EP1520519A1 - Verfahren und Vorrichtung zur Reduktion der Herzwandspannung - Google Patents

Verfahren und Vorrichtung zur Reduktion der Herzwandspannung Download PDF

Info

Publication number
EP1520519A1
EP1520519A1 EP04078441A EP04078441A EP1520519A1 EP 1520519 A1 EP1520519 A1 EP 1520519A1 EP 04078441 A EP04078441 A EP 04078441A EP 04078441 A EP04078441 A EP 04078441A EP 1520519 A1 EP1520519 A1 EP 1520519A1
Authority
EP
European Patent Office
Prior art keywords
heart
anchor
tension member
wall
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04078441A
Other languages
English (en)
French (fr)
Other versions
EP1520519B1 (de
Inventor
Cyril J. Schweich
Robert M. Vidlund
Peter T. Keith
Todd J. Mortier
Thomas M. Paulson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences AG
Original Assignee
Myocor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myocor Inc filed Critical Myocor Inc
Publication of EP1520519A1 publication Critical patent/EP1520519A1/de
Application granted granted Critical
Publication of EP1520519B1 publication Critical patent/EP1520519B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2487Devices within the heart chamber, e.g. splints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • A61B17/1227Spring clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0404Buttons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • A61B2017/0435Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being separate elements mechanically linked to the anchor, e.g. by pivots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0445Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors cannulated, e.g. with a longitudinal through-hole for passage of an instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0454Means for attaching and blocking the suture in the suture anchor the anchor being crimped or clamped on the suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0458Longitudinal through hole, e.g. suture blocked by a distal suture knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0461Means for attaching and blocking the suture in the suture anchor with features cooperating with special features on the suture, e.g. protrusions on the suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0464Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/048Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery for reducing heart wall tension, e.g. sutures with a pad on each extremity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2481Devices outside the heart wall, e.g. bags, strips or bands

Definitions

  • the present invention pertains to the field of apparatus for treatment of a failing heart.
  • the apparatus of the present invention is directed toward reducing the wall stress in the failing heart.
  • Heart failure is a common course for the progression of many forms of heart disease.
  • Heart failure may be considered to be the condition in which an abnormality of cardiac function is responsible for the inability of the heart to pump blood at a rate commensurate with the requirements of the metabolizing tissues, or can do so only at an abnormally elevated filling pressure.
  • the process of ventricular dilatation is generally the result of chronic volume overload or specific damage to the myocardium.
  • cardiac output requirements for example, that of an athlete
  • damage to the myocardium or chronic volume overload there are increased requirements put on the contracting myocardium to such a level that this compensated state is never achieved and the heart continues to dilate.
  • the basic problem with a large dilated left ventricle is that there is a significant increase in wall tension and/or stress both during diastolic filling and during systolic contraction.
  • the adaptation of muscle hypertrophy (thickening) and ventricular dilatation maintain a fairly constant wall tension for systolic contraction.
  • the ongoing dilatation is greater than the hypertrophy and the result is a rising wall tension requirement for systolic contraction. This is felt to be an ongoing insult to the muscle myocyte resulting in further muscle damage.
  • the increase in wall stress is also true for diastolic filling.
  • Prior art treatments for heart failure fall into three generally categories. The first being pharmacological, for example, diuretics. The second being assist systems, for example, pumps. Finally, surgical treatments have been experimented with, which are described in more detail below.
  • diuretics have been used to reduce the workload of the heart by reducing blood volume and preload.
  • preload is defined in several ways including left ventricular end diastolic pressure (LVEDP), or left ventricular end diastolic volume (LVEDV).
  • LEDP left ventricular end diastolic pressure
  • LVEDV left ventricular end diastolic volume
  • the preferred definition is the length of stretch of the sarcomere at end diastole.
  • Diuretics reduce extra cellular fluid which builds in congestive heart failure patients increasing preload conditions.
  • Nitrates, arteriolar vasodilators, angiotensin converting enzyme inhibitors have been used to treat heart failure through the reduction of cardiac workload through the reduction of afterload.
  • Afterload may be defined as the tension or stress required in the wall of the ventricle during ejection.
  • Inotropes like digoxin are cardiac glycosides and function to increase cardiac output by increasing the force and speed of cardiac muscle contraction.
  • Assist devices include mechanical pumps. Mechanical pumps reduce the load on the heart by performing all or part of the pumping function normally done by the heart. Currently, mechanical pumps are used to sustain the patient while a donor heart for transplantation becomes available for the patient.
  • Heart transplantation has serious limitations including restricted availability of organs and adverse effects of immunosuppressive therapies required following heart transplantation.
  • Cardiomyoplasty includes wrapping the heart with skeletal muscle and electrically stimulating the muscle to contract synchronously with the heart in order to help the pumping function of the heart.
  • the Batista partial left ventriculectomy includes surgically remodeling the left ventricle by removing a segment of the muscular wall. This procedure reduces the diameter of the dilated heart, which in turn reduces the loading of the heart. However, this extremely invasive procedure reduces muscle mass of the heart.
  • the present invention pertains to a non-pharmacological, passive apparatus and method for the treatment of a failing heart.
  • the device is configured to reduce the tension in the heart wall. It is believed to reverse, stop or slow the disease process of a failing heart as it reduces the energy consumption of the failing heart, decreases isovolumetric contraction, increases isotonic contraction (sarcomere shortening), which in turn increases stroke volume.
  • the device reduces wall tension during diastole and systole.
  • Splints can be grouped as either “full cycle splints” which engage the heart to produce a chamber shape change throughout the cardiac cycle, or “restrictive splints” which do not engage the heart wall at end systole to produce a chamber shape change.
  • the apparatus includes a tension member for drawing at least two walls of the heart chamber toward each other to reduce the radius or area of the heart chamber in at least one cross sectional plane.
  • the tension member has anchoring members disposed at opposite ends for engagement with the heart or chamber wall.
  • the apparatus includes a compression member for drawing at least two walls of a heart chamber toward each other.
  • the compression member includes a balloon.
  • a frame is provided for supporting the compression member.
  • Yet another embodiment of the invention includes a clamp having two ends biased toward one another for drawing at least two walls of a heart chamber toward each other.
  • the clamp includes at least two ends having atraumatic anchoring member disposed thereon for engagement with the heart or chamber wall.
  • a heart wall tension reduction apparatus which includes a first tension member having two oppositely disposed ends and first and second elongate anchor members.
  • a second tension member can be provided.
  • One of the elongate anchors may be substituted for by two smaller anchors.
  • an elongate compression member can be provided.
  • First and second elongate lever members preferably extend from opposite ends of the compression member.
  • a tension member extends between the first and second lever members.
  • the compression member of the above embodiment can be disposed exterior to, or internally of the heart.
  • the tension member extends through the chamber or chambers to bias the lever members toward the heart.
  • a rigid elongate frame member in accordance with the present invention, can extend through one or more chambers of the heart.
  • One or more cantilever members can be disposed at opposite ends of the frame member.
  • Each cantilever member includes at least one atraumatic pad disposed thereon. The atraumatic pads disposed at opposite ends of the frame member can be biased toward each other to compress the heart chamber.
  • One method of placing a heart wall tension apparatus or splint on a human heart includes the step of extending a hollow needle through at least one chamber of the heart such that each end of the needle is external to the chamber.
  • a flexible leader is connected to a first end of a tension member.
  • a second end of the tension member is connected to an atraumatic pad.
  • the leader is advanced through the needle from one end of the needle to the other.
  • the leader is further advanced until the second end of the tension member is proximate the heart and the first end of the tension member is external to the heart.
  • a second atraumatic pad is connected to the first end of the tension member such that the first and second atraumatic pads engage the heart.
  • Yet another method of placing a heart wall tension apparatus on a heart includes the step of extending a needle having a flexible tension member releasably connected thereto through at least one chamber of the heart such that opposite ends of the tension member are external to the chamber and exposed on opposite sides of the chamber.
  • the needle is removed from the tension member.
  • first and second atraumatic pads are connected to the tension member at opposite ends of the tension member.
  • Figure 1 shows a transverse cross-section of a left ventricle 10 and a right ventricle 12 of a human heart 14. Extending through the left ventricle is a splint 16 including a tension member 18 and oppositely disposed anchors 20. Splint 16 as shown in Figure 1 has been positioned to draw opposite walls of left ventricle 10 toward each other to reduce the "radius" of the left ventricular cross-section or the cross-sectional area thereof to reduce left ventricular wall stresses.
  • splint 16 and the alternative devices disclosed herein are described in relation to the left ventricle of a human heart, these devices could also be used to reduce the radius or cross-sectional area of the other chambers of a human heart in transverse or vertical directions, or at an angle between the transverse and vertical.
  • splints Those apparatus of the present invention which reduce heart wall stress by changing chamber wall geometry can be referred to as "splints".
  • “Full cycle splints” engage the heart to produce a chamber shape change throughout the cardiac cycle.
  • “Restrictive splints” do not engage the heart wall at end systole to produce a chamber shape change.
  • Figure 2 discloses an alternate embodiment of the present invention, wherein a balloon 200 is deployed adjacent the left ventricle.
  • the size and degree of inflation of the balloon can be varied to reduce the radius or cross-sectional area of left ventricle 10 of heart 14.
  • Figure 3 shows yet another alternative embodiment of the present invention deployed with respect to left ventricle 10 of human heart 14.
  • a compression frame structure 300 is engaged with heart 14 at atraumatic anchor pads 310.
  • a compression member 312 having an atraumatic surface 314 presses against a wall of left ventricle 10 to reduce the radius or cross-sectional area thereof.
  • Figure 4 is a transverse cross-sectional view of human heart 14 showing yet another embodiment of the present invention.
  • a clamp 400 having atraumatic anchor pads 410 biased toward each other is shown disposed on a wall of left ventricle 10.
  • the radius or cross-sectional area of left ventricle 10 is reduced by clamping off the portion of the wall between pads 410.
  • Pads 410 can be biased toward each other and/or can be held together by a locking device.
  • Each of the various embodiments of the present invention disclosed in Figures 1-4 can be made from materials which can remain implanted in the human body indefinitely. Such biocompatible materials are well-known to those skilled in the art of clinical medical devices.
  • Figure 5 shows an alternate embodiment of the splint of Figure 1 referred to in Figure 5 by the numeral 116.
  • the embodiment 116 shown in Figure 5 includes three tension members 118 as opposed to a single tension member 18 as shown in Figure 1.
  • Figure 6 shows yet another embodiment of the splint 216 having four tension members 218. It is anticipated that in some patients, the disease process of the failing heart may be so advanced that three, four or more tension members may be desirable to reduce the heart wall stresses more substantially than possible with a single tension member as shown in Figure 1.
  • Figure 7 is a partial vertical cross-section of human heart 14 showing left ventricle 10.
  • another splint embodiment 316 is shown having a tension member 318 extending through left ventricle 10.
  • tension member 318 On opposite ends of tension member 318 are disposed elongate anchors or pads 320.
  • Figure 8 is an end view of tension member 318 showing elongate anchor 320.
  • FIG 9 shows another embodiment of a splint 416 disposed in a partial vertical cross-section of human heart 14.
  • Splint 416 includes two elongate anchors or pads 420 similar to those shown in Figures 7 and 8. In Figure 9, however, two tension members 418 extend through left ventricle 10 to interconnect anchors 420 on opposite sides of heart 14.
  • Figure 10 is a vertical cross section of heart 14 showing left ventricle 10.
  • two splints 16 are disposed through left ventricle 10 and vertically spaced from each other to resemble the configuration of Figure 9.
  • FIG 11 is a vertical cross sectional view of the left ventricle of heart 14.
  • Two alternate embodiment splints 516 are shown extending through left ventricle 10.
  • Each splint 516 includes two tension members 518 interconnecting two anchors or pads 520.
  • Figure 12 is yet another vertical cross sectional view of left ventricle 10 of heart 14.
  • An alternate embodiment 616 of the splint is shown extending through left ventricle 10.
  • Splint 616 includes an elongate anchor pad 620 and two shorter anchors or pads 621.
  • Splint 616 includes two tension members 618. Each tension member 618 extends between anchors 620 and respective anchors 621.
  • Figure 13 is a vertical cross sectional view of left ventricle 10 of heart 14.
  • a splint 50 is shown disposed on heart 14.
  • Splint 50 includes a compression member 52 shown extending through left ventricle 10. Opposite ends of compression member 52 are disposed exterior to left ventricle 10.
  • Lever members 54 extend from each end of compression member 52 upwardly along the exterior surface of ventricle 10.
  • a tension member 56 extends between lever members 54 to bias lever members 54 toward heart 14 to compress chamber 10.
  • Compression member 52 should be substantially rigid, but lever members 54 and to some degree compression member 52 should be flexible enough to allow tension member 56 to bias lever members 54 toward heart 14.
  • lever members 54 could be hinged to compression member 52 such that lever members 54 could pivot about the hinge when biased toward heart 14 by tension member 56.
  • Figure 14 shows an alternate embodiment 156 of the splint shown in Figure 13.
  • lever members 154 are longer than members 54 as compression member 152 of splint 150 has been disposed to the exterior of left ventricle 10.
  • Figure 15 is a vertical cross sectional view of left ventricle 10 of heart 14.
  • An alternate embodiment 250 of the splint is shown on heart 14.
  • a preferably relatively rigid frame member 256 extends through ventricle 10.
  • cantilever member 254 Disposed on opposite ends of frame 256 are cantilever member 254.
  • cantilever members 254 Disposed on cantilever members 254 are atraumatic pads 258.
  • Cantilever members 254 can be positioned along frame member 256 such that atraumatic pads 258 press against heart 14 to compress chamber 10.
  • Figure 16 is an end view of frame member 256 showing cantilever members 254 and pads 258.
  • the tension members can be formed from flexible or relatively more rigid material.
  • the compression members and frame member should be formed from generally rigid material which may flex under load, but generally hold its shape.
  • FIG 17 is a partial vertical cross-section of human heart 14 showing left ventricle 10 and left atrium 22.
  • heart 14 includes a region of scar tissue 24 associated with an aneurysm or ischemia.
  • the scar tissue 24 increases the radius or cross-sectional area of left ventricle 10 in the region affected by the scar tissue. Such an increase in the radius or cross-sectional area of the left ventricle will result in greater wall stresses on the walls of the left ventricle.
  • Figure 18 is a vertical cross-sectional view of the heart 14 as shown in Figure 7, wherein a splint 16 has been placed to draw the scar tissue 24 toward an opposite wall of left ventricle 10.
  • a splint 16 has been placed to draw the scar tissue 24 toward an opposite wall of left ventricle 10.
  • the radius or cross-sectional area of the left ventricle affected by the scar tissue 24 is reduced.
  • the reduction of this radius or cross-sectional area results in reduction in the wall stress in the left ventricular wall and thus improves heart pumping efficiency.
  • Figure 19 is a vertical cross-sectional view of left ventricle 10 and left atrium 22 of heart 14 in which a splint 16 has been placed.
  • splint 16 includes an alternative anchor 26.
  • the anchor 20 is preferably an elongate member having a length as shown in Figure 9 substantially greater than its width (not shown).
  • Anchor bar 26 might be used to reduce the radius or cross-sectional area of the left ventricle in an instance where there is generalized enlargement of left ventricle 10 such as in idiopathic dilated cardiomyopathy. In such an instance, bar anchor 26 can distribute forces more widely than anchor 20.
  • FIGS 20 and 21 are side views of a hinged anchor 28 which could be substituted for anchors 20 in undeployed and deployed positions respectively.
  • Anchor 28 as shown in Figure 20 includes two legs similar to bar anchor 26.
  • Hinged anchor 28 could include additional legs and the length of those legs could be varied to distribute the force over the surface of the heart wall.
  • the webbing would be disposed on the surface of the legs which would be in contact with the heart wall.
  • FIG 22 is a cross-sectional view of a capture ball anchor 30.
  • Capture ball anchor 30 can be used in place of anchor 20.
  • Capture ball anchor 30 includes a disk portion 32 to distribute the force of the anchor on the heart wall, and a recess 34 for receiving a ball 36 affixed to an end of tension member 18.
  • Disk 32 and recess 34 include a side groove which allows tension member 38 to be passed from an outside edge of disk 32 into recess 34.
  • Ball 36 can then be advanced into recess 34 by drawing tension member 18 through an opening 38 in recess 34 opposite disk 32.
  • Figure 23 is a perspective view of a cross bar anchor 40.
  • the cross bar anchor 40 can be used in place of anchors 20.
  • the anchor 40 preferably includes a disk or pad portion 42 having a cross bar 44 extending over an opening 46 in pad 42.
  • Tension member 18 can be extended through opening 46 and tied to cross bar 42 as shown.
  • FIG 24 is a cross sectional view of an alternate embodiment of anchor pad 340 in accordance with the present invention.
  • Anchor pad 340 preferably includes a disc shaped pad portion 342.
  • Disc shape pad portion 342 includes side 343, which in use is disposed toward the heart.
  • a conical aperture 348 having sloping sides 346 extends through pad 342.
  • Collet 344 is disposed within orifice 348.
  • a threaded portion 350 of collet 344 extends from orifice 348 opposite side 343, nut 352 is threaded over threaded portion 350.
  • Lumen 345 extends through collet 344.
  • a tension member 354 is shown extending through lumen 345.
  • Lumen 345 has a diameter such that when nut 352 is not tightened on threaded portion 350, tension member 354 can slide freely through lumen 345. When nut 352 is tightened, it draws collet 344 away from side 343. Collet 344 is then pinched between walls 346 of orifice 348. When collet 344 is pinched, the size of lumen 345 is reduced such that tension member 354 can no longer move freely within lumen 345, fixing the position of pad 340 on tension member 354.
  • FIG 25 is a cross sectional view of an alternate embodiment an anchor pad 360 in accordance with the present invention.
  • Anchor pad 360 includes a generally disc-shaped pad portion 362.
  • Pad 362 includes a side 363 which when the pad is in use, is disposed toward the heart.
  • a tension member lumen 364 extends through pad 362.
  • Lumen 364 preferably has a generally conical shaped portion 365 disposed toward side 363.
  • Tension member 370 is shown disposed through lumen 364 in Figure 25.
  • Pad 362 includes a threaded passage 366 extending from an edge of pad 362 to lumen 364.
  • a set screw 368 is threaded into passage 366. Set screw 368 can be tightened to engage tension member 370 to fix the position of anchor pad 360.
  • the size of lumen 364 is preferably large enough that anchor pad 360 can slide relatively freely over tension member 370.
  • FIG 26 is a perspective view of yet another embodiment of anchor pad 380 in accordance with the present invention.
  • Anchor pad 380 preferably includes a generally disc-shaped pad portion 382 having a first side 383 which in use would be disposed toward the heart and a second side 385.
  • Pad 382 as well as pads 342 and 362 are preferably formed from a metal such as stainless steel alloys or titanium alloys.
  • a tension member fastener 384 is formed in pad 382 by cutting a series of grooves and apertures through pad 382 from side 385 to side 383.
  • a first groove 386 has a generally horseshoe shape.
  • Second groove 388 extends between opposite portions of horseshoe shaped groove 386 to form two oppositely disposed cantilever members 387.
  • a relatively large aperture 394 is formed between cantilever members 387 proximate their free ends.
  • a second and smaller aperture 390 is formed closer to the fixed ends of cantilever members 387.
  • Tension member 392 is shown extending through aperture 390.
  • tension member 392 is clamped between cantilever members 387 such that the location of pad 382 is fixed along tension member 392.
  • Pad 382 can be released by using a spreading device 396 to spread cantilever members 387 apart.
  • Spreading device 396 includes handle 398 to spreading arms 400 each having a finger 402. Fingers 402 can be placed within aperture 394 then arms 400 and fingers 402 can be spread apart by pivoting them around a pin 404 such that cantilevers 387 are spread apart and pad 382 can move freely along tension member 392. It can be appreciated that although spreader 396 is shown extending transversely from tension member 392, it could also be configured such that fingers 402 do not curve transversely from arms 400 and thus spreader 396 could be disposed parallel to tension member 392.
  • cantilever members 387 can be held apart such that pad 380 can be moved along tension member 392 by placement of a temporary wedge or pin in groove 388.
  • grooves 388 may include an additional small aperture disposed between aperture 390 and aperture 394 into which a pin could be placed to hold open members 387.
  • device 396 could be used to spread cantilever members 387 to remove the pin. The cantilever members could then be released to engage tension member 392.
  • Aperture 390 of pad 380 can also include a conical portion disposed toward side 383 such as conical portion 365 of pad 360.
  • Cantilever arms 384 are preferably configured such that they do not stress tension member 392 beyond its elastic limit. It can also be appreciated that the force developed by cantilever members 387 impinging on tension member 392 is operator independent and defined by the geometry and material characteristics of members 387.
  • Figure 27 is a perspective view of an anchor pad 360 having a tension member 370 extending therethrough. After pad 360 is secured to tension member 370, that portion of tension member 370 which extends from the side of anchor pad 360 opposite side 363 is preferably removed. This can be accomplished by trimming tension member 370 with wire cutter 414 or scissors. Although anchor pad 360 is used here to illustrate trimming tension member 370, it can be appreciated that in each of the embodiments disclosed herein there may be an excess portion of tension member extending from an anchor, which is preferably removed or trimmed.
  • Figure 28 is a cross sectional view of an alternate embodiment 420 of a tension member cutter.
  • Device 420 includes an elongate outer tube 422 having a distal end 424.
  • Tube 424 defines a lumen 423 through which extends a second tube 430 having a distal end 428.
  • Extending distally from distal end 428 are two cutting arms 424 and 426 which are shown partially withdrawn into lumen 423 and transversely restrained by distal end 424 of outer tube 422. When unrestrained by distal end 424, arms 424 and 426 are biased apart.
  • Each arm 424 and 426 has a cutting element 425 and 427, respectively. Elements 425 and 427 are shown in contact with each other in Figure 28.
  • a tension member 370 extends between arms 424 and through lumen 432 of inner tube 430.
  • a representative anchor pad 360 is disposed adjacent elements 425 and 427.
  • Device 420 of Figure 28 is particularly useful when trimming excess tension member using less invasive techniques as it can be readily advanced over a tension member through a port or window trocar.
  • Figure 29 is a vertical cross sectional view of left ventricle B of heart A.
  • a transventricular splint 443 including a tension member 370 and anchor pads 360 are shown disposed on heart A.
  • To the left of heart A as shown in the figure is a coiled portion 442 of tension member 470.
  • tension member 370 could be formed from a shape memory alloy such that portion 442 could be preset to assume a coil shape when warmed to near body temperature.
  • the anchors are secured in place along the tension member and the excess length of tension member removed if desired, the anchor or anchor pads are preferably secured in place on the heart.
  • the anchor or anchor pads are secured such that relatively movement between the anchors or anchor pads and the heart is limited to reduce abrasion of the heart wall.
  • a biocompatible adhesive could be placed between the pad and the heart to adhere the pad to the heart.
  • apertures could be provided in the pad such that sutures could be extended through the apertures and into the heart to secure the pad.
  • the pad could include threaded apertures into which anchor screws could be advanced through the pad and into the heart wall to secure the pad to the heart.
  • Figure 30 illustrates yet another alternative approach to securing the anchors or anchor pads to the heart surface.
  • Figure 30 is a cross sectional view of an anchor pad 340 disposed on heart A.
  • Anchor pad 340 is disposed within an envelope 446.
  • Envelope 446 includes a bottom layer 447 disposed between anchor pad 340 and heart A and a top layer 448 disposed on the opposite side of anchor pad 340.
  • Layers 347 and 340 are held together by sutures 449.
  • Bottom layer 447 is preferably a mesh or expanded PTFE which has a pore size or intranodial dimension sufficient to promote tissue ingrowth.
  • the pore size is preferably between about 10 and about 100 microns and more preferably, between about 20 and about 40 microns.
  • the intranodial dimension is preferably between about 10 to about 100 microns and more preferably between about 20 to about 40 microns.
  • the top material could also be expanded PTFE or the like having a pore size which preferably does not promote ingrowth and thus resists adhesion to surrounding tissue.
  • the pores could be formed directly in the pad surface.
  • Envelope 446 would preferably be placed around pad 340 prior to placing pad 340 on tension member 354.
  • a window 450 can be provided to provide access to nut 352 to secure pads to tension member 354. After tightening nut 352, window 450 can be closed by suture 452.
  • Figure 31 is a top view of pad 340 and envelope 446 of Figure 30. It can be appreciated that a similar envelope can be placed around the various anchor pads disclosed herein. The location of the window may have to vary, however, to provide access to the respective means for securing the anchor pads to the tension member.
  • the splints of the present invention can be implanted acutely or chronically. When the splints are implanted chronically, it is particularly important that the tension member or members be highly fatigue resistant.
  • Typical materials for the tension member can include, among other biocompatible materials, stainless steel, titanium alloys, NiTi alloys such as Nitinol or elgiloy.
  • the tension member is a wire having a diameter of between 0.005 to 0.035 inches in diameter or, more preferably, between 0.01 and 0.02 inches in diameter and, most preferably, about 0.014 inches in diameter.
  • the length of the tension member between the pads is preferably about 0.6 to 4 inches, and more preferably, between about 1 to 3 inches and, most preferably, about 2 inches.
  • their surface can be electro-polished, buffed or shot peened. Drawing or annealing of the metal will also improve fatigue resistance.
  • the tension member in a preferred embodiment, articulates with respect to the anchor pad to reduce bending of the tension member at the pad. This can be accomplished by a ball and socket joint shown in Figure 22, for example.
  • the tension member itself can be made more flexible or bendable by providing a multi-filament tension member such as a braided or twisted wire cable tension member. A multifiber filament structure of numerous smaller wires can then easily, while reducing the stress level on any individual wire as compared to a solid wire of the same diameter as the multifilament bundle.
  • Such a multi-filament tension member can be made from biocompatible materials such as, but not limited to, stainless steel, Nitinol, titanium alloys, LCP (liquid crystal polymer), Spectra TM fiber, kevlar fiber, or carbon fiber.
  • the multi-filament structure is coated or covered to substantially seal the multi-filament structure. Coatings such as silicone, urethane or PTFE are preferred.
  • Figure 32 is a side view of multifilament twisted cable 400.
  • Cable 400 includes a plurality of wires or filaments 402 twisted about the longitudinal axis of cable 400.
  • Figure 33 is a transverse cross sectional view of cable 400. In Figure 33, cable 400 includes a surrounding coating 404 not shown in Figure 32.
  • Figure 34 is a side view of a braided multifilament tension member 410.
  • Tension member 410 includes a plurality of filaments or wires 412. It can be appreciated that numerous braiding patterns are known to those skilled in the art of multifilament members. It is anticipated that in a preferred embodiment, braided member 410 can have an optional core of fibers running parallel to an elongate axis of tension member 410. In yet another preferred embodiment, tension member 410 could have a solid wire core extending parallel to and along the longitudinal axis of tension member 410.
  • tension members and anchors or anchor pads are preferably bio-resistant, i.e., resistant to physiologic attack.
  • tension member and/or anchors or anchor pads can be coated with carbon material such as glass, pyrolytic carbon, diamond or graphite, zirconium nitrate or oxide.
  • Roughened or porous urethanes, silicone or polymer coatings or sheaths can be used to promote tissue ingrowth to create a biological seal.
  • Hydrophilic and albumin coatings can also be used. Drugs incorporated into a binder coating can also be used to reduce biological attack on the splint and irritation of tissue by the splint.
  • Such drugs include heparin, coumadin, antiinflammatory steroid or ASA-aspirin.
  • the oxide layer of the underlying metal could also be optimized to improve bio-resistance. This is particularly true for stainless steel, titanium, or nickel titanium on which an oxide layer can be formed by heating the component to improve biocompatibility.
  • Further coatings include calcium hydroxy appetite, beta tricalcium phosphate and aluminum oxide can be applied to the tension member.
  • the tension member and/or pad or anchor pad can at least be, in part, formed from titanium to enhance electronegativity.
  • the anchors or anchor pads and, particularly the tension members are biocompatible, preferably antithrombogenic and made to prevent hemolysis.
  • the coatings used to enhance bio-resistance described above can generally be used to improve biocompatibility. Since the tension member is exposed to significant blood flows through the left ventricle, in a preferred embodiment, the tension member has a generally small size and shape elliptical cross sectional shape to reduce turbulence or drag over the tension member. If such elliptical, transverse cross section tension member were used, it can be appreciated that the narrow end would be preferably oriented toward the direction of blood flow. It is also desirable to select a tension member material and shape which would not vibrate at resonant frequency under the influence of blood flow.
  • the surface of the anchor or anchor pad and/or tension member in contact with the heart wall can be coated or include an ingrowth inducing covering such as collagen, dacron, expanded PTFE or a roughened/porous surface.
  • a clotting inducing substance may also be bound to the tension member and/or anchor or anchor pads, such as avitene or collagen.
  • the portion of the heart wall where the tension member passes through could be cauterized.
  • the tissue can be cauterized by heating the tension member.
  • a glue such as cyanoacrylate can also be disposed between the tension member and the heart wall to reduce or prevent bleeding from the heart wall.
  • Mechanical means such as an O-ring or compression fitting could also be disposed between the heart wall and the tension member to reduce bleeding.
  • a purse string suture can be placed on the heart, around the tension member adjacent the pad as well.
  • the tension member is preferably flexible enough to allow for changing interface conditions between the heart and the splint, and alternating pad orientation throughout the cardiac cycle.
  • the flexibility should be sufficient enough to avoid injury to the heart or bleeding. It is also preferable that if the heart were to contract sufficiently enough to put the tension member in compression that it would readily buckle. Buckling could be promoted by providing a ribbon shaped tension member, chain link tension member, thin wire tension member, bent tension member or multi-filament tension.
  • the tension member is preferably radiopaque, echo cardiographic compatible, or MRI compatible or includes a marker which is radiopaque, echo compatible, or MRI compatible.
  • the preferred locations for markers would include the center of the tension member and at the ends of the tension member disposed at the heart walls.
  • the radiopaque markers could be gold or platinum or other biocompatible metal or heavy metal filled polymeric sleeves.
  • the tension or marker are preferably non-interfering or visible. Having radiopaque echo compatible or MRI compatible tension members or markers is particularly desirable for follow-up, non-invasive monitoring of the tension member after implantation. The presence of the tension member can be visualized and the distance between two or more markers measured. Integrity of the tension member can be confirmed as well.
  • the tension member is not conductive to the action potential of muscle. This can be accomplished by insulating the tension member, anchor and/or anchor pad interface or fabricating the tension member anchor and/or anchor pad from a non-conductive metal such as titanium.
  • sensors can advantageously be incorporated into the splints.
  • a strain gauge can be disposed on a tension member to monitor the loading on the member in use. Strain can be related to load as known to those skilled in the art by developing a stress/strain relationship for a given tension member.
  • the strain gauge can be connected by a biocompatible lead to a conventional monitoring device.
  • a pressure gauge formed from, for example, piezo electric material can also be disposed on the tension member to monitor filling pressures or muscle contractility.
  • a tension member can be slidably enclosed within a tube. If the tension member were to fail, the tube would contain the tension member therein.
  • tension member could be connected to a pacing lead.
  • tension member could be conductive, pacing signals could be conveyed along the tension member from one heart wall to another.
  • the various embodiments of the present invention are placed in or adjacent the human heart to reduce the radius or cross-section area of at least one chamber of the heart. This is done to reduce wall stress or tension in the heart or chamber wall to slow, stop or reverse failure of the heart.
  • a cannula can be used to pierce both walls of the heart and one end of the splint can be advanced through the cannula from one side of the heart to the opposite side where an anchor can be affixed or deployed. Likewise, an anchor is affixed or deployed at the opposite end of splint 16. Additional methods for splint placement are described in more detail in U.S. Application Serial No. 09/123,977 , filed on date even herewith and entitled "Transventricular Implant Tools and Devices" and incorporated herein by reference.
  • the methods described above to advance the tension members through the ventricles can be repeated to advance the desired number of tension members through the ventricle for a particular configuration.
  • the length of the tension members can be determined based upon the size and condition of the patient's heart. It should also be noted that although the left ventricle has been referred to here for illustrative purposes, that the apparatus and methods of this invention can also be used to splint multiple chambers of a patient's heart as well as the right ventricle or either atrium.
  • Figure 35 is a schematic view of generally horizontal cross section of heart A including left ventricle B and right ventricle C. Also shown are left anterior descending artery E, posterior descending artery F, obtuse marginal artery G, postero-medial papillary muscle H and antero-lateral papillary muscle I. Shown in Figure 35 are three generally horizontal preferred alignments for tension member placement for the splints of the present invention. These alignments generally met three goals of splint positioning including good bisection of the left ventricle, avoidance of major coronary vessels and avoidance of valve apparatus including chordae leaflets and papillary muscles.
  • Alignment 420 can be referred to as the anterior/posterior (AP) position.
  • Alignment 422 can be referred as the posterior septal/lateral wall (PSL) position.
  • Alignment 424 can be referred to as the anterior septal/lateral wall (ASL) position.
  • the alignments shown illustrative only and that the alignments may be shifted or rotated about a vertical axis generally disposed through the left ventricle and still avoid the major coronary vessels and papillary muscles.
  • the alignment passes through a substantial portion of right ventricle C, it may be desirable to dispose not only two pads on the exterior of the heart at opposite ends of a tension member, but also a third pad within right ventricle C on septum J.
  • the spacing between the third pad and the pad disposed outside the heart proximate left ventricle B preferably defines the shape change of left ventricle B.
  • Figure 36 is a view of a cylinder or idealized heart chamber 48 which is used to illustrate the reduction of wall stress in a heart chamber as a result of deployment of the splint in accordance with the present invention.
  • the model used herein and the calculations related to this model are intended merely to illustrate the mechanism by which wall stress is reduced in the heart chamber. No effort is made herein to quantify the actual reduction which would be realized in any particular in vivo application.
  • Figure 37 is a view of the idealized heart chamber 48 of Figure 36 wherein the chamber has been splinted along its length L such that a "figure eight" cross-section has been formed along the length thereof. It should be noted that the perimeter of the circular transverse cross-section of the chamber in Figure 36 is equal to the perimeter of the figure eight transverse cross-section of Figure 37. For purposes of this model, opposite lobes of the figure in cross-section are assumed to be mirror images.
  • Figure 38 shows various parameters of the Figure 1 cross-section of the splinted idealized heart chamber of Figure 37.
  • 1 is the length of the splint between opposite walls of the chamber
  • R 2 is the radius of each lobe
  • is the angle between the two radii of one lobe which extends to opposite ends of the portion of the splint within chamber 48
  • h is the height of the triangle formed by the two radii and the portion of the splint within the chamber 48 (R 1 is the radius of the cylinder of Figure 36).
  • the wall tension T in the walls of the cylinder is 104.4 newtons.
  • the wall tension T is 77.33 newtons.
  • Figures 39 and 40 show a hypothetical distribution of wall tension T and pressure P for the figure eight cross-section. As ⁇ goes from 180° to 0°, tension T s in the splint goes from 0 to a 2T load where the chamber walls carry a T load.
  • the chamber length L is a constant 10 cm
  • the original radius R 1 is 4 cm
  • the length 1 between the two pads as measured along the tension member is preferably 0.4 to about 0.8 and more preferably between about 0.5 to about 0.7 and most preferably about 0.6 times the distance along the length of the tension member at end diastole if the pads were not secured to the tension member and provided no resistance to expansion of the heart.
  • tension member length can be found in U.S. Application Serial No. 09/123,977, filed on date even herewith and entitled ''Transventricular Implant Tools and Devices" which is incorporated herein by reference.
  • transventricular splint comprising an elongate member having two axially disposed ends and substantially atraumatic anchors disposed at each end, such that the length of the tension member between the anchors is about 1 to 4 inches. Additional aspects of the transventricular splint include:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)
  • Massaging Devices (AREA)
  • External Artificial Organs (AREA)
  • Paper (AREA)
  • Refuse Collection And Transfer (AREA)
  • Surgical Instruments (AREA)
  • Meat, Egg Or Seafood Products (AREA)
EP04078441A 1998-07-29 1999-07-27 Vorrichtung zur Reduktion der Herzwandspannung Expired - Lifetime EP1520519B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/124,286 US6045497A (en) 1997-01-02 1998-07-29 Heart wall tension reduction apparatus and method
US124286 1998-07-29
EP99937483A EP1143858A2 (de) 1998-07-29 1999-07-27 Verfahren und vorrichtung zur reduktion der herzwandspannung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP99937483A Division EP1143858A2 (de) 1998-07-29 1999-07-27 Verfahren und vorrichtung zur reduktion der herzwandspannung
EP99937483.8 Division 1999-07-27

Publications (2)

Publication Number Publication Date
EP1520519A1 true EP1520519A1 (de) 2005-04-06
EP1520519B1 EP1520519B1 (de) 2010-03-24

Family

ID=22413941

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99937483A Withdrawn EP1143858A2 (de) 1998-07-29 1999-07-27 Verfahren und vorrichtung zur reduktion der herzwandspannung
EP04078441A Expired - Lifetime EP1520519B1 (de) 1998-07-29 1999-07-27 Vorrichtung zur Reduktion der Herzwandspannung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99937483A Withdrawn EP1143858A2 (de) 1998-07-29 1999-07-27 Verfahren und vorrichtung zur reduktion der herzwandspannung

Country Status (6)

Country Link
US (3) US6045497A (de)
EP (2) EP1143858A2 (de)
AT (1) ATE461661T1 (de)
AU (1) AU5230899A (de)
DE (1) DE69942183D1 (de)
WO (1) WO2000006026A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770099A (en) * 1993-10-15 1998-06-23 Applied Materials, Inc. Plasma etch apparatus with heated scavenging surfaces
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus

Families Citing this family (470)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776754B1 (en) * 2000-10-04 2004-08-17 Wilk Patent Development Corporation Method for closing off lower portion of heart ventricle
US6596225B1 (en) 2000-01-31 2003-07-22 Diamicron, Inc. Methods for manufacturing a diamond prosthetic joint component
US6793681B1 (en) 1994-08-12 2004-09-21 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond articulation surface and a plurality of substrate layers
US7077867B1 (en) 1994-08-12 2006-07-18 Diamicron, Inc. Prosthetic knee joint having at least one diamond articulation surface
US6402787B1 (en) 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6494918B1 (en) 2000-01-30 2002-12-17 Diamicron, Inc. Component for a prosthetic joint having a diamond load bearing and articulation surface
US6425922B1 (en) 2000-01-30 2002-07-30 Diamicron, Inc. Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface
US7494507B2 (en) * 2000-01-30 2009-02-24 Diamicron, Inc. Articulating diamond-surfaced spinal implants
US6592619B2 (en) 1996-01-02 2003-07-15 University Of Cincinnati Heart wall actuation device for the natural heart
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US5957977A (en) 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US6123662A (en) * 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US20030045771A1 (en) * 1997-01-02 2003-03-06 Schweich Cyril J. Heart wall tension reduction devices and methods
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
JP2002504841A (ja) 1997-06-21 2002-02-12 ハインドル・ハンス 心臓の少なくとも一部を包囲する袋
US6168570B1 (en) * 1997-12-05 2001-01-02 Micrus Corporation Micro-strand cable with enhanced radiopacity
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
DE19831699C1 (de) * 1998-07-15 2000-04-27 Caremed Medical Produkte Ag Implantathalter
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US8715156B2 (en) * 1998-10-09 2014-05-06 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence function
US6360749B1 (en) 1998-10-09 2002-03-26 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6685627B2 (en) 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6358198B1 (en) * 1999-05-18 2002-03-19 John M. Levin Laparoscopic/thorascopic support device
US7416554B2 (en) 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US7618426B2 (en) * 2002-12-11 2009-11-17 Usgi Medical, Inc. Apparatus and methods for forming gastrointestinal tissue approximations
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
SE514718C2 (sv) * 1999-06-29 2001-04-09 Jan Otto Solem Anordning för behandling av bristande tillslutningsförmåga hos mitralisklaffapparaten
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7582051B2 (en) * 2005-06-10 2009-09-01 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US10307147B2 (en) 1999-08-09 2019-06-04 Edwards Lifesciences Corporation System for improving cardiac function by sealing a partitioning membrane within a ventricle
US8257428B2 (en) * 1999-08-09 2012-09-04 Cardiokinetix, Inc. System for improving cardiac function
US20060229491A1 (en) * 2002-08-01 2006-10-12 Cardiokinetix, Inc. Method for treating myocardial rupture
US7887477B2 (en) * 1999-08-09 2011-02-15 Cardiokinetix, Inc. Method of improving cardiac function using a porous membrane
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
US7303526B2 (en) * 1999-08-09 2007-12-04 Cardiokinetix, Inc. Device for improving cardiac function
US8377114B2 (en) * 1999-08-09 2013-02-19 Cardiokinetix, Inc. Sealing and filling ventricular partitioning devices to improve cardiac function
US7674222B2 (en) * 1999-08-09 2010-03-09 Cardiokinetix, Inc. Cardiac device and methods of use thereof
US9694121B2 (en) 1999-08-09 2017-07-04 Cardiokinetix, Inc. Systems and methods for improving cardiac function
US8529430B2 (en) * 2002-08-01 2013-09-10 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US6387104B1 (en) 1999-11-12 2002-05-14 Scimed Life Systems, Inc. Method and apparatus for endoscopic repair of the lower esophageal sphincter
US6702732B1 (en) 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6709463B1 (en) 2000-01-30 2004-03-23 Diamicron, Inc. Prosthetic joint component having at least one solid polycrystalline diamond component
US7296577B2 (en) * 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
AU2001238383A1 (en) * 2000-03-10 2001-09-24 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US8622739B2 (en) * 2001-05-09 2014-01-07 Ben-Zion Karmon Method for enlarging a jaw bone using a hollow dental implant having a side perforation
US7771482B1 (en) * 2000-05-09 2010-08-10 Ben-Zion Karmon Method for tissue expansion and regeneration using bioresorbable inflatable devices
US6425856B1 (en) * 2000-05-10 2002-07-30 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6730016B1 (en) * 2000-06-12 2004-05-04 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US20050095268A1 (en) * 2000-06-12 2005-05-05 Acorn Cardiovascular, Inc. Cardiac wall tension relief with cell loss management
US6902522B1 (en) 2000-06-12 2005-06-07 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6951534B2 (en) 2000-06-13 2005-10-04 Acorn Cardiovascular, Inc. Cardiac support device
US6482146B1 (en) 2000-06-13 2002-11-19 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US6343605B1 (en) 2000-08-08 2002-02-05 Scimed Life Systems, Inc. Percutaneous transluminal myocardial implantation device and method
US9332993B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US8398537B2 (en) * 2005-06-10 2013-03-19 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US20060030881A1 (en) 2004-08-05 2006-02-09 Cardiokinetix, Inc. Ventricular partitioning device
US7399271B2 (en) * 2004-01-09 2008-07-15 Cardiokinetix, Inc. Ventricular partitioning device
US10064696B2 (en) 2000-08-09 2018-09-04 Edwards Lifesciences Corporation Devices and methods for delivering an endocardial device
US9332992B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Method for making a laminar ventricular partitioning device
US7862500B2 (en) * 2002-08-01 2011-01-04 Cardiokinetix, Inc. Multiple partitioning devices for heart treatment
US7762943B2 (en) * 2004-03-03 2010-07-27 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US9078660B2 (en) * 2000-08-09 2015-07-14 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US6887192B1 (en) 2000-09-08 2005-05-03 Converge Medical, Inc. Heart support to prevent ventricular remodeling
US20050228422A1 (en) * 2002-11-26 2005-10-13 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20050222489A1 (en) 2003-10-01 2005-10-06 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant
US8784482B2 (en) * 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US20060106279A1 (en) * 2004-05-14 2006-05-18 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant having an adjustable bridge stop
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20060106278A1 (en) * 2004-05-14 2006-05-18 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6564094B2 (en) 2000-12-22 2003-05-13 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US7510576B2 (en) * 2001-01-30 2009-03-31 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
AU2002315263A1 (en) * 2001-03-23 2002-10-15 Alcove Surfaces Gmbh Aluminium implant and use thereof
US6622730B2 (en) 2001-03-30 2003-09-23 Myocor, Inc. Device for marking and aligning positions on the heart
US6923646B2 (en) * 2001-04-18 2005-08-02 Air Techniques, Inc. Process and apparatus for treating an exhaust stream from a dental operatory
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US7346394B2 (en) * 2001-04-27 2008-03-18 Cardiac Pacemakers, Inc. Cardiac stimulation at high ventricular wall stress areas
JP4083683B2 (ja) 2001-09-07 2008-04-30 マーディル, インコーポレイテッド 外部心臓固定のための方法および装置
AU2002335745A1 (en) * 2001-09-10 2003-03-24 Paracor Medical, Inc. Cardiac harness
US7060023B2 (en) * 2001-09-25 2006-06-13 The Foundry Inc. Pericardium reinforcing devices and methods of using them
US6685620B2 (en) * 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US6695769B2 (en) 2001-09-25 2004-02-24 The Foundry, Inc. Passive ventricular support devices and methods of using them
CA2462254A1 (en) 2001-10-01 2003-04-10 Am Discovery, Incorporated Devices for treating atrial fibrilation
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
GB0125925D0 (en) * 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
WO2003037217A1 (en) * 2001-10-31 2003-05-08 Paracor Medical, Inc. Heart failure treatment device
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7635387B2 (en) * 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US7179282B2 (en) * 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US7022063B2 (en) 2002-01-07 2006-04-04 Paracor Medical, Inc. Cardiac harness
US7174896B1 (en) 2002-01-07 2007-02-13 Paracor Medical, Inc. Method and apparatus for supporting a heart
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7181272B2 (en) 2002-04-22 2007-02-20 Medtronic, Inc. Cardiac restraint with electrode attachment sites
US8287555B2 (en) * 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7666193B2 (en) * 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
US7883538B2 (en) * 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753922B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US7753858B2 (en) * 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7753924B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
US20060122633A1 (en) 2002-06-13 2006-06-08 John To Methods and devices for termination
US7758637B2 (en) * 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7081084B2 (en) * 2002-07-16 2006-07-25 University Of Cincinnati Modular power system and method for a heart wall actuation system for the natural heart
US7850729B2 (en) 2002-07-18 2010-12-14 The University Of Cincinnati Deforming jacket for a heart actuation device
US20040059180A1 (en) * 2002-09-23 2004-03-25 The University Of Cincinnati Basal mounting cushion frame component to facilitate extrinsic heart wall actuation
US6988982B2 (en) * 2002-08-19 2006-01-24 Cardioenergetics Heart wall actuation system for the natural heart with shape limiting elements
WO2004021927A2 (en) * 2002-09-05 2004-03-18 Paracor Medical, Inc. Cardiac harness
CN100553590C (zh) * 2002-10-01 2009-10-28 安普尔医药公司 修整心瓣体环的装置
AU2003277118A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
AU2003277115A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US7087064B1 (en) * 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
CA2662836A1 (en) 2002-10-21 2004-05-06 Mitralign Incorporated Method and apparatus for performing catheter-based annuloplasty using local plications
AU2003279506A1 (en) 2002-11-12 2004-06-03 Regenex Ltd. Expandable devices and methods for tissue expansion, regenerationand fixation
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US20050059855A1 (en) * 2002-11-15 2005-03-17 Lilip Lau Cardiac harness delivery device and method
US20070255093A1 (en) * 2002-11-15 2007-11-01 Lilip Lau Cardiac harness delivery device and method
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
EP1560541A2 (de) * 2002-11-15 2005-08-10 Paracor Medical, Inc. Herzbeutelanbringungssystem
US7736299B2 (en) * 2002-11-15 2010-06-15 Paracor Medical, Inc. Introducer for a cardiac harness delivery
US20040098116A1 (en) 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US7485143B2 (en) * 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7331972B1 (en) 2002-11-15 2008-02-19 Abbott Cardiovascular Systems Inc. Heart valve chord cutter
US7404824B1 (en) * 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7837729B2 (en) * 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7942898B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Delivery systems and methods for gastric reduction
US7942884B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Methods for reduction of a gastric lumen
US6984242B2 (en) * 2002-12-20 2006-01-10 Gore Enterprise Holdings, Inc. Implantable medical device assembly
ATE537752T1 (de) * 2003-01-29 2012-01-15 Hoffmann La Roche Integrierter lanzetten-teststreifen
US7314485B2 (en) * 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040249242A1 (en) * 2003-03-28 2004-12-09 Lilip Lau Multi-panel cardiac harness
US20050283042A1 (en) * 2003-03-28 2005-12-22 Steve Meyer Cardiac harness having radiopaque coating and method of use
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7341584B1 (en) 2003-05-30 2008-03-11 Thomas David Starkey Device and method to limit filling of the heart
US7887582B2 (en) * 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
WO2004110553A1 (en) 2003-06-09 2004-12-23 The University Of Cincinnati Actuation mechanisms for a heart actuation device
WO2004110257A2 (en) 2003-06-09 2004-12-23 The University Of Cincinnati Power system for a heart actuation device
US20060178551A1 (en) * 2003-06-09 2006-08-10 Melvin David B Securement system for a heart actuation device
JP2007535335A (ja) * 2003-06-20 2007-12-06 メドトロニック ヴァスキュラー インコーポレイテッド 弁輪の縮小システム
US7316706B2 (en) * 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US7291105B2 (en) * 2003-07-10 2007-11-06 Paracor Medical, Inc. Self-anchoring cardiac harness
US8216252B2 (en) 2004-05-07 2012-07-10 Usgi Medical, Inc. Tissue manipulation and securement system
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US8007514B2 (en) * 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
US20050137673A1 (en) * 2003-11-07 2005-06-23 Lilip Lau Cardiac harness having electrodes and epicardial leads
US7158839B2 (en) * 2003-11-07 2007-01-02 Paracor Medical, Inc. Cardiac harness for treating heart disease
US20070055091A1 (en) * 2004-12-02 2007-03-08 Lilip Lau Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
WO2005046520A2 (en) * 2003-11-07 2005-05-26 Mayo Foundation For Medical Education And Research Device and method for treating congestive heart failure
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
US20070106336A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20070106359A1 (en) * 2003-11-07 2007-05-10 Alan Schaer Cardiac harness assembly for treating congestive heart failure and for pacing/sensing
US20050171589A1 (en) * 2003-11-07 2005-08-04 Lilip Lau Cardiac harness and method of delivery by minimally invasive access
US7347863B2 (en) * 2004-05-07 2008-03-25 Usgi Medical, Inc. Apparatus and methods for manipulating and securing tissue
US7361180B2 (en) 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US20050251189A1 (en) * 2004-05-07 2005-11-10 Usgi Medical Inc. Multi-position tissue manipulation assembly
US20050273138A1 (en) * 2003-12-19 2005-12-08 Guided Delivery Systems, Inc. Devices and methods for anchoring tissue
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20060271174A1 (en) * 2003-12-19 2006-11-30 Gregory Nieminen Mitral Valve Annuloplasty Device with Wide Anchor
US7166127B2 (en) 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7282024B2 (en) * 2004-01-12 2007-10-16 Paracor Medical, Inc. Cardiac harness having interconnected strands
US7703459B2 (en) 2004-03-09 2010-04-27 Usgi Medical, Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US7255675B2 (en) 2004-03-23 2007-08-14 Michael Gertner Devices and methods to treat a patient
US20060142790A1 (en) * 2004-03-23 2006-06-29 Michael Gertner Methods and devices to facilitate connections between body lumens
US8257394B2 (en) * 2004-05-07 2012-09-04 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US8444657B2 (en) 2004-05-07 2013-05-21 Usgi Medical, Inc. Apparatus and methods for rapid deployment of tissue anchors
US20060135971A1 (en) * 2004-05-07 2006-06-22 Usgi Medical Inc. System for treating gastroesophageal reflux disease
US7918869B2 (en) 2004-05-07 2011-04-05 Usgi Medical, Inc. Methods and apparatus for performing endoluminal gastroplasty
US7390329B2 (en) * 2004-05-07 2008-06-24 Usgi Medical, Inc. Methods for grasping and cinching tissue anchors
US20050251208A1 (en) * 2004-05-07 2005-11-10 Usgi Medical Inc. Linear anchors for anchoring to tissue
US7736374B2 (en) * 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US7736378B2 (en) * 2004-05-07 2010-06-15 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US20050251176A1 (en) * 2004-05-07 2005-11-10 Usgi Medical Inc. System for treating gastroesophageal reflux disease
US20050250986A1 (en) * 2004-05-07 2005-11-10 Usgi Medical Inc. Removable apparatus and methods for manipulating and securing tissue
US8206417B2 (en) 2004-06-09 2012-06-26 Usgi Medical Inc. Apparatus and methods for optimizing anchoring force
US7695493B2 (en) * 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
US7736379B2 (en) * 2004-06-09 2010-06-15 Usgi Medical, Inc. Compressible tissue anchor assemblies
US7678135B2 (en) 2004-06-09 2010-03-16 Usgi Medical, Inc. Compressible tissue anchor assemblies
US20050288777A1 (en) * 2004-06-29 2005-12-29 Rhee Richard S Thermal conductor for adjustable cardiac valve implant
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20060009675A1 (en) * 2004-07-08 2006-01-12 Steven Meyer Self-anchoring cardiac harness for treating the heart and for defibrillating and/or pacing/sensing
JP2008506470A (ja) * 2004-07-15 2008-03-06 ミカーディア コーポレーション 心臓弁を形成する植え込み片(インプラント)及びその形成方法
US7285087B2 (en) * 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
US7402134B2 (en) * 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US20090326578A1 (en) * 2004-09-30 2009-12-31 Usgi Medical, Inc. Interlocking tissue anchor apparatus and methods
US7488298B2 (en) 2004-10-08 2009-02-10 Roche Diagnostics Operations, Inc. Integrated lancing test strip with capillary transfer sheet
US20060079736A1 (en) 2004-10-13 2006-04-13 Sing-Fatt Chin Method and device for percutaneous left ventricular reconstruction
US20060089711A1 (en) * 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
US20060135966A1 (en) 2004-11-15 2006-06-22 Laurent Schaller Catheter-based tissue remodeling devices and methods
US20060129026A1 (en) * 2004-12-15 2006-06-15 Joshua Wallin Apparatus and method for mounting a cardiac harness on the heart
JP4926980B2 (ja) 2005-01-20 2012-05-09 カーディアック ディメンションズ インコーポレイテッド 組織整形装置
ATE513516T1 (de) 2005-01-21 2011-07-15 Mayo Foundation Thoraskopisches herzklappenreparaturvorrichtung
US8470028B2 (en) * 2005-02-07 2013-06-25 Evalve, Inc. Methods, systems and devices for cardiac valve repair
EP3967269A3 (de) 2005-02-07 2022-07-13 Evalve, Inc. Systeme und vorrichtungen zur reparatur von herzklappen
US9089323B2 (en) * 2005-02-22 2015-07-28 P Tech, Llc Device and method for securing body tissue
US20060199995A1 (en) * 2005-03-02 2006-09-07 Venkataramana Vijay Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure
US7320665B2 (en) * 2005-03-02 2008-01-22 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US10219902B2 (en) 2005-03-25 2019-03-05 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop
US20060238019A1 (en) * 2005-04-21 2006-10-26 Mark Yu Brakable wheel hub device
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US8298291B2 (en) 2005-05-26 2012-10-30 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US9585651B2 (en) 2005-05-26 2017-03-07 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US7621866B2 (en) * 2005-05-31 2009-11-24 Ethicon, Inc. Method and device for deployment of a sub-pericardial sack
US7766816B2 (en) * 2005-06-09 2010-08-03 Chf Technologies, Inc. Method and apparatus for closing off a portion of a heart ventricle
US20090099410A1 (en) * 2005-06-09 2009-04-16 De Marchena Eduardo Papillary Muscle Attachment for Left Ventricular Reduction
US20090082619A1 (en) * 2005-06-09 2009-03-26 De Marchena Eduardo Method of treating cardiomyopathy
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US20070032696A1 (en) * 2005-07-22 2007-02-08 Sieu Duong Cardiac harness delivery device
JP4376836B2 (ja) * 2005-07-29 2009-12-02 富士フイルム株式会社 磁気記録装置
US7587247B2 (en) * 2005-08-01 2009-09-08 Paracor Medical, Inc. Cardiac harness having an optimal impedance range
US8506474B2 (en) 2005-08-19 2013-08-13 Bioventrix, Inc. Method and device for treating dysfunctional cardiac tissue
EP1933756B1 (de) 2005-08-19 2016-07-20 CHF Technologies Inc. Lenkbare läsionsausschliessende herzimplantate bei kongestiver herzinsuffizienz
US20070078297A1 (en) * 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US7715918B2 (en) 2005-10-18 2010-05-11 University Of Cincinnati Muscle energy converter with smooth continuous tissue interface
US8726909B2 (en) 2006-01-27 2014-05-20 Usgi Medical, Inc. Methods and apparatus for revision of obesity procedures
US20070203391A1 (en) * 2006-02-24 2007-08-30 Medtronic Vascular, Inc. System for Treating Mitral Valve Regurgitation
US20070208217A1 (en) * 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Self-adjusting attachment structure for a cardiac support device
US7431692B2 (en) * 2006-03-09 2008-10-07 Edwards Lifesciences Corporation Apparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20070265658A1 (en) * 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
US20070270654A1 (en) * 2006-05-19 2007-11-22 Acorn Cardiovascular, Inc. Pericardium management tool for intra-pericardial surgical procedures
ITTO20060413A1 (it) * 2006-06-07 2007-12-08 Arrigo Lessana Dispositivo sostitutivo delle corde tendinee di una valvola atrioventricolare
US20070287883A1 (en) * 2006-06-07 2007-12-13 Lilip Lau Apparatus and method for pulling a cardiac harness onto a heart
DE102006028964A1 (de) * 2006-06-16 2007-12-20 Eberhard-Karls-Universität Tübingen Vorrichtung zur Behandlung der Mitralklappeninsuffizienz
US20080004488A1 (en) * 2006-06-29 2008-01-03 Acorn Cardiovascular, Inc. Low friction delivery tool for a cardiac support device
US7877142B2 (en) * 2006-07-05 2011-01-25 Micardia Corporation Methods and systems for cardiac remodeling via resynchronization
US8870916B2 (en) 2006-07-07 2014-10-28 USGI Medical, Inc Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use
US7651462B2 (en) 2006-07-17 2010-01-26 Acorn Cardiovascular, Inc. Cardiac support device delivery tool with release mechanism
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
WO2008012839A1 (en) * 2006-07-24 2008-01-31 Carlo Antona Kit for performing subcommissuroplasty during aortic valve reconstruction
US7837610B2 (en) * 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US7641608B1 (en) 2006-09-26 2010-01-05 Acorn Cardiovascular, Inc. Sectional cardiac support device and method of delivery
US9211115B2 (en) 2006-09-28 2015-12-15 Bioventrix, Inc. Location, time, and/or pressure determining devices, systems, and methods for deployment of lesion-excluding heart implants for treatment of cardiac heart failure and other disease states
US8123668B2 (en) 2006-09-28 2012-02-28 Bioventrix (A Chf Technologies' Company) Signal transmitting and lesion excluding heart implants for pacing defibrillating and/or sensing of heart beat
US20080091057A1 (en) * 2006-10-11 2008-04-17 Cardiac Pacemakers, Inc. Method and apparatus for passive left atrial support
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
EP2088965B1 (de) * 2006-12-05 2012-11-28 Valtech Cardio, Ltd. Platzierung eines segmentierten Rings
US20080177380A1 (en) * 2007-01-19 2008-07-24 Starksen Niel F Methods and devices for heart tissue repair
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
SI2269540T1 (sl) * 2007-07-04 2014-10-30 Myopowers Medical Technologies Sa Umetni kontrakcijski sfinkter
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
US20090048480A1 (en) * 2007-08-13 2009-02-19 Paracor Medical, Inc. Cardiac harness delivery device
US8092363B2 (en) 2007-09-05 2012-01-10 Mardil, Inc. Heart band with fillable chambers to modify heart valve function
DE102007043830A1 (de) * 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Herzklappenstent
WO2009046343A1 (en) 2007-10-03 2009-04-09 Bioventrix (A Chf Technologies, Inc.) Treating dysfunctional cardiac tissue
CA2703129C (en) 2007-10-18 2016-02-16 Neochord Inc. Minimially invasive repair of a valve leaflet in a beating heart
EP3915490A1 (de) * 2007-10-19 2021-12-01 Ancora Heart, Inc. System zur herzremodellierung
US8122510B2 (en) * 2007-11-14 2012-02-21 Bank Of America Corporation Method for analyzing and managing unstructured data
US8790367B2 (en) 2008-02-06 2014-07-29 Guided Delivery Systems Inc. Multi-window guide tunnel
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20090281372A1 (en) * 2008-05-06 2009-11-12 Paracor Medical, Inc. Cardiac harness assembly for treating congestive heart failure and for defibrillation and/or pacing/sensing
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US8425402B2 (en) * 2008-07-21 2013-04-23 Bioventrix, Inc. Cardiac anchor structures, methods, and systems for treatment of congestive heart failure and other conditions
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US20110190662A1 (en) * 2008-10-01 2011-08-04 Beacon Endoscopic Corporation Rapid exchange fna biopsy device with diagnostic and therapeutic capabilities
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
AU2009302181B2 (en) 2008-10-10 2015-08-06 Ancora Heart, Inc. Tether tensioning devices and related methods
US20100121349A1 (en) 2008-10-10 2010-05-13 Meier Stephen C Termination devices and related methods
US8226654B2 (en) 2008-12-04 2012-07-24 Aeton Medical Llc Trocar-tipped drill bit
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8911494B2 (en) * 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US20100185278A1 (en) * 2009-01-21 2010-07-22 Tendyne Medical Apical Papillary Msucle Attachment for Left Ventricular Reduction
US20100210899A1 (en) * 2009-01-21 2010-08-19 Tendyne Medical, Inc. Method for percutaneous lateral access to the left ventricle for treatment of mitral insufficiency by papillary muscle alignment
US20100274227A1 (en) * 2009-02-13 2010-10-28 Alexander Khairkhahan Delivery catheter handle cover
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US20110015476A1 (en) * 2009-03-04 2011-01-20 Jeff Franco Devices and Methods for Treating Cardiomyopathy
WO2013069019A2 (en) 2011-11-08 2013-05-16 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
EP2477555B1 (de) 2009-09-15 2013-12-25 Evalve, Inc. Vorrichtung zur reparatur von herzklappen
US20110082538A1 (en) 2009-10-01 2011-04-07 Jonathan Dahlgren Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
WO2011056578A2 (en) 2009-10-26 2011-05-12 Cardiokinetix, Inc. Ventricular volume reduction
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8690939B2 (en) 2009-10-29 2014-04-08 Valtech Cardio, Ltd. Method for guide-wire based advancement of a rotation assembly
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8277502B2 (en) * 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
EP2506777B1 (de) 2009-12-02 2020-11-25 Valtech Cardio, Ltd. Kombination von einer Spulenanordnung mit helikalem Anker und einem Verabreichungswerkzeug zur Implantation derselben
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
EP3300695B1 (de) 2009-12-08 2023-05-24 Avalon Medical Ltd. Vorrichtung und system zur neuplatzierung einer transkatheter-mitralklappe
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8961596B2 (en) 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012031204A2 (en) 2010-09-03 2012-03-08 Guided Delivery Systems Inc. Devices and methods for anchoring tissue
US10080659B1 (en) 2010-12-29 2018-09-25 Neochord, Inc. Devices and methods for minimally invasive repair of heart valves
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
AU2012261998B2 (en) 2011-06-01 2017-03-02 Neochord, Inc. Minimally invasive repair of heart valve leaflets
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
EP3424468A1 (de) 2011-07-21 2019-01-09 4Tech Inc. Vorrichtung zur reparatur der trikuspidalklappe mithilfe von spannung
CA2957442C (en) 2011-08-11 2019-06-04 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
BR112014007495A2 (pt) * 2011-09-30 2017-04-04 Bioventrix Inc hemostase pericardial remota para acesso ventricu-lar e reconstrução ou terapias de outros órgãos
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2886084B1 (de) 2011-12-12 2018-02-14 David Alon Vorrichtung zur Herzklappenreparatur
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9078645B2 (en) * 2011-12-19 2015-07-14 Edwards Lifesciences Corporation Knotless suture anchoring devices and tools for implants
WO2013096757A1 (en) * 2011-12-21 2013-06-27 The Trustees Of The University Of Pennsylvania Mechanical myocardial restraint device
US9265514B2 (en) 2012-04-17 2016-02-23 Miteas Ltd. Manipulator for grasping tissue
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
CA2885354A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
WO2014059433A2 (en) 2012-10-12 2014-04-17 Mardil, Inc. Cardiac treatment system and method
EP3730066A1 (de) 2012-10-23 2020-10-28 Valtech Cardio, Ltd. Perkutane gewebeankertechniken
EP3517052A1 (de) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Gesteuerte lenkfunktionalität für ein implantateinführungswerkzeug
WO2014087402A1 (en) 2012-12-06 2014-06-12 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
EP2943132B1 (de) 2013-01-09 2018-03-28 4Tech Inc. Weichgewebeanker
US20150351906A1 (en) 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
EP2967857B1 (de) * 2013-03-14 2024-10-30 The United States of America, as represented by The Secretary, Department of Health and Human Services Vorrichtungen zur behandlung funktionaler trikuspialklappenregurgitation
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
JP6329570B2 (ja) 2013-03-14 2018-05-23 4テック インコーポレイテッド テザーインターフェースを有するステント
CN105283214B (zh) 2013-03-15 2018-10-16 北京泰德制药股份有限公司 平移导管、系统及其使用方法
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10314498B2 (en) 2013-05-24 2019-06-11 Bioventrix, Inc. Cardiac tissue penetrating devices, methods, and systems for treatment of congestive heart failure and other conditions
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CN108814772B (zh) 2013-06-25 2020-09-08 坦迪尼控股股份有限公司 用于假体心脏瓣膜的血栓管理和结构顺应特征
CN105555231B (zh) 2013-08-01 2018-02-09 坦迪尼控股股份有限公司 心外膜锚固装置和方法
EP3038539B1 (de) 2013-08-30 2021-08-18 Bioventrix, Inc. Herzankerpositionierungsvorrichtungen zur behandlung von kongestivem herzversagen und anderen leiden
CA2922126A1 (en) 2013-08-30 2015-03-05 Bioventrix, Inc. Cardiac tissue anchoring devices, methods, and systems for treatment of congestive heart failure and other conditions
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
USD717954S1 (en) 2013-10-14 2014-11-18 Mardil, Inc. Heart treatment device
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
EP3062744B1 (de) 2013-10-28 2020-01-22 Tendyne Holdings, Inc. Herzklappenprothese sowie systeme zur einführung davon
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
CN106068109B (zh) 2014-03-10 2019-07-23 坦迪尼控股股份有限公司 用于定位和监测假体二尖瓣的系绳负荷的装置和方法
JP6714518B2 (ja) 2014-06-18 2020-06-24 ポラレス・メディカル・インコーポレイテッド 弁膜逆流の治療のための僧帽弁インプラント
EP3157607B1 (de) 2014-06-19 2019-08-07 4Tech Inc. Herzgewebe-cinch
JP6740140B2 (ja) 2014-06-24 2020-08-12 ポラレス・メディカル・インコーポレイテッド インプラントを固定するためのシステムおよび方法
EP4066786A1 (de) 2014-07-30 2022-10-05 Cardiovalve Ltd. Knickbare klappenprothese
AU2015321690A1 (en) 2014-09-28 2017-03-23 Cardiokinetix, Inc. Apparatuses for treating cardiac dysfunction
EP4331503A3 (de) 2014-10-14 2024-06-05 Edwards Lifesciences Innovation (Israel) Ltd. Segelrückhaltetechniken
CN106999178B (zh) 2014-12-02 2019-12-24 4科技有限公司 偏心组织锚定器
JP6826035B2 (ja) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド 人工僧帽弁、並びにその送達のための装置及び方法
ES2978714T3 (es) 2015-02-05 2024-09-18 Cardiovalve Ltd Válvula protésica con marcos de deslizamiento axial
EP3253331B1 (de) 2015-02-05 2021-04-07 Tendyne Holdings, Inc. Prothetische herzklappe mit faden und expandierbarem epikarialem pad
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
WO2016144391A1 (en) 2015-03-11 2016-09-15 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
CA2983002C (en) 2015-04-16 2023-07-04 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US9730773B2 (en) 2015-04-22 2017-08-15 Maxillent Ltd. Bone graft injection methods
CR20170480A (es) 2015-04-30 2018-02-21 Valtech Cardio Ltd Tecnologías de anuloplastía
WO2016183386A1 (en) 2015-05-12 2016-11-17 Guided Delivery Systems Inc. Device and method for releasing catheters from cardiac structures
CN106419982A (zh) * 2015-08-10 2017-02-22 李胜文 一种生物可吸收缝合组件
EP3346926B1 (de) 2015-09-10 2020-10-21 Bioventrix, Inc. Systeme zum einsetzen eines kardialen ankers
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
WO2017059406A1 (en) 2015-10-01 2017-04-06 Neochord, Inc. Ringless web for repair of heart valves
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10555814B2 (en) 2015-11-17 2020-02-11 Edwards Lifesciences Corporation Ultrasound probe for cardiac treatment
EP4309628A3 (de) 2015-12-03 2024-04-10 Tendyne Holdings, Inc. Rahmenmerkmale für mitralklappenprothesen
CN113143539B (zh) 2015-12-10 2024-07-05 姆维亚克斯股份有限公司 用于使心脏瓣膜环再成形的系统
WO2017100927A1 (en) 2015-12-15 2017-06-22 Neovasc Tiara Inc. Transseptal delivery system
EP3397206B1 (de) 2015-12-28 2022-06-08 Tendyne Holdings, Inc. Atriale taschenverschlüsse für herzklappenprothesen
IL243401A (en) 2015-12-29 2017-12-31 Zion Karmon Ben Instruments and methods for lifting Schneider membrane
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
EP3407802B1 (de) 2016-01-29 2024-01-10 Bioventrix, Inc. Perkutaner arterieller zugang zur positionierung von transmyokardimplantatvorrichtungen
CA3007670A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
WO2017218375A1 (en) 2016-06-13 2017-12-21 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
EP3484411A1 (de) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Vorrichtung und verfahren für transseptale rückholung von herzklappenprothesen
GB201613219D0 (en) 2016-08-01 2016-09-14 Mitraltech Ltd Minimally-invasive delivery systems
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
IL248472A0 (en) 2016-10-13 2017-01-31 Zion Karmon Ben Devices for tissue growth
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
EP3558166A4 (de) 2016-12-22 2021-03-31 Heart Repair Technologies, Inc. Perkutane verabreichungssysteme zur verankerung eines implantats in einem herzklappenring
CN110381895B (zh) 2017-02-08 2020-05-26 4科技有限公司 植入式测力计
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3595587A4 (de) 2017-03-13 2020-11-11 Polares Medical Inc. Vorrichtung, system und verfahren zur transkatheterbehandlung von herzklappenregurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
DE102018107407A1 (de) 2017-03-28 2018-10-04 Edwards Lifesciences Corporation Positionieren, einsetzen und zurückholen von implantierbaren vorrichtungen
US10213306B2 (en) 2017-03-31 2019-02-26 Neochord, Inc. Minimally invasive heart valve repair in a beating heart
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
EP3651695B1 (de) 2017-07-13 2023-04-19 Tendyne Holdings, Inc. Herzklappenprothesen sowie vorrichtung zur einführung davon
US12064347B2 (en) 2017-08-03 2024-08-20 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
CN111031967B (zh) 2017-08-28 2022-08-09 坦迪尼控股股份有限公司 具有系带连接特征的人造心脏瓣膜
EP3697346B1 (de) 2017-10-20 2022-01-19 Boston Scientific Scimed, Inc. Herzklappenreparaturimplantat zur behandlung von trikuspidalregurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP4248904A3 (de) 2018-01-26 2023-11-29 Edwards Lifesciences Innovation (Israel) Ltd. Techniken zur erleichterung von herzklappen-tethering und sehnenaustausch
CA3094990C (en) 2018-03-23 2023-01-03 Neochord, Inc. Device for suture attachment for minimally invasive heart valve repair
US11173030B2 (en) 2018-05-09 2021-11-16 Neochord, Inc. Suture length adjustment for minimally invasive heart valve repair
US11253360B2 (en) 2018-05-09 2022-02-22 Neochord, Inc. Low profile tissue anchor for minimally invasive heart valve repair
SG11202013066PA (en) 2018-07-12 2021-01-28 Valtech Cardio Ltd Annuloplasty systems and locking tools therefor
JP7300198B2 (ja) 2018-09-07 2023-06-29 ネオコード インコーポレイテッド 低侵襲心臓弁修復のための縫合糸取付装置
JP7260930B2 (ja) 2018-11-08 2023-04-19 ニオバスク ティアラ インコーポレイテッド 経カテーテル僧帽弁人工補綴物の心室展開
AU2020233892A1 (en) 2019-03-08 2021-11-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
JP7438236B2 (ja) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド 制御可能に展開可能な補綴弁
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
WO2020214818A1 (en) 2019-04-16 2020-10-22 Neochord, Inc. Transverse helical cardiac anchor for minimally invasive heart valve repair
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
EP3998969A4 (de) 2019-07-15 2023-08-02 Ancora Heart, Inc. Vorrichtungen und verfahren zum gurtschneiden
EP4051182B1 (de) 2019-10-29 2024-08-21 Edwards Lifesciences Innovation (Israel) Ltd. Anuloplastie und gewebeankertechnologien
EP3831343B1 (de) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Geflochtener anker für mitralklappe
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US12023247B2 (en) 2020-05-20 2024-07-02 Edwards Lifesciences Corporation Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus
US11857417B2 (en) 2020-08-16 2024-01-02 Trilio Medical Ltd. Leaflet support
EP4199860A1 (de) 2020-08-19 2023-06-28 Tendyne Holdings, Inc. Vollständig transseptales apikalpolster mit riemenscheibe zum spannen
WO2022132571A1 (en) 2020-12-14 2022-06-23 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372293A (en) * 1980-12-24 1983-02-08 Vijil Rosales Cesar A Apparatus and method for surgical correction of ptotic breasts
US4579120A (en) * 1982-09-30 1986-04-01 Cordis Corporation Strain relief for percutaneous lead
US5258015A (en) * 1991-05-03 1993-11-02 American Cyanamid Company Locking filament caps
US5312642A (en) * 1991-02-08 1994-05-17 United States Surgical Corporation Method and apparatus for calendering and coating/filling sutures
DE4234127A1 (de) * 1992-10-09 1994-05-26 Vetter Herbert Dr Herzklappenprothese
US5450860A (en) * 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
WO1996040356A1 (en) * 1995-06-07 1996-12-19 Ep Technologies, Inc. Atrial appendage stasis reduction procedures and devices
US5766234A (en) * 1996-03-07 1998-06-16 Light Sciences Limited Partnership Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body
WO1998029041A1 (en) * 1997-01-02 1998-07-09 Myocor, Inc. Heart wall tension reduction apparatus and method

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34021A (en) * 1861-12-24 Ufacture of fibrous water
US4192293A (en) * 1978-09-05 1980-03-11 Manfred Asrican Cardiac assist device
ES474582A1 (es) * 1978-10-26 1979-11-01 Aranguren Duo Iker Procedimiento para la instalacion de valvulas mitrales en sulugar anatomico, mediante anclaje de cordajes en pilar arti-ficial
US4409974A (en) * 1981-06-29 1983-10-18 Freedland Jeffrey A Bone-fixating surgical implant device
IT1155105B (it) * 1982-03-03 1987-01-21 Roberto Parravicini Dispositivo di impianto per il sostentamento dell attivita del miocardio
US5104392A (en) * 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US4690134A (en) 1985-07-01 1987-09-01 Snyders Robert V Ventricular assist device
USRE34021E (en) 1985-11-18 1992-08-04 Abbott Laboratories Percutaneous fixation of hollow organs
DE3614292C1 (en) 1986-04-26 1987-11-19 Alexander Prof Dr Bernhard Holder for unframed biological mitral valve implant
SU1604377A1 (ru) 1987-02-23 1990-11-07 Благовещенский государственный медицинский институт Искусственный перикард
US4925443A (en) 1987-02-27 1990-05-15 Heilman Marlin S Biocompatible ventricular assist and arrhythmia control device
US4960424A (en) * 1988-06-30 1990-10-02 Grooters Ronald K Method of replacing a defective atrio-ventricular valve with a total atrio-ventricular valve bioprosthesis
US4944753A (en) * 1988-09-26 1990-07-31 Burgess Frank M Method for producing retro-sternal space
US4997431A (en) * 1989-08-30 1991-03-05 Angeion Corporation Catheter
GB9012716D0 (en) * 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5131905A (en) * 1990-07-16 1992-07-21 Grooters Ronald K External cardiac assist device
US5169381A (en) * 1991-03-29 1992-12-08 Snyders Robert V Ventricular assist device
US5452733A (en) * 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5584803A (en) * 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5458574A (en) * 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
US5571215A (en) * 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5344385A (en) 1991-09-30 1994-09-06 Thoratec Laboratories Corporation Step-down skeletal muscle energy conversion system
US5192314A (en) * 1991-12-12 1993-03-09 Daskalakis Michael K Synthetic intraventricular implants and method of inserting
US5250049A (en) * 1992-01-10 1993-10-05 Michael Roger H Bone and tissue connectors
US5814097A (en) * 1992-12-03 1998-09-29 Heartport, Inc. Devices and methods for intracardiac procedures
US5718725A (en) * 1992-12-03 1998-02-17 Heartport, Inc. Devices and methods for intracardiac procedures
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US6125852A (en) 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US5728151A (en) * 1993-02-22 1998-03-17 Heartport, Inc. Intercostal access devices for less-invasive cardiovascular surgery
US6155968A (en) 1998-07-23 2000-12-05 Wilk; Peter J. Method and device for improving cardiac function
US5385528A (en) * 1993-06-17 1995-01-31 Wilk; Peter J. Intrapericardial assist device and associated method
US5800334A (en) 1993-06-17 1998-09-01 Wilk; Peter J. Intrapericardial assist device and associated method
US5533958A (en) * 1993-06-17 1996-07-09 Wilk; Peter J. Intrapericardial assist device and associated method
AU699189B2 (en) * 1993-12-17 1998-11-26 Heartport, Inc. System for cardiac procedures
US5509428A (en) * 1994-05-31 1996-04-23 Dunlop; Richard W. Method and apparatus for the creation of tricuspid regurgitation
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5849005A (en) * 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
US5800528A (en) * 1995-06-13 1998-09-01 Abiomed R & D, Inc. Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation
US6520904B1 (en) 1996-01-02 2003-02-18 The University Of Cincinnati Device and method for restructuring heart chamber geometry
US5957977A (en) 1996-01-02 1999-09-28 University Of Cincinnati Activation device for the natural heart including internal and external support structures
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US6123662A (en) 1998-07-13 2000-09-26 Acorn Cardiovascular, Inc. Cardiac disease treatment and device
US5702343A (en) 1996-10-02 1997-12-30 Acorn Medical, Inc. Cardiac reinforcement device
AU747403B2 (en) 1996-10-18 2002-05-16 Cardio Technologies, Inc. Method and apparatus for assisting a heart
US5827268A (en) * 1996-10-30 1998-10-27 Hearten Medical, Inc. Device for the treatment of patent ductus arteriosus and method of using the device
DE29619294U1 (de) 1996-11-07 1997-07-17 Caić, Pero, 63450 Hanau Herzmanschette
US6071303A (en) 1996-12-08 2000-06-06 Hearten Medical, Inc. Device for the treatment of infarcted tissue and method of treating infarcted tissue
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6077214A (en) 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US5961440A (en) 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US5928224A (en) * 1997-01-24 1999-07-27 Hearten Medical, Inc. Device for the treatment of damaged heart valve leaflets and methods of using the device
US20030105519A1 (en) 1997-09-04 2003-06-05 Roland Fasol Artificial chordae replacement
FR2768324B1 (fr) 1997-09-12 1999-12-10 Jacques Seguin Instrument chirurgical permettant, par voie percutanee, de fixer l'une a l'autre deux zones de tissu mou, normalement mutuellement distantes
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6314322B1 (en) 1998-03-02 2001-11-06 Abiomed, Inc. System and method for treating dilated cardiomyopathy using end diastolic volume (EDV) sensing
US6190408B1 (en) 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US5902229A (en) 1998-03-30 1999-05-11 Cardio Technologies, Inc. Drive system for controlling cardiac compression
US6095968A (en) 1998-04-10 2000-08-01 Cardio Technologies, Inc. Reinforcement device
US6110100A (en) 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6024096A (en) 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
AU745832B2 (en) 1998-07-13 2002-04-11 Acorn Cardiovascular, Inc. Cardiac disease treatment device and method
US6085754A (en) 1998-07-13 2000-07-11 Acorn Cardiovascular, Inc. Cardiac disease treatment method
US6251061B1 (en) 1998-09-09 2001-06-26 Scimed Life Systems, Inc. Cardiac assist device using field controlled fluid
US6230714B1 (en) 1998-11-18 2001-05-15 Acorn Cardiovascular, Inc. Cardiac constraint with prior venus occlusion methods
US6169922B1 (en) 1998-11-18 2001-01-02 Acorn Cardiovascular, Inc. Defibrillating cardiac jacket with interwoven electrode grids
US6432039B1 (en) 1998-12-21 2002-08-13 Corset, Inc. Methods and apparatus for reinforcement of the heart ventricles
US6155972A (en) 1999-02-02 2000-12-05 Acorn Cardiovascular, Inc. Cardiac constraint jacket construction
US6174279B1 (en) 1999-09-21 2001-01-16 Acorn Cardiovascular, Inc. Cardiac constraint with tension indicator
US6179791B1 (en) 1999-09-21 2001-01-30 Acorn Cardiovascular, Inc. Device for heart measurement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372293A (en) * 1980-12-24 1983-02-08 Vijil Rosales Cesar A Apparatus and method for surgical correction of ptotic breasts
US4579120A (en) * 1982-09-30 1986-04-01 Cordis Corporation Strain relief for percutaneous lead
US5312642A (en) * 1991-02-08 1994-05-17 United States Surgical Corporation Method and apparatus for calendering and coating/filling sutures
US5258015A (en) * 1991-05-03 1993-11-02 American Cyanamid Company Locking filament caps
DE4234127A1 (de) * 1992-10-09 1994-05-26 Vetter Herbert Dr Herzklappenprothese
US5450860A (en) * 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
WO1996040356A1 (en) * 1995-06-07 1996-12-19 Ep Technologies, Inc. Atrial appendage stasis reduction procedures and devices
US5766234A (en) * 1996-03-07 1998-06-16 Light Sciences Limited Partnership Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body
WO1998029041A1 (en) * 1997-01-02 1998-07-09 Myocor, Inc. Heart wall tension reduction apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus
US5770099A (en) * 1993-10-15 1998-06-23 Applied Materials, Inc. Plasma etch apparatus with heated scavenging surfaces

Also Published As

Publication number Publication date
US6261222B1 (en) 2001-07-17
WO2000006026A2 (en) 2000-02-10
AU5230899A (en) 2000-02-21
EP1520519B1 (de) 2010-03-24
ATE461661T1 (de) 2010-04-15
EP1143858A2 (de) 2001-10-17
US6629921B1 (en) 2003-10-07
DE69942183D1 (de) 2010-05-06
WO2000006026A9 (en) 2000-08-10
US6045497A (en) 2000-04-04
WO2000006026A3 (en) 2001-11-08

Similar Documents

Publication Publication Date Title
US6045497A (en) Heart wall tension reduction apparatus and method
US6406420B1 (en) Methods and devices for improving cardiac function in hearts
WO2001028455A1 (en) Methods and devices for improving cardiac function in hearts
EP1011461B1 (de) Gerät zur reduzierung der spannung der herzwand
EP1854414B1 (de) Vorrichtung und Verfahren zur Reduktion der Herzwandspannung
EP1594569B1 (de) In vivo vorrichtung zur verbesserung der diastolischen ventrikelfunktion
EP1322259B1 (de) Endovaskulare splintvorrichtungen
US7993258B2 (en) In-vivo method and device for improving diastolic function of the left ventricle
US20020068850A1 (en) Apparatus and method for delivery of cardiac constraint jacket

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1143858

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20051004

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAULSON, THOMAS M.

Inventor name: MORTIER, TODD J.

Inventor name: KEITH, PETER T.

Inventor name: VIDLUND, ROBERT M.

Inventor name: SCHWEICH, CYRIL J.

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AXX Extension fees paid

Extension state: SI

Payment date: 20051004

Extension state: RO

Payment date: 20051004

Extension state: MK

Payment date: 20051004

Extension state: LV

Payment date: 20051004

Extension state: LT

Payment date: 20051004

Extension state: AL

Payment date: 20051004

17Q First examination report despatched

Effective date: 20060301

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EDWARDS LIFESCIENCES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HEART WALL TENSION REDUCTION APPARATUS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1143858

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69942183

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100714

Year of fee payment: 12

Ref country code: CH

Payment date: 20100726

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

26N No opposition filed

Effective date: 20101228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110725

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110725

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100727

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170621

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170620

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69942183

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201