CN109494147B - 基于交流电压下微波等离子体的碳化硅氧化方法 - Google Patents

基于交流电压下微波等离子体的碳化硅氧化方法 Download PDF

Info

Publication number
CN109494147B
CN109494147B CN201811349424.3A CN201811349424A CN109494147B CN 109494147 B CN109494147 B CN 109494147B CN 201811349424 A CN201811349424 A CN 201811349424A CN 109494147 B CN109494147 B CN 109494147B
Authority
CN
China
Prior art keywords
silicon carbide
oxygen
alternating voltage
voltage
oxidation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811349424.3A
Other languages
English (en)
Other versions
CN109494147A (zh
Inventor
刘新宇
王盛凯
白云
汤益丹
韩忠霖
田晓丽
陈宏�
杨成樾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201811349424.3A priority Critical patent/CN109494147B/zh
Priority to US16/287,902 priority patent/US10699898B2/en
Publication of CN109494147A publication Critical patent/CN109494147A/zh
Application granted granted Critical
Publication of CN109494147B publication Critical patent/CN109494147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32201Generating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种基于交流电压下微波等离子体的碳化硅氧化方法,包括:步骤一、提供碳化硅衬底,将碳化硅衬底放置在微波等离子体发生装置中;步骤二、加入含氧气体,在交流电压下产生氧等离子体;步骤三、通过所述交流电压控制所述氧等离子体中的氧离子与电子的运动,在所述碳化硅衬底上生成预定厚度的氧化层,其中,碳化硅衬底电压为负时,氧离子靠近界面与碳化硅发生氧化反应,碳化硅衬底电压为正时,电子靠近界面与碳化硅发生还原反应,将碳残留去除;步骤四、停止通入含氧气体,反应结束。本发明可以实现对碳化硅氧化层的实时修复,有效减小碳残留,改善界面质量,减小氧化层中的缺陷中心对载流子的散射作用。

Description

基于交流电压下微波等离子体的碳化硅氧化方法
技术领域
本发明属于半导体技术领域,具体涉及一种基于交流电压下微波等离子体的碳化硅氧化方法。
背景技术
碳化硅(SiC)属于第三代半导体材料,由于其优异的物理性能如:禁带宽度大、击穿电场高、电子迁移率大、热导率高,使得其特别适合制备电力电子器件。而SiC MOSFETs是最受关注的电力电子器件,相比于Si MOSFETs,SiC MOSFETs导通损耗小、开关速度快,承受温度高,特别适用于功率开关应用。如何减小SiC MOSFETs栅氧处的缺陷,仍是当前的研究重点。
由于SiC能够热生长SiO2的化合物半导体,使得其可以制备类似Si MOS的器件结构。然而,SiC的热氧需要比Si更高的温度,高达1300℃。当前,SiC热氧主要采用电阻加热方式的氧化炉,在高温下氧气分子与SiC反应生成SiO2,反应过程在热平衡条件下进行,导致界面质量退化如:界面碳簇残留,生成Si-O-C键、C的悬挂键和氧空位等缺陷,如图1所示。碳簇的存在会在界面处形成缺陷中心,降低载流子的迁移率,SiCMOSFETs器件的输出性能。另外,高温氧化还会造成界面损伤,降低氧化效率。
因此,高效、低界面态的栅氧工艺是保障SiC MOSFETs可靠工作的关键。近年,有人提出了在低温下利用等离子体氧化SiC的方法,改善了界面质量。然而该方法的氧化效率较低,获得厚栅氧时,氧化时间较长。另外,在氧化过程中,SiC和SiO2的界面处,SiC和SiO2仍会处于一种热力学平衡态,导致界面质量并不理想。
发明内容
为了解决现有技术中存在的问题,本发明提出了一种基于交流电压下微波等离子体的碳化硅氧化方法,能够在氧化的过程中,实时修复界面,降低界面处碳残留,减小界面缺陷密度,提高半导体结构的性能。
为了达到上述目的,本发明采用以下技术方案:
一种基于交流电压下微波等离子体的碳化硅氧化方法,包括:
步骤一、提供碳化硅衬底,将碳化硅衬底放置在微波等离子体发生装置中;
步骤二、加入含氧气体,在交流电压下产生氧等离子体;
步骤三、通过所述交流电压控制所述氧等离子体中的氧离子与电子的运动,在所述碳化硅衬底上生成预定厚度的氧化层,其中,碳化硅衬底电压为负时,氧离子靠近界面与碳化硅发生氧化反应,碳化硅衬底电压为正时,电子靠近界面与碳化硅发生还原反应,将碳残留去除;
步骤四、停止通入含氧气体,反应结束。
优选地,所述交流电压为方波电压,周期为10-30s,电压幅值为5-10V。
优选地,氧等离子体与碳化硅的反应温度为500-900℃,反应压力为400-1000mTorr。
优选地,氧等离子体以0.5-2℃/s的速度升温到反应温度。
优选地,所述微波等离子体发生装置的输入功率为800-2000W,微波频率为2.4-2.5GHz。
优选地,等离子放电时间为400-1000s。
优选地,所述含氧气体为纯氧、或者为氧气与惰性气体的混合气,所述混合气中氧气含量优选为30-90vol.%。
优选地,生成的二氧化硅的厚度为1-60nm。
优选地,反应结束后通入氮气,在氮气氛围下冷却降温。
与现有技术相比,本发明具有以下有益效果:
在本发明的氧化条件下,氧离子与电子分别靠近界面处,使得界面处的氧化、还原反应交替进行,这样就可以在氧化的过程中,实时修复界面,减小碳残留,提高界面质量,减小表面散射,提升器件性能。
附图说明
图1为SiC/SiO2界面缺陷示意图。
图2A为理想情况下热力学非平衡态的界面;
图2B为常规氧化条件下热力学平衡态的界面;
图3为本发明实施例中对等离子体施加电压的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
在SiC氧化过程中,理想情况是在热力学非平衡条件下,得到完美的SiC/SiO2分界面,如图2A所示。但是,在常规的氧化条件下,氧分子与SiC的反应是在热平衡的条件下进行,导致实际界面不理想如图2B所示。在SiC/SiO2分界面中有一层过渡层,在此处有碳簇存在,进而导致MOSFET等器件在工作时发生栅氧漏电或击穿。另外,过渡层还能够形成散射中心,对MOSFET的沟道处的载流子产生散射作用,减小载流子的迁移率,降低输出电流,影响器件性能。
研究发现,SiC栅氧氧化过程可以看作碳的反应扩散过程,利用低温等离子体氧化时,由于反应过程持续时间较长,碳的反应扩散时间与等离子体的化学反应时间相当,在这种情况下,在SiC/SiO2界面在一定范围内仍会存在碳的梯度分布。
为此,本发明提出了一种新的基于交流电压下微波等离子体的碳化硅氧化方法,通过优化等离子氧化的条件,获得了更好的氧化效率,并能有效降低界面处的碳残留,修复界面损伤,提高界面质量。
如图3所示,本发明主要是通过在特定温度和压力范围内对分子氧进行电离,使它形成氧等离子体或者均裂形成的氧自由基,并利用交流电控制等离子体的运动,进而控制氧化过程。具体而言,当碳化硅衬底为负电压压时,氧离子在电场的作用下靠近SiC界面,与SiC发生氧化反应,当形成一定厚度的薄层氧化层时,氧化结束。此时改变外加偏置电压的脉冲方向,电子在电场的作用下靠近SiC界面,在界面处发生还原反应,将形成的碳脱出。按照这个形式交替进行,可以有效的减少界面处的缺陷数量,从而降低碳残留,减小氧化层中的缺陷中心对载流子的散射作用,提高迁移率,进而提高器件的驱动电流。
通过控制脉冲电流的周期,就可以控制氧化与还原反应的时间,进而控制氧化过程以及修复过程。在本发明的一个实施例中,交流电压为方波电压,周期为10-30s,电压幅值为5V。
在本发明的一个实施例中,含氧气体为纯氧、或者为氧气与惰性气体的混合气,所述混合气中氧气含量为30-90vol.%
本发明中的氧化层厚度可灵活调节,在本发明的一些实施例中,生成的二氧化硅的厚度为1-60nm。
在本发明的实施例中,氧等离子体与碳化硅的反应温度为500-900℃,等离子体以0.5-2℃/s的速度升温到反应温度,反应压力为400-1000mTorr。
在本发明的实施例中,微波等离子体发生装置的输入功率为800-2000W,微波频率为2.4-2.5GHz。等离子放电时间可以为400-1000s。
在本发明的一些实施例中,反应结束后通入氮气,在氮气氛围下冷却降温。
实施例1
微波等离子体发生装置的微波输入功率设定为1000w,激发微波等离子体的微波频率可调范围为2.4-2.5GHz。在气压800mTorr,纯氧的环境下,设置样品载物台最初温度设置为100℃,等离子以1.5℃/s的速度升温,直到设定好的微波等离子体氧化温度800℃,同时对氧等离子体施加方波电压,电压周期为20s,电压幅值为5V,等离子放电时间为700s,进行等离子体氧化,氧化层厚度约为40nm,氧化完成后,将纯氧气改为纯氮气,在氮气氛围下冷却降温。
与常规高温氧化或者低温等离子氧化方法相比,本发明的氧化反应效率可以提高20%-50%,C相关缺陷可以降低20%以上,SiC表面腐蚀坑的形成率可以降低到10%以下。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于交流电压下微波等离子体的碳化硅氧化方法,其特征在于,包括:
步骤一、提供碳化硅衬底,将碳化硅衬底放置在微波等离子体发生装置中;
步骤二、加入含氧气体,在交流电压下产生氧等离子体;
步骤三、通过所述交流电压控制所述氧等离子体中的氧离子与电子的运动,在所述碳化硅衬底上生成预定厚度的氧化层,其中,碳化硅衬底电压为负时,氧离子靠近界面与碳化硅发生氧化反应,碳化硅衬底电压为正时,电子靠近界面与碳化硅发生还原反应,将碳残留去除;
步骤四、停止通入含氧气体,反应结束。
2.根据权利要求1所述的碳化硅氧化方法,其中,所述交流电压为方波电压,周期为10-30s,电压幅值为5-10v。
3.根据权利要求1所述的碳化硅氧化方法,其中,氧等离子体与碳化硅的反应温度为500-900℃,反应压力为400-1000mTorr。
4.根据权利要求1所述的碳化硅氧化方法,其中,氧等离子体以0.5-2℃/s的速度升温到反应温度。
5.根据权利要求1所述的碳化硅氧化方法,其中,所述微波等离子体发生装置的输入功率为800-2000W,微波频率为2.4-2.5GHz。
6.根据权利要求1所述的碳化硅氧化方法,其中,等离子总放电时间为400-1000s。
7.根据权利要求1所述的碳化硅氧化方法,其中,所述含氧气体为纯氧、或者为氧气与惰性气体的混合气。
8.根据权利要求7所述的碳化硅氧化方法,其中,所述混合气中氧气含量为30-90vol.%。
9.根据权利要求1所述的碳化硅氧化方法,其中,生成的二氧化硅的厚度为1-60nm。
10.根据权利要求1所述的碳化硅氧化方法,其中,反应结束后通入氮气,在氮气氛围下冷却降温。
CN201811349424.3A 2018-11-13 2018-11-13 基于交流电压下微波等离子体的碳化硅氧化方法 Active CN109494147B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811349424.3A CN109494147B (zh) 2018-11-13 2018-11-13 基于交流电压下微波等离子体的碳化硅氧化方法
US16/287,902 US10699898B2 (en) 2018-11-13 2019-02-27 Method for oxidizing a silicon carbide based on microwave plasma at an AC voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811349424.3A CN109494147B (zh) 2018-11-13 2018-11-13 基于交流电压下微波等离子体的碳化硅氧化方法

Publications (2)

Publication Number Publication Date
CN109494147A CN109494147A (zh) 2019-03-19
CN109494147B true CN109494147B (zh) 2020-10-30

Family

ID=65695709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811349424.3A Active CN109494147B (zh) 2018-11-13 2018-11-13 基于交流电压下微波等离子体的碳化硅氧化方法

Country Status (2)

Country Link
US (1) US10699898B2 (zh)
CN (1) CN109494147B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740345A (zh) * 2008-05-13 2010-06-16 气体产品与化学公司 通过电子附着去除表面氧化物的方法
CN102721125A (zh) * 2011-10-12 2012-10-10 深圳市信电科技有限公司 电子除臭的方法及电子装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271800A (en) * 1991-07-12 1993-12-21 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Method for anisotropic etching in the manufacture of semiconductor devices
IL114097A (en) * 1995-06-11 2000-08-13 Sizary Mat Purification Ltd Cleaning system and method
US5633502A (en) * 1995-08-11 1997-05-27 E. A. Fischione Instruments, Inc. Plasma processing system for transmission electron microscopy specimens and specimen holders
KR100464902B1 (ko) * 2001-02-12 2005-01-05 (주)에스이 플라즈마 대기압에서 저온 플라즈마를 발생시키는 장치
JP3925088B2 (ja) * 2001-01-16 2007-06-06 株式会社日立製作所 ドライ洗浄方法
JP2006310736A (ja) * 2005-03-30 2006-11-09 Tokyo Electron Ltd ゲート絶縁膜の製造方法および半導体装置の製造方法
US20150034475A1 (en) * 2013-08-02 2015-02-05 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film
JP2018082114A (ja) * 2016-11-18 2018-05-24 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US10134600B2 (en) * 2017-02-06 2018-11-20 Lam Research Corporation Dielectric contact etch
CN108584963A (zh) * 2018-05-25 2018-09-28 中国科学院微电子研究所 基于微波等离子体的碳化硅氧化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740345A (zh) * 2008-05-13 2010-06-16 气体产品与化学公司 通过电子附着去除表面氧化物的方法
CN102721125A (zh) * 2011-10-12 2012-10-10 深圳市信电科技有限公司 电子除臭的方法及电子装置

Also Published As

Publication number Publication date
US20200152451A1 (en) 2020-05-14
US10699898B2 (en) 2020-06-30
CN109494147A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
Liu et al. Silicon carbide: A unique platform for metal-oxide-semiconductor physics
CN1679149A (zh) SiO2/SiC 结构中界面态的氮钝化
WO2019101008A1 (zh) 一种在碳化硅基片上快速生长氧化层的方法
CN114093765B (zh) 一种提高碳化硅薄膜少子寿命的方法
CN108878257B (zh) 一种降低碳化硅外延表面缺陷密度的方法
CN110783173A (zh) 一种在碳化硅材料上制造栅氧化层的方法
CN108584963A (zh) 基于微波等离子体的碳化硅氧化方法
CN105244326A (zh) 一种功率器件的钝化层结构及其制造方法
CN109494147B (zh) 基于交流电压下微波等离子体的碳化硅氧化方法
CN108766887B (zh) 基于两步微波等离子体氧化的凹槽mosfet器件的制造方法
CN112133634A (zh) 基于微波等离子体氧化的凹槽mosfet器件的制造方法
CN114300533A (zh) 一种栅氧结构和制备方法
CN111554572B (zh) 半导体器件制备方法
CN108666206B (zh) 基于两步微波等离子体氧化的碳化硅氧化方法
CN109545687B (zh) 基于交流电压下微波等离子体氧化的凹槽mosfet器件制造方法
CN112599408A (zh) 具有复合氧化层的碳化硅金属氧化物半导体制备方法
JP2014027028A (ja) SiCエピタキシャル基板製造装置、SiCエピタキシャル基板の製造方法、SiCエピタキシャル基板
WO2023015611A1 (zh) 半导体晶圆的复合结构、半导体晶圆及其制法和应用
CN105513962A (zh) 碳化硅器件中的Trench MOSFET的栅氧化加工方法
CN110993486B (zh) 提高栅氧化层质量的制备工艺
CN112509914A (zh) 一种改善碳化硅栅沟槽质量的方法
CN111243941A (zh) 提高碳化硅少子寿命的方法
CN109742020B (zh) 一种碳化硅器件的栅氧结构及其制备方法
CN111048413A (zh) 一种碳化硅材料上栅极氧化层的制造方法
CN103887162A (zh) 一种高介电SiON栅介质的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant