EP1330299A1 - Procede pour secher des electrolytes liquides organiques - Google Patents

Procede pour secher des electrolytes liquides organiques

Info

Publication number
EP1330299A1
EP1330299A1 EP01983490A EP01983490A EP1330299A1 EP 1330299 A1 EP1330299 A1 EP 1330299A1 EP 01983490 A EP01983490 A EP 01983490A EP 01983490 A EP01983490 A EP 01983490A EP 1330299 A1 EP1330299 A1 EP 1330299A1
Authority
EP
European Patent Office
Prior art keywords
metal hydride
liquid electrolyte
organic liquid
drying
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01983490A
Other languages
German (de)
English (en)
Inventor
Ulrich Wietelmann
Klaus Schade
Uwe Lischka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetall GmbH
Original Assignee
Chemetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetall GmbH filed Critical Chemetall GmbH
Publication of EP1330299A1 publication Critical patent/EP1330299A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for removing water and other protic contaminants from organic liquid electrolytes.
  • the lithium batteries common today normally contain water-free, liquid, ion-conducting electrolytes in which conductive salts such as LiPF 6 , LiBF 4 , LiCI0 4 , lithium imide, lithium methide or lithium chelate complexes such as lithium bis (oxalato) borate in dissolved Form.
  • conductive salts such as LiPF 6 , LiBF 4 , LiCI0 4 , lithium imide, lithium methide or lithium chelate complexes such as lithium bis (oxalato) borate in dissolved Form.
  • protic compounds such as water
  • the gaseous products (HF, POF3, etc.) formed during the hydrolysis of fluorine-containing conductive salts are highly caustic and harmful to the other battery components, such as the cathode materials.
  • HF leads to the resolution of angan spinels and disrupts the cover layer on the electrode materials, which is important for a long service life.
  • Borate electrolytes are also sensitive to water. In this case, insoluble hydrolysis products are formed, which impair the functional properties.
  • JP 02087473 proposes to mix electrolyte solutions with a solvent which forms low-boiling azeotropes with water and to remove the water / solvent azeotrope by distillation.
  • the . Disadvantages of this process are the undesirable contamination with the entraining solvent and the restriction to high-boiling electrolyte solvents
  • JP 10338653 to accomplish the drying of electrolyte solutions by blowing dry inert gases has the disadvantage that very expensive (cleaned) inert gas has to be used and strong solvent losses occur or the discharged solvent vapors have to be condensed and recycled in a complex manner.
  • DE 19827631 Another method described in DE 19827631 and in a similar form in JP 2000058119 is based on the physical adsorption of water and HF on specially pretreated aluminum oxide.
  • the disadvantage of the adsorption process is the complex pretreatment of the Al oxide (drying for 4 weeks in a stream of nitrogen at 400 ° C).
  • DE 19827630 describes a cleaning method for battery electrolytes which consists in bringing a solid-fixed base into contact with the electrolyte solution for the chemical adsorption of protic impurities and then separating the solid cleaning agent.
  • the amine-containing, polymer-fixed cleaning agents are expensive and also require pretreatment (for example, four-day vacuum drying at 100 ° C.).
  • Even modern supercapacitors can contain an organic electrolyte, which is usually a solution of an ammonium salt in an aprotic solvent with a high dielectric constant, such as acetonitrile or ⁇ -butyrolactone.
  • the ammonium salts generally have perfluorinated anions such as PF 6 " or BF 4 " . These are electrochemically stable, not very nucleophilic and are not embedded in the active electrode masses.
  • JP 11054378 and JP 11008163 propose adsorbents based on inorganic oxides, for example aluminosilicates, to be added to the electrolyte. These adsorbents can lower the water content and thus improve reliability, safety and current characteristics.
  • the disadvantages of this method are, on the one hand, the necessary pretreatment of the adsorbents and, on the other hand, that the adsorbent remains in the finished condenser, so that the specific storage capacity is reduced.
  • Organic liquid electrolytes are understood to mean solutions which contain lithium and / or ammonium salts with electrochemically stable anions in aprotic, polar, organic solvents.
  • the object is achieved by a method for removing water and other protic impurities from an organic liquid electrolyte, the organic liquid electrolyte containing one or more insoluble ones Alkali metal hydride (s) is brought into contact and the resulting insoluble reaction by-products are separated. Removal of water and other protic impurities means the partial removal until complete removal.
  • the binary hydrides of lithium (LiH) and sodium (NaH) used as preferred desiccants are relatively inexpensive in large quantities and are available in pure form. Although they are completely insoluble in the aprotic solvents used for lithium batteries, it was found that LiH, NaH and the other alkali metal hydrides KH, RbH and CsH are quickly effective with regard to the drying process and very low residual levels of protic impurities can be achieved.
  • the hydridic drying agents used according to the invention are considerably more advantageous in terms of safety than the alkali metals themselves.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • LOB lithium bis (oxaIato) borate
  • the method according to the invention is applicable to all organic liquid electrolytes, for example solutions of
  • Fluorides such as MPF 6 , MAsF 6 , MBF 4 perchlorates MCI0 4 lithium iodide Lil
  • R F perfluorinated alkyl radical with 1-10 C atoms, also cyclic
  • L bidentate ligand with two O atoms, e.g. Oxalate, catecholate, salicylate, whether or not partially or completely fluorinated
  • Carbonates e.g. Dimethyl carbonate, diethyl carbonate, ethylene carbonate,
  • Ethers e.g. Tetrahydrofuran, 2-methyltetrahydrofuran,
  • Boric acid esters e.g. Tributyl borate, trimethyl borate
  • Phosphoric acid esters e.g. Tributyl phosphate, triethyl phosphate, sulfur compounds, e.g. Dimethyl sulfoxide, sulfolane and mixtures thereof.
  • the alkali metal reacts energetically and irreversibly with proton-active substances according to:
  • the hydride is preferably added in portions to the liquid electrolyte.
  • the content of proton-active substances for example water, should not exceed a certain upper limit of 0.6 mmol / g active H concentration, for example 1% water. More contaminated liquid electrolytes can also be dried in compliance with the safety precautions familiar to the person skilled in the art; however, it is advisable to use a different drying process for these cases first and only to carry out the final drying with the process according to the invention.
  • drying process according to the invention can be carried out as described below by way of example.
  • the moist and possibly contaminated with other proton-active liquid electrolyte is preferably added in portions with stirring with an alkali metal hydride.
  • This process is preferably carried out in the temperature range between -20 and 150 ° C, particularly preferably 0 to 90 ° C.
  • the drying process can easily be followed by measuring the developed gas volume. In some cases (mainly in the presence of significant amounts of acid, e.g. 0.1 mmol / g HCl) the gas evolution is quite violent and foaming occurs. Then cooling is required. In the other cases, the reaction is hardly noticeably exothermic.
  • a post-reaction phase at room temperature or elevated temperature up to 90 ° C, sometimes up to 120 ° C is necessary to complete the drying.
  • the amount of drying agent to be used is measured on the one hand by the “activity” of the metal hydride used and on the other hand by the concentration of the proton-active impurity - generally water.
  • the water content is usually determined by Karl Fischer titration.
  • the amount of desiccant used is preferably such that it determines at least that determined by Karl Fischer titration (or an alternative water determination) Corresponds to the amount of water.
  • the desiccant can preferably be used in a stoichiometric excess (for example 2 to 100 times). The excess to be used in each case results from the activity of the hydride and the precise execution of the drying operation.
  • the drying capacity depends on the "active surface" of the metal hydride, ie the finer the degree of distribution of the metal hydride, the better the effect.
  • the drying ability of the metal hydride depends on the type of pretreatment.
  • metal hydrides that have been in contact with air or moisture are "passivated” and generally need to be activated. This can be done by grinding in an inert gas atmosphere. This process can be spatially separated or in situ, i.e. take place during electrolyte drying.
  • the clear solutions produced in this way have extremely low water contents (and also low levels of other proton-active ones Substances). Without further treatment, they can be used as electrolytes for galvanic cells, preferably lithium batteries, or electrolytic double-layer capacitors (supercapacitors).
  • the respective crude electrolyte solution was placed in an inertized multi-necked flask equipped with a KPG stirrer, solid addition device and thermocouple. A sample was taken using a plastic syringe and its water content was checked by Karl Fischer titration.
  • the degree of dryness depends on the selected conditions. In order to achieve residual water contents of ⁇ 20 ppm, drying times of 5 to 24 hours are necessary in the examples described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé pour éliminer l'eau et d'autres impuretés protiques d'un électrolyte liquide organique, selon lequel l'électrolyte liquide organique est mis en contact avec un ou plusieurs hydrure(s) métallique(s) alcalin(s) insoluble(s) et les produits de réaction insolubles ainsi obtenus sont séparés.
EP01983490A 2000-09-27 2001-09-21 Procede pour secher des electrolytes liquides organiques Withdrawn EP1330299A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10049097 2000-09-27
DE10049097A DE10049097B4 (de) 2000-09-27 2000-09-27 Verfahren zur Trocknung von organischen Flüssigelektrolyten
PCT/EP2001/010924 WO2002028500A1 (fr) 2000-09-27 2001-09-21 Procede pour secher des electrolytes liquides organiques

Publications (1)

Publication Number Publication Date
EP1330299A1 true EP1330299A1 (fr) 2003-07-30

Family

ID=7658628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01983490A Withdrawn EP1330299A1 (fr) 2000-09-27 2001-09-21 Procede pour secher des electrolytes liquides organiques

Country Status (10)

Country Link
US (2) US20040096746A1 (fr)
EP (1) EP1330299A1 (fr)
JP (1) JP5021147B2 (fr)
KR (1) KR20030039376A (fr)
CN (1) CN1476343A (fr)
AU (1) AU2002214984A1 (fr)
CA (1) CA2424361C (fr)
DE (1) DE10049097B4 (fr)
TW (1) TWI232126B (fr)
WO (1) WO2002028500A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143171A1 (de) 2001-09-04 2003-03-20 Solvay Fluor & Derivate Verfahren zur Säureabtrennung
US20030113622A1 (en) * 2001-12-14 2003-06-19 Blasi Jane A. Electrolyte additive for non-aqueous electrochemical cells
US20030162099A1 (en) 2002-02-28 2003-08-28 Bowden William L. Non-aqueous electrochemical cell
US7498102B2 (en) * 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
DE10228201B4 (de) * 2002-06-24 2006-12-21 Chemetall Gmbh Verfahren zur Herstellung von Lithiumiodidlösungen
EP1597639A1 (fr) * 2003-02-24 2005-11-23 Bayerische Motoren Werke Aktiengesellschaft Procede et dispositif permettant de visualiser un cycle de reparation sur un vehicule
US7473491B1 (en) * 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7459237B2 (en) 2004-03-15 2008-12-02 The Gillette Company Non-aqueous lithium electrical cell
US7285356B2 (en) * 2004-07-23 2007-10-23 The Gillette Company Non-aqueous electrochemical cells
US7479348B2 (en) * 2005-04-08 2009-01-20 The Gillette Company Non-aqueous electrochemical cells
CA2517248A1 (fr) 2005-08-29 2007-02-28 Hydro-Quebec Procede de purification d'un electrolyte, electrolyte ainsi obtenu et ses utilisations
US20100143806A1 (en) * 2007-07-04 2010-06-10 Rainer Dietz Method for producing low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride
US8000084B2 (en) * 2007-07-25 2011-08-16 Honeywell International, Inc. High voltage electrolytes
JP5794028B2 (ja) * 2011-08-03 2015-10-14 セントラル硝子株式会社 テトラフルオロホウ酸リチウム溶液の製造方法
CN102522588A (zh) * 2011-11-08 2012-06-27 天津市泰豪锂电池有限公司 锂电池电解液无热配制工艺
DE102011086812A1 (de) * 2011-11-22 2013-05-23 Wacker Chemie Ag Verfahren zur Herstellung von Feststoffen aus Alkalisalzen von Silanolen
EP2607306A1 (fr) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH Solutions de lipf6
EP2607316A1 (fr) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH Solutions LiPF6
EP2607315A1 (fr) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH Solutions LiPF6
EP2607305A1 (fr) 2011-12-23 2013-06-26 LANXESS Deutschland GmbH Solutions de LiPF6
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8691413B2 (en) * 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
CN107108669A (zh) 2014-11-26 2017-08-29 洛克希德马丁尖端能量存储有限公司 取代的儿茶酚盐的金属络合物及含有其的氧化还原液流电池
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
CN109831926A (zh) * 2016-06-30 2019-05-31 罗伯特·博世有限公司 形成蓄电池的方法
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
CN110310842B (zh) * 2018-03-20 2022-03-18 中天超容科技有限公司 高电压电容的电解液及其制备方法和电容器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562972A (en) * 1944-11-14 1951-08-07 Rca Corp Method and apparatus for purifying and testing a fluid dielectric and filling a container or an electrical capacitor therewith
US3864168A (en) * 1974-03-22 1975-02-04 Yardney International Corp Electrolytic cells incorporating water scavengers
JPS5946764A (ja) * 1982-05-10 1984-03-16 Fuji Elelctrochem Co Ltd 非水電解液電池
JPS599874A (ja) * 1982-07-08 1984-01-19 Nippon Denso Co Ltd 有機電池
JPH01122566A (ja) * 1987-11-05 1989-05-15 Mitsubishi Petrochem Co Ltd 非水電解液の精製方法
CA2104718C (fr) * 1993-08-24 1999-11-16 Huanyu Mao Preparation simplifiee d'un electrolyte a base de lipf6 destine aux accumulateurs a electrolyte non aqueux
JP3848435B2 (ja) * 1997-06-18 2006-11-22 昭和電工株式会社 電気二重層コンデンサ及びその製造方法
JPH1154378A (ja) * 1997-07-30 1999-02-26 Honda Motor Co Ltd 電気二重層キャパシタ
CA2218271A1 (fr) * 1997-10-10 1999-04-10 Mcgill University Methode de fabrication d'hydrures complexes de metaux alcalins
US6195251B1 (en) * 1997-10-29 2001-02-27 Asahi Glass Company Ltd. Electrode assembly and electric double layer capacitor having the electrode assembly
JP3369937B2 (ja) * 1997-11-19 2003-01-20 セントラル硝子株式会社 テトラフルオロホウ酸リチウムの精製方法
DE19827631A1 (de) * 1998-06-20 1999-12-23 Merck Patent Gmbh Aufreinigung von Batterieelektrolyten mittels physikalischer Adsorption
DE19827630A1 (de) * 1998-06-20 2000-04-27 Merck Patent Gmbh Aufreinigung von Batterieelektrolyten mittels chemischer Adsorption
JP3483120B2 (ja) * 1998-09-07 2004-01-06 セントラル硝子株式会社 リチウム電池用電解液の製造方法
US6551748B1 (en) * 2000-06-29 2003-04-22 The United States Of America As Represented By The Secretary Of The Army Prevention of polymerization in Li/MnO2 organic electrolyte electrochemical systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0228500A1 *

Also Published As

Publication number Publication date
DE10049097B4 (de) 2004-08-26
US20060138056A1 (en) 2006-06-29
CA2424361A1 (fr) 2003-03-25
CN1476343A (zh) 2004-02-18
DE10049097A1 (de) 2002-04-25
US20040096746A1 (en) 2004-05-20
AU2002214984A1 (en) 2002-04-15
CA2424361C (fr) 2010-04-06
US7666310B2 (en) 2010-02-23
JP5021147B2 (ja) 2012-09-05
KR20030039376A (ko) 2003-05-17
TWI232126B (en) 2005-05-11
JP2004511068A (ja) 2004-04-08
WO2002028500A1 (fr) 2002-04-11

Similar Documents

Publication Publication Date Title
DE10049097B4 (de) Verfahren zur Trocknung von organischen Flüssigelektrolyten
EP2185569B1 (fr) Procédé pour produire des borates de lithium, à faible teneur en acide, et mélanges de borates de lithium à faible teneur en acide et d'hydrures de lithium
WO2000000495A1 (fr) Bisoxalatoborate de lithium, sa preparation et son utilisation comme sel conducteur
EP1178050B1 (fr) Phosphates de fluoroalkyl pour cellules électrochimiques
EP1205480B1 (fr) Sels de tétrakisfluoroalkylborate et leur utilisation comme sels électrolytes
DE60103436T2 (de) Lithiumfluoralkylphosphate und deren Verwendung als Leitsalze
EP1417726A2 (fr) Electrolytes polymeres et leur utilisation dans des cellules galvaniques
JP5862094B2 (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
DE112019005762T5 (de) Gereinigte lithiumbis(fluorosulfonyl)imid (lifsi) produkte, verfahren zum reinigen von roh-lifsi, und verwendungen von gereinigten lifsi-produkten
EP1229038A1 (fr) Sels de borates pour utilisation dans les cellules électrochimiques
EP1380539B1 (fr) Procédé de fabrication de solutions d'iodure de lithium
EP1236732A1 (fr) Sels de Phosphates de fluoroalkyl ET PREPARATION DE CEUX-CI
EP1143548A2 (fr) Sel de lithium, procédé pour sa fabrication, électrolyte non aqueux et cellule électrochimique
WO2013135824A2 (fr) Composé polymère à conductibilité ionique pour des cellules électrochimiques
WO2013092990A1 (fr) Solutions de lipf6
WO1999018625A2 (fr) Ester s'utilisant comme solvant dans des systemes d'electrolyte pour accumulateurs aux ions de lithium
WO2002085919A1 (fr) Procede de production de phosphates de fluoroalkyle
DE10042149A1 (de) Nichtwäßriger Elektrolyt sowie diesen enthaltende elektrochemische Zelle
EP1095942A2 (fr) Sels complexes pour les cellules eletrochimiques
WO2013092991A1 (fr) Solutions de lipf6
DE19915056A1 (de) Verfahren zur Dehydratisierung Li-Ionen enthaltender Elektrolyte
WO2013092988A1 (fr) Solutions de lipf6
DE19953638A1 (de) Fluorierte Sulfonamide als schwer entflammbare Lösungsmittel zum Einsatz in elektrochemischen Zellen
EP2607316A1 (fr) Solutions LiPF6

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030428

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20071029

R17C First examination report despatched (corrected)

Effective date: 20080422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150401