CN110993486B - 提高栅氧化层质量的制备工艺 - Google Patents

提高栅氧化层质量的制备工艺 Download PDF

Info

Publication number
CN110993486B
CN110993486B CN201911412221.9A CN201911412221A CN110993486B CN 110993486 B CN110993486 B CN 110993486B CN 201911412221 A CN201911412221 A CN 201911412221A CN 110993486 B CN110993486 B CN 110993486B
Authority
CN
China
Prior art keywords
oxide layer
gate oxide
cleaning
cleaning solution
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911412221.9A
Other languages
English (en)
Other versions
CN110993486A (zh
Inventor
吴会利
刘淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No47 Institute Of China Electronics Technology Group Corp
Original Assignee
No47 Institute Of China Electronics Technology Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No47 Institute Of China Electronics Technology Group Corp filed Critical No47 Institute Of China Electronics Technology Group Corp
Priority to CN201911412221.9A priority Critical patent/CN110993486B/zh
Publication of CN110993486A publication Critical patent/CN110993486A/zh
Application granted granted Critical
Publication of CN110993486B publication Critical patent/CN110993486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种提高栅氧化层质量的制备工艺,属于半导体功率器件制造加工技术领域。该工艺包括:(1)制备栅氧化层前对硅片进行清洗,以保证硅片表面的洁净;(2)制备栅氧化层前进行管道处理,以改善炉管内气氛,具体是采用低温条件以及在氮气携带的偏二氯乙烯气氛中进行处理;(3)制备栅氧化层:在O2气氛下热生长氧化层,氧化温度995℃;(4)采用慢降温工艺,先按照1.5℃/min的降温速率降温至600℃;再按照2℃/min的降温速率降温至300℃,以减少氧化层可动电荷数量,提高栅氧化层质量。该工艺可以有效提高栅氧化层厚度一致性,减少氧化层内可动电荷数量,从而提高器件的整体性能。

Description

提高栅氧化层质量的制备工艺
技术领域
本发明涉及半导体功率器件制造加工技术领域,具体涉及一种提高栅氧化层质量的制备工艺,用于MOSFET、IGBT器件栅氧化层的制备。
背景技术
随着半导体加工技术的不断发展,半导体器件由于其更小的体积、更高的性能、更高的转换效率在电子、通讯等领域得到越来越多的应用。作为半导体功率器件的代表,MOSFET、IGBT器件可以应用在高压、大电流、大功率等使用场合,同时具有体积小、运行速度快、转化效率高、可靠性高等特点,广泛应用在汽车电子、工艺控制、消费电子等领域。
MOSFET器件为电压控制器件,是通过在栅氧化层上方施加电压来实现器件功能的,IGBT器件与MOSFET结构相似,只是将衬底由N+变成了P+,工作原理与MOSFET相似。栅氧化层的质量对器件性能的实现影响巨大,其质量的体现主要有两方面,厚度及均匀性的控制和氧化层内可动电荷数量控制。
通常,栅氧化层采用热氧化进行制备,利用扩散炉进行工艺制程。目前传统的清洗工艺多采用硫酸或盐酸进行清洗,可以较好的去除硅表面金属及有机物沾污,但无法有效去除表面颗粒,表面残留的颗粒会导致栅氧化层生长过程中缺陷的产生,严重的会造成栅功能失效。传统的制备工艺,多采用通O2的方式生长栅氧化层,在实际运行过程中,可能会由于不同位置的温度、气氛等情况,栅氧化层厚度较差,一般保证在±10%的偏差,影响产品性能一致性,可能会造成部分区域阈值电压不合格。正常栅氧化工艺的氧化层内可动电荷会达到1E10~1E11ions/cm2水平,在施加电压的情况下,电荷的移动会引起阈值电压偏移、漏电流增大等情况,导致器件可靠性降低。
发明内容
本发明目的是提供一种提高MOSFET或IGBT器件栅氧化层质量的制备工艺,该工艺可以有效提高栅氧化层厚度一致性,减少氧化层内可动电荷数量,从而提高器件的整体性能。
为实现上述目的,本发明所采用的技术方案如下:
一种提高栅氧化层质量的制备工艺,包括如下步骤(1)-(4):
(1)制备栅氧化层前对硅片进行清洗,以保证硅片表面的洁净;
(2)制备栅氧化层前进行管道处理,以改善炉管内气氛,具体是采用低温条件以及在氮气携带的偏二氯乙烯气氛中进行处理;
(3)制备栅氧化层:在O2气氛下热生长氧化层,氧化温度995℃;
(4)采用慢降温工艺,先按照1.5℃/min的降温速率降温至600℃;再按照2℃/min的降温速率降温至300℃,以减少氧化层可动电荷数量,提高栅氧化层质量。
上述步骤(1)对硅片清洗时依次采用清洗液Ⅰ、清洗液Ⅱ、清洗液Ⅲ和清洗液Ⅳ;其中:清洗液Ⅰ成分为硫酸和双氧水,H2SO4与H2O2体积比为5:1,清洗液Ⅰ温度120℃;清洗液Ⅱ成分为盐酸、双氧水和水,HCl、H2O2与H2O体积比为1:2:7,清洗液Ⅱ温度110℃;清洗液Ⅲ成分为氨水、双氧水和水,NH3.H2O、H2O2和H2O体积比为1:1:7,清洗液Ⅲ温度110℃;清洗液Ⅳ成分为氢氟酸和水,HF和H2O体积比为1:10,清洗液Ⅳ温度25℃。
上述步骤(1)对硅片清洗的过程为:依次采用清洗液Ⅰ和清洗液Ⅱ分别清洗10分钟,清洗后都进行冲水6遍;再采用清洗液Ⅲ清洗10分钟,中间随时添加H2O2,使反应充分,清洗后冲水12遍;采用清洗液Ⅰ、清洗液Ⅱ和清洗液Ⅲ清洗时要求不停的晃动;最后采用清洗液Ⅳ浸泡1分钟,去除表面氧化层,并进行冲水12次,最后使用甩干桶进行甩干。
上述步骤(2)中,在炉管内温度为600℃时,向炉内通入N2携带的偏二氯乙烯,以改善炉管内气氛;其中:N2流量为0.05L/min,整个过程保持1小时。
上述步骤(2)过程要求在栅氧化前4小时内进行,等待过程中炉管保持600℃恒定温度。
上述步骤(3)制备栅氧化层的过程采用分段升温,并充分预热,以提高氧化均匀性,具体包括如下步骤(a)-(e):
(a)硅片在600℃和N2气氛下入炉,N2流量为5L/min,硅片在入口停顿5分钟以充分预热,防止由于温度急剧变化引起的碎片、暗伤等情况。
(b)待硅片都入炉后,炉门关上并等待10分钟,此时炉内温度稳定在600℃;
(c)升温至850±1℃并保持10分钟,以保证硅片充分加热,整个过程在N2气氛下进行,N2流量为5L/min;
(d)在O2和N2混合气氛中,升温至995℃,O2流量为3L/min,N2流量为0.5L/min,升温速率为4℃/min;
(e)在995℃和O2气氛下生长栅氧化层,此过程中O2流量为5L/min,具体生长时间由需要热生长的氧化层厚度及速率确定。
上述步骤(4)的慢降温工艺在N2气氛下进行,N2流量为5L/min。
采用本发明工艺能够精确制备小于100nm厚度的栅氧化层。
本发明具有以下有益效果及优点:
1.本发明可以有效提高栅氧化层厚度均匀性,由±10%的偏差提升到±3%。
2.减少表面颗粒,颗粒度由平均7.75个/片较低到0.87个/片,极大减少栅氧化层缺陷,提高可靠性。
3.减少栅氧化层内可动电荷的数量,由4.76E10 ions/cm2降到1.39E10 ions/cm2水平,保证阈值电压参数及漏电流的有效控制。
4.提高栅氧化层抗击穿水平,以50nm为例,击穿电压从平均的47.1V左右提高到54V。
本发明具有以下有益效果及优点:
1.本发明可以有效提高栅氧化层厚度均匀性,由±10%的偏差提升到±3%。
2.减少表面颗粒,颗粒度由平均7.75个/片较低到0.87个/片,极大减少栅氧化层缺陷,提高可靠性。
3.减少栅氧化层内可动电荷的数量,由4.76E10 ions/cm2降到1.39E10 ions/cm2水平,保证阈值电压参数及漏电流的有效控制。
4.提高栅氧化层抗击穿水平,以50nm为例,击穿电压从平均的47.1V左右提高到54V。
附图说明
图1为本发明针对的MOSFET及IGVT器件基本结构示意图;其中:(a)VDMOSFET元胞结构;(b)IGBT元胞结构。
图2为本发明的栅氧化工艺曲线示意图;
其中1-预热过程,2-升温过程,3-栅氧化过程,4-降温过程。
图3为本发明的栅氧化层厚度均匀性数据;其中:(a)传统工艺;(b)本发明工艺。
图4为本发明的清洗前后颗粒度对比数据;
图5为本发明的栅氧化层可动电荷、固定电荷密度对比数据;其中:(a)可动电荷Qm;(b)固定电荷Qss。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示,MOSFET器件与IGBT器件的正面结构基本相同,是通过在栅氧化层上施加电压来实现器件的开启与关断的。其栅氧化层的质量好坏对器件功能实现影响极大,本发明便是基于提升其栅氧化层质量而提出的一整套栅氧化制备工艺,该工艺包括如下步骤:
(1)制备栅氧化层前对硅片进行清洗,以保证硅片表面的洁净;清洗液的配置如下表1:
表1
清洗液 成分 配比(体积比) 温度
1 硫酸,双氧水 H2SO4:H2O2=5:1 120℃
2 盐酸,双氧水,水 HCl:H2O2:H2O=1:2:7 110℃
3 氨水,双氧水,水 NH3.H2O:H2O2:H2O=1:1:7 110℃
4 氢氟酸,水 HF:H2O=1:10 25℃
对硅片清洗的过程为:依次采用清洗液Ⅰ和清洗液Ⅱ分别清洗10分钟,清洗后都进行冲水6遍;再采用清洗液Ⅲ清洗10分钟,中间随时添加H2O2,使反应充分,清洗后冲水12遍;采用清洗液Ⅰ、清洗液Ⅱ和清洗液Ⅲ清洗时要求不停的晃动;最后采用清洗液Ⅳ浸泡1分钟,去除表面氧化层,并进行冲水12次,最后使用甩干桶进行甩干。
(2)制备栅氧化层前进行管道处理,以改善炉管内气氛,具体为:在炉管内温度为600℃时,向炉内通入N2携带的偏二氯乙烯,N2流量为0.05L/min,整个过程保持1小时。该过程要求在栅氧化前4小时内进行,等待过程中炉管保持600℃恒定温度。
(3)制备栅氧化层和降温:图2所示为栅氧化工艺曲线示意图,整个栅氧化过程为4个阶段,包括预热过程、升温过程、栅氧化过程、降温过程,分别在不同气氛下进行。如表2所示。
表2栅氧化制备工艺过程
如图3所示传统工艺和本发明栅氧化工艺测试对比散点图,可以看出,本发明采用的栅氧化工艺,相比较传统工艺,其栅氧化层厚度均匀性得到较大提升,可以满足±3%的要求,具体如表3所示。标准偏差从2.16提升到0.74,栅氧化层厚度数值的离散型大大降低。
表3栅氧化工艺测试对比数据
如图4所示为本发明工艺清洗前后颗粒度对比数据,可以看出,使用本发明的清洗工艺后,硅片表面的颗粒度明显降低,从清洗前平均7.75个/片下降到0.87个/片,极大改善栅氧化前片面状态,提升栅氧化层质量。减少表面颗粒度可以有效减少栅氧化层内缺陷。同时采用了本发明的特殊栅氧化制备工艺,在栅氧化层抗击穿特性提升方面也起到了较高的效果,栅氧化层击穿电压从平均的47.1V提升到54V(表4)。
表4栅氧化层击穿电压情况
如图5所示不同工艺栅氧化层击穿电压情况,分别采用4个硅片对传统工艺与本发明的栅氧化制备工艺进行对比试验验证,经测试后发现,氧化层内固定电荷的单位面积数量等级基本保持同等水平,平均值在4E10ions/cm2左右;相比传统工艺,本发明的栅氧化制备工艺在可动电荷方面降低较多,从4.76E10 ions/cm2降到1.39E10 ions/cm2水平,通过栅氧前处理及采用特殊的栅氧制备工艺,减少沾污和缺陷,较好的保证阈值电压参数及漏电流的有效控制。

Claims (6)

1.一种提高栅氧化层质量的制备工艺,其特征在于:该工艺包括如下步骤:
(1)制备栅氧化层前对硅片进行清洗,以保证硅片表面的洁净;
(2)制备栅氧化层前进行管道处理,以改善炉管内气氛,具体为:在炉管内温度为600℃时,向炉内通入N2携带的偏二氯乙烯,其中:N2流量为0.05L/min,整个过程保持1小时;
(3)制备栅氧化层:在O2气氛下热生长氧化层,氧化温度995℃;制备栅氧化层的过程采用分段升温,并充分预热,以提高氧化均匀性,具体包括如下步骤(a)-(e):
(a)硅片在600℃和N2气氛下入炉,N2流量为5L/min,硅片在入口停顿5分钟以充分预热,防止由于温度急剧变化引起的碎片、暗伤;
(b)待硅片都入炉后,炉门关上并等待10分钟,此时炉内温度稳定在600℃;
(c)升温至850±1℃并保持10分钟,以保证硅片充分加热,整个过程在N2气氛下进行,N2流量为5L/min;
(d)在O2和N2混合气氛中,升温至995℃,O2流量为3L/min,N2流量为0.5L/min,升温速率为4℃/min;
(e)在995℃和O2气氛下生长栅氧化层,此过程中O2流量为5L/min,具体生长时间由需要热生长的氧化层厚度及速率确定;
(4)采用慢降温工艺,先按照1.5℃/min的降温速率降温至600℃;再按照2℃/min的降温速率降温至300℃,以减少氧化层可动电荷数量,提高栅氧化层质量。
2.根据权利要求1所述的提高栅氧化层质量的制备工艺,其特征在于:步骤(1)对硅片清洗时依次采用清洗液Ⅰ、清洗液Ⅱ、清洗液Ⅲ和清洗液Ⅳ;其中:清洗液Ⅰ成分为硫酸和双氧水,H2SO4与H2O2体积比为5:1,清洗液Ⅰ温度120℃;清洗液Ⅱ成分为盐酸、双氧水和水,HCl、H2O2与H2O体积比为1:2:7,清洗液Ⅱ温度110℃;清洗液Ⅲ成分为氨水、双氧水和水,NH3.H2O、H2O2和H2O体积比为1:1:7,清洗液Ⅲ温度110℃;清洗液Ⅳ成分为氢氟酸和水,HF和H2O体积比为1:10,清洗液Ⅳ温度25℃。
3.根据权利要求2所述的提高栅氧化层质量的制备工艺,其特征在于:步骤(1)对硅片清洗的过程为:依次采用清洗液Ⅰ和清洗液Ⅱ分别清洗10分钟,清洗后都进行冲水6遍;再采用清洗液Ⅲ清洗10分钟,中间随时添加H2O2,使反应充分,清洗后冲水12遍;采用清洗液Ⅰ、清洗液Ⅱ和清洗液Ⅲ清洗时要求不停的晃动;最后采用清洗液Ⅳ浸泡1分钟,去除表面氧化层,并进行冲水12次,最后使用甩干桶进行甩干。
4.根据权利要求1所述的提高栅氧化层质量的制备工艺,其特征在于:步骤(2)过程要求在栅氧化前4小时内进行,等待过程中炉管保持600℃恒定温度。
5.根据权利要求1所述的提高栅氧化层质量的制备工艺,其特征在于:步骤(4)的慢降温工艺在N2气氛下进行,N2流量为5L/min。
6.根据权利要求1所述的提高栅氧化层质量的制备工艺,其特征在于:采用该工艺能够精确制备小于100nm厚度的栅氧化层。
CN201911412221.9A 2019-12-31 2019-12-31 提高栅氧化层质量的制备工艺 Active CN110993486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911412221.9A CN110993486B (zh) 2019-12-31 2019-12-31 提高栅氧化层质量的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911412221.9A CN110993486B (zh) 2019-12-31 2019-12-31 提高栅氧化层质量的制备工艺

Publications (2)

Publication Number Publication Date
CN110993486A CN110993486A (zh) 2020-04-10
CN110993486B true CN110993486B (zh) 2023-07-18

Family

ID=70080046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911412221.9A Active CN110993486B (zh) 2019-12-31 2019-12-31 提高栅氧化层质量的制备工艺

Country Status (1)

Country Link
CN (1) CN110993486B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782415A (zh) * 2021-08-12 2021-12-10 上海华力集成电路制造有限公司 一种栅氧预清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903971A (zh) * 2014-03-20 2014-07-02 上海华力微电子有限公司 一种提高栅氧化层质量的方法
CN104637801A (zh) * 2015-01-30 2015-05-20 株洲南车时代电气股份有限公司 一种制备SiC MOSFET栅氧化层的方法
CN109671620A (zh) * 2018-11-30 2019-04-23 中国电子科技集团公司第四十七研究所 半导体器件制备过程中的杂质扩散工艺
CN110473780A (zh) * 2019-08-30 2019-11-19 上海华力微电子有限公司 改善栅极氧化层的方法及半导体器件的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602799B2 (en) * 2001-09-17 2003-08-05 Taiwan Semiconductor Manufacturing Co., Ltd Method of forming a uniform ultra-thin gate oxide layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903971A (zh) * 2014-03-20 2014-07-02 上海华力微电子有限公司 一种提高栅氧化层质量的方法
CN104637801A (zh) * 2015-01-30 2015-05-20 株洲南车时代电气股份有限公司 一种制备SiC MOSFET栅氧化层的方法
CN109671620A (zh) * 2018-11-30 2019-04-23 中国电子科技集团公司第四十七研究所 半导体器件制备过程中的杂质扩散工艺
CN110473780A (zh) * 2019-08-30 2019-11-19 上海华力微电子有限公司 改善栅极氧化层的方法及半导体器件的制造方法

Also Published As

Publication number Publication date
CN110993486A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN1930668A (zh) 绝缘膜的改性方法
CN101118845A (zh) 用于制造键合晶片的方法
CN102306625B (zh) 一种锗基mos器件衬底的表面钝化方法
CN1107254A (zh) 制造半导体集成电路的方法和设备
CN110993486B (zh) 提高栅氧化层质量的制备工艺
CN108335969A (zh) 改善tft器件阈值电压的处理方法
WO2002025718A1 (fr) Plaquette de recuit et son procede de fabrication
CN105244326A (zh) 一种功率器件的钝化层结构及其制造方法
CN107527803B (zh) SiC器件栅介质层及SiC器件结构的制备方法
CN105489668A (zh) 一种太阳能电池及其氢化非晶硅i膜层表面处理方法
CN113421944A (zh) 一种提高晶硅太阳能电池转换效率的氧化退火工艺
CN109671620B (zh) 半导体器件制备过程中的杂质扩散工艺
US10763105B2 (en) Method for manufacturing grooved MOSFET device based on two-step microwave plasma oxidation
CN107641837B (zh) 一种恢复ntd区熔单晶硅真实电阻率的退火方法
CN112599408A (zh) 具有复合氧化层的碳化硅金属氧化物半导体制备方法
CN105097901B (zh) 应用于iii-v族衬底的复合栅介质层及其制作方法
CN113113288A (zh) 一种新型的含氯元素的碳化硅氧化工艺
CN113594267A (zh) 一种形成氧化层的方法
CN106611696A (zh) 一种碳化硅表面氧化膜的制备方法
CN106611700A (zh) 一种碳化硅表面氧化膜的制备方法
CN105047551A (zh) 一种镍化硅合金的制备方法
Chen et al. Fundamental electrical properties of fluorinated and N2O plasma‐annealed ultrathin silicon oxides grown by microwave plasma afterglow oxidation at low temperatures
US10699898B2 (en) Method for oxidizing a silicon carbide based on microwave plasma at an AC voltage
CN111725330A (zh) 一种碳化硅mos电容栅氧化层的制备方法
CN105097570A (zh) 钝化层制造方法及高压半导体功率器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant