CN1930668A - 绝缘膜的改性方法 - Google Patents

绝缘膜的改性方法 Download PDF

Info

Publication number
CN1930668A
CN1930668A CNA2004800150997A CN200480015099A CN1930668A CN 1930668 A CN1930668 A CN 1930668A CN A2004800150997 A CNA2004800150997 A CN A2004800150997A CN 200480015099 A CN200480015099 A CN 200480015099A CN 1930668 A CN1930668 A CN 1930668A
Authority
CN
China
Prior art keywords
plasma
dielectric film
gas
film
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800150997A
Other languages
English (en)
Inventor
菅原卓也
多田吉秀
中村源志
尾﨑成则
中西敏雄
佐佐木胜
松山征嗣
长谷部一秀
中岛滋
藤原友纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1930668A publication Critical patent/CN1930668A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本发明提供一种改善由MOSFET的栅极绝缘膜或存储设备中的电容的电极间绝缘膜所含有的碳、低氧化物(suboxide)、悬挂键(danglingbond)等引起的特性恶化,提高绝缘膜的特性的方法。对绝缘膜实施将基于含有稀有气体的处理气体的等离子体的等离子体处理和热退火处理组合的改性处理。

Description

绝缘膜的改性方法
技术领域
本发明涉及一种改性绝缘膜的方法。更详细地说,涉及将向利用CVD(Chemical Vapor Deposition:化学气相沉积法)等成膜的绝缘膜照射基于含有稀有气体的处理气体的等离子体的工序和在优选为500℃~1200℃的高温下、更优选为600℃~1050℃的高温下进行热退火的工序组合以提高绝缘膜改性效果的方法。将由该改性得到的膜用于所谓的MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor:金属氧化物半导体场效应晶体管)的栅极绝缘膜或存储设备中的电容(Capacitor:电容器)的电极间绝缘膜时,可特别优选使用本发明的改性方法。
背景技术
本发明通常可广泛适用于半导体装置(半导体设备)、液晶装置(液晶设备)等中的电子设备材料的制造,但这里为了说明的方便,以半导体装置中的MOSFET的栅极绝缘膜形成技术及其背景为例进行说明。
对以硅为首的半导体或电子设备材料用基材实施以氧化膜为首的绝缘膜的形成、利用CVD等的成膜、蚀刻等各种处理。
即使说近年来的半导体设备的高性能化在以MOSFET为首的该设备的微细化技术上逐渐发展,也并不言过其实。现在,也以更高性能化为目标来改善MOSFET的微细化技术。伴随着近年来的半导体装置的微细化以及高性能化的要求,(例如,在泄漏电流方面)对更高性能的绝缘膜的要求显著提高。这是因为:即使在以往的集成度较低的设备中没有达到成为实际问题的程度的泄漏电流,在近年来的微细化和/或高性能化的设备中,也有可能耗费大量的电力。特别是近年来的所谓的无处不在(ubiquitous)的社会(无论什么时候什么地方以联结在网络上的电子设备作为媒介的信息化社会)中的便携式电子设备的发展必需低耗电设备,该泄漏电流的降低成为极其重要的课题。
典型地,例如在开发下一代MOSFET方面,随着如上所述的微细化技术的进步,栅极绝缘膜的薄膜化逐渐接近极限,出现了必须克服的大课题。即,虽然就加工技术而言,可以将现在用作栅极绝缘膜的硅氧化膜(SiO2)薄膜化到极限(1~2原子层水平),但是当薄膜化到2nm以下的膜厚时,会有由于量子效应产生的直接隧道(direct tunnel)所导致的泄漏电流产生指数函数的增加,从而消耗电力增大的问题。
现在,IT(信息技术)市场正要完成从以台式个人电脑或家庭电话等为代表的固定式电子设备(从插座供给电力的设备)到无论何时何地都可以访问网络等的“无处不在(ubiquitous)的网络社会”的转变。因此,本发明人认为,在不久的将来,移动电话和汽车导航系统等便携终端将成为主流。这样的便携终端要求其自身是高性能设备,但与此同时,上述固定式设备即使在由不必那么小型、轻量的蓄电池(battery)、电池等驱动的情况下也具备能够承受长时间使用的功能。因此,在便携终端中,实现这些高性能化、而且降低消耗电力成为极其重要的课题。
典型地,例如在开发下一代MOSFET方面,不断追求高性能的硅LSI的微细化时,会产生泄漏电流增大从而消耗电力也增大问题。因此,为了追求性能的同时降低消耗电力,在MOSFET中,需要不增加栅极泄漏电流而使特性提高。
为了响应实现这样的高性能且消耗电力低的MOSFET的要求,已有人提出各种方法(例如,使用氮氧化硅膜(SiON)作为栅极绝缘膜),但其最有希望的方法之一是开发使用High-k(高介电常数)材料即比SiO2介电常数高的材料的栅极绝缘膜。通过使用这样的High-k材料,能够使作为SiO2换算膜厚的EOT(Equivalent Oxide Thickness:等效氧化物厚度)比物理膜厚薄。即,即使是与SiO2相同的EOT,也能够使用物理上厚的膜,可期待大幅度降低消耗电力。作为这样的High-k材料,现在可候补举出比SiO2介电常数高的材料HfO2、Al2O3、Ta2O5、ZrO2等。
(非专利文献1)
M.A.Cameron,S.M.George,Thin Solid Films,348(1999),pp.90-98“ZrO2 film growth by chemical vapor deposition using zirconiumtetra-tert-butoxide”
(非专利文献2)
Sadayoshi Horii,Masayuki Asai,Hironobu Miya,KazuhikoYamamoto,and Masaaki Niwa,Extended Abstracts of the SSDM,Nagoya,2002,pp.172-173“Improvement of Electrical Properties for High-kDielectrics Grown by MOCVD via Cyclic Remote Plasma Oxidation”
(非专利文献3)
Katsuyuki Sekine,Yuji Saito,Masaki Hirayama and Tadahiro Ohmi,J.Vac.Sci.Technol.A 17(5),Sep/Oct 1999 pp.3129-3133.“Silicon nitridefilm growth for advanced gate dielectric at low temperature employinghigh-density and low-energy ion bomb ardment”
(非专利文献4)
Takuya Sugawara,Toshio Nakanishi,Masaru Sasaki,Shigenori Ozaki,Yoshihide Tada,Extended Abstracts of Solid State Devices and Materials,2002 pp.714-715.“Characterization of Ultra Thin Oxynitride Formed byRadical Nitridation with Slot Plane Antenna Plasma”
但是,当通过CVD法(Chemical Vapor Deposition:化学气相成长法)等方法实际成膜使用被期待这样优异特性的High-k材料的绝缘膜时,由于为了提高面内的均匀性而在较低的温度下成膜,所以得到的膜中存在许多悬挂键(dangling bond)或弱Si-O键(suboxide)、成膜的原材料所含有的碳等,难以得到良好的特性(参考文献[1])。因此,为了使High-k材料膜实用化,消除这样的膜质恶化的原因是极其重要的。作为解决该问题的方法,已有人尝试在绝缘膜上实施基于热退火的改性处理以改善膜特性(参考文献[1]),但是,在基于热退火的改性处理中,会产生由于高温处理而引起的绝缘膜的结晶化所导致的特性恶化、和由于在绝缘膜-硅界面硅被氧化而引起的电气膜厚增大(有效介电常数降低)等问题。
作为解决伴随这种基于热退火的改性处理的问题的方法,已有人提出可在基板温度400℃左右进行改性处理的基于等离子体的绝缘膜的改性处理(参考文献[2])。通过使用这种基于等离子体的绝缘膜的改性处理,或在低温下修复低氧化物的弱键以形成牢固的Si-O键或使膜中的碳燃烧,可得到良好的电特性,但现在所报告的等离子体形成方法存在着由电子温度高而引起的等离子体损伤(plasma damage)或难以大面积化等问题(非专利文献1、2)。
相对于此,近年来,作为以形成栅极绝缘膜为目的的等离子体处理方法,已有人提出使用平面天线和微波的等离子体形成方法。该方法是从设置在被处理基板上部的环状喷淋板(shower plate)向被处理基板与喷淋板之间的空间供给He、Ne、Ar、Kr、Xe等稀有气体和含有氧或氮的气体,从设置在喷淋板上部的具有狭缝(slot)的平面天线(Slot Plane Antenna:SPA)的背后照射微波,通过天线导入微波,使用该微波在上述空间内等离子体激发稀有气体的方法。已有人提出这种使用等离子体形成氧自由基O*或氮自由基N*以氧化或氮化硅基板表面的技术。因为通过这种方法形成的等离子体的电子密度高,所以即使在低的基板处理温度下也生成大量的自由基。再者,因为电子温度低,所以,在其它等离子体形成方法中成为问题的等离子体损伤低。而且,有人报告:因为通过平面天线传播的微波在大面积均匀地形成等离子体,所以在300mm晶片或大型TFT显示装置用基板等大面积基板的应用方面也优异(非专利文献3、4)。
通过使用这种技术,即使电子设备用基板表面为400℃以下的低基板温度,也可以形成大量的自由基。该技术除应用于形成上述的氧化膜、氮氧化膜以外,也有希望用于绝缘膜的改性处理。实际上,也在进行与这种使用等离子体的绝缘膜的改性有关的研究,但在仅基于等离子体的改性中,没有得到充分的改性效果。
发明内容
本发明的总的目的在于提供一种消除上述现有技术的缺点的新的且有用的绝缘膜的改性方法。
(解决问题的方法)
根据本发明,提供一种基板处理方法,是对在电子设备用基材表面上成膜的绝缘膜进行改性的方法,其特征在于:上述改性方法通过将向该绝缘膜照射基于含有稀有气体的处理气体的等离子体的工序和对该绝缘膜实施热退火的工序组合而形成。
根据本发明,在对例如MOSFET的栅极绝缘膜或存储设备中使用的电容的电极间绝缘膜进行改性的方法中,将基于等离子体处理的改性方法和基于热退火处理的改性方法组合,可以提高只基于等离子体处理的改性和只基于热退火处理的改性中的不充分的改性效果。
根据本发明,通过组合例如基于等离子体处理的改性处理和基于热退火处理的改性处理,可以缩短各改性处理工序的处理时间,从而可以抑制在长时间的等离子体处理时或长时间的热退火处理时产生的绝缘膜的特性恶化。
根据本发明,可以组合例如以下工序:以除去绝缘膜中的碳为目的,使用基于含有稀有气体和氧原子的处理气体的等离子体,对绝缘膜进行等离子体处理的工序;和,为了通过基于热的缓和作用将膜中的低氧化物和悬挂键等弱键改性成为强键、以及抑制来自P型MOSFET中的栅极电极的硼的渗透,在含有氮原子的气体环境下对绝缘膜进行热退火处理的工序。
根据本发明,可以组合例如以下工序:为了抑制因绝缘膜的热退火处理而导致的结晶化以及抑制来自P型MOSFET中的栅极电极的硼的渗透,使用基于含有稀有气体和氮原子的处理气体的等离子体,对绝缘膜进行等离子体处理的工序;和,为了除去膜中的碳、通过基于热的缓和作用将膜中的低氧化物和悬挂键等弱键改性成为强键,在含有氧原子的气体环境下,对绝缘膜进行热退火处理的工序。
根据本发明,在向例如绝缘膜的表面照射基于含有稀有气体的处理气体的等离子体以进行改性的工序中,上述等离子体可以使用通过向平面天线照射微波而形成的等离子体。
附图说明
图1A~H表示作为本发明的应用方法的代表例的N型MOSFET的制造工序。
图2是表示使用微波和具有狭缝的平面天线(Slot Plane Antenna:SPA)的等离子体形成装置的一个例子的垂直方向的示意截面图。
图3是表示可用于热退火处理的热处理单元33的一个例子的垂直方向的示意截面图。
图4是使用本发明改性的HfSiO膜的I-V特性。
具体实施方式
下面,根据需要,一边参照附图一边进一步具体地说明本发明。
图1A~H表示作为本发明的应用方法的代表例的N型MOSFET的制造工序,图2是表示使用上述的微波和平面天线的等离子体形成装置32的一个例子的垂直方向的示意截面图。图3是表示可用于热退火的热处理单元33的一个例子的垂直方向的示意截面图。
(在N型MOSFET制作上的应用)
图1表示作为本发明的应用方法的代表例的N型MOSFET的制造工序。参照图1A~H,在图1A的工序中,基板使用P型的硅基板21,电阻率为1~30Ωcm,使用具有面方位(100)的硅基板。在硅基板上实施STI或LOCOS等元件分离工序21D或硼(B)的沟道离子注入(channel implantation)21C,在栅极绝缘膜22成膜的硅基板表面形成牺牲氧化膜20。
在图1B的工序中,进行栅极绝缘膜的成膜前清洗。通常通过组合APM(氨、过氧化氢溶液、纯水的混合液)、HPM(盐酸、过氧化氢溶液、纯水的混合液)以及DHF(氟酸和纯水的混合液)的RCA清洗,除去牺牲氧化膜20和污染成分(金属或有机物、颗粒)。根据需要,有时也使用SPM(硫酸和过氧化氢溶液的混合液)、臭氧水、FPM(氟酸、过氧化氢溶液、纯水的混合液)、盐酸溶液(盐酸和纯水的混合液)、有机碱等。
在图1C的工序中形成栅极绝缘膜22。在本发明中,构成可使用的绝缘膜的材料没有特别限制,但只限于基于气相堆积的绝缘膜,可以没有特别限制地使用利用CVD(Chemical Vapor Deposition:化学气相成长法)、PVD(Physical Vapor Deposition:物理气相成长法)等公知的气相堆积法形成的膜。作为绝缘膜形成方法的更具体的例子,优选使用利用基于热的自由基形成反应的热CVD法、利用基于等离子体的自由基形成反应的等离子体CVD法、利用催化反应的热线CVD(HotWire CVD)法、以电子束蒸镀和溅射等技术为代表的PVD法。再者,作为绝缘膜材料的例子,优选使用作为低介电常数材料的SiO2、SiON、Si3N4或作为High-k材料的Ta2O5、ZrO2、HfO2、Al2O3、La2O3、TiO2、Y2O3、BST、Pr2O3、Gd2O3、CeO2以及这些物质的化合物等。
在图1D的工序中,进行栅极绝缘膜22的改性处理。改性处理是将基于使用微波和平面天线形成的等离子体的改性处理和基于热退火的改性处理组合以实施的。本发明人认为等离子体处理和热退火处理的组合是任意的,例如如下的各种组合。
栅极绝缘膜成膜→等离子体氧化处理→热氮化退火处理、栅极绝缘膜成膜→等离子体氮化处理→热氧化退火处理、栅极绝缘膜成膜→热氧化退火处理→等离子体氮化处理、栅极绝缘膜成膜→热氮化退火处理→等离子体氧化处理、栅极绝缘膜成膜→等离子体氮化处理→热氮化退火处理→等离子体氧化处理、栅极绝缘膜成膜→热氧化退火处理→等离子体氮化处理→等离子体氧化处理,如上述那样任意组合等离子体处理和热退火处理,能够形成具有适宜特性的绝缘膜。
在图1E的工序中,栅极电极用多晶硅23成膜。在图1C中形成的栅极绝缘膜22上,用CVD法成膜多晶硅23作为MOSFET的栅极电极。将已形成栅极绝缘膜的硅基板加热到620℃,在30Pa的压力下,将硅烷气体导入到基板上,在栅极绝缘膜上成膜膜厚150nm的电极用多晶硅23。
然后,进行栅极电极23A的抗蚀图案化、选择蚀刻,形成MOS电容器(图1F),实施源极(source)、漏极离子注入(implantation),形成源极21A、漏极21B(图1G)。然后,通过退火进行掺杂剂(注入到沟道(channel)、栅极、源极、漏极的硼(B)、磷(P)、砷(As))的活性化。接着,经过组合成为后工序的由TEOS等低介电常数物质制成的层间绝缘膜24的成膜、图案化、选择蚀刻、金属配线25的成膜的后工序,得到本实施方式的MOSFET(图1H)。
(基于等离子体的改性处理方法)
下面详细地说明基于使用微波和平面天线的等离子体的改性处理方法。
图2是使用上述微波和平面天线的等离子体形成装置的垂直方向的示意截面图。
参照图2,该方式的等离子体基板处理装置10具有具备保持被处理基板W(例如硅晶片)的基板保持台12的处理容器11。处理容器11内的气体(gas)通过未图示的排气泵,从排气口11A和11B排出。基板保持台12具有加热被处理基板W的加热器功能。从气体流动均匀化的观点出发,在该基板保持台12的周围配置有由铝制成的气体挡板26。从防止金属污染的观点出发,在气体挡板26的表面设置有石英覆盖物28。
在处理容器11的装置上方,对应于基板保持台12上的被处理基板W,设置有开口部。该开口部用由石英或Al2O3等制成的电介质板13塞住。在电介质板13的上部(处理容器11的外侧)配置有平面天线14。在该平面天线14上形成有用于透过由导波管供给的电磁波的多个狭缝(slot)。在平面天线14的更上部(外侧)配置有波长缩短板15和导波管18。在处理容器11的外侧以覆盖波长缩短板15上部的方式配置有冷却板16。在冷却板16的内部设置有冷却介质流动的冷却介质通路16a。
在该方式的等离子体基板处理装置10内,设置有产生用于激发等离子体的几千兆赫兹的电磁波的电磁波发生器(未图示)。由该电磁波发生器产生的微波通过导波管15传播,被导入到处理容器11内。
使用图2方式的等离子体处理装置10时,例如,将被处理基板W安装在等离子体处理装置10的处理容器11中,然后,通过排气口11A、11B进行处理容器11内部的空气的排气,将处理容器11的内部设定为规定的处理压力。接着,从气体供给口22供给规定的气体(例如惰性气体和处理气体)。
另一方面,由电磁波发生器产生的几GHz频率的微波通过导波管15被供给到处理容器11内。该微波通过平面天线14、电介质板13被导入到处理容器11中。通过该微波激发等离子体。此时,因为微波通过天线导入,所以产生高密度、低电子温度的等离子体,再者,该等离子体在与天线面积成比例的广泛区域内均匀分布。因此,通过使用图2的基板处理装置,能够处理300mm晶片和大型TFT显示装置用基板等大面积基板,而且,因为等离子体的电子温度低,所以能够避免引起半导体装置的特性恶化的等离子体损伤以进行等离子体改性处理。
在工作时,上述处理容器50内部的气体通过排气管53向真空泵55的外部排气,被设定为规定的处理压力。
利用等离子体形成的自由基沿被处理基板W的表面在直径方向流动,被迅速地排到排气管53,所以能够抑制自由基的再结合、有效且非常一致的进行基板处理。
基于等离子体的改性处理方法分为两大种情况:使用由含有稀有气体和氧原子的气体制成的氧等离子体的情况和使用由含有稀有气体和氮原子的气体制成的氮等离子体的情况。
使用含有稀有气体和氧原子的气体时,产生大量氧自由基以发生氧化反应。因此,当对通过使用有机金属源极作为原材料的CVD形成的绝缘膜实施等离子体氧化处理时,通过将绝缘膜所含有的大量膜中的有机物(碳原子)氧化而使之燃烧,期待提高膜质的效果。再者,通过将膜中存在的低氧化物的弱键氧化而修复,可期待使膜结构致密化、提高特性。但是,只在低温下进行的等离子体氧化处理中,膜中的结构缓和没有进展,不能完全修复膜中的悬挂键。另外,因为不能抑制P型MOSFET中的硼的穿透效果,所以需要基于氮化处理的改性。在该氮化处理中,通过等离子体氮化处理进行改性时,可以达到防止硼的穿透的效果,但因为等离子体氮化处理在低温下进行,所以膜的结构缓和并不充分。因此,需要基于热氮化退火的改性处理。这样,将基于基板处理温度低的等离子体氧化的氧化处理与热氮化退火处理组合实施,能够得到充分的改性效果。
使用含有稀有气体和氮原子的气体时,产生大量氮自由基以发生氮化反应。因为绝缘膜中含有氮原子,膜的介电常数上升,所以能够适合应用于MOSFET的栅极绝缘膜等。另外,因为通过实施氮化,绝缘膜的耐氧化性提高,所以可抑制在掺杂剂活性化退火时的表面的氧化,可抑制电气膜厚的增加。另外,对电容器的电极间绝缘膜实施氮化以在其上形成金属电极时,能够抑制上部金属电极的氧化、避免电极剥落等问题。再者,因为通过实施氮化,防止P型MOSFET中的硼的穿透的效果提高,所以能够抑制P型MOSFET中的阈值电压的偏离等特性恶化。但是,只进行等离子体氮化处理,不可能使膜中所含有的碳燃烧。因此,需要基于氧化处理的改性,但因为只组合实施基于等离子体氮化处理和等离子体氧化处理的改性均为低温处理,所以膜的结构缓和不充分,难以得到可耐实用化的改性效果。因为通过实施等离子体氮化处理、热稳定性提高,所以利用该特性,继等离子体氮化处理之后,组合实施基板处理温度高的热氧化退火处理,能够得到充分的改性效果。
(基于热退火处理的改性)
以下,详细地说明基于热退火处理的改性方法。
图3是表示可用于本发明的热退火工序的加热反应炉33的一个例子的垂直方向的示意截面图。
如图3所示,加热反应炉33的处理室82是由例如铝制成的真空容器。在该图3中被省略,但处理室82内具有加热机构和冷却机构等。
如图3所示,处理室82中,上部中央连接有导入气体的气体导入管83,处理室82内和气体导入管83内连通。另外,气体导入管83与气体供给源84连接。于是,气体从气体供给源84被供给到气体导入管83,通过气体导入管83气体被导入到处理室82内。作为该气体,可使用氧或氮、氨、稀有气体等。
处理室82的下部配置有载置晶片W的载置台87。
在该图3所示的方式中,晶片W通过与晶片W相同直径大小的未图示的静电吸盘被载置在载置台87上。该载置台87内接有未图示的热电源单元,形成可以将载置在载置台87上的晶片W的处理面调整到规定温度的结构。
该载置台87是可根据需要使晶片W旋转的机构。
在图3中,载置台87右侧的处理室82侧面设置有用于取出和放入晶片W的开口部82a,该开口部82a的开关通过闸阀98在图中上下方向移动来进行。在图3中,在闸阀98的更右侧邻接有用于搬送晶片W的臂(未图示),搬送臂通过开口部82a进出处理室82,或将晶片W载置在载置台87上,或将处理后的晶片W从处理室82搬出。
在载置台87的上方配置有作为喷淋部件的喷头88。该喷头88以分割载置台87和气体导入管83之间的空间的方式形成,例如由铝等形成。
该喷头88以气体导入管83的气体出口83a位于其上部中央的方式形成,气体通过设置在喷头88下部的气体供给孔89被导入到处理室82内。
基于热退火的改性处理方法分为使用含氧气体的情况和使用含氮气体的情况这两大种情况。
使用含氧气体的情况,产生氧自由基以发生氧化反应。因此,当对通过使用有机金属源极作为原材料的CVD形成的绝缘膜实施基于本发明的氧化处理时,期待通过将绝缘膜所含有的大量膜中的有机物(碳原子)氧化使之燃烧、以提高膜质的效果。另外,通过将膜中存在的低氧化物的弱键氧化而修复,可期待使膜结构致密化、提高特性。为了通过热氧化退火处理得到这些效果,需要长时间的热退火处理。但是,High-k物质大多是热稳定性低的物质,实施长时间的热退火处理会导致特性恶化。使用本发明的改性方法,例如通过或者事前进行短时间的等离子体氮化处理以使对长时间的热退火处理的热稳定性提高,或者组合短时间的等离子体氧化处理和短时间的热氧化退火处理,能够控制特性恶化。
使用含氮气体时,产生氮自由基以发生氮化反应,但氮气(N2)是热稳定的物质,只使用氮气难以进行氮化反应。因此,以氮化为目的时,有时也使用比较容易离解为自由基的氨气(NH3)实施氮化处理。因为绝缘膜中含有氮原子、膜的介电常数上升,所以可以适合应用于MOSFET的栅极绝缘膜等。再者,因为通过实施氮化、绝缘膜的耐氧化性提高,所以可抑制掺杂剂活性化退火时的表面的氧化,可以抑制电气膜厚的增加。另外,当对电容器的电极间绝缘膜实施氮化以在其上形成金属电极时,能够抑制上部金属电极的氧化、避免电极剥落等问题。再者,因为通过实施氮化,防止P型MOSFET中的硼的穿透效果提高,所以可以抑制P型MOSFET中的阈值电压的偏离等特性恶化。另外,通过高温处理,膜中的悬挂键等被修复,绝缘膜的特性提高。但是,只使用热氮化退火处理,不能使膜中所含有的碳燃烧。因此,需要基于氧化处理的改性,但从High-k物质的热稳定性低的方面考虑,难以组合实施基于热氮化退火和热氧化退火的改性。因此,通过将基于基板处理温度低的等离子体氧化的氧化处理与热氮化退火处理组合实施,可得到充分的改性效果。
另外,就本发明的热退火的温度而言,适合优选500℃~1200℃、更优选600℃~1050℃的温度范围。
以下,通过实施例更具体地说明本发明。
(实施例)
图4表示作为本发明的一个实施例、使用本发明改性的HfSiO膜的I-V特性。在图4中,纵横表示由P型硅基板、HfSiO膜、TiN(氮化钛)栅极电极构成的N型MOS电容器的栅极漏电流密度,横轴表示从多晶硅栅极电极被施加到绝缘膜上的电场。下面说明在本实施例中使用的N型MOS电容器的制作方法。
在实施与图1A、图1B同样处理的P型硅基板上,通过热CVD法形成HfSiO膜。分别导入叔丁氧基铪(HTB:Hf(OC2H5)4)1sccm和硅烷气体(SiH4)400sccm,保持压力为50Pa。HTB的流量是液体质量流量控制器的流量,硅烷气体的流量是气体质量流量控制器的流量。在该气氛中,将上述图1B所示的硅基板加热到350℃,使Hf和Si和O的反应种在基板上反应以形成HfSiO膜。调整包含处理时间在内的处理条件,形成4nm的HfSiO膜。进一步使用氧等离子体和热氮化退火,对该HfSiO膜进行如下的改性。将基板加热到400℃,分别使稀有气体2000sccm和氧150sccm流到晶片上,保持压力为130Pa。在该气氛中,通过具有多个狭缝的平面天线照射3W/cm2的微波10秒,形成含有氧和稀有气体的等离子体,使用该等离子体实施HfSiO膜的氧化等离子体处理,或修复弱键以形成牢固的Si-O键,或使膜中的碳燃烧,以提高膜特性为目标。接着,进一步以膜的结构缓和以及由氮导入引起的介电常数的增加为目标,进行热氮化退火。热氮化退火处理通过如下方法实施:将基板搬入到图3示意性地表示的热处理单元中,在氮气环境中将基板加热到1000℃,放置15秒钟。通过实施这些处理,最终形成电气膜厚为2nm左右的具有良好特性的栅极绝缘膜。然后,在图1E所示的工序中,将成为电极的TiN成膜,接着,经过图1F所示的图案化、蚀刻工序,制作MOS电容器结构、图1F。
如图4所示,在样品1的只进行热氮化退火处理的样品、样品2的只进行等离子体氧化处理的样品中,漏电流显示出较高的值,但样品3所示的在等离子体氧化处理后实施热氮化退火处理的样品,漏电流降低。正因为如此,通过进行基于本发明的绝缘膜的改性,与作为现有的改性方法的基于热退火处理的改性和基于等离子体处理的改性相比,成功地取得更有效的改性效果。
另外,在本实施例中,使用HfSiO作为绝缘膜,但本发明人认为通过对其以外的绝缘膜实施同样的处理也可实现同样的效果。
在本实施例中,使用等离子体氧化处理和热氮化退火处理作为改性处理,但也可以任意地组合除此之外的等离子体处理和热退火处理。
产业上的可利用性
如上所述,根据本发明,对绝缘膜实施组合等离子体处理和热退火处理的改性处理,可提供赋予良好绝缘特性的绝缘膜的改性方法。

Claims (9)

1.一种基板处理方法,是对在电子设备用基材表面上成膜的绝缘膜进行改性的方法,其特征在于:
所述改性方法通过将向该绝缘膜照射基于含有稀有气体的处理气体的等离子体的工序和对该绝缘膜实施热退火的工序组合而形成。
2.如权利要求1所述的基板处理方法,其特征在于:
所述热退火中使用的气体含有氧(O2)、臭氧(O3)、氮(N2)、氨(NH3)中的任一种。
3.如权利要求1所述的基板处理方法,其特征在于:
在照射等离子体的工序和实施热退火的工序的组合中,通过组合这些工序,将缩短各工序所需要的处理时间,从而抑制因长时间的等离子体照射或长时间的热退火引起的绝缘膜的特性恶化。
4.如权利要求1所述的基板处理方法,其特征在于:
在照射等离子体的工序和实施热退火的工序的组合中,照射等离子体的工序由含有稀有气体和氧原子的处理气体实施,实施热退火的工序由含有氮原子的处理气体实施。
5.如权利要求1所述的基板处理方法,其特征在于:
在照射等离子体的工序和实施热退火的工序的组合中,照射等离子体的工序由含有稀有气体和氮原子的处理气体实施,实施热退火的工序由含有氧原子的处理气体实施。
6.如权利要求1所述的基板处理方法,其特征在于:
所述绝缘膜是MOSFET(Metal-Oxide-Semiconductor Field EffectTransistor:金属氧化物半导体场效应晶体管)的栅极绝缘膜。
7.如权利要求1所述的基板处理方法,其特征在于:
所述绝缘膜是存储设备中的电容(Capacitor)的电极间绝缘膜。
8.如权利要求1所述的基板处理方法,其特征在于:
所述等离子体由微波形成。
9.如权利要求1所述的基板处理方法,其特征在于:
所述等离子体通过向平面天线照射微波而形成。
CNA2004800150997A 2003-05-30 2004-05-28 绝缘膜的改性方法 Pending CN1930668A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP154812/2003 2003-05-30
JP2003154812A JP4408653B2 (ja) 2003-05-30 2003-05-30 基板処理方法および半導体装置の製造方法
PCT/JP2004/007841 WO2004107431A1 (ja) 2003-05-30 2004-05-28 絶縁膜の改質方法

Publications (1)

Publication Number Publication Date
CN1930668A true CN1930668A (zh) 2007-03-14

Family

ID=33487334

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800150997A Pending CN1930668A (zh) 2003-05-30 2004-05-28 绝缘膜的改性方法

Country Status (6)

Country Link
US (2) US7655574B2 (zh)
JP (1) JP4408653B2 (zh)
KR (1) KR100887330B1 (zh)
CN (1) CN1930668A (zh)
TW (1) TW200509256A (zh)
WO (1) WO2004107431A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975424A (zh) * 2011-12-06 2014-08-06 英特尔公司 用于非平面晶体管的夹层电介质
WO2015101011A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 一种半导体器件的制备方法及半导体器件
CN105336628A (zh) * 2015-09-25 2016-02-17 武汉新芯集成电路制造有限公司 一种晶圆表面键合工艺及一种半导体器件结构
US9580776B2 (en) 2011-09-30 2017-02-28 Intel Corporation Tungsten gates for non-planar transistors
US9853156B2 (en) 2011-10-01 2017-12-26 Intel Corporation Source/drain contacts for non-planar transistors
CN108475632A (zh) * 2015-12-25 2018-08-31 东京毅力科创株式会社 基板处理方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256340B2 (ja) * 2002-05-16 2009-04-22 東京エレクトロン株式会社 基板処理方法
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US20090053903A1 (en) * 2004-08-31 2009-02-26 Tokyo Electron Limited Silicon oxide film forming method, semiconductor device manufacturing method and computer storage medium
JP2006203120A (ja) * 2005-01-24 2006-08-03 Toshiba Corp 半導体装置の製造方法
JP2007081265A (ja) * 2005-09-16 2007-03-29 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7888217B2 (en) * 2005-10-20 2011-02-15 Applied Materials, Inc. Method for fabricating a gate dielectric of a field effect transistor
US7767515B2 (en) * 2006-02-27 2010-08-03 Synopsys, Inc. Managing integrated circuit stress using stress adjustment trenches
WO2007138937A1 (en) 2006-05-26 2007-12-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7951693B2 (en) 2006-12-22 2011-05-31 Philips Lumileds Lighting Company, Llc III-nitride light emitting devices grown on templates to reduce strain
US7691693B2 (en) * 2007-06-01 2010-04-06 Synopsys, Inc. Method for suppressing layout sensitivity of threshold voltage in a transistor array
US7895548B2 (en) * 2007-10-26 2011-02-22 Synopsys, Inc. Filler cells for design optimization in a place-and-route system
US20090108408A1 (en) * 2007-10-29 2009-04-30 Synopsys, Inc. Method for Trapping Implant Damage in a Semiconductor Substrate
US9472423B2 (en) * 2007-10-30 2016-10-18 Synopsys, Inc. Method for suppressing lattice defects in a semiconductor substrate
JP4611414B2 (ja) 2007-12-26 2011-01-12 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP5334199B2 (ja) 2008-01-22 2013-11-06 ルネサスエレクトロニクス株式会社 容量素子を有する半導体装置
JP2011124240A (ja) * 2008-03-31 2011-06-23 Tokyo Electron Ltd Mos型半導体メモリ装置、その製造方法およびコンピュータ読み取り可能な記憶媒体
JP4636133B2 (ja) * 2008-07-22 2011-02-23 東京エレクトロン株式会社 窒化チタン膜の改質方法及び改質装置
JP5166297B2 (ja) 2009-01-21 2013-03-21 東京エレクトロン株式会社 酸化珪素膜の形成方法、半導体メモリ装置の製造方法およびコンピュータ読み取り可能な記憶媒体
EP3174106A1 (en) 2011-09-30 2017-05-31 Intel Corporation Tungsten gates for non-planar transistors
US9202699B2 (en) 2011-09-30 2015-12-01 Intel Corporation Capping dielectric structure for transistor gates
US20140042152A1 (en) * 2012-08-08 2014-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Variable frequency microwave device and method for rectifying wafer warpage
US9412847B2 (en) * 2013-03-11 2016-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned passivation of active regions
KR102263827B1 (ko) * 2014-03-21 2021-06-14 삼성디스플레이 주식회사 산화물 반도체 증착장치 및 이를 이용한 산화물 반도체의 제조 방법
US10737575B2 (en) 2017-11-22 2020-08-11 Ford Global Technologies, Llc Power device parameter adjustment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287988B1 (en) * 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
JP3603611B2 (ja) * 1998-09-03 2004-12-22 セイコーエプソン株式会社 半導体装置の製造方法
JP4222707B2 (ja) * 2000-03-24 2009-02-12 東京エレクトロン株式会社 プラズマ処理装置及び方法、ガス供給リング及び誘電体
US6348373B1 (en) * 2000-03-29 2002-02-19 Sharp Laboratories Of America, Inc. Method for improving electrical properties of high dielectric constant films
US6797560B2 (en) * 2000-05-22 2004-09-28 Tokyo Electron Limited Method of manufacturing a capacitor having tantalum oxide film as an insulating film
JP2002064144A (ja) * 2000-05-22 2002-02-28 Tokyo Electron Ltd タンタル酸化物膜を絶縁膜として有するキャパシタの製造方法
JP4449226B2 (ja) * 2000-05-22 2010-04-14 東京エレクトロン株式会社 金属酸化膜の改質方法、金属酸化膜の成膜方法及び熱処理装置
KR100414948B1 (ko) 2000-06-30 2004-01-14 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조 방법
JP4334225B2 (ja) * 2001-01-25 2009-09-30 東京エレクトロン株式会社 電子デバイス材料の製造方法
JP4454883B2 (ja) 2001-04-26 2010-04-21 東京エレクトロン株式会社 半導体装置の製造方法
WO2003015151A1 (en) 2001-08-02 2003-02-20 Tokyo Electron Limited Base material treating method and electron device-use material
TWI225668B (en) * 2002-05-13 2004-12-21 Tokyo Electron Ltd Substrate processing method
JP4256340B2 (ja) * 2002-05-16 2009-04-22 東京エレクトロン株式会社 基板処理方法
JP2004022902A (ja) * 2002-06-18 2004-01-22 Fujitsu Ltd 半導体装置の製造方法
JP2004079931A (ja) * 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2004153037A (ja) * 2002-10-31 2004-05-27 Renesas Technology Corp 半導体装置の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812546B2 (en) 2011-09-30 2017-11-07 Intel Corporation Tungsten gates for non-planar transistors
US9580776B2 (en) 2011-09-30 2017-02-28 Intel Corporation Tungsten gates for non-planar transistors
US10020375B2 (en) 2011-09-30 2018-07-10 Intel Corporation Tungsten gates for non-planar transistors
US9637810B2 (en) 2011-09-30 2017-05-02 Intel Corporation Tungsten gates for non-planar transistors
US9853156B2 (en) 2011-10-01 2017-12-26 Intel Corporation Source/drain contacts for non-planar transistors
US10283640B2 (en) 2011-10-01 2019-05-07 Intel Corporation Source/drain contacts for non-planar transistors
US10770591B2 (en) 2011-10-01 2020-09-08 Intel Corporation Source/drain contacts for non-planar transistors
US10056488B2 (en) 2011-12-06 2018-08-21 Intel Corporation Interlayer dielectric for non-planar transistors
US10998445B2 (en) 2011-12-06 2021-05-04 Intel Corporation Interlayer dielectric for non-planar transistors
US10693006B2 (en) 2011-12-06 2020-06-23 Intel Corporation Interlayer dielectric for non-planar transistors
US9634124B2 (en) 2011-12-06 2017-04-25 Intel Corporation Interlayer dielectric for non-planar transistors
CN103975424B (zh) * 2011-12-06 2016-12-07 英特尔公司 用于非平面晶体管的夹层电介质
CN103975424A (zh) * 2011-12-06 2014-08-06 英特尔公司 用于非平面晶体管的夹层电介质
US9647127B2 (en) 2013-12-31 2017-05-09 Boe Technology Group Co., Ltd. Semiconductor device and method for manufacturing the same
WO2015101011A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 一种半导体器件的制备方法及半导体器件
CN105336628B (zh) * 2015-09-25 2018-10-19 武汉新芯集成电路制造有限公司 一种晶圆表面键合工艺及一种半导体器件结构
CN105336628A (zh) * 2015-09-25 2016-02-17 武汉新芯集成电路制造有限公司 一种晶圆表面键合工艺及一种半导体器件结构
CN108475632A (zh) * 2015-12-25 2018-08-31 东京毅力科创株式会社 基板处理方法
CN108475632B (zh) * 2015-12-25 2023-04-04 东京毅力科创株式会社 基板处理方法

Also Published As

Publication number Publication date
TW200509256A (en) 2005-03-01
TWI354332B (zh) 2011-12-11
US8021987B2 (en) 2011-09-20
JP2004356528A (ja) 2004-12-16
US20100105215A1 (en) 2010-04-29
JP4408653B2 (ja) 2010-02-03
KR100887330B1 (ko) 2009-03-06
WO2004107431A1 (ja) 2004-12-09
US7655574B2 (en) 2010-02-02
US20060199398A1 (en) 2006-09-07
KR20060006096A (ko) 2006-01-18

Similar Documents

Publication Publication Date Title
CN1930668A (zh) 绝缘膜的改性方法
TWI228774B (en) Forming method of insulation film
CN101752244B (zh) 等离子体处理方法
CN100561684C (zh) 基底绝缘膜的形成方法
US20090104764A1 (en) Methods and Systems for Forming at Least One Dielectric Layer
TWI235433B (en) Oxide film forming method, oxide film forming apparatus and electronic device material
US20080233764A1 (en) Formation of Gate Insulation Film
CN100561687C (zh) 衬底处理方法及半导体装置的制造方法
EP2449579A2 (en) Methods of forming oxide layers on substrates
CN1873927A (zh) 等离子体处理方法
CN1967780A (zh) 用于制作场效应晶体管的栅极电介质的方法
CN1926670A (zh) 等离子体处理方法和计算机存储介质
He et al. The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films
US20050227500A1 (en) Method for producing material of electronic device
JP4083000B2 (ja) 絶縁膜の形成方法
CN1682357A (zh) 形成半导体基体上的绝缘膜的方法
TW201310532A (zh) 閘極絕緣膜之形成方法及閘極絕緣膜之形成裝置
CN1701426A (zh) 半导体器件的制造方法
JP2002329721A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070314