodiode.
- the electron capacity of pinned photodiodes typically depends on doping levels and the dopants implanted to form regions 24, 26, 20.
- a common problem associated with an image sensor pinned photodiode is the creation of dark current in an electrical connection region 23 along the sidewall 29 of the conventional trench isolation region 28.
- the electrical connection region 23 provides an electrical connection between the p-type surface layer 24 and the p-type active layer 20.
- Higher dopant concentrations increase the flow of holes through the connection region 23 which increases the electron accumulation capacity of the photodiode.
- Dark current is strongly dependent on the doping implantation conditions of the CMOS image sensor.
- the higher dopant concentrations used in conventional image sensors also increase dark current in the electrical connection region 23.
- Embodiments of the invention provide novel techniques for improved electrical connection along the electrical connection region 23 without having to increase dopant concentrations.
- CMOS image sensors may occur when ion implantation is used to further enhance isolation.
- the polysilicon gates, trench isolation regions, source/drain regions, and diffusion regions may be heavily doped after various fabrication steps via a masked ion implantation.
- a masked ion implant is performed to implant ions in the areas of the substrate directly beneath the trench isolation region thus forming an implanted ion profile 34 (as shown in FIG. IB).
- increased ion implants or doping results in an increased flat band or threshold voltage shift.
- threshold voltage shift V c There are limits to the amount of threshold voltage shift V c that a device will tolerate before it will fail.
- the invention further provides novel techniques for reducing threshold voltage shifts. Although the invention is described below for use in a CMOS image sensor as the preferred embodiment, the invention is not limited to such and may be used in any suitable image sensor, for example, a CCD sensor.
- a first embodiment according to the invention is now described with reference to FIGS. 2A and 2B.
- a region rich in positively charged holes is created along the STI sidewall 129 without increasing the dopant levels of the active layer 120.
- an isolation gate 170 is provided over the trench isolation region 128 and adjacent to the p-n-p junction region 121 in order to provide separation between adjacent pixels 100.
- the isolation gate 170 is preferably also provided slightly over an electrical connection region 123 to provide hole accumulation in this region 123.
- the isolation gate 170 is preferably a stacked gate including an insulating layer 176 formed over an electrode layer 174 provided over a gate oxide layer 172. Oxide, nitride, or other insulating spacers 178 are provided on either side of the isolation gate 170.
- the electrode layer 174 of the isolation gate 170 may be any type of conductor compatible with the CMOS image sensor materials chosen, and is preferably formed of the same material as the other gates. Suitable materials for the electrode layer 174 include, polysilicon, poly/TiSi 2 , poly/WSi 2 , poly/WN x /W, poly/WN x , poly/CoSi 2 and poly/MoSi 2 .
- the isolation gate 170 may be formed at the same time as other gates, for example, the isolation gate 170, reset gate 140, the source follower 160, and the transfer gate 150 may be formed at the same time.
- isolation gate 170 is formed at the same time as the other gates, it is preferred that the isolation trench regions 128 are formed prior to formation of the gates, and accordingly it is preferred that the isolation gate 170 is formed subsequent the formation of the underlying isolation trench regions 128.
- a translucent or transparent insulating layer 130 is formed over the CMOS image sensor. Conventional processing steps may then be carried out to complete formation of the image sensor.
- the isolation gate 170 is biased by providing a grounded potential or applying a slight potential to the isolation gate.
- the potential may be positive or negative depending on the conductivity of the gate type electrode as explained below. Biasing the isolation gate provides electrical isolation between adjacent pixels separated by the isolation gate 170 and corresponding isolation region 128 by causing holes to accumulate in the electrical connection region 123.
- the accumulation of holes increases the area of the electrical connection region 123 by creating a greater separation between the photodiode region 126 and the STI sidewall 129.
- the accumulation of holes in the electrical connection region 123 also provides a good electrical connection from the p-type surface layer 124 to the p-type active layer 120.
- the depth D of the trench isolation region 128 may be reduced when an isolation gate 170 is used in accordance with the invention.
- isolation trenches have a depth of about 2500A.
- the use of an isolation gate in accordance with the invention allows for the use of a trench having a depth D of less than about 2000A or the use of an isolation trench may be eliminated.
- the isolation gate 170 may be formed over the active layer 120.
- the electrode layer 174 of the isolation gate electrode 170 is preferably n+ type polysilicon.
- the isolation gate 170 may be grounded or tied to a slightly negative low reference voltage. The grounded or slightly negative voltage will cause holes to accumulate under the gate in the electrical connection region 123 and provide effective isolation between pixels.
- the electrode layer 174 of the isolation gate 170 may be formed of a p-type conductivity material, for example p+ polysilicon.
- P-type dopants have a lower penetration shift than n-type dopants.
- the use of p-type polysilicon gates shifts the CMOS threshold voltage to more positive values.
- the combination of the threshold voltage shift associated with the p-type polysilicon gate dopant and the threshold voltage shift associated with additional ion implant doping is excessive and leads to device failure.
- the present invention does not require additional implants, such as, the implanted ion profile in the areas of the substrate directly beneath the trench isolation region. Therefore, by providing an isolation gate 170 according to the invention to enhance isolation, instead of increasing active layer dopant concentrations, a p+ polysilicon gate may be used without exceeding threshold voltage limitations.
- the P+ polysilicon isolation gate may be grounded or tied to a slightly positive voltage, for example, a voltage at or lower than supply voltage V DD , to create holes along the trench sidewall and ensure that a conductive channel for electrons is not formed between pixels.
- a slightly positive voltage will cause the conductive channel connecting the pixels to become inverted.
- the grounded voltage will cause holes to accumulate in the electrical connection region 123.
- FIG. 3A A 2 x 2 CMOS image sensor pixel array is shown in FIG. 3A to better illustrate the embodiment of the invention.
- a region rich in positively charged holes is created along the STI sidewall 229 by providing an isolation gate 270 over the trench isolation region 228 and surrounding the p-n-p junction region 221.
- the isolation gate 270 is preferably provided slightly over an electrical connection region 223.
- the isolation gate 270 is also preferably formed to extend around the p-n-p junction region 221 to a gate, for example, transfer gate 250, but does not contact the transfer gate, so as not to short the gates.
- the isolation gate 270 has a length L x in the x-direction and length L y in the y-direction as shown in FIG. 3 A, each of which can be modified to optimize isolation.
- the length L x and L y of the isolation gate 270 may be independently increased or decreased to minimize dark current and cross-talk between adjacent pixels.
- the isolation gate 270 preferably does not extend around the floating diffusion region 225.
- the isolation gate 270 extends between pixels 200, as indicated by reference numeral 270'.
- the isolation gate 270 may be formed over a substantial portion of the trench isolation region 228, thus allowing the formation of a shallower trench isolation region 228 that is less than about 2000 Angstroms deep as discussed above in the description of the first embodiment.
- the isolation gate 270 may be formed of any conductive material but is preferably formed of the same material as the other gates.
- the isolation gate 270 may also be formed at the same time as other gates. In processes where the isolation gate 270 is formed at the same time as the other gates, it is preferred that the isolation trench regions 228 are formed prior to formation of the gates, and accordingly it is preferred that the isolation gate 270 is formed subsequent to the formation of the underlying isolation trench regions 228.
- a translucent or transparent insulating layer 230 is formed over the CMOS image sensor. Conventional processing steps may then be carried out to complete the image sensor.
- the isolation gate 270 is also biased by providing a grounded potential or applying a slight potential to the isolation gate. The potential may be positive or negative depending on the conductivity of the gate electrode layer as described below. Biasing the isolation gate provides electrical isolation between adjacent pixels separated by the isolation gate and creates accumulation of holes in the electrical connection region 223.
- the isolation gate 270 is preferably a stacked gate including an insulating layer 276 formed over an electrode layer 274 provided over a gate oxide layer 272. Oxide, nitride, or other insulating spacers 278 are provided on either side of the isolation gate 270.
- the electrode layer 274 of the isolation gate 270 is preferably n+ polysilicon and may be grounded or tied to a slightly negative low reference voltage.
- the isolation gate 270 may alternatively be a p+ polysilicon gate and may be grounded or tied to a slightly positive reference voltage, for example, V DD . Again the accumulation of holes causes the electrical connection region 223 to expand, thereby providing a greater distance between the photodiode region 226 and the trench sidewalls 229, where trap sites exist.
- CMOS image sensor A simplified circuit for a CMOS image sensor is described below in accordance with the invention.
- the circuit includes, for example, a photodiode for accumulating photo -generated charge in an underlying portion of the substrate.
- the CMOS image sensor may include a photogate, photoconductor, or other image to charge converting device, in lieu of a photodiode, as the initial accumulator for photo-generated charge.
- FIG. 4 shows a circuit for a lxl portion of a pixel array with each pixel cell being constructed in a manner shown by either of the pixels 100, 200 of FIGS. 2A-3B.
- the circuit of FIG. 4 shows a CMOS image sensor using a photodiode and having a pixel photodetector circuit.
- the photodetector circuit is shown in part as a cross-sectional view of a CMOS image sensor.
- Each pixel 500 comprises a pinned photodiode 521 for performing photoelectric conversion.
- Transfer gates 550 are formed between n-type source/drain regions 522A, 522B.
- the transfer gate 550 and n-type source/drain regions 522A, 522B form the charge transfer transistors 529, which are controlled by a transfer signal TX.
- the n-type region 522A acts as a floating diffuison region.
- Reset gates 532 are formed between the n-type source/drain regions 522A, 522C.
- the reset gates and the source/drain regions 522A, 522C form reset transistors 531, which are controlled by a reset signal RST.
- the n-type source/drain region 522C is coupled to a voltage source V DD via a conductor 519.
- FIG. 4 shows the use of a transfer gate 550 and associated transistor 529, the transfer transistor 529 provides advantages, but is not required.
- the invention may be used in a three transistor (3T) environment where the transfer gate is omitted and the n-type charge collection region of the photodiode is converted with the n-type diffusion region 522A.
- Isolation is provided between adjacent pixels by an isolation gate
- the isolation gate 570 is coupled to a reference voltage V Iso .
- the reference voltage V ISO biases the isolation gate 570 off to accumulate holes in the electrical connection regions of the pixels.
- the isolation gate 570 is biased by tying the reference voltage V ISO to ground potential.
- the isolation gate 570 can be turned off “harder” by setting the reference voltage V ISO to a voltage more negative than ground.
- the isolation gate 570 can be turned off “harder” by setting the reference voltage V ISO to a voltage more positive than ground.
- a supply voltage V DD can be used to provide a more positive potential.
- a typical supply voltage can range up to about 5 volts.
- the isolation gate 570 is provided to prevent leakage between adjacent pixels 500. Therefore, while illustrated as lying between adjacent pixels 500, it should be understood that the isolation gate 570 can be applied anywhere on the device calculated to prevent leakage effects of one pixel 500 to the next.
- Each pixel 500 also includes additional transistors, for example, a source follower transistor 536 and a row select transistor 538.
- the transistors 536, 538 are coupled in series source to drain, with the source of the source follower transistors 536 also coupled over leads 540 to the voltage source V DD and the drain of the row select transistors 538 coupled to leads 542.
- the drain of the row select transistors 538 are connected via leads 542 to the drains of similar row select transistors for other pixels in a given pixel row.
- Load transistors 539 are also coupled between the drains of the transistors 538 and a voltage source V ss .
- the transistors 539 are kept on by a signal V LN applied to their gates.
- the source and drain are essentially interchangeable, and interconnections specified herein should not be interpreted as solely limited to those described.
- the transistors have been described as n-type. or n-channel, it is recognized by those skilled in the art that a p-type or p-channel transistor may also be used if the structures are uniformly oppositely doped from that described.
- the n and p designations are used in the common manner to designate donor and acceptor type impurities which promote electron and hole type carriers respectively as the majority carriers.
- the " + " symbol, when used as a suffix with an impurity type shall be interpreted to mean that the doping concentration of that impurity is heavier than the doping associated with just the letter identifying the impurity type without the " + " suffix.
- Another problem associated with the shallow trench isolation technique of the prior art is photon diffusion under the shallow trench isolation structure from one pixel to an adjacent pixel. Attempts have been made to enhance isolation by implanting ions beneath the shallow trench isolation structure. However, these implants result in high current leakage.
- the invention provides a novel technique for improved isolation between adjacent pixels that does not require additional implants beneath the trench, thereby minimizing the generation of dark current in the CMOS image sensor.
- isolation design rules are constructed to make sure that there is enough margin to prevent punch-through in CMOS circuits.
- the trench 28 (FIG. IB) separates the source/drain regions 22 (FIG. 1A) of one pixel from the active layer of an adjacent pixel.
- shallow trenches are generally sufficiently wide to allow a margin adequate enough to prevent punch-through or current leakage.
- the invention further provides novel techniques for preventing current leakage while allowing tighter design rules in CMOS circuits.
- FIGS. 5-9. Another embodiment according to the invention is now described with reference to FIGS. 5-9.
- Shallow trench isolation regions for CMOS image sensors generally have a depth of less than about 3000 Angstroms and generally around about 2000 to about 2500 Angstroms.
- shallow trench regions are filled with a conventional insulator, such as oxides or high density plasma (HDP) oxides.
- HDP high density plasma
- Applicants propose filling trenches with conductive materials containing silicon, preferably polysilicon or silicon-germanium.
- Conductive materials containing silicon may be easily deposited into trenches of various depths, unlike conventional insulation materials, e.g., silicon dioxide, silicon nitride, NO, ON, HDP, and ONO, which are difficult to fill in deep trenches.
- conventional insulation materials e.g., silicon dioxide, silicon nitride, NO, ON, HDP, and ONO
- using a conductive material containing silicon to fill the trench 328 will allow easy formation of a trench, particularly, a deep trench having a depth greater than about 2000 Angstroms, and preferably about 4000 to about 5000 Angstroms.
- a trench according to the invention is deeper than a shallow trench, and accordingly has longer sidewalls than a shallow trench. Therefore, the longer sidewalls allow for a larger electrical connection region 323 (FIG. 9) along the sidewalls of the trench such that electron storage capacitance, e.g., hole accumulation, in the electrical connection region 323 is increased in accordance with the invention.
- CMOS image sensor having a trench filled with a conductive material containing silicon in accordance with the present invention
- a trench 328 is etched into a doped active layer 320.
- a resist and mask are applied, and photolithographic techniques are used to define the area to be etched- out.
- a directional etching process such as Reactive Ion Etching (RIE), or etching with a preferential anisotropic etchant is used to etch into the doped active layer 320 to form the trench 328.
- RIE Reactive Ion Etching
- the resist and mask are removed leaving a structure that appears as shown in FIG. 5.
- an oxide, i.e., Si0 2 or other dielectric liner 327 is grown within the trench 328.
- the oxide liner may be formed of NO, ON, or ONO among many other suitable materials.
- the dielectric liner 327 may be substantially conformal. In other words, the thickness of the liner 327 is substantially the same along the sidewalls 319 and at the bottom of the trench 328. In general, the thickness of the dielectric liner 327 along the sidewalls should be at least about 100 Angstroms.
- a highly doped (in-situ doped) n-type or p-type conductive material containing silicon 329 is deposited to fill the trench 328.
- Suitable conductive materials containing silicon include polysilicon and silicon- germanium.
- the trench 328 may be filled with a conductive material containing silicon 329 then, a masked ion implant (indicated by arrows) may be performed to dope the conductive material containing silicon.
- p-type ions such as boron (B) can be implanted into the conductive material containing silicon using a photoresist mask 326.
- n-type ions such as phosphorous (P), arsenic (As), or antimony (Sb) can be implanted.
- Conductive materials containing silicon are easily filled into deep trenches. The deeper the trench, the harder it is to fill the trench with conventional insulators. Oxides and other conventional insulators form voids or air gaps when used to fill deep trenches.
- a trench may be filled with a conductive material containing silicon easily and effectively.
- FIG. 9 An exemplary CMOS image sensor in accordance with the invention and having a pinned photodiode 321 is shown in FIG. 9.
- the pinned photodiode 321 has a p-type surface layer 324 and an n-type photodiode region 326 within a p-type active layer 320.
- a junction is formed around the entirety of the n- type region 326.
- An impurity doped floating diffusion region 325 preferably having n-type conductivity, is provided on one side of the channel region of transfer gate 350, the other side of which has a portion of n-type region 326.
- a trench isolation region 328 is formed in the active layer 320 adjacent to, but spaced from the n-type region 321.
- An electrical connection region 323 for providing hole accumulation is formed adjacent the sidewalls of the trench isolation region 328.
- the trench isolation region 328 is formed as described above with respect to FIGS. 5-8.
- the gate stacks for example the transfer gate 350, may be formed before or after the trench is etched.
- the order of these process steps may be varied as is required or convenient for a particular process flow, for example, if a photogate sensor which overlaps the transfer gate is desired, the gate stacks must be formed before the photogate, but if a non- overlapping photogate is desired, the gate stacks may be formed after photogate formation. It should be noted that the entire transfer gate stack is not shown in FIG. 9 for clarity purposes.
- a translucent or transparent insulating layer 330 is formed over the
- CMOS image sensor 300 Conventional processing methods are then carried out to form for example, contacts (not shown) in the insulating layer 330 to provide an electrical connection to the source/drain region 322, the floating diffusion region 325, and other wiring to connect gate lines and other connections in the sensor 300.
- a passivation layer e.g., silicon dioxide, BSG, PSG, or BPSG, which is CMP planarized and etched to provide contact holes, which are then metallized to provide contacts to the photogate (if used), reset gate, and transfer gate.
- the use of a trench in accordance with the invention provides improved isolation between pixels.
- the deeper trench better inhibits electrons from diffusing under the isolation trench to an adjacent pixel thereby preventing cross-talk between neighboring pixels. Accordingly, by enhancing isolation via a deeper trench, additional implants under the trench are not necessary, therefore by reducing the implants needed for isolation, current leakage is also reduced.
- Another advantage of the illustrated embodiment of the invention is that the use of a deep trench filled with a conductive material containing silicon in accordance with the invention provides a deeper hole accumulation region, thereby increasing electron storage capacity. Also the deeper trench allows for tighter isolation design rules. Deeper trenches may also be narrower than shallow trenches, while still providing effective isolation between neighboring regions. Accordingly, the source/drain regions of one pixel may be brought closer to the active layer of an adjacent pixel, by narrowing the width of the deep trench.
- a trench 428 is etched into an active layer 420.
- the trench is preferably a deep trench having a depth greater than about 2500 Angstroms and preferably between about 4000 to about 5000 Angstroms.
- a resist and mask are applied, and photolithographic techniques are used to define the area to be etched- out.
- a directional etching process, such as RIE, or etching with a preferential anisotropic etchant is used to etch into the doped active layer 420 to form the trench 428.
- the resist and mask are removed leaving the FIG. 10 structure.
- a nitride liner 432 is formed in the trench 428 via Chemical Vapor Deposition (CVD).
- This nitride liner 432 may be formed of any suitable nitride including NO, ON, ONO, and is preferably formed of silicon nitride.
- an oxide, e.g. Si0 2 or other dielectric liner 427 is formed within the trench 428 and over the silicon nitride liner 432.
- the liner 427 may be non-conformal, in that its thickness may vary along the trench sidewalls 429.
- a relatively thick liner can be formed near the bottom of the trench and a thinner liner formed near the top of the trench.
- Non-conforming materials such as the well-known PSG, BPSG, SOG can be used to produce the liner 427.
- a bottom portion of the oxide liner 427 and nitride liner 432 is stripped away. This can be accomplished by an anisotropic dry etch or a masked wet or dry etch.
- a selective epitaxial layer 433 is grown to fill the trench 428 with silicon.
- the epitaxial layer 433 may be grown using any suitable technique and may be grown as a single layer or multi-layer.
- the epitaxial layer 433 is grown in directly on a surface of the active layer 420 so as to provides a direct electrical contact to the doped active layer 420 through the trench while providing improved field isolation between pixels. Providing a direct electrical contact to the active layer in accordance with the invention, eliminates the need for a top contact, therefore saving space and allowing for tighter pixel formation.
- the selective epitaxial layer 433 is grown to partially fill the trench 428 with silicon.
- a deposition process is performed to fill the rest of the trench with a filler material 434.
- the filler material is preferably an oxide material and is more preferably an HDP oxide.
- a conductive material containing silicon for example polysilicon or silicon-germanium, may also be used to fill the rest of the trench 428.
- a deep trench in accordance with the invention may be formed.
- deep trenches provide improved isolation and in the case of CMOS image sensors, prevention of cross-talk between adjacent pixels.
- the use of a deep trench to provide improved isolation eliminates the need to use excess implants beneath the trench, thereby reducing dark current in CMOS image sensors caused by current leakage.
- a selective-EPI filled or partially filled trench according to the invention may be used in combination with other aspects of the invention, for example, the selective-EPI-partially filled trench may be used along with a deep trench filled with a conductive material containing silicon.
- FIG. 17 An exemplary CMOS image sensor in accordance with the invention and having a pinned photodiode 421 is shown in FIG. 17.
- the pinned photodiode 421 has a p-type surface layer 424 and an n-type photodiode region 426 within a p-type active layer 420.
- a junction is formed around the entirety of the n- type region 426.
- An impurity doped floating diffusion region 425 preferably having n-type conductivity, is provided on one side of the channel region of transfer gate 450, the other side of which has a portion of n-type region 426.
- a trench isolation region 428 is formed in the active layer 420 adjacent to but spaced from n-type region 421.
- An electrical connection region 423 for providing hole accumulation is formed adjacent the sidewalls of the trench isolation region 428.
- the trench isolation region 428 is formed as described above with respect to FIGS. 10-16. It should be noted that the entire transfer gate stack is not shown in FIG. 17 for clarity purposes. [0087]
- the gate stacks for example transfer gate 450, may be formed before or after the trench is etched. The order of these preliminary process steps may be varied as is required or convenient for a particular process flow, for example, if a photogate sensor which overlaps the transfer gate is desired, the gate stacks must be formed before the photogate, but if a non-overlapping photogate is desired, the gate stacks may be formed after photogate formation.
- a translucent or transparent insulating layer 430 is formed over the
- CMOS image sensor 400 Conventional processing methods are then carried out to form for example, contacts (not shown) in the insulating layer 430 to provide an electrical connection to the source/drain region, the floating diffusion region 425, and other wiring to connect gate lines and other connections in the sensor 400.
- a passivation layer e.g., silicon dioxide, BSG, PSG, or BPSG, which is CMP planarized and etched to provide contact holes, which are then metallized to provide contacts to the photogate (if used), reset gate, and transfer gate.
- Pixel arrays according to the invention may be further processed as known in the art to arrive at CMOS image sensors having the functions and features of those discussed with reference to FIGS. 2-17.
- a typical processor based system which includes a CMOS image sensor according to any embodiment of the invention is illustrated generally at 642 in FIG. 18.
- a processor based system is exemplary of a system having digital circuits, which could include CMOS image sensors. Without being limiting, such a system could include a computer system, camera system, scanner, machine vision, vehicle navigation, video phone, surveillance system, auto focus system, star tracker system, motion detection system, image stabilization system and data compression system for high-definition television, all of which can utilize the present invention.
- a processor based system such as a computer system, for example generally comprises a central processing unit (CPU) 644, for example, a microprocessor, that communicates with an input/output (I/O) device 646 over a bus 652.
- the CMOS image sensor 642 also communicates with the system over bus 652.
- the computer system 600 also includes random access memory (RAM) 648, and, in the case of a computer system may include peripheral devices such as a flash memory card 654, or a compact disk (CD) ROM drive 656 which also communicate with CPU 644 over the bus 652. It may also be desirable to integrate the processor 654, CMOS image sensor 642 and memory 648 on a single IC chip.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Element Separation (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05021614A EP1641045A3 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a redûire le courant d'obscurité dans des capteurs d'images CMOS |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US291728 | 1988-12-29 | ||
US10/291,728 US6818930B2 (en) | 2002-11-12 | 2002-11-12 | Gated isolation structure for imagers |
US291772 | 2002-11-12 | ||
US10/291,772 US6888214B2 (en) | 2002-11-12 | 2002-11-12 | Isolation techniques for reducing dark current in CMOS image sensors |
PCT/US2003/035859 WO2004044989A1 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a reduire le courant d'obscurite dans des capteurs d'images cmos |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05021614A Division EP1641045A3 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a redûire le courant d'obscurité dans des capteurs d'images CMOS |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1563544A1 true EP1563544A1 (fr) | 2005-08-17 |
Family
ID=32314381
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03786643A Ceased EP1563544A1 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a reduire le courant d'obscurite dans des capteurs d'images cmos |
EP05021614A Ceased EP1641045A3 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a redûire le courant d'obscurité dans des capteurs d'images CMOS |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05021614A Ceased EP1641045A3 (fr) | 2002-11-12 | 2003-11-12 | Grille mise a la terre et techniques d'isolation visant a redûire le courant d'obscurité dans des capteurs d'images CMOS |
Country Status (7)
Country | Link |
---|---|
EP (2) | EP1563544A1 (fr) |
JP (2) | JP2006506813A (fr) |
KR (2) | KR100669645B1 (fr) |
CN (2) | CN100477241C (fr) |
AU (1) | AU2003295456A1 (fr) |
TW (1) | TWI248676B (fr) |
WO (1) | WO2004044989A1 (fr) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4212447B2 (ja) | 2003-09-30 | 2009-01-21 | 株式会社東芝 | 固体撮像装置および電子カメラ |
US8035142B2 (en) * | 2004-07-08 | 2011-10-11 | Micron Technology, Inc. | Deuterated structures for image sensors and methods for forming the same |
JP2006059842A (ja) * | 2004-08-17 | 2006-03-02 | Sony Corp | 半導体装置及びその製造方法 |
KR100741875B1 (ko) * | 2004-09-06 | 2007-07-23 | 동부일렉트로닉스 주식회사 | Cmos 이미지 센서 및 그의 제조 방법 |
US7675094B2 (en) | 2004-12-22 | 2010-03-09 | Omnivision Technologies, Inc. | Image sensor pixel having a transfer gate formed from P+ or N+ doped polysilicon |
KR100606914B1 (ko) * | 2004-12-29 | 2006-08-01 | 동부일렉트로닉스 주식회사 | 반도체 소자의 격리영역 형성방법 |
US20060180885A1 (en) * | 2005-02-14 | 2006-08-17 | Omnivision Technologies, Inc. | Image sensor using deep trench isolation |
KR101118418B1 (ko) * | 2005-06-30 | 2012-03-06 | 인텔렉츄얼 벤처스 투 엘엘씨 | 액티브 영역에서 게이트 메탈 콘택을 갖는 cmos이미지센서 |
US8139130B2 (en) | 2005-07-28 | 2012-03-20 | Omnivision Technologies, Inc. | Image sensor with improved light sensitivity |
US8274715B2 (en) | 2005-07-28 | 2012-09-25 | Omnivision Technologies, Inc. | Processing color and panchromatic pixels |
US7429496B2 (en) | 2005-08-30 | 2008-09-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Buried photodiode for image sensor with shallow trench isolation technology |
KR100871714B1 (ko) * | 2005-12-05 | 2008-12-05 | 한국전자통신연구원 | 트랜스퍼 트랜지스터 및 이를 구비한 저잡음 이미지 센서 |
KR100877691B1 (ko) | 2005-12-08 | 2009-01-09 | 한국전자통신연구원 | 이미지 센서 및 이미지 센서의 트랜스퍼 트랜지스터 구동방법 |
KR100730469B1 (ko) * | 2005-12-29 | 2007-06-19 | 매그나칩 반도체 유한회사 | 픽셀간 크로스토크를 방지한 씨모스이미지센서 및 그의제조 방법 |
KR100809323B1 (ko) * | 2006-01-31 | 2008-03-05 | 삼성전자주식회사 | 크로스토크가 감소하고 감도가 증가한 이미지 센서 |
US7916362B2 (en) | 2006-05-22 | 2011-03-29 | Eastman Kodak Company | Image sensor with improved light sensitivity |
US7791170B2 (en) * | 2006-07-10 | 2010-09-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of making a deep junction for electrical crosstalk reduction of an image sensor |
JP5116264B2 (ja) * | 2006-07-10 | 2013-01-09 | キヤノン株式会社 | 光電変換装置、光電変換装置の製造方法および光電変換装置を用いた撮像システム |
US8031258B2 (en) | 2006-10-04 | 2011-10-04 | Omnivision Technologies, Inc. | Providing multiple video signals from single sensor |
KR100889483B1 (ko) | 2006-10-20 | 2009-03-19 | 한국전자통신연구원 | 저전압 동작 특성 향상을 위한 이미지 센서 |
US8169010B2 (en) | 2006-11-15 | 2012-05-01 | Electronics And Telecommunications Research Institute | Low-voltage image sensor with sensing control unit formed within |
KR100869743B1 (ko) * | 2006-12-29 | 2008-11-21 | 동부일렉트로닉스 주식회사 | 씨모스 이미지 센서 및 그 제조방법 |
US7459668B2 (en) * | 2007-03-06 | 2008-12-02 | Micron Technology, Inc. | Method, apparatus, and system to reduce ground resistance in a pixel array |
US8896712B2 (en) | 2007-07-20 | 2014-11-25 | Omnivision Technologies, Inc. | Determining and correcting for imaging device motion during an exposure |
US7858914B2 (en) | 2007-11-20 | 2010-12-28 | Aptina Imaging Corporation | Method and apparatus for reducing dark current and hot pixels in CMOS image sensors |
WO2009087533A1 (fr) * | 2008-01-04 | 2009-07-16 | Nxp B.V. | Isolation optique et électrique de pixels de système imageur et son procédé de fabrication |
US8350952B2 (en) | 2008-06-04 | 2013-01-08 | Omnivision Technologies, Inc. | Image sensors with improved angle response |
US7859033B2 (en) | 2008-07-09 | 2010-12-28 | Eastman Kodak Company | Wafer level processing for backside illuminated sensors |
US20100006908A1 (en) * | 2008-07-09 | 2010-01-14 | Brady Frederick T | Backside illuminated image sensor with shallow backside trench for photodiode isolation |
JP5297135B2 (ja) * | 2008-10-01 | 2013-09-25 | キヤノン株式会社 | 光電変換装置、撮像システム、及び光電変換装置の製造方法 |
JP5115563B2 (ja) * | 2010-01-07 | 2013-01-09 | ソニー株式会社 | 固体撮像素子の製造方法 |
JP2011159757A (ja) | 2010-01-29 | 2011-08-18 | Sony Corp | 固体撮像装置とその製造方法、固体撮像装置の駆動方法、及び電子機器 |
JP2012028459A (ja) * | 2010-07-21 | 2012-02-09 | Sony Corp | 半導体装置、固体撮像装置、半導体装置の製造方法、固体撮像装置の製造方法、電子機器 |
JP5682174B2 (ja) * | 2010-08-09 | 2015-03-11 | ソニー株式会社 | 固体撮像装置とその製造方法、並びに電子機器 |
US10096474B2 (en) | 2013-09-04 | 2018-10-09 | Intel Corporation | Methods and structures to prevent sidewall defects during selective epitaxy |
SG11201600820PA (en) * | 2013-09-04 | 2016-03-30 | Intel Corp | Methods and structures to prevent sidewall defects during selective epitaxy |
CN103872064B (zh) * | 2014-03-06 | 2016-08-24 | 中国航天科技集团公司第九研究院第七七一研究所 | 一种抗辐照的4t有源像素及制备方法 |
CN104952784B (zh) * | 2014-03-31 | 2019-01-08 | 中芯国际集成电路制造(上海)有限公司 | 沟槽隔离结构、其制作方法及半导体器件和图像传感器 |
US10361195B2 (en) | 2014-09-04 | 2019-07-23 | Samsung Electronics Co., Ltd. | Semiconductor device with an isolation gate and method of forming |
CN104637968B (zh) * | 2015-02-15 | 2019-06-11 | 格科微电子(上海)有限公司 | 采用深沟槽隔离的图像传感器及其制作方法 |
CN115824395B (zh) * | 2015-08-27 | 2023-08-15 | 光程研创股份有限公司 | 宽频谱光学传感器 |
KR102499854B1 (ko) | 2016-02-25 | 2023-02-13 | 주식회사 디비하이텍 | 격리 구조물 및 이를 포함하는 이미지 센서 |
CN106785336A (zh) * | 2016-12-20 | 2017-05-31 | 西安电子科技大学 | 具备SiO2保护层的频率可重构全息天线的制备方法 |
CN106654523A (zh) * | 2016-12-20 | 2017-05-10 | 西安科锐盛创新科技有限公司 | 用于可重构多层全息天线的Si基SPiN二极管制备方法 |
KR102412617B1 (ko) * | 2017-05-10 | 2022-06-23 | 삼성전자주식회사 | 이미지 센서 |
KR102277139B1 (ko) * | 2017-06-02 | 2021-07-16 | 한국전자통신연구원 | 광 복원성 반도체 장치, 이를 제조하는 방법, 및 이를 이용한 플래시 메모리 장치 |
CN107564926A (zh) * | 2017-09-11 | 2018-01-09 | 德淮半导体有限公司 | Cmos图像传感器及其形成方法 |
FR3085246B1 (fr) | 2018-08-23 | 2020-09-18 | St Microelectronics Crolles 2 Sas | Capteur d'images integre a obturation globale adapte a la realisation d'images a grande gamme dynamique |
US11063081B2 (en) | 2018-11-29 | 2021-07-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device over photodetector pixel sensor |
CN112151557B (zh) * | 2019-06-26 | 2024-07-02 | 格科微电子(上海)有限公司 | Cmos图像传感器的实现方法 |
CN110828497B (zh) * | 2019-11-19 | 2022-03-18 | 上海华力微电子有限公司 | 一种垂直栅cmos图像传感器及制造方法 |
US11289530B2 (en) * | 2020-01-21 | 2022-03-29 | Omnivision Technologies, Inc. | Shallow trench isolation (STI) structure for CMOS image sensor |
US11282890B2 (en) * | 2020-01-21 | 2022-03-22 | Omnivision Technologies, Inc. | Shallow trench isolation (STI) structure for suppressing dark current and method of forming |
US11658201B2 (en) | 2021-08-25 | 2023-05-23 | Silead Inc. | Dual conversion gain image sensor pixels |
CN117693184A (zh) * | 2022-08-24 | 2024-03-12 | 长鑫存储技术有限公司 | 半导体结构的制作方法及半导体结构 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1139428A2 (fr) * | 2000-03-28 | 2001-10-04 | Kabushiki Kaisha Toshiba | Capteur d'image à l'état solide ayant une photodiode et MOSFET et son procédé de fabrication |
US20020024067A1 (en) * | 2000-08-31 | 2002-02-28 | Jin-Su Han | Image sensor capable of decreasing leakage current between diodes and method for fabricating the same |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120385A (en) * | 1981-01-19 | 1982-07-27 | Nec Corp | Image pick up solid element |
US4528047A (en) * | 1984-06-25 | 1985-07-09 | International Business Machines Corporation | Method for forming a void free isolation structure utilizing etch and refill techniques |
US4728624A (en) * | 1985-10-31 | 1988-03-01 | International Business Machines Corporation | Selective epitaxial growth structure and isolation |
US4745081A (en) * | 1985-10-31 | 1988-05-17 | International Business Machines Corporation | Method of trench filling |
US5017999A (en) | 1989-06-30 | 1991-05-21 | Honeywell Inc. | Method for forming variable width isolation structures |
US5386128A (en) * | 1994-01-21 | 1995-01-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output |
JP2658870B2 (ja) * | 1994-04-22 | 1997-09-30 | 日本電気株式会社 | 半導体記憶装置およびその製造方法 |
US5763315A (en) | 1997-01-28 | 1998-06-09 | International Business Machines Corporation | Shallow trench isolation with oxide-nitride/oxynitride liner |
JPH1187486A (ja) * | 1997-09-05 | 1999-03-30 | Nittetsu Semiconductor Kk | 半導体装置及びその製造方法 |
NL1011381C2 (nl) * | 1998-02-28 | 2000-02-15 | Hyundai Electronics Ind | Fotodiode voor een CMOS beeldsensor en werkwijze voor het vervaardigen daarvan. |
US6118142A (en) | 1998-11-09 | 2000-09-12 | United Microelectronics Corp. | CMOS sensor |
US6587146B1 (en) * | 1998-11-20 | 2003-07-01 | Eastman Kodak Company | Three transistor active pixel sensor architecture with correlated double sampling |
US6177333B1 (en) | 1999-01-14 | 2001-01-23 | Micron Technology, Inc. | Method for making a trench isolation for semiconductor devices |
US6232626B1 (en) | 1999-02-01 | 2001-05-15 | Micron Technology, Inc. | Trench photosensor for a CMOS imager |
US6215113B1 (en) * | 1999-04-22 | 2001-04-10 | National Science Council | CMOS active pixel sensor |
US6204524B1 (en) | 1999-07-14 | 2001-03-20 | Micron Technology, Inc. | CMOS imager with storage capacitor |
KR100477788B1 (ko) * | 1999-12-28 | 2005-03-22 | 매그나칩 반도체 유한회사 | 커패시터가 접속된 포토다이오드를 갖는 씨모스이미지센서 및 그 제조방법 |
US6350663B1 (en) * | 2000-03-03 | 2002-02-26 | Agilent Technologies, Inc. | Method for reducing leakage currents of active area diodes and source/drain diffusions |
JP2001250931A (ja) * | 2000-03-07 | 2001-09-14 | Canon Inc | 固体撮像装置およびこれを用いた撮像システム |
EP1143521A1 (fr) * | 2000-04-05 | 2001-10-10 | Omnivision Technologies Inc. | Capteur d'image CMOS avec une mémoire non volatile |
JP2002124656A (ja) * | 2000-10-13 | 2002-04-26 | Seiko Instruments Inc | イメージセンサic |
US6555891B1 (en) | 2000-10-17 | 2003-04-29 | International Business Machines Corporation | SOI hybrid structure with selective epitaxial growth of silicon |
JP4556317B2 (ja) * | 2000-10-25 | 2010-10-06 | 日本ビクター株式会社 | Cmosイメージセンサ |
KR100389923B1 (ko) | 2001-01-16 | 2003-07-04 | 삼성전자주식회사 | 트렌치 소자 분리구조를 가지는 반도체 소자 및 트렌치소자 분리 방법 |
US6545904B2 (en) * | 2001-03-16 | 2003-04-08 | Micron Technology, Inc. | 6f2 dram array, a dram array formed on a semiconductive substrate, a method of forming memory cells in a 6f2 dram array and a method of isolating a single row of memory cells in a 6f2 dram array |
DE10129958B4 (de) | 2001-06-21 | 2006-07-13 | Infineon Technologies Ag | Speicherzellenanordnung und Herstellungsverfahren |
-
2003
- 2003-11-12 CN CNB2003801081862A patent/CN100477241C/zh not_active Expired - Fee Related
- 2003-11-12 JP JP2004552024A patent/JP2006506813A/ja active Pending
- 2003-11-12 EP EP03786643A patent/EP1563544A1/fr not_active Ceased
- 2003-11-12 KR KR1020057008510A patent/KR100669645B1/ko active IP Right Grant
- 2003-11-12 WO PCT/US2003/035859 patent/WO2004044989A1/fr active Application Filing
- 2003-11-12 TW TW092131675A patent/TWI248676B/zh not_active IP Right Cessation
- 2003-11-12 AU AU2003295456A patent/AU2003295456A1/en not_active Abandoned
- 2003-11-12 KR KR1020057009339A patent/KR100749888B1/ko active IP Right Grant
- 2003-11-12 CN CNB2005100965782A patent/CN100405598C/zh not_active Expired - Lifetime
- 2003-11-12 EP EP05021614A patent/EP1641045A3/fr not_active Ceased
-
2005
- 2005-06-24 JP JP2005185310A patent/JP4422075B2/ja not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1139428A2 (fr) * | 2000-03-28 | 2001-10-04 | Kabushiki Kaisha Toshiba | Capteur d'image à l'état solide ayant une photodiode et MOSFET et son procédé de fabrication |
US20020024067A1 (en) * | 2000-08-31 | 2002-02-28 | Jin-Su Han | Image sensor capable of decreasing leakage current between diodes and method for fabricating the same |
Non-Patent Citations (1)
Title |
---|
See also references of WO2004044989A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN100477241C (zh) | 2009-04-08 |
JP2005347762A (ja) | 2005-12-15 |
AU2003295456A1 (en) | 2004-06-03 |
CN100405598C (zh) | 2008-07-23 |
EP1641045A2 (fr) | 2006-03-29 |
EP1641045A3 (fr) | 2006-06-07 |
CN1738045A (zh) | 2006-02-22 |
JP2006506813A (ja) | 2006-02-23 |
KR100749888B1 (ko) | 2007-08-21 |
KR20050072485A (ko) | 2005-07-11 |
TWI248676B (en) | 2006-02-01 |
KR20050061608A (ko) | 2005-06-22 |
JP4422075B2 (ja) | 2010-02-24 |
CN1735969A (zh) | 2006-02-15 |
WO2004044989A1 (fr) | 2004-05-27 |
KR100669645B1 (ko) | 2007-01-16 |
TW200415785A (en) | 2004-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7239003B2 (en) | Isolation techniques for reducing dark current in CMOS image sensors | |
US7811850B2 (en) | Method of operating image sensor | |
EP1641045A2 (fr) | Grille mise a la terre et techniques d'isolation visant a redûire le courant d'obscurité dans des capteurs d'images CMOS | |
US7279770B2 (en) | Isolation techniques for reducing dark current in CMOS image sensors | |
US7217589B2 (en) | Deep photodiode isolation process | |
US7470560B2 (en) | Image sensor having a charge storage region provided within an implant region | |
US7102184B2 (en) | Image device and photodiode structure | |
US7514715B2 (en) | Angled implant for trench isolation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050613 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: APTINA IMAGING CORPORATION |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20110204 |