EP1366647A1 - Appareil de production de plasma a basse temperature et a pression atmospherique - Google Patents

Appareil de production de plasma a basse temperature et a pression atmospherique

Info

Publication number
EP1366647A1
EP1366647A1 EP02700834A EP02700834A EP1366647A1 EP 1366647 A1 EP1366647 A1 EP 1366647A1 EP 02700834 A EP02700834 A EP 02700834A EP 02700834 A EP02700834 A EP 02700834A EP 1366647 A1 EP1366647 A1 EP 1366647A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
plasma
discharge
power supply
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02700834A
Other languages
German (de)
English (en)
Other versions
EP1366647A4 (fr
Inventor
Kee-Seok Nam
Sang-Ro Mugunghwa Hanyang Apt. 109-1903 LEE
Koo-Hyun Lee
Jong-Ju Korea Inst. of Machinery & Materials RHA
Jong-Kuk Korea Inst of Machinery & Materials KIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SE Plasma Inc
Original Assignee
SE Plasma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SE Plasma Inc filed Critical SE Plasma Inc
Publication of EP1366647A1 publication Critical patent/EP1366647A1/fr
Publication of EP1366647A4 publication Critical patent/EP1366647A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32036AC powered
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces

Definitions

  • the present invention relates to an apparatus for generating low-temperature plasma in a high density at atmospheric pressure with low discharge initiation and maintenance voltages.
  • plasma is defined as a partially ionized gas composed of a nearly equal number of positive and negative free charges so that it is electrically neutral.
  • plasma is of very high reactivity, chemically and physically.
  • Low-temperature plasma is used to synthesize various materials, such as metals, semiconductors, polymers, nylon, plastic, paper, fiber, and ozone, or to modify surface properties of materials with a concomitant improvement in various physical and chemical properties such as junction strength, dyeing properties, printability, etc. Accordingly, low-temperature plasma finds numerous applications in semiconductor, metal, ceramic thin film synthesis, and cleaning fields.
  • low-temperature plasma can be generated in a vacuum vessel of low pressure.
  • an apparatus which is expensive on the whole.
  • materials to be treated are large in size, it is difficult to apply plasma to them.
  • Another problem with plasma treatment is difficulty in automation of plasma processes. Further to these, plasma has difficulty in treating materials which show high vapor pressures or are degassed, such as rubber, biomaterials, etc.
  • a corona discharge is a discharge of electricity appearing as a bluish-purple glow on the surface of and adjacent to a conductor when the voltage gradient exceeds a critical value.
  • streamer plasma is generated from the electrodes.
  • a dielectric barrier discharge utilizes the charge accumulation resulting from dielectric polarization to form a reverse potential at which the discharge is halted, that is, it takes advantage of a pulse discharge, thereby preventing the development of arc discharges.
  • plasma is generated in the form of a streamer that is not homogeneous and is low in density. Additionally, because the gap between two electrodes is narrow, a corona discharge is difficult to apply to targets of three-dimensional shape. Also, other problems with the coronal discharge include noise generation and a short electrode lifetime.
  • the dielectric barrier discharge does not ensure the generation of homogenous, diffused plasma over a large area, as in the corona discharge.
  • the dielectric barrier discharge is low in plasma density, and the distance between two electrodes is so narrow as to limit the size and shape of a target to be treated.
  • gases with high discharge initiation and maintenance potentials such as argon, oxygen and nitrogen, are used, both the corona discharge and the dielectric barrier discharge techniques require a high-voltage power supply.
  • the power supply is difficult to operate and manage because of its being expensive and high in electricity consumption.
  • an apparatus for generating low-temperature plasma at atmospheric pressure comprising: a couple of electrodes facing each other at a distance, one of them being connected to a power supply, the other being grounded; a couple of dielectrics with a thickness of 25 ⁇ m-10 mm, positioned on the facing surfaces of the electrodes in such a way as to face each other, one of them having at least one discharge gap therein; and a conductor electrode having at least one tip positioned within the discharge gap, in which an electric field is applied at an intensity of 1-100 KV/cm through the power supply across the electrodes by use of a pulse direct current or an alternating current in a frequency bandwidth of 50 Hz-10 GHz while a reaction gas is fed between the electrodes .
  • the plasma generated from the apparatus of the present invention is suitable to form radicals of high energy, which have numerous applications in various fields, including bonding, polishing, cleaning, thin films deposition, sterilization, disinfection, ozone generation, printing, dyeing, etching of various materials such as metal, rubber, fibers, paper, synthetic resins and semiconductors.
  • application fields of the plasma include purification of tap water and waste water, purification of air and automobile exhaust gas such as SO x and NO x , combustion of fuels, manufacture of highly luminous lamps, etc.
  • Fig. 1 is a schematic diagram showing a plate structure of electrodes in a cross sectional view, suitable for use in an apparatus for generating low-temperature plasma at atmospheric pressure, in accordance with a first embodiment of the present invention
  • Fig. 2 is a schematic diagram showing a tube structure of electrodes in a cross sectional view, suitable for use in an apparatus for generating low-temperature plasma at atmospheric pressure in accordance with a second embodiment of the present invention.
  • Fig. 3 provides illustrations of tips provided to conductor electrodes.
  • FIG. 1 there is an electrode structure seen in a cross sectional view, suitable for use in an apparatus for generating low-temperature plasma at atmospheric pressure, in accordance with a first embodiment of the present invention.
  • the present invention employs a plate structure of electrodes in generating low-temperature plasma at atmospheric pressure.
  • the apparatus has a couple of electrodes 1 and 2 which are positioned to face each other in accordance with the present invention.
  • One of the two electrodes is connected to a power supply 6 while the other electrode is grounded.
  • the grounded electrode is an anode 2 and the electrode connected to the power supply 6 is set as a cathode 1.
  • both electrodes are made of metal such as stainless steel, aluminum or copper.
  • each of the dielectrics 3 and 4 is mounted on each of the electrodes 1 and 2, respectively, and arranged in such a way as to face each other.
  • each of the dielectrics 3 and 4 preferably ranges in thickness from 25 ⁇ m to 10 mm.
  • discharge gaps 7 are provided which run through the dielectric 3 perpendicularly to its surface.
  • the dielectric 4 mounted onto the surface of the grounded electrode 2 has no discharge gaps.
  • one dielectric with perpendicularly perforating discharge gaps is mounted on the electrode 1 connected to the power supply ⁇ and another dielectric with no discharge gaps is mounted on the grounded electrode 2, after which the two dielectrics are positioned in such a way as to face each other.
  • conductor electrodes 5 with a certain width (a) and a certain height (b) are positioned within each discharge gap 7.
  • the conductor electrodes 5 have tips 8, 8' or 8" which may be in a form shown in Fig. 3A, 3B or 3C.
  • the conductor electrodes 5 accumulate charges at the tips 8, 8' or 8" which facilitate the discharging of the accumulated charges.
  • the tips 8, 8' or 8" function to control the width (a) and height (b) of each of the discharge gaps 7.
  • the tips formed on the conductor electrode 5 may be pointed, square or curved 1 in shape. Other various shapes may be applied to the tips.
  • the tips Preferably, the tips have a height (b) 0.1-20 times as long as their width (a) while being present at a density of 1-100 per length of 10 mm.
  • the apparatus having a plate structure of electrodes is illustrated to have the dielectric 3 on the electrode 1 connected to the power supply 6 and the dielectric 4 on the electrode grounded, it should be understood that the present invention is not limited to this, but may have various structures.
  • the electrodes 1 and 2 on which the dielectrics 3 and 4 are to be positioned may be changed in position.
  • the dielectric 3 with discharge gaps 7 is mounted onto the ground electrode 2 while the dielectric 4 lacking discharge gaps 7 is mounted onto the electrode 1 connected to the power supply 6. Additionally, when a dielectric with discharge gaps 7 may be mounted on one of the electrodes 1 and 2, the remaining one may be provided with no dielectrics.
  • the dielectrics are required to be resistant to high temperatures and have superior dielectric properties.
  • the dielectrics are made of a materials selected from the group consisting of glass, alumina, boron nitride, silicon carbide, silicon nitride, quartz, and magnesium oxide .
  • the discharge gaps 7 which run perpendicularly through the dielectric preferably range in width (a) from 5 ⁇ m to 2 mm with a height (a) being 5-250 fold longer than the width
  • FIG. 2 there is an electrode structure seen in a cross sectional view, suitable for use in an apparatus for generating low-temperature plasma at atmospheric pressure, in accordance with another embodiment of the present invention.
  • the present invention adopts a tube structure of electrodes to an apparatus capable of low-temperature plasma generation at atmospheric pressure.
  • a tubular electrode 1 ' to the inner circumference of which a dielectric 3' is attached.
  • a cylindrical core electrode 2 ' which is concentric to the tubular electrode 1' is placed at a certain distance from the dielectric 3' attached to the inner surface of the tubular electrode 1 ' .
  • Both ends of each electrode are fixed while being suitably insulated (not shown) .
  • another dielectric 4' is fixed, with a plurality of discharge gaps 7' being provided at regular intervals in the dielectric 4' .
  • each of the electrodes 3' and 4' may fall within the range set in the First Embodiment. Also, the same limitations as in the First Embodiment are placed on the width (a) and height (b) of the discharge gaps 7. On the outer circumference of the core electrode 2 are positioned conductor electrodes 5 with such a width (a) and a height (b) as to fit the discharge gaps 7. The conductor electrodes 5 are also provided with tips which have the shapes shown in Fig. 3.
  • tubular electrode 1 ' is grounded, the core electrode 2 ' is connected to a power supply 6.
  • various modifications can be made in arrangements, shapes and conformations of electrodes V and 2 ' and dielectrics 3' and 4' .
  • an electric field is applied at an intensity of 1-100 KV/cm through the power supply 6 to the apparatuses of the First and the Second Embodiments, by use of a pulse direct current or an alternating current in a frequency bandwidth of 50 Hz-10 GHz. In the presence of such an electric field, discharging is conducted between the tips of the discharge gaps and the counter electrode, to generate plasma.
  • homogeneous plasma of a large area can be generated stably.
  • the plasma generated from the apparatuses of the present invention is applied to a variety of materials, such as metal, rubber, fibers, paper, and synthetic resins, e.g. plastics, nylon, epoxy, etc., to change surface properties of the materials to ones suitable for use in bonding, polishing, thin films deposition, dyeing, printing, etc.
  • materials such as metal, rubber, fibers, paper, and synthetic resins, e.g. plastics, nylon, epoxy, etc.
  • plasma can be directly applied for the removal of toxicity and the purification of contaminated air.
  • plasma is used to make ozone which is utilized in sterilization and disinfection of tap water, purification of waste water, purification of automobile exhaust gases such as SO x and NO x , and complete combustion of fuels in automobile engines.
  • plasma can be adopted to manufacture very bright lamps useful for photochemical reactions which can be applied to various surface treatment processes, including semiconductor device fabrication.
  • reaction gases such as air, water vapor, oxygen, nitrogen, hydrogen, argon, helium, methane, ammonia, tetrafluoro carbon, aectylene, propane, etc
  • reaction gases such as air, water vapor, oxygen, nitrogen, hydrogen, argon, helium, methane, ammonia, tetrafluoro carbon, aectylene, propane, etc
  • This plasma is usefully utilized in bonding, polishing, cleaning, thin films deposition, sterilization, disinfection, ozone preparation, dyeing, printing, etching, purification of water, purification of air and automobile exhaust gases, complete combustion of fuels in automobile engines, manufacture of highly luminous lamps, etc.
  • This experimental example employed the same plasma- generating apparatus as in Second Embodiment, which had a plate structure in which two electrode plates 1 and 2 were arranged to face each other and a dielectric is provided on each of the facing surfaces of the electrode plates 1 and 2.
  • a plurality of discharge gaps 7, each being 200 ⁇ m width and 2 mm high were formed.
  • tips 8 shaped as in Fig. 3a each having a width (a) of 2 mm and a height (b) of 1.5 mm, were provided.
  • helium gas was introduced, while a direct current bipolar pulse electric source of 50 KHz was applied across the electrodes to discharge at atmospheric pressure.
  • a discharge initiation voltage for helium gas was measured to be about 3.7 KV/cm. If the distance between the electrodes was 7 mm, about 2.6 KV was required as a discharge initiation potential.
  • the apparatuses for generating low-temperature plasma of the present invention enjoy the following advantages:
  • the apparatus for generating plasma at atmospheric pressure adapted for the induction of hollow cathode discharges, capillary discharges or highly accumulated electric fields, prevents the conversion of the plasma to arcs and thus gives stable, low-temperature plasma in a high density.
  • the apparatus can initiate and maintain discharging at very low voltages, and utilizes a broad bandwidth of frequencies, in addition to being low in electricity consumption and being manufactured at a low cost.
  • the apparatus can generate homogeneous plasma over a large area in a high density.
  • the plasma is suitable to form radicals of high energy, which have numerous applications in various fields, including bonding, polishing, cleaning, thin films deposition, sterilization, disinfection, ozone preparation, printing, dyeing, etching, purification of tap water and waste water, purification of air and automobile exhaust gas, complete combustion of fuels, manufacture of highly luminous lamps, etc.
  • the plasma can bring about excellent results and reduce the treatment time greatly.

Abstract

L'invention concerne un appareil de production de plasma à basse température et à pression atmosphérique. Cet appareil comprend: une paire d'électrodes disposées l'une en face de l'autre à une certaine distance, une de ces électrodes étant connectée à une alimentation et l'autre étant mise à la terre; une paire d'éléments diélectriques d'une épaisseur comprise entre 25νm et 10mm, positionnés sur les surfaces en regard des électrodes, de manière à être l'un en face de l'autre, un de ces éléments renfermant au moins un espace de décharge; et une électrode conductrice présentant au moins un embout positionné à l'intérieur de l'espace de décharge, un champ électrique étant appliqué à une intensité comprise entre 1 et 100KV/cm par l'intermédiaire de l'alimentation, via les électrodes, au moyen d'une impulsion de courant direct et de courant alternatif dans une largeur de bande de fréquence comprise entre 50Hz et 10 GHz, pendant qu'un gaz de réaction est alimenté entre les électrodes, de manière à induire une décharge de cathode creuse, une décharge capillaire ou une accumulation importante de charges à partir de l'espace de décharge. L'appareil selon l'invention empêche la formation d'arcs dans le plasma et permet d'obtenir un plasma de densité élevée stable à basse température.
EP02700834A 2001-02-12 2002-02-08 Appareil de production de plasma a basse temperature et a pression atmospherique Withdrawn EP1366647A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2001-0006653A KR100464902B1 (ko) 2001-02-12 2001-02-12 대기압에서 저온 플라즈마를 발생시키는 장치
KR2001006653 2001-02-12
PCT/KR2002/000202 WO2002065820A1 (fr) 2001-02-12 2002-02-08 Appareil de production de plasma a basse temperature et a pression atmospherique

Publications (2)

Publication Number Publication Date
EP1366647A1 true EP1366647A1 (fr) 2003-12-03
EP1366647A4 EP1366647A4 (fr) 2007-08-08

Family

ID=19705599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02700834A Withdrawn EP1366647A4 (fr) 2001-02-12 2002-02-08 Appareil de production de plasma a basse temperature et a pression atmospherique

Country Status (6)

Country Link
EP (1) EP1366647A4 (fr)
JP (1) JP3990285B2 (fr)
KR (1) KR100464902B1 (fr)
CN (1) CN1228999C (fr)
TW (1) TWI244879B (fr)
WO (1) WO2002065820A1 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841201B2 (en) 2001-12-21 2005-01-11 The Procter & Gamble Company Apparatus and method for treating a workpiece using plasma generated from microwave radiation
US6821379B2 (en) * 2001-12-21 2004-11-23 The Procter & Gamble Company Portable apparatus and method for treating a workpiece
KR100482554B1 (ko) * 2002-03-06 2005-04-14 현대자동차주식회사 유전체에 돌출부가 형성된 평행 평판형 타입 플라즈마반응기
US6759100B2 (en) * 2002-06-10 2004-07-06 Konica Corporation Layer formation method, and substrate with a layer formed by the method
JP4472372B2 (ja) * 2003-02-03 2010-06-02 株式会社オクテック プラズマ処理装置及びプラズマ処理装置用の電極板
EP1507281B1 (fr) * 2003-08-14 2007-05-16 Fuji Film Manufacturing Europe B.V. Arrangement, méthode et électrode pour engendrer un plasma
KR100601394B1 (ko) * 2004-08-20 2006-07-13 연세대학교 산학협력단 공기정화장치
KR200371074Y1 (ko) * 2004-09-17 2004-12-29 주식회사 다원시스 대기압 플라즈마를 이용한 모발 염색장치
US7256296B2 (en) 2004-09-22 2007-08-14 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts
KR100691875B1 (ko) * 2005-03-25 2007-03-09 최진문 대기압 플라즈마 유전체 세정장치
EP1933605B1 (fr) * 2005-09-16 2019-05-15 Toyo Advanced Technologies Co., Ltd. Dispositif et procede de generation de plasma
JP4963360B2 (ja) * 2006-01-31 2012-06-27 国立大学法人茨城大学 携帯型大気圧プラズマ発生装置
DE102006011312B4 (de) * 2006-03-11 2010-04-15 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Vorrichtung zur Plasmabehandlung unter Atmosphärendruck
CN100434935C (zh) * 2006-12-28 2008-11-19 河北大学 一种产生具有三种折射率的等离子体光子晶体的方法
JP4792604B2 (ja) * 2007-04-17 2011-10-12 国立大学法人佐賀大学 プラズマ滅菌装置
KR100861559B1 (ko) * 2007-06-04 2008-10-02 (주)에스이 플라즈마 전원 인가 전극에 결합되는 유전체 하면에 복수개의 분할전극이 부착된 구조의 전극부를 갖는 대기압 플라즈마발생장치
CN101376980B (zh) * 2007-08-27 2011-09-21 宝山钢铁股份有限公司 一种改善带钢润湿性的工艺
DE102008028167A1 (de) * 2008-06-12 2009-12-31 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur Erzeugung eines Plasma-Jets
KR101046335B1 (ko) 2008-07-29 2011-07-05 피에스케이 주식회사 할로우 캐소드 플라즈마 발생방법 및 할로우 캐소드플라즈마를 이용한 대면적 기판 처리방법
CN101720163B (zh) * 2008-10-10 2012-12-19 河南理工大学 大气压下介质阻挡类辉光放电反应器
CN101772253B (zh) * 2008-12-26 2013-06-26 中国科学院空间科学与应用研究中心 一种等离子体产生装置
KR20100081068A (ko) * 2009-01-05 2010-07-14 삼성전기주식회사 플라즈마 발생장치
KR100924112B1 (ko) * 2009-02-10 2009-10-29 한국과학기술원 중공 전극을 가지는 방전셀에서 플라즈마를 발생하는 소자
KR101193380B1 (ko) * 2009-07-13 2012-10-23 글로벌텍 주식회사 플라즈마 발생 장치
KR101150004B1 (ko) * 2009-09-02 2012-05-31 한국기초과학지원연구원 액상 매질 플라즈마 방전 발생장치
KR101151277B1 (ko) * 2009-12-01 2012-06-14 성균관대학교산학협력단 대기압 플라즈마를 이용한 기판의 이중 패터닝 방법
KR101160906B1 (ko) * 2010-03-17 2012-06-28 최대규 용량 결합 플라즈마 반응기
KR101163643B1 (ko) * 2010-05-04 2012-07-06 (주)에스이피 대기압 플라즈마 장치
KR101307111B1 (ko) * 2010-08-24 2013-09-11 닛신 이온기기 가부시기가이샤 플라즈마 발생 장치
CN102026468A (zh) * 2010-11-23 2011-04-20 中国科学院等离子体物理研究所 一种介质阻挡电晕放电反应器
CN102036460B (zh) * 2010-12-10 2013-01-02 西安交通大学 平板式等离子体发生装置
DE102011000261A1 (de) * 2011-01-21 2012-07-26 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Dielektrische Koplanarentladungsquelle für eine Oberflächenbehandlung unter Atmosphärendruck
US8760067B2 (en) * 2011-04-04 2014-06-24 Federal-Mogul Ignition Company System and method for controlling arc formation in a corona discharge ignition system
CN102215626B (zh) * 2011-05-23 2012-12-12 中国科学院物理研究所 一种可在较低电压条件下产生放电等离子体的装置
KR101241951B1 (ko) * 2011-08-11 2013-03-11 한국기계연구원 플라즈마 발생장치 및 기판의 플라즈마 처리방법
WO2013022306A2 (fr) * 2011-08-11 2013-02-14 한국기계연구원 Appareil de génération de plasma, procédé de fabrication d'électrodes rotatives pour appareil de génération de plasma, procédé de traitement par plasma de substrat, et procédé permettant de former une couche mince de structure mélangée au moyen de plasma
JP2012140970A (ja) * 2012-04-25 2012-07-26 Nissan Motor Co Ltd エンジン点火制御装置
WO2014007472A1 (fr) * 2012-07-03 2014-01-09 Plasmart Inc. Appareil de génération de plasma et procédé de génération de plasma
CN102755819B (zh) * 2012-08-02 2014-04-16 桂林市世环废气处理设备有限公司 低温等离子氧化器及低温等离子除臭系统
CN103269556A (zh) * 2013-05-14 2013-08-28 哈尔滨工业大学 大面积大气等离子体均匀放电电极
KR101439926B1 (ko) 2013-06-11 2014-09-17 한국기계연구원 캐필러리부가 구비된 판상형 전극을 이용한 롤투롤 플라즈마 처리 시스템
CN104619106B (zh) * 2015-01-15 2018-04-20 合肥工业大学 一种实现大气压下空气中均匀辉光放电的装置
CN105792495B (zh) * 2016-05-03 2018-11-06 河北大学 一种产生大气压均匀等离子体刷的装置和方法
CN105951034A (zh) * 2016-05-28 2016-09-21 上海大学 一种弹簧钢在低温等离子体下渗碳的方法
CN105951035A (zh) * 2016-05-28 2016-09-21 上海大学 一种弹簧钢在低温等离子体下发蓝的方法
CN106577982A (zh) * 2016-12-23 2017-04-26 浙江海洋大学 一种鱿鱼丝保鲜的方法
KR101941860B1 (ko) * 2017-06-09 2019-01-25 한국과학기술연구원 기체 방전 살균 및 제독 기능을 가진 차량용 외장재, 이를 포함하는 차량 및 차량의 살균 및 제독을 위한 소독 시스템
KR20200069296A (ko) * 2017-09-01 2020-06-16 솜니오 글로벌 홀딩스, 엘엘씨 자유 라디칼 생성기 및 사용 방법
AT520858A1 (de) * 2018-01-30 2019-08-15 Gerald Boehm Vorrichtung und Verfahren zum Bilden eines Temperaturgradienten
CN108601191B (zh) * 2018-05-21 2020-09-15 王逸人 一种阵列式双介质阻挡放电装置
CN109545687B (zh) * 2018-11-13 2020-10-30 中国科学院微电子研究所 基于交流电压下微波等离子体氧化的凹槽mosfet器件制造方法
CN109494147B (zh) 2018-11-13 2020-10-30 中国科学院微电子研究所 基于交流电压下微波等离子体的碳化硅氧化方法
WO2020126910A1 (fr) * 2018-12-21 2020-06-25 Evatec Ag Appareil de traitement sous vide et procédé de traitement par plasma sous vide d'au moins un substrat ou de fabrication d'un substrat
CN109779948B (zh) * 2019-01-17 2021-01-05 沈阳航空航天大学 一种用于提高轴流风机性能的等离子式叶顶间隙密封方法
CN109688689A (zh) * 2019-02-20 2019-04-26 北京卓昱科技有限公司 一种宽间隙电子诱导等离子发生器
CN111389189A (zh) * 2020-03-11 2020-07-10 北京化工大学 一种可穿戴式等离子体降解危险化学品的装置及方法
CN111773427B (zh) * 2020-07-10 2021-07-23 深圳先进技术研究院 一种等离子体空气消杀处理装置
TWI826900B (zh) * 2021-03-03 2023-12-21 日商斯庫林集團股份有限公司 電漿產生裝置及基板處理裝置
CN113099599B (zh) * 2021-04-26 2022-04-26 北京农学院 一种滑动弧放电反应装置及杀菌方法
KR102574829B1 (ko) * 2021-05-11 2023-09-06 박영희 섬유 원단의 표면 개질을 위한 저온진공 플라스마장치의 전극구조
CN114551194B (zh) * 2022-02-18 2024-02-06 四川大学 一种等离子体刻蚀装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016367A1 (fr) * 1998-09-16 2000-03-23 The Trustees Of The Stevens Institute Of Technology Dispositif de decharge luminescente a plasma a courant alternatif pourvu d'une electrode recouverte d'un dielectrique perfore
US6170668B1 (en) * 1998-05-01 2001-01-09 Mse Technology Applications, Inc. Apparatus for extraction of contaminants from a gas
WO2002061787A2 (fr) * 2001-01-31 2002-08-08 Plasmion Corporation Procede et appareil presentant une electrode a broches pour un traitement de surface utilisant un plasma de decharge capillaire

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167481A (ja) * 1990-10-31 1992-06-15 Hitachi Cable Ltd 気体レーザ
JP3121105B2 (ja) * 1992-03-03 2000-12-25 株式会社きもと グロー放電プラズマ発生用電極及びこの電極を用いた反応装置
KR0130733B1 (ko) * 1994-04-21 1998-04-14 문재덕 저온 플라즈마 발생용 방전장치
JPH07296993A (ja) * 1994-04-26 1995-11-10 Shimada Phys & Chem Ind Co Ltd プラズマ発生装置
JP3078466B2 (ja) * 1995-05-24 2000-08-21 松下電工株式会社 大気圧プラズマ発生装置及びその装置を用いた大気圧プラズマ発生方法
JPH0950898A (ja) * 1995-08-08 1997-02-18 Hitachi Ltd プラズマ処理装置
JP3288228B2 (ja) * 1996-05-24 2002-06-04 積水化学工業株式会社 放電プラズマ処理方法
JPH10172792A (ja) * 1996-12-05 1998-06-26 Tokyo Electron Ltd プラズマ処理装置
US5872426A (en) * 1997-03-18 1999-02-16 Stevens Institute Of Technology Glow plasma discharge device having electrode covered with perforated dielectric
JPH11106531A (ja) * 1997-10-06 1999-04-20 Sekisui Chem Co Ltd 放電プラズマ処理装置
JP2000008296A (ja) * 1998-06-19 2000-01-11 Oji Paper Co Ltd 着色紙
US6118218A (en) * 1999-02-01 2000-09-12 Sigma Technologies International, Inc. Steady-state glow-discharge plasma at atmospheric pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6170668B1 (en) * 1998-05-01 2001-01-09 Mse Technology Applications, Inc. Apparatus for extraction of contaminants from a gas
WO2000016367A1 (fr) * 1998-09-16 2000-03-23 The Trustees Of The Stevens Institute Of Technology Dispositif de decharge luminescente a plasma a courant alternatif pourvu d'une electrode recouverte d'un dielectrique perfore
WO2002061787A2 (fr) * 2001-01-31 2002-08-08 Plasmion Corporation Procede et appareil presentant une electrode a broches pour un traitement de surface utilisant un plasma de decharge capillaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02065820A1 *

Also Published As

Publication number Publication date
JP2004527073A (ja) 2004-09-02
KR20020066467A (ko) 2002-08-19
CN1491527A (zh) 2004-04-21
EP1366647A4 (fr) 2007-08-08
TWI244879B (en) 2005-12-01
KR100464902B1 (ko) 2005-01-05
JP3990285B2 (ja) 2007-10-10
CN1228999C (zh) 2005-11-23
WO2002065820A1 (fr) 2002-08-22

Similar Documents

Publication Publication Date Title
US6441554B1 (en) Apparatus for generating low temperature plasma at atmospheric pressure
WO2002065820A1 (fr) Appareil de production de plasma a basse temperature et a pression atmospherique
Wagner et al. The barrier discharge: basic properties and applications to surface treatment
EP1171900B1 (fr) Jet de plasma grande surface a la pression atmospherique
US7572998B2 (en) Method and device for creating a micro plasma jet
US5872426A (en) Glow plasma discharge device having electrode covered with perforated dielectric
Laimer et al. Recent Advances in the Research on Non‐Equilibrium Atmospheric Pressure Plasma Jets
Kong et al. Electrically efficient production of a diffuse nonthermal atmospheric plasma
WO2004001790A1 (fr) Appareil de decharge a barriere dielectrique et procede de traitement d'un substrat
WO2007035182A2 (fr) Électrodes à champ amplifié de processeur au plasma non thermique à injection d’additif
KR100430345B1 (ko) 대기압에서 저온 플라즈마를 발생시키는 장치
Boulos et al. Basic concepts of plasma generation
Chiper et al. On the secondary discharge of an atmospheric-pressure pulsed DBD in He with impurities
KR200253571Y1 (ko) 대기압에서 저온 플라즈마를 발생시키는 장치
EP2317829B1 (fr) Dispositif de reformage de gaz et son procédé de fonctionnement
KR100507334B1 (ko) 대기압 프라즈마 가속장치
KR20200091167A (ko) 유전체 장벽 대기압 플라즈마 발생장치
KR100507335B1 (ko) 대기압 프라즈마 가속 발생장치
KR100672230B1 (ko) 동공 음극 플라즈마 장치
Pessoa et al. Hollow cathode discharges: low and high-pressure operation
KR100422108B1 (ko) 대기압에서 글로우 방전 플라즈마를 발생시키는 장치
KR100460601B1 (ko) 플라즈마 발생용 복합소재 전극 및 그 제조방법
KR20040001189A (ko) 상압플라즈마를 이용한 표면처리장치
KR200288939Y1 (ko) 상압플라즈마를 이용한 표면처리장치
ABIDAT et al. ELECTRICAL CHARACTERISTICS SIMULATION OF HOMOGENEOUS DBD AT ATMOSPHERIC PRESSURE. APPLICATION TO HELIUM AND ARGON PLASMAS.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20070711

17Q First examination report despatched

Effective date: 20071024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080304