EP1285431B1 - Instrument und verfahren zum erzeugen von klängen - Google Patents

Instrument und verfahren zum erzeugen von klängen Download PDF

Info

Publication number
EP1285431B1
EP1285431B1 EP01931307A EP01931307A EP1285431B1 EP 1285431 B1 EP1285431 B1 EP 1285431B1 EP 01931307 A EP01931307 A EP 01931307A EP 01931307 A EP01931307 A EP 01931307A EP 1285431 B1 EP1285431 B1 EP 1285431B1
Authority
EP
European Patent Office
Prior art keywords
string
strings
exciting
magnetic field
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01931307A
Other languages
English (en)
French (fr)
Other versions
EP1285431A2 (de
Inventor
Rolf Krieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1285431A2 publication Critical patent/EP1285431A2/de
Application granted granted Critical
Publication of EP1285431B1 publication Critical patent/EP1285431B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/24Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic
    • G10H3/26Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic using electric feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D1/00General design of stringed musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/12Anchoring devices for strings, e.g. tail pieces or hitchpins

Definitions

  • the present invention relates to a musical instrument, an excitation device for non-contact excitation of at least one strained string with magnetizable material, as well as to a method for generating sounds.
  • the known musical instruments can basically be divided into two groups, namely acoustic and electrical, in particular electronic, instruments.
  • the acoustic instruments radiate the tones or the sound at a sufficiently high volume, so that a piece recited with an acoustic instrument is heard by the listeners.
  • the acoustic stringed instruments comprise strings for generating and emitting a sound, a tensioning device for the string and a sounding body, wherein the strings are mechanically vibrated, the string vibrations are transmitted to and radiated from the sounding body.
  • the various stringed instruments each have their characteristic sound characteristics, which depend on the strings, the tensioning device, the sounding body and the mechanical excitation.
  • the electrical or electronic instruments generate an electrical or electronic signal, which is supplied via an amplifier to a speaker and emitted by the speaker as a sound signal.
  • a keypad or a keyboard is provided to play an electric instrument.
  • the keys can directly trigger an electrical signal and / or excite a physical system from which at least one parameter is tapped and converted into an electrical signal. Such a physical system may be used to detect a strike characteristic. Synthesizers have many possibilities for changing the signal. In electric guitars and electric basses, the physical string vibration is stimulated mechanically and recorded by a pickup and fed via an electrical or electronic circuit to a speaker. Midi devices, such as a Midisax, can also be used to generate electronic sound signals.
  • the recorded parameters allow the generation of a signal which, in addition to the pitch and the length of the sound, also the dynamics of the volume and optionally further sound properties
  • the sound quality of an electric instrument always depends on the circuit used and the connected speaker.
  • a device in which a plurality of tensionable, equal length strings are each excited by an electromagnetic excitation element without contact.
  • the strings are made of magnetic material.
  • the strings are arranged between two plates, wherein the plates are held by a cylindrical base at a predetermined distance from each other.
  • Each excitation element is fed with a frequency, so that each string is excited and oscillates with your, corresponding to the respective string voltage, fundamental frequency.
  • a multivibrator with adjustable frequency is used to make the vibration of a string audible. This is removed with a pickup and the resulting electrical signal is fed via an amplifier amplifier to a speaker.
  • the sound generated by such a device results as a superposition of the fundamental vibrations of the clamped strings. It is therefore only a sound source and not a playable instrument. In addition, the sound quality is limited by the speaker.
  • the WO 98/28732 describes an automatically tunable electric guitar, in which the strings to be tuned electromagnetically excited and the string tensions are adjusted with an automatic tensioning device.
  • the excitation of each string is done with the frequency of the desired fundamental and the effectively occurring string vibration is picked up with a pickup, so that the signal for the adjustment of the difference between the desired and the tapped frequency can be determined.
  • the amplitudes needed to tune are very small.
  • the electromagnetic excitation device uses the strings with a simple electromagnet in barely audible vibrations.
  • the EP 0 539 232 describes a solution for increasing the duration of oscillation of a mechanically excited string of an electric stringed instrument. For this purpose, the frequency of the excited oscillation is picked up with a pickup. The signal of the pickup is amplified and supplied to an electromagnetic excitation device, which keeps the string in vibration.
  • the US 5,070,759 also describes a solution to Extending the oscillation period of a mechanically excited string. It is proposed to use the excitation device as a pickup. In both solutions, the signal used for the excitation comes from the string itself and to produce the audible tone, the tapped signal is fed via an amplifier to a speaker.
  • the described excitation devices are each on one side of, or under, the guitar strings, so that the strings from the other side, or from above, are freely accessible.
  • the excitation devices each comprise at least one coil and parts of magnetizable and / or parts of magnetic material. Each coil extends over the entire area with strings. In order to stimulate the strings sufficiently, coils with thicker wires and higher number of turns are used in comparison to the pickups.
  • examples are described in which the magnetic field density is different for the differently thick and differently tensioned strings.
  • the arranged in the coil magnetizable material is divided with slots in different, the respective strings associated areas, or the strings are assigned different permanent magnets.
  • the electromagnetic field used for the excitation always extends over the entire range with all strings.
  • Both the acoustic and electric musical instruments have their respective limitations.
  • the generation of the sounds is limited to the corresponding operation of the instrument by a player.
  • the limitation is given by the use of a required speaker.
  • the known excitation devices for exciting string vibrations with electromagnetic fields only make vibrations with small amplitudes achievable.
  • the invention is due to the limitations of the known instruments, the task of finding an instrument that has fewer restrictions and thus opens up new possibilities.
  • an inventive stringed instrument the sound quality of an acoustic string instrument with the diverse control by an output of an electrical or electronic instrument or device, in particular a synthesizer, keyboard, computer, midi device, a microphone or any speaker output, should connect.
  • an electrical or electronic instrument or device in particular a synthesizer, keyboard, computer, midi device, a microphone or any speaker output
  • the strings are excited by striking, plucking or brushing, whereby the strings are vibrated due to the mechanical excitation of natural oscillations or resonances with the corresponding overtone components.
  • the overtone spectrum plays an important role for the timbre, but can not be controlled, or only limited, by the mechanical stimulation.
  • the overtone spectrum of the strings can be stimulated controlled. It can therefore be used to control the inventive string instrument signals that directly stimulate overtones with selectable intensities, which is not possible with a mechanical excitation.
  • the root note is muted so that the overtones become audible. In this case, an overtone can never sound in the same quality or as a sine tone, as when it is excited directly with the inventive instrument.
  • overtones increases strongly towards high notes, so over the root note in the second octave 2, in the third octave 4, in the fourth octave 8 and in the fifth octave 16 overtones playable. Only a part of these overtones corresponds to a tone of the tempered tuning, namely in the second octave 2, in the third octave 3, in the fourth octave 5 and in the fifth octave 7.
  • the phenomenon of the momentum of the sound unfolds important role, which should not be the case with a loudspeaker.
  • An instrument comprises at least one tunable string, a holding device for holding the at least one string, an electrically or electronically operated excitation device for non-contact excitation of the at least one string, a sound body for acoustically emitting the string vibration and an interface for supplying a signal for the excitation device, wherein the signal is generated independently of the at least one string.
  • the excitation device makes it possible to excite string vibrations with sufficiently large amplitudes so that the orchestra can emit notes at volumes at least in the range of known acoustic string instruments, the volume ranges for large volumes preferably extending beyond the maximum volumes of known acoustic string instruments.
  • at least one transmission element preferably a web, is arranged between the sound body and the at least one string.
  • the inventive electro-acoustic musical instrument has the quality of the resonance capability, or discrete harmonics, and allows a synthesis of the acoustic sound beauty with the electronic flexibility.
  • an effect is achieved which goes far beyond the electrical control of a mechanical excitation device. It is not the known style of playing an acoustic aspired, but a new instrument provided, which overcomes the limitations of the known instruments and devices.
  • a holding device for holding the at least one string, a holding device is provided, which preferably comprises two side parts and at least one support column, wherein the support column is arranged between the two side parts.
  • the at least one string extends from one to the other side part and is connected at one end clamped to the side part.
  • damping elements are assigned to the holding device.
  • hollow support columns at least in sections with rubber, especially hard rubber, stuffed or filled. It has been shown that the development of noise depends strongly on the two sides. If stabilizer ribs projecting from the sides are provided, these should be in pairs be formed and the gap should be stuffed or filled with rubber, especially hard rubber.
  • the sound body between the strings and the at least one support column is arranged.
  • the string-facing surface of the sound body is formed by a membrane.
  • a bridge is provided on the membrane over which the string is stretched.
  • the sound body is formed separately from the holding device and is attached to this, that the possibility of vibration of the sounding body and in particular its membrane is not substantially affected by the holding device.
  • the sound body can be formed by a flat membrane, which optionally has a shape deviating from a flat surface.
  • a hollow sounding body is used which comprises annularly arranged closed frames, wherein on one end side of the frames, the membrane and on the other end of a floor is fixed.
  • the adhesive device can also be formed by the sounding body, in particular its frame.
  • the holding device must have a high stability in the case of a plurality of strings, in particular tensioned with high clamping forces, which is preferably achieved with a holding device separate from the resonator.
  • the membrane In order for the membrane to have particularly good vibration characteristics, it is made from tonewood with tight tree rings and connected to the frames in a prestressed state.
  • the tree rings are perpendicular to the surface of the wood surface, wherein the fiber direction of the sound wood extends in a first direction of the embran surface and follows in a second direction perpendicular to the membrane surface tree ring on tree ring.
  • the membrane In the first direction, the membrane is less flexible than in the second.
  • a flat membrane as a flexible surface in the untensioned state can not optimally absorb the vibrations that are transmitted to it via the web. Therefore, it is bent at least in the second, but preferably also in the first direction slightly and thus biased attached to the sides.
  • the frames are curved at the membrane facing the end face according to the desired curvature of the membrane.
  • four frames are provided, which together form a rectangle.
  • the first direction of the membrane extends in the direction of the longer side of the rectangle.
  • the second direction of the membrane extends in the direction of the shorter side of the rectangle. Accordingly, the front sides of the shorter frames are more curved than the front sides of the longer frames.
  • the membrane thereby receives the shape of a partial surface of a torus or a barrel body, said toroidal surface preferably protruding against the string and therefore radiates in a larger solid angle than a curved against the interior of the sound body surface.
  • a sound body with the described prestressed membrane ensures a particularly efficient recording and acoustic radiation of the transmitted over the web string vibrations.
  • the frames can be put together to another polygon, for example, to a rectangle without a right angle or a hexagon.
  • the membrane receives a corresponding shape. Differently shaped sounding bodies may be desired due to a better radiation characteristic or due to a different appearance.
  • At least one opening in the sound body is formed, through which an exchange of air from the interior of the sounding body is made possible to the environment.
  • the at least one opening in the region of a frame is formed according to a preferred solution, so that the sound component exiting through the opening also extends into the half space adjoining the membrane or towards the front , exit.
  • a chromatically tuned set of strings is preferably used.
  • a single instrument with chromatic stringing over two octaves can be provided.
  • a single instrument with an alto and a bass octave would include strings in the tuning g-fis' and contra G to FIS.
  • register instruments with 12 strings each, which are chromatically tuned and comprise one octave, are built.
  • the register instruments could be provided as soprano, alto, tenor, bass and contra-bass instrument. Because with the contactless If the harmonics of each string can be well excited up to high registers, one can already play with a single register instrument from the lowest note to very high registers in all 12 keys. In addition to the chromatic tones of the tempered mood, there is a multitude of overtones that can be adjourned, which makes it possible to produce the widest variety of special tone colors. In order to achieve the highest possible maximum stimulable volume, at least two strings are optionally used at least in individual strings-pitches. It has been shown, for example for bass strings, that the achievable volume doubles when using two strings led directly next to each other and stimulated by the same exciter. At higher altitudes, in particular alto and soprano situations, it may be expedient to associate each excitation device with three identically tuned strings.
  • a registeer instrument according to the invention comprises 5 to 6 octaves of tonal range due to the specifically playable overtones.
  • a bass and an alto instrument together therefore already gives approximately the circumference of a grand piano.
  • mobility and weight are ensured with the instrument according to the invention.
  • the register instruments can be arranged distributed in the space, whereby a multifunctional, open system is available in which the flexibility of the room design is also important.
  • An electronically operated excitation device for non-contact excitation of the at least one string preferably comprises an electromagnet on both sides of the at least one string.
  • the known from the prior art excitation devices with the arranged only on one side of the string electromagnet can not ensure the preferred strong excitation forces, or high accelerations of the string, at least not with a reasonable Mregungs antique.
  • the magnetic field energy can be used too less efficiently for the deflection or acceleration of the string.
  • a system with two coils is used, with the string to be excited extending through an air gap between the two coils.
  • the Biot-Savart force acts in a magnetic field perpendicular to the magnetic field and the string, so that a deflection of the string is expected transversely to the axis of the coils and thus in the longitudinal direction of the air gap. If the string comprises magnetic or magnetizable, in particular ferromagnetic, material, a deflection force can be transmitted to the string via a magnetic effect from the magnetic field.
  • the required magnetic field is generated by two coils coupled in the same direction. There is no need for a permanent magnet.
  • the string is located in the middle of the air gap, in which there is approximately a homogeneous field with field lines in the direction of the common coil axis.
  • a changing force action is brought about by a changing magnetic field B or a changing current i through the string.
  • care must be taken to ensure that the flow of current through the string does not cause them to heat up. This would cause the string to expand and the instrument would be out of tune.
  • the force effect between a current-carrying string and a magnetic field can not be sufficient excitation of the string with reasonable effort.
  • the achievable magnetic field flux density is not sufficient to deflect the string laterally.
  • an uncontrolled force will occur in the direction of the axis of the coils. This force has an oscillating component in the oscillating magnetic field, causing the string to vibrate.
  • the string is also pulled against the closer coil and managed at too small a distance with this in contact. This is because the string is made of magnetizable material. If the magnetizable material of the string has a small remanence, or soft magnetic, the described attractive force will occur regardless of the current direction of the magnetic field.
  • a string which comprises magnetizable, in particular ferromagnetic, material, but preferably is formed from this.
  • a magnetic field which is inhomogeneous in the region of the string and therefore, as already mentioned above, a deflection force can be achieved.
  • the at least one permanent magnet in the air gap and thus in the region of the string generates a strong magnetic field which assumes a kind of potential function.
  • inhomogeneities in the magnetic field are generated by the coils in accordance with the excitation signal.
  • the coils are wound in opposite directions and thus generate in a flow magnetic fields, which are each directed with the same poles against each other.
  • the total, given by the coils and the permanent field, magnetic field density is increased against one or the other coil out.
  • the inhomogeneous magnetic fields in the air gap alternating according to the current direction act with corresponding forces on the magnetizable material of the string. If a current flows through the coils, the magnetic field in the air gap changes. Where the field generated by a coil has the same direction as the static field, If the flux density increases, the fields on the other side of the string will act, which leads to a weaker magnetic field. Because of this asymmetry, the string has a resultant force.
  • the two permanent magnets are each arranged in one of the coils and thus on both sides of the air gap.
  • this arrangement has the disadvantage that the permanent magnets are arranged where the electromagnets have the highest flux density, which can lead to demagnetization of the permanent magnets in strong alternating fields of the electromagnets.
  • the electromagnets and the permanent magnets generate closed magnetic field lines, which experience a great resistance in the air gap and around the electromagnets in the air.
  • the resistance of the magnetic fields, or the air fraction in which form the magnetic field lines and thus the resistance to the Magnetic field be reduced.
  • the field density in the region of the air gap can be increased.
  • the permanent magnets can be inserted outside the coils in the closed path of the core part, whereby they are exposed to a smaller field density of the magnetic field generated by the coils.
  • care must be taken that the field strength generated by the electromagnets in the case of the permanent magnets is smaller than the coercive field strength of the permanent magnets, so that their magnetization is not impaired.
  • the resistance for achieving the alternating magnetic fields can be further reduced by forming the core part by abutting core sheets with electrical insulation, whereby the occurrence of eddy currents is reduced relevantly.
  • the force effect of the magnetic fields of the coils and the permanent magnets can be determined on the string. An estimate of the resulting force shows that this depends on the field strength of the permanent magnets and on the field strengths of the coils.
  • Permanent magnets with high magnetic flux densities, the efficiency of the excitation device can be significantly increased. If the greatest possible amplitude of the string is to be achieved with a small active power supplied by the electromagnets, as high-quality permanent magnets as possible, for example samarium-cobalt (SmCo) or neodymium-iron-boron (NdFeB) magnets, must be used. The efficiency can be at least doubled compared to solutions with ferrite magnets. An advantageously usable permanent magnet must make possible the highest possible magnetic flux densities and must not be sensitive to external fields, or should have a sufficiently large coercive field strength.
  • An excitation device with two E-shaped core parts, which are connected to each other in the outer two projections via a permanent magnet and each comprise a coil on the central projection, allows an extremely efficient string excitation.
  • By narrowing or broadening the central projection the field strength in the air gap and the extent of the field in the direction of the string can be changed. If, for example, vibrations with small wavelengths are to be excited, then it must be ensured that the extent of the magnetic field in the direction of the string is essentially no greater than half the wavelength of the shortest wavelength sound which is still to be excitable. If this desired magnetic field expansion is smaller than the diameter of the magnets to be used, the magnetic field emanating from the permanent magnets can be narrowed to the desired extent by narrowing the core part at the middle projection.
  • E-shaped Kembleche are commercially available and high-quality permanent magnets, such as samarium-cobalt (SmCo) or Neodymium-iron-boron (NdFeB) magnets, are low, the advantageous excitation devices can be produced cheaply. It goes without saying that instead of the assembled E-shaped cores also two C-shaped cores can be put together, wherein two mutually associated projections are interconnected via a permanent magnet and the other two associated projections are each provided with a coil.
  • SmCo samarium-cobalt
  • NdFeB Neodymium-iron-boron
  • the permanent magnetic field for all air gaps originates from at least one common magnet, with the magnetic field being supplied to the air gaps through the core parts.
  • the at least one common magnet can also be designed as an electromagnet.
  • Arrangements with 13 or 14 pairs of protrusions can be used with chromatically tuned strings of 12 single or multiple strings if the clearances between the strings are too small to insert the connecting portion of a core member or a permanent magnet therein.
  • such arrangements are also advantageously used on known instruments with metal strings, such as a piano.
  • an excitation device with two coils, at least one permanent magnet and two on the at least one permanent magnet with each other associated core parts.
  • the permanent magnetic field whose field lines are mainly guided by the core parts, also by a current-carrying coil, which is arranged around at least one of the core parts, can be generated. If, due to the electrically generated permanent magnetic field, no permanent magnet is inserted between the core parts, a core part may be sufficient.
  • Model calculations and tests have shown that the string is sensitive to frequency changes. Even with small deviations of the excitation frequency from the oscillation frequency of the string, the coupling deteriorates greatly. As a result, harmonics that are close to one another can be specifically, or individually, stimulated.
  • the temperature on the outside of the coils does not rise above 50 ° C. This good thermal property results from the fact that sufficiently large excitation forces are achieved even with a small power supplied. Due to the core parts, the system also has good thermal conductors, which dissipate the heat generated by the coils to the outside.
  • the efficiency compared to solutions with ferrite magnets in the coils can be increased by a factor of 10 to 15.
  • the highest possible efficiency allows the strings to be put into extremely strong vibrations with a reasonable expenditure of energy. This is necessary if the sound of the string vibration is to be radiated acoustically, and in particular if the inventive instrument is to provide, for example, the sound of a plucked bass string.
  • a high efficiency allows a good coupling of the string vibration to the excitation signal. As a result, both the frequency and the amplitude curve can be controlled.
  • the excitation device not only enables the initial excitation of the string vibration, but also the control of the course of the vibration, in particular also a damping of the string vibration.
  • the effective oscillation is preferably detected, an antiphase excitation signal is provided and the string is excited thereby.
  • the detection of the effective oscillation can take place via a separate pickup, via an optical deflection detection in the case of the excitation device used for damping or via a signal detected by the excitation device. If vibrations with different frequencies are also to be attenuated differently, then the amplitude measurement must be carried out frequency-dependent.
  • a mechanical damping can be provided instead of the active damping by an excitation device.
  • the mechanical damping takes place with the help of damper elements, which can be brought to the string.
  • a mechanical damping for each string comprises two damper elements which are each movable from opposite sides against the string.
  • the drive of the dampers for example, an electromechanical system with which both each string individually and all the strings can be damped together.
  • the electromechanical system comprises electric motors and / or electromagnetic lifting devices, in particular positionable lifting magnets.
  • Each excitation device is operated via the interface, wherein the interface via at least one input, a signal from the outside can be fed.
  • the interface is preferably designed so that substantially any electrical or electronic signals, analog, digital or even in MIDI format, in particular signals from synthesizers, keyboards, computers and signals from microphones or speaker outputs can be fed.
  • devices such as master keyboards, MIDI sax, MIDI guitar or other MIDI controllers are available for a variety of instrumental techniques.
  • the interface preferably comprises, in addition to at least one MIDI input, several parallel sound inputs, which can be switched in particular from analog to digital and vice versa.
  • At least one microphone input is provided.
  • the sound of a violin can be used to control a microphone input.
  • a signal for driving the individual strings for an instrument with a chromatic set of strings then it is expedient to use an interface with a chromatic input.
  • strings with long oscillation durations also require attenuation of the strings for good sound quality
  • Interface preferably a damping input or pedal input, which is connected for example with at least one damping pedal.
  • the damping behavior of the mechanical damper and optionally the non-contact damping is influenced by means of the excitation devices, for example by the attenuation is omitted or weakened when the pedal is pressed.
  • the interface generates control signals for the excitation devices, or for amplifiers of the excitation devices, based on the input signals.
  • an input signal is forwarded directly to the excitation devices, so that the interface is to be regarded merely as a signal input.
  • the signals used to control the instrument via microphone or sound inputs are not aligned with the instrument's characteristics, the sound quality can be optimized through the use of filters and two different modes of excitation.
  • a The first mode of excitation uses a common excitation signal for the simultaneous activation of all excitation devices, the strings responding only to the signal components having the natural frequencies of the respective string in accordance with their natural frequencies or overtone spectra.
  • a second mode of excitation called audio division mode, assigns the tones of the signal to the strings on which these tones sound. Accordingly, signal components are respectively supplied to corresponding excitation devices, or their amplifiers.
  • the amplifier of an excitation device should have a high efficiency, so that the largest possible share of power in the excitation of the string and a small power component passes into heat. In order to dissipate the heat generated by the power loss, a cooling is usually required, resulting in large dimensions of the amplifier.
  • a class D amplifier should be provided. Class D amplifiers are based on the principle of pulse width modulation and are available in B. Sliders, Class D IC Amps: Ready for audio prime time, EDN Magazine 1.7.1999 described. The input signal either switches the output on or off. The height of the output signal is controlled by the pulse width. The reason for the high achievable efficiency lies in the binary operation of the circuit: the losses are mainly generated by the circuit breaker.
  • the power loss is already caused, among other things, by the adjustment of the operating point.
  • the achievable efficiency of Class D amplifiers is in the range 80 to 90%.
  • special output filters are needed to use such amplifiers to minimize harmonic distortion. Since the excitation device itself already has a rather large inductance, this is not necessary in the present instrument.
  • the required frequency response For an amplifier to be designed to drive the excitation device, the required frequency response must be known. For this reason, the frequency response of the system of excitation device and string should be determined. Because the power requirements of an amplifier to excite a bass string are particularly high, the excitation of a bass string was carefully analyzed. The measured relative sound pressure shows that above a frequency of about 6kHz no swinging of the bass strings is detected. Also, by increasing the power input, the bass string can no longer be stimulated. From a frequency of about 5kHz, the vibration of the bass string superimposed by a singing of the encoder coils. At higher frequencies, the distance between the resonances is no longer exactly ⁇ / 2, which can be explained by the physical properties of the bass string, in particular the fact that the nodes are not infinitely small.
  • the low-pass character of the system is clearly visible in the frequency response. This can be explained by the inductive load of the excitation device. If the string to be stimulated is not sufficiently taut, a poor transmission of the string vibration to the sounding body is observed especially at low frequencies. In order to achieve good efficiency with the non-contact excitation device in the lower frequency range, the strings must be sufficiently well stretched.
  • the amplifier is preferably preceded by an equalizer, which raises the high frequencies.
  • the limitation of the frequency response is caused by the inertia of the string.
  • half the wavelength is in the range or below the extent of the excitation device or encoder length.
  • ⁇ / 2 12.5mm.
  • the limit of meaningful excitation of the string is reached. So if no tones above 6kHz can be generated, the amplifier has to have a linear behavior only below 6kHz.
  • Such class D and pulse width modulation amplifiers are commercially available. Therefore, a non-contact excitation device with high efficiency can achieve string vibrations covering sufficiently large frequency and volume ranges.
  • an envelope is preferably provided.
  • the sheath is connected to the holding device and comprises at least one flat, preferably curved, directional element, which can be used to limit the spatial area in which the sound of the sound body is emitted is.
  • the shell can also take a protective function, this includes on the side facing away from the strings back of the orchestra a floor area and then a leading around the orchestra wall area.
  • the at least one directional element can preferably be applied as a cover to the wall region, so that the shell completely encloses the sounding body.
  • lamellar directional elements are guided on a guide device.
  • the directional elements can, for example, be aligned substantially in the direction of a dominant emission direction.
  • the directional elements can form deflection surfaces, which extend for example in a horizontally oriented sound body at an angle of substantially 45 ° to the horizontal above the orchestra and deflect the dominant vertical upward sound of the sound body in a substantially horizontal direction.
  • an excitation device for non-contact excitation of at least one string can be advantageously used.
  • at least one string of the known instrument can be controlled by the installation of the excitation device via an interface with a supplied electrical or electronic signal.
  • the string to be excited must comprise magnetizable material.
  • the insertable excitation device comprises two, on both sides of an air gap for receiving the string, arranged substantially around a common coil axis coils and a magnetic device for generating a permanent magnetic field, preferably at least one permanent magnet.
  • the permanent magnetic field in the region of the air gap is substantially parallel to the coil axis and the coils are wound and connected so that they generate magnetic fields with oppositely directed same poles in the current-carrying state, so that an inhomogeneous magnetic field can be achieved in the air gap, the string with a Deflection force can be acted upon makes.
  • Fig. 1 shows an inventive instrument 101 with 12 chromatically tuned strings 102, which are held by an adhesive device 103 tensioned.
  • each tone is assigned at least two strings directly adjacent to one another, or a multiple string of strings.
  • each string 102 or each multiple string of strings is associated with an electrically or electronically operated excitation device.
  • at least one carrier 104 with passage openings 104a for the strings 102 is provided.
  • two carriers 104 with excitation devices are arranged at different positions along the strings 102. Because the natural vibrations in the areas of their nodes are not excitable, are at the different Positions different natural vibrations of the strings 102 different excitable good.
  • the excitation devices of the one carrier 104 can be configured such that they act with greater excitation on the strings 102 than the excitation devices of the other carrier 104, and thus are more suitable for exciting oscillations with longer wavelengths.
  • the holding device 103 comprises two side parts 105 and at least one, preferably two, but especially three or more support columns 106 connected to both side parts 105.
  • the strings 102 are arranged between the two side parts 105, with a tensioning device being attached to one side part 105 for the tensionable fastening is provided.
  • the one side part 105 comprises a scale plate 107, so that the string length gradually increases from a shortest to a longest string.
  • 105 inwardly projecting ribs 105 a are formed on the side members, which are connected to the support columns 106.
  • the ribs 105a are preferably formed as double ribs with a hard rubber intermediate layer and the support columns 106 are at least partially filled with hard rubber.
  • the carriers 104 with the excitation devices are attached to the support columns 106 and can be slightly adjusted so that the strings 102 are guided substantially centered through the passage openings 104a.
  • the sound body 108 is formed as a hollow body and comprises a membrane 109, annularly closed frames arranged 110 and in particular a bottom 111. At one end side of the frames 110, the membrane 109 and the other end face of the bottom 111 is arranged.
  • the membrane 109 faces the strings 102, the strings 102 abutting against a web 112, which in turn is in contact with the membrane 109.
  • the sound body 108 is attached via a distance adjusting device, not shown, with damping rubber elements on the holding device 103, in particular on the support columns 106. By means of the distance adjusting device, the voltage with which the strings 102 rest on the web 112 can be set optimally.
  • At least one interface 113 is provided to which control signals can be supplied via at least one input 113a. From the interface, cables 113b lead to the excitation devices.
  • a new, simply constructed sound body 108 with a prestressed membrane 109 has been developed.
  • Fig. 2, 2a, 2b and 2c four frames 110 are assembled into a rectangle and connected to the bottom 111 at one end face.
  • the long side frames 110 are slightly outward against the membrane 109.
  • in the frame 110 at the membrane 109 inwardly, substantially parallel to the membrane 109 extending, but somewhat spaced from this longitudinal ribs 114 are attached.
  • the diaphragm 109 In order for the diaphragm 109 to have particularly good vibration characteristics, it is made of tonewood with tight annual rings and connected in a prestressed state to the sides.
  • the tree rings are perpendicular to the surface, the fiber direction preferably extends in the direction of the large Recheckseite and in the direction of the small Recheckseite follows year ring on tree ring.
  • the membrane 109 is bent at least perpendicular to the fiber direction, but preferably also along the fiber direction slightly and thus biased to the frame 110 fixed, in particular glued.
  • the frames 110 are on the front side, which faces the diaphragm 109, curved, wherein the end faces of the shorter frames are more curved than the end faces of the longer frames.
  • the preferred radii of curvature depend on the quality of the wood and for the short side are below 1.2 m, in particular below 1 m, preferably at substantially 0.95 m.
  • the preferred radii of curvature are above 10 m, in particular above 12 m, preferably at substantially 14 m.
  • the membrane 109 thereby obtains the shape of a partial surface of a torus or a barrel body, said toroidal surface preferably projecting against the string and therefore radiates in a larger solid angle than a curved against the interior of the sound body surface.
  • the longitudinal ribs 114 prevent the tension of the diaphragm 109 from causing deformation of the long frames 110.
  • the at least one opening 115 for the air exchange and the emission of sound from the interior of the sound body 108 in the central region of the long frames 110 is formed.
  • the opening 115 extends in a slot shape through the frames 110 and the longitudinal ribs 114.
  • on the longitudinal ribs 114 a protruding to the membrane 109 holding portion 114a is formed.
  • Fig. 3 shows an annealing device 116, with an oscillating force F perpendicular to the longitudinal direction of the string 117 can be exerted on a string 117 with magnetizable material.
  • coils 118 and 118 permanent magnets 119 are arranged in the coils.
  • the two permanent magnets are aligned in the same direction and generate in a Beerspaft 120 with the string 117 a strong magnetic field.
  • inhomogeneities in the magnetic field are generated by the coils 118 in accordance with an excitation signal.
  • the coils 118 are wound in opposite directions and connected so that magnetic fields, which are each directed with the same poles against each other, arise.
  • the total, given by the coils and the permanent field, magnetic field density is increased against one or the other coil in accordance with the current direction alternating inhomogeneous magnetic fields in the air gap act with appropriate forces on the magnetizable material of the string 117th ,
  • the excitation force thus increases both with the field strength of the permanent magnets and with the field strength of the electromagnets. Because B E originates in F 1 from one and F 2 from the other electromagnet 118, an arrangement with only one coil would make a much smaller force achievable.
  • Fig. 5b shows the force on the string 117 as a function of its deflection in the direction of the axis of the electromagnet 118 for three different types of permanent magnet 119, which generate magnetic fields of 0.25, 0.5 and 1T in the air gap. In the center of the air gap, or at the deflection 0, the force is substantially proportional to the magnetic field of the permanent magnet.
  • Fig. 6 shows that the positioning of the excitation device 116, 116 'and the carrier 104 along the string plays 102.117 a crucial role. Especially for the excitation of the low-frequency vibrations, it is important to have enough distance from the next node, because with increasing distance from one Node, the available lever is larger, so that with the same force effect, a greater deflection is achieved.
  • the excitation capability shown in the y-direction as a function of the relative position of the excitation device along the free-swinging string, ie between the one side part 105 and the web 112 the lowest four partial vibrations were taken into account.
  • Fig. 7a and 7b show schematically two solutions for the mechanical damping of a string 102.
  • the mechanical damping is carried out by means of dampers 122, which are brought from two sides to the string.
  • the dampers 122 are moved toward and away from the string 102 about a pivot 123 on each side of that pivot point.
  • Fig. 7b The dampers are moved against each other, the string can be clamped between the dampers.
  • the drive for the movement of the dampers is an electromechanical system, with which each string individually as well as all strings can be damped together.
  • the type of damping in particular the minimum distance of the dampers 122 from the string 102, is set, for example, by means of a pedal or another control device.
  • each damper can take a position, or perform a position movement, in the range between the maximum damping pressure on the string + and the complete release of the string -.
  • the effective position and / or a stroke performed during damping can be adjusted by the pedal. It is possible to flexibly exceed the zero point given by the pedal, in particular up to the maximum damping pressure. As a result, strongly vibrating strings can be ideally dampened even with a weak damping due to the pedal position.
  • the mechanical dampers each include a shock absorber sole with a damper shoe and an adjustment device for aligning the damper shoe along and across the string.
  • the actuation of the damper via mechanical lifting devices with electric motors or electromagnets.
  • the drive systems In order to achieve a reproducible damping, the drive systems must have a position control. The zero point setting is made either by a synchronous positioning of the magnet systems or centrally by a separate drive system.
  • Fig. 8 shows a damping solution in which the vibration of the strings 102 is detected individually and in accordance with the detected string vibration with an excitation device 116 ', the strings 102 are excited in antiphase.
  • the movement of the string 102 is detected via a position measuring device 124, for example an optical distance measurement, but optionally via a measurement on the excitation device, for example an induction measurement. From the position measurement, a speed signal can be derived, which can be used to generate a damping force.
  • the position or movement of the string is measured as close as possible to the excitation or damping device.
  • the upper specifies a desired function the amplitude curve of the string vibration during the damping process.
  • the amplitude measurement must be insensitive to lateral vibrations, so that unwanted movements can not be excited by the damping. If the amplitude measurement frequency-selective, so the attenuation frequency-selectively carried out.
  • the non-contact attenuation enables targeted clearing of signal spectra in one signal. This functionality is not possible with a mechanical damper. For optimum cushioning, the transmitted force should be applied in an antinode.
  • Fig. 9 shows an embodiment of an interface 113 with different inputs.
  • at least one MIDI input 125 there are several parallel sound inputs 126, which can be switched in particular from analog 126a to digital 126b and vice versa.
  • at least one microphone input 127 is provided.
  • the sound of a violin can be used to control a microphone input.
  • a chromatic signal for driving the individual strings is now available for an instrument with a chromatic string set, it is expedient to use an interface with a chromatic input 128, which results in an ideal assignment of the tones and in particular no clumping of the tone.
  • the interface 113 includes, in particular, an attenuation input 129 connected, for example, to at least one attenuation pedal.
  • an attenuation input 129 connected, for example, to at least one attenuation pedal.
  • the damping behavior of the mechanical Damper and / or the damping influenced by the excitation devices, for example by the damping is omitted or weakened when the pedal is pressed.
  • the interface generates control signals for the excitation devices 116, 116 ', or for amplifiers 130 of the excitation devices, based on the input signals.
  • 12 excitation devices 116 'and 12 amplifiers 130 are used.
  • the amplifiers 130 may be considered as part of the excitation devices 116 'or as part of the interface 113.
  • the signals which enter the interface 113 via a MIDI input 125 may comprise a great variety of information, the interface 113 comprising different elements for implementing this information.
  • a first damping control 132 is provided, to which signals from the damping input 129 and from the MIDI input 125 can be fed.
  • a second damping control 133 is provided which processes signals from the position measuring device 124, the damping input 129 and the MIDI input 125 and makes the control signals supplyable to the amplifiers 130.
  • a first mode of excitation uses a common excitation signal of the first filter 134 to simultaneously drive all the amplifiers 130, the strings 102 responding only to the signal components having the eigenfrequencies of the respective string 102 in accordance with their eigenfrequencies or overtone spectra.
  • a second, Tonaufoguesmodus called, way of stimulating assigns the sounds of a signal to the strings 102 on which sound these sounds.
  • signal components starting from the second filter 135 are supplied to respective amplifiers 130 via a sound splitting element 136.
  • the original signal originates from the microphone input, it is changed before the second filter 135, preferably processed by an audio analysis element 137, in particular signals for the attenuation controls .132, 133 are derived from the signal and can be supplied to it. Connections are also provided. which allow to influence the filters 134, 135 and the audio divider 136 via the MIDI input or to control.
  • the signals of the chromatic input 128 are supplied substantially directly to the respective amplifiers 130.
  • Fig. 10 shows the versatility of the instrument according to the invention 101, which can be used in a raised position or optionally in a horizontal position.
  • the instrument stands on feet 146.
  • a sheath 138 is preferably provided.
  • the case. 138 is connected to the holding device 106 and comprises at least three, flat, preferably curved lamellar, directional elements 139, which is used to limit the space in which the sound of the sound body 109 is radiated.
  • the shell 138 can also take a protective function, this includes on the side facing away from the strings back of the orchestra a bottom portion 140 and then a leading around the orchestra wall 141:
  • the directional elements 139 can be applied as a lid to the wall portion 141, so that the Case 138 surrounds the sound body 109 completely.
  • the directional elements 139 are guided on a guide device, not shown, with hinges for the radial movement and with parallelograms for the proportional longitudinal adjustment.
  • the directional elements may, for example, form deflecting surfaces, which run, for example, in a horizontally oriented sounding body at an angle of substantially 45 ° to the horizontal above the sounding body and deflect the sound of the sounding body which emerges vertically upwards in a substantially horizontal direction.
  • a keyboard 142 a microphone 143, a synthesizer with keyboard 144 or any audio terminal 145 can be used with a signal output, such as a speaker output.
  • the instrument can be played like a keyboard instrument. But it can also be the microphone recording a conventional instrument used for driving.
  • the instrument receives the signals of an audio terminal or a sequencer, it can be used as an automatic house instrument.
  • strings can be caused to vibrate by various contactless excitation devices.
  • Fig. 11 shows an electromagnetic excitation device with two hard magnets 11 and 12, a few millimeters spaced apart from each other and surrounded by a respective electromagnet 13 and 14. Due to the distance between the magnets 11 and 12, a single or multiple strings of strings is performed 15.
  • the two hard magnets 11, 12 must be arranged so that the north pole points to the south pole.
  • the winding sense of the electromagnets 13, 14, however, must run against each other (eg north to north pole).
  • Fig. 12 shows an excitation device with two soft magnets 21 and 22, which are arranged in some Mittimetem distance from each other and surrounded by a respective electromagnet 23 and 24.
  • the two electromagnets 23, 24 should get through an armature 25 magnetic final. Due to the distance between the magnets 21, 22, a single or multiple strings 26 is performed
  • the string 26 is traversed by a constant current. The current should be selected so that there are no thermal effects in the string.
  • the current causes a magnetic field around the string 26.
  • the magnetic fields of the electromagnets 23, 24 and the magnetic field of the string lead to a force on the string 26, which results in a vibration
  • Fig. 13 describes an excitation device, which achieves the force effect by a modulated electrostatic field or by means of a plate which is arranged longitudinally to the string. On the string or the plate is additionally on a modulating voltage.
  • the modulating voltage is additionally applied to the string.
  • the geometric dimension of the magnets 11, 12, 21 and 22 according to 11 and FIG. 12 , or the plates according to Fig. 13 and 14 , in the longitudinal direction of the string should be as small as possible in relation to the string length.
  • the shortest wavelength on the string (cutoff frequency) that can be excited corresponds to this dimension of the magnet or plates.
  • This geometrical measure may only be so small that the magnetization of the electromagnet does not exceed the remanence of the hard magnet.
  • the excitation devices according to the Fig. 11 to 14 can by a two-way system consisting of a low-frequency excitation device (with increased geometric dimension for String length) and a mid-tone excitation device (with a smaller geometric dimension to the string length) an increased power flow can be achieved.
  • the positions of the two excitation devices on the string length must be selected specifically so that as few as possible points of accounts of partials of the string are superimposed, or no phase changes from the low-frequency Anreungsvor direction to mid-tone excitation device and vice versa take place.
  • the string instrument regulates the supply of digital or electro-synthetically generated sounds to the strings via two channels: a) the sounds are assigned to the strings individually according to frequency / pitch, and b) each tone can be globally adjusted throughout the octave (12 string strings), be injected (volume). This extends the overtone spectrum beyond one string. Many tones also contain irregular overtones, which thus form on neighboring strings.
  • the stringed instrument according to the invention in order to be able to dampen the vibrating strings, feeds the strings removed from the strings via a pickup (for example opto-couplers) in phase to the strings via the contactless excitation apparatuses.
  • a pickup for example opto-couplers
  • Fig. 15a the interface and the amplifier 59 of the stringed instrument according to the invention have their place in the back behind the kangaroo body.
  • the string instrument according to the invention uses one or more strings of strings for each of the 12 chromatic tones and a tone generator system or an excitation device. This makes it possible to make music in all 12 keys; on the 2nd part of a string of strings, the first octave can be formed, or on the 4th part of the double octave, etc.
  • the inventive stringed instrument may consist of a single instrument or of several register instruments.
  • a single instrument requires a stringing of two chromatic octaves (alto-octave, eg g-fis and bass-octave, contra G to FIS) to reach the standard pitch (plus the 2nd, 4th, etc. partials).
  • a register instrument must be equipped with a chromatic octave string (12 string strings).
  • Two register instruments (alto and bass) reach the standard Pitch also plus the 2nd, 4th, etc. partials.
  • a quartet of four, or a quintet of five register instruments can be played by virtue of tonal splitting honored by basic notes.
  • the construction of the register instrument according to the invention separates the tonal, the static and the protective parts.
  • the strings 53 are stretched over the web 54
  • the string of strings is held by an enveloping frame, which comprises two side parts 55, which are supported by the central support column 57 and acted upon by two counter-trains 56 with a counter force .
  • the shell 58 is used both as a protection, as well as a horn or use can be separated from the actual instrument (sound corpus with enveloping frame).
  • the construction of the inventive register instrument allows playing in a horizontal (lying like a grand piano) as well as in a vertical position (standing like a Jordanorgelregister).
  • the instrument can be rotated in both positions on the main axis ( Fig. 15c, 15d ). This is very useful in the horizontal position, so that the angle of radiation to the player or the audience is selectable.
  • the inventive protective sheath ( FIG. 16a ; horizontal section of the standing instrument) consists of a back element R and two movable wings F1 and F2.
  • the two wings are provided with hinges behind Sh and in the middle Sm and thus movable.
  • the wings F1, F2 can be shortened or extended ( Fig. 16c ).
  • Slats can also be unscrewed and opened, so that the sound radiation through the protective cover is possible ( Fig. 16b ).
  • the first wing F1 is divided into parts H and V and mounted laterally (as frames) and the second whole wing F2 is used as cover and horn H and V, the middle hinge is locked ( Fig. 16d ).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Telephone Function (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Musikinstrument, eine Anregungsvorrichtung zum berührungslosen Anregen mindestens einer gespannten Saite mit magnetisierbarem Material, sowie auf ein Verfahren zum Erzeugen von Klängen.
  • Die bekannten Musikinstrumente können grundsätzlich in zwei Gruppen aufgeteilt werden, nämlich in akustische und in elektrische, insbesondere elektronische, Instrumente. Die akustischen Instrumente strahlen die Töne bzw. den Klang in einer genügend hohen Lautstärke ab, so dass ein mit einem akustischen Instrument vorgetragenes Stück von den Zuhörenden gehört wird. Die akustischen Saiteninstrumente umfassen zum Erzeugen und Abstrahlen eines Klanges Saiten, eine Spanneinrichtung für die Saite und einen Klangkörper, wobei die Saiten mechanisch in Schwingung versetzt werden, die Saitenschwingungen auf den Klangkörper übertragen und von diesem abgestrahlt werden. Die verschiedenen Saiteninstrumente haben je ihre charakteristischen Klangeigenschaften, die von den Saiten, der Spanneinrichtung, vom Klangkörper und von der mechanischen Anregung abhängen. Die elektrischen oder elektronischen Instrumente erzeugen ein elektrisches bzw. elektronisches Signal, das über einen Verstärker einem Lautsprecher zugeführt und vom Lautsprecher als Schallsignal abgestrahlt wird. Zum Spielen eines elektrischen Instrumentes ist beispielsweise ein Tastenfeld, bzw. ein Keyboard vorgesehen. Die Tasten können direkt ein elektrisches Signal auslösen und/oder ein physikalisches System anregen, von dem zumindest ein Parameter abgegriffen und in ein elektrisches Signal umgesetzt wird. Ein solches physikalisches System kann zum Erfassen einer Anschlagscharakteristik verwendet werden. Bei Synthesizern bestehen vielfältige Möglichkeiten der Signalveränderung. Bei Elektrogitarren und Elektrobässen wird die physikalische Saitenschwingung mechanisch angeregt und von einem Tonabnehmer (pickup) aufgenommen sowie über eine elektrische bzw. elektronische Schaltung einem Lautsprecher zugeführt. Zur Erzeugung von elektronischen Klangsignalen können auch Midigeräte, wie etwa ein Midisax verwendet werden. Ein Midisax erfasst nebst dem Griff auch den Luftdurchsatz und gegebenenfalls eine Kraft, die von den Lippen auf das Mundstück, insbesondere auf ein Blättchen, wirkt. Die erfassten Parameter ermöglichen die Erzeugung eines Signales, das nebst der Tonhöhe und der Länge des Tones auch die Dynamik der Lautstärke und gegebenenfalls weitere Klangeigenschaften umfasst Die Klangqualität eines elektrischen Instrumentes hängt immer von der verwendeten Schaltung und vom angeschlossenen Lautsprecher ab.
  • Aus der Schrift FR 2 315 740 ist eine Vorrichtung bekannt, bei der mehrere spannbare, gleich lange Saiten je von einem elektromagnetischen Anregungselement berührungslos angeregt werden. Um die Saiten mit wechselnden Magnetfeldern in Schwingung versetzen zu können, werden die Saiten aus magnetischem Material gebildet. Die Saiten sind zwischen zwei Tellern angeordnet, wobei die Teller durch einen zylindrischen Sockel in einer vorgegebenen Distanz zueinander gehalten werden. Jedes Anregungselement wird mit einer Frequenz gespiesen, so dass jede Saite angeregt wird und mit Ihrer, der jeweiligen Saitenspannung entsprechenden, Grundfrequenz schwingt. Zur Speisung der Anregungselemente wird ein Multivibrator mit einstellbarer Frequenz verwendet. Um die Schwingung einer Saite hörbar zu machen, wird diese mit einem Tonabnehmer abgenommen und das dabei entstehende elektrische Signal wird Ober einen Verstärker einem Lautsprecher zugeführt. Der von einer solchen Vorrichtung erzeugte Klang, ergibt sich als Überlagerung der Grundschwingungen der eingespannten Saiten. Es handelt sich somit lediglich um eine Klangquelle und nicht um ein spielbares Instrument. Zudem ist die Klangqualität durch den Lautsprecher beschränkt.
  • Die WO 98/28732 beschreibt eine automatisch stimmbare Elektrogitarre, bei der die zu stimmenden Saiten elektromagnetisch angeregt und die Saitenspannungen mit einer automatischen Spannvorrichtung justiert werden. Die Anregung jeder Saite erfolgt mit der Frequenz der gewünschten Grundschwingung und die effektiv auftretende Saitenschwingung wird mit einem Pickup abgegriffen, so dass das Signal für die Justierung aus der Differenz zwischen der gewünschten und der abgegriffenen Frequenz bestimmt werden kann. Die zum Stimmen benötigten Amplituden sind sehr klein. Die verwendete elektromagnetische Anregungsvorrichtung setzt die Saiten mit einem einfachen Elektromagneten in kaum hörbare Schwingungen.
  • Die EP 0 539 232 beschreibt eine Lösung zum Verlängern der Schwingungsdauer einer mechanisch angeregten Saite eines elektrischen Saiteninstrumentes. Dazu wird die Frequenz der angeregten Schwingung mit einem Pickup abgegriffen. Das Signal des Pickups wird verstärkt und einer elektromagnetischen Anregungsvorrichtung zugeführt, welche die Saite weiterhin in Schwingung hält. Die US 5 070 759 beschreibt ebenfalls eine Lösung zum Verlängern der Schwingungsdauer einer mechanisch angeregten Saite. Dabei wird vorgeschlagen die Anregungsvorrichtung auch als Pickup zu verwenden. Bei beiden Lösungen stammt das für die Anregung benützte Signal von der Saite selbst und zum Erzeugen des hörbaren Tones wird das abgegriffene Signal über einen Verstärker einem Lautsprecher zugeführt. Die beschriebenen Anregungsvorrichtungen liegen jeweils auf einer Seite der, bzw. unter den, Gitarrensaiten, so dass die Saiten von der anderen Seite her, bzw. von oben, frei zugänglich sind. Die Anregungsvorrichtungen umfassen jeweils zumindest eine Spule und Teile aus magnetisierbarem und/oder Teile aus magnetischem Material. Jede Spule erstreckt sich über den gesamten Bereich mit Saiten. Um die Saiten genügend anregen zu können, werden im Vergleich zu den Pickups, Spulen mit dickeren Drähten und höheren Wicklungszahlen verwendet. Zudem sind Beispiele beschrieben, bei denen die Magnetfelddichte bei den unterschiedlich dicken und verschieden stark gespannten Saiten je verschieden ist. Dazu wird das in der Spule angeordnete magnetisierbare Material mit Schlitzen in unterschiedliche, den jeweiligen Saiten zugeordnete, Bereiche aufgeteilt, oder es werden den Saiten verschiedene Permanentmagnete zugeordnet. Bei den bekannten Anregungsvorrichtungen erstreckt sich das zur Anregung verwendete elektromagnetische Feld immer über den gesamten Bereich mit allen Saiten. Wenn das Signal von lediglich einer Saite stammt, so wird lediglich ein kleiner Bereich des anregenden Feldes zur Anregung dieser Saite genutzt. Der Wirkungsgrad dieser Anregungsvorrichtung ist äusserst klein und es können nur schwache Anregungen erzielt werden, welche über einen Verstärker und einen Lautsprecher akustisch abgestrahlt werden.
  • In Audio Frequency measured by the electrically excited monochord; Emrys Williams; University of Liverpool; June 1934 ist ein Monochord mit einer Stahlseite, einem Klangbrett und einem Magnetsystem mit Magnetspulen beschrieben, wobei die Spulen mit einem Wechselstrom variabler Frequenz die Saite anregen. Es werden effektive Resonanzfrequenzen durch das Abgleichen der Anregungsfrequenz und die dabei auftretenden Schwingungsmoden durch das Zählen der Schwingungsknoten bestimmt. Auch US 5 874 685 beschreibt ein Monochord für Messzwecke. Mit der Messanordnung sollen longitudinale Schwingungen erfasst werden. Ein effizientes Anregen und Abstrahlen von Tönen, wie es für ein akustisches Instrument nötig ist, wird nicht geoffenbart.
  • Sowohl die akustischen als auch die elektrischen Musikinstrumente haben ihre jeweiligen Beschränkungen. Bei den akustischen Instrumenten ist das Erzeugen der Töne auf die entsprechende Bedienung des Instrumentes durch eine spielende Person beschränkt. Bei den elektrischen Instrumenten ist die Beschränkung durch die Verwendung eines benötigten Lautsprechers gegeben. Die bekannten Anregungsvorrichtungen zum Anregen von Saitenschwingungen mit elektromagnetischen Feldern machen nur Schwingungen mit kleinen Amplituden erzielbar.
  • Der Erfindung liegt aufgrund der Beschränkungen der bekannten Instrumente die Aufgabe zugrunde, ein Instrument zu finden, das weniger Beschränkungen aufweist und dadurch neue Möglichkeiten eröffnet.
  • Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 12 und 13 gelöst. Die abhängigen Ansprüche beschreiben alternative bzw. bevorzugte Ausführungsformen.
  • Bei der Lösung der Aufgabe wurde erkannt, dass ein erfinderisches Saiteninstrument die Klangqualität eines akustischen Saiteninstrumentes mit der vielfältigen Ansteuerung durch ein Ausgangssignal eines elektrischen, bzw. elektronischen Instrumentes oder Gerätes, insbesondere eines Synthesizers, Keyboards, Computers, Midi-Gerätes, eines Mikrophones oder auch eines beliebigen Lautsprecherausganges, verbinden soll. Bei den bekannten akustischen Saiteninstrumenten werden die Saiten durch Anschlagen, Zupfen oder Streichen angeregt, wobei die Saiten aufgrund der mechanischen Anregung von Eigenschwingungen bzw. Resonanzen mit den entsprechenden Obertonanteilen, in Schwingung versetzt werden. Das Obertonspektrum spielt für die Klangfarbe eine wichtige Rolle, kann aber durch die mechanische Anregung nicht, oder nur beschränkt, kontrolliert eingesetzt werden. Wenn nun beim erfinderischen Saiteninstrument anstelle der mechanischen Anregung der Saiten eine vorteilhafte, berührungslose Anregung, insbesondere mit Anregungsfrequenzen im gesamten hörbaren Frequenzbereich, eingesetzt wird, so kann das Obertonspektrum der Saiten kontrolliert angeregt werden. Es können also zur Ansteuerung des erfinderischen Saiteninstrumentes Signale verwendet werden, welche direkt Obertöne mit wählbaren Intensitäten anregen, was mit einer mechanischen Anregung nicht möglich ist. Bei akustischen Instrumenten wird beim Spielen von Tönen mit Flageolett-Griffen nach der Anregung des Grundtones der Grundton gedämpft, so dass die Obertöne hörbar werden. Dabei kann ein Oberton nie in der gleichen Qualität bzw. als Sinuston klingen, wie wenn er mit dem erfindungsgemässen Instrument direkt angeregt wird. Die Anzahl der Obertöne nimmt gegen hohe Töne hin stark zu, so sind über dem Grundton in der zweiten Oktave 2, in der dritten Oktave 4, in der vierten Oktave 8 und in der fünften Oktave 16 Obertöne spielbar. Dabei entspricht nur ein Teil dieser Obertöne einem Ton der temperierten Stimmung, nämlich in der zweiten Oktave 2, in der dritten Oktave 3, in der vierten Oktave 5 und in der fünften Oktave 7. Bei einem akustischen Musikinstrument spielt das Phänomen der Eigendynamik der Klangentfaltung eine wichtige Rolle, was bei einem Lautsprecher nicht der Fall sein darf.
  • Ein efindungsgemässes Instrument umfasst mindestens eine stimmbare Saite, eine Haltevorrichtung zum Halten der mindestens einen Saite, eine elektrisch oder elektronisch betriebene Anregungsvorrichtung zum berührungslosen Anregen der mindestens einen Saite, einen Klangkörper zum akustischen Abstrahlen der Saitenschwingung und ein Interface zum Zuführen eines Signales für die Anregungsvorrichtung, wobei das Signal unabhängig von der mindestens einen Saite erzeugt wird. Die Anregungsvorrichtung ermöglicht das Anregen von Saitenschwingungen mit genügend grossen Amplituden, so dass der Klangkörper Töne mit Lautstärken abstrahlen kann, die zumindest im Bereich von bekannten akustischen Saiteninstrumenten liegen, wobei sich die Lautstärkenbereiche für grosse Lautstärken vorzugsweise Ober die maximalen Lautstärken bekannter akustischer Saiteninstrumente hinaus erstrecken. Zur Übertragung von Saitenschwingungen auf den Klangkörpers ist zumindest ein Übertragungselement, vorzugsweise ein Steg, zwischen dem Klangkörper und der mindestens einen Saite angeordnet.
  • Das erfinderische elektro-akustische Musikinstrument besitzt die Qualität der Resonanzfähigkeit, bzw. der diskreten Obertöne, und ermöglicht eine Synthese der akustischen Klangschönheit mit der elektronischen Flexibilität. Mit der berührungslosen Anregung der Saiten eines akustischen Instrumentes wird ein Effekt erzielt, der weit über die elektrische Ansteuerung einer mechanischen Anregungsvorrichtung hinausgeht. Es wird nicht die bekannte Spielweise eines akustischen angestrebt, sondern ein neues Instrument bereitgestellt, das die Beschränkungen der bekannten Instrumente und Geräte überwindet.
  • Zum Halten der mindestens einen Saite ist eine Haltevorrichtung vorgesehen, die vorzugsweise zwei Seitenteile und zumindest eine Tragsäule umfasst, wobei die Tragsäule zwischen den beiden Seitenteilen angeordnet ist. Die mindestens eine Saite erstreckt sich vom einen zum anderen Seitenteil und ist am einen Ende spannbar mit dem Seitenteil verbunden. Um laute Töne erzielen zu können, ist es zweckmässig jede eingesetzte Metallsaite mit einer Spannkraft im Bereich von 200 bis 1000, insbesondere 300 bis 700, vorzugsweise im wesentlichen 500N zu spannen. Wenn nun beispielsweise 24 Saiten vorgesehen werden so muss die Haftevorrichtung Spannkräfte von bis zu 12'000N ertragen. Damit nicht eine äusserst massive Tragsäule eingesetzt werden muss, werden gegebenenfalls mehrere Rohre und/oder Profile im wesentlichen nebeneinander angeordnet. Um zu verhindern, dass die Haltevorrichtung aufgrund der schwingenden Saiten auch in Schwingung gelangt und unerwünschte Geräusche erzeugt, werden der Haltevorrichtung Dämpfungselemente zugeordnet. Beispielsweise können hohle Tragsäulen zumindest abschnittweise mit Gummi, insbesondere Hartgummi, ausgestopft oder gefüllt werden. Es hat sich gezeigt, dass die Entstehung von Geräuschen stark von den zwei Seitenteilen abhängt. Wenn an den Seitenteilen gegen innen vorstehende Stabilitätsrippen vorgesehen sind, so sollten diese paarweise ausgebildet werden und der Zwischenraum sollte mit Gummi, insbesondere Hartgummi, ausgestopft oder gefüllt werden.
  • Damit das Abstrahlen der Töne nicht von der Tragsäule beeinträchtigt wird, ist der Klangkörper zwischen den Saiten und der mindestens einen Tragsäule angeordnet. Die den Saiten zugewandte Oberfläche des Klangkörpers wird von einer Membrane gebildet. Um die Saitenschwingungen auf die Membrane zu übertragen, wird auf der Membrane ein Steg vorgesehen, über den die Saite gespannt ist. Der Klangkörper ist getrennt von der Haltevorrichtung ausgebildet und wird so an dieser befestigt, dass die Schwingmöglichkeit des Klangkörpers und insbesondere seiner Membran von der Haltevorrichtung im wesentlichen nicht beeinträchtigt wird. Der Klangkörper kann von einer flächigen Membran, die gegebenenfalls eine von einer ebenen Fläche abweichende Form hat, gebildet werden. Bevorzugt wird ein hohler Klangkörper eingesetzt, der ringförmig geschlossen angeordnete Zargen umfasst, wobei an der einen Stirnseite der Zargen die Membran und an der anderen Stimseite ein Boden befestigt ist. Gegebenenfalls werden anstelle von Zargen lediglich Rippen an der Membran befestigt. Es versteht sich von selbst, dass gegebenenfalls die Haftevorrichtung auch vom Klangkörper, insbesondere dessen Zargen gebildet werden kann. Die Haltevorrichtung muss aber bei mehreren, insbesondere mit hohen Spannkräften gespannten Saiten, eine hohe Stabilität aufweisen, was vorzugsweise mit einer vom Klangkörper getrennten Haltevorrichtung erzielt wird.
  • Damit die Membrane besonders gute Schwingungseigenschaften hat, wird sie aus Klangholz mit engen Jahrringen hergestellt und in einem vorgespannten Zustand mit den Zargen verbunden. Im Klangholz stehen die Jahrringe senkrecht zur Oberfläche der Holzfläche, wobei sich die Faserrichtung des Klangholzes in einer ersten Richtung der embran-Oberfläche erstreckt und in einer dazu senkrechten zweiten Richtung der Membran-Oberfläche Jahrring auf Jahrring folgt. In der ersten Richtung ist die Membrane weniger biegsam als in der zweiten. Eine ebene Membran kann als biegsame Fläche im ungespannten Zustand die Schwingungen, die über den Steg auf sie übertragen werden, nicht optimal aufnehmen. Daher wird sie zumindest in der zweiten, vorzugsweise aber auch in der ersten, Richtung etwas gebogen und somit vorgespannt an den Zargen befestigt. Die Zargen sind an der, der Membrane zugewandte Stirnseite entsprechend der gewünschten Krümmung der Membran gekrümmt. Vorzugsweise werden vier Zargen vorgesehen, die zusammen ein Rechteck bilden. Die erste Richtung der Membrane erstreckt sich in Richtung der längeren Seite des Rechtecks. Die zweite Richtung der Membrane erstreckt sich in Richtung der kürzeren Seite des Rechtecks. Entsprechend sind die Stirnseiten der kürzeren Zargen stärker gekrümmt als die Stirnseiten der längeren Zargen. Die Membrane erhält dadurch die Form einer Teilfläche eines Torus oder eines Tonnenkörpers, wobei diese toroide Fläche vorzugsweise gegen die Saite vorsteht und daher in einen grösseren Raumwinkel abstrahlt als eine gegen das Innere des Klangkörpers gebogene Fläche. Ein Klangkörper mit der beschriebenen vorgespannten Membran gewährleistet ein besonders effizientes Aufnehmen und akustisches Abstrahlen der über den Steg übertragenen Saitenschwingungen.
  • Es versteht sich von selbst, dass die Zargen auch zu einem anderen Mehreck, beispielsweise zu einem Viereck ohne rechte Winkel oder zu einem Sechseck, zusammengestellt werden können. Die Membran erhält dabei eine entsprechende Form. Anders geformte Klangkörper können aufgrund einer besseren Abstrahlungscharakteristik oder aufgrund eines anderen Erscheinungsbildes gewünscht werden.
  • Um die Schwingung der Membran nicht zu behindern, ist zumindest eine Öffnung im Klangkörper ausgebildet, durch die ein Luftaustausch vom Inneren des Klangkörpers zur Umgebung ermöglicht wird. Um die Spannungsverteilung in der Membran nicht durch eine Öffnung negativ zu verändern, wird gemäss einer bevorzugten Lösung die mindestens eine Öffnung im Bereich einer Zarge ausgebildet, so dass der durch die Öffnung austretende Schallanteil auch in den an die Membran angrenzenden Halbraum, bzw. nach vorne, austritt.
  • Bei der Verwendung lediglich einer Saite können nur die Töne des Obertonspektrums dieser Saite abgestrahlt werden, welche besonders im Bereich zwischen dem Grundton und dessen zweiter Oktave ein sehr eingeschränktes Tonspektrum bilden. Um mit dem erfindungsgemässen Instrument Stücke, die für bekannte Saiteninstrumente geschrieben sind, spielen zu können, wird vorzugsweise ein chromatisch gestimmter Saitensatz verwendet. Dazu kann beispielsweise ein Einzelinstrument mit einer chromatischen Besaitung über zwei Oktaven bereitgestellt werden. Ein Einzelinstrument mit einer Alt- und einer Bass-Oktave würde beispielsweise Saiten in der Stimmung g - fis' und Kontra G bis FIS umfassen. Vorzugsweise werden aber Registerinstrumente mit jeweils 12 Saiten, die chromatisch gestimmt sind und eine Oktave umfassen, gebaut. Die Registerinstrumente könnten als Sopran, Alt, Tenor, Bass und Kontra-Bass Instrument vorgesehen werden. Weil mit der berührungslosen Anregung die Obertöne jeder Saite bis in hohe Lagen gut angeregt werden können, kann man bereits mit einem einzigen Registerinstrument ausgehend vom tiefsten Ton bis in sehr hohe Lagen in allen 12 Tonarten musizieren. Nebst den chromatischen Tönen der temperierten Stimmung steht eine Vielzahl von Obertöne zur Vertagung, wodurch vielfältigste und spezielle Klangfarben erzeugt werden können. Um eine möglichst hohe maximal anregbare Lautstärke erzielbar zu machen, werden gegebenenfalls zumindest in einzelnen Saiten-Stimmlagen zumindest zwei Saiten eingesetzt. Es hat sich beispielsweise für Bass-Saiten gezeigt, dass sich die erzielbare Lautstärke bei der Verwendung von zwei direkt nebeneinander geführten und von der gleichen Anregungsvorrichtung angeregten Saiten die Lautstärke verdoppelt. Bei höheren Lagen, insbesondere Alt- und Sopranlagen, kann es zweckmässig sein, jeder Anregungsvorrichtung drei gleich gestimmte Saiten zuzuordnen.
  • Ein erfindungsgemässes Registeerinstrument umfasst aufgrund der gezielt spielbaren Obertöne 5 bis 6 Oktaven Tonumfang. Ein Bass- und ein Altinstrument zusammen ergibt daher schon annähernd den Umfang eines Flügels. Im Gegensatz zum Flügel, wird mit dem erfindungsgemässen Instrument von Gewicht und Grösse her Mobilität gewährleistet Die Registerinstrumente können im Raum verteilt angeordnet werden, wodurch ein multifunktionales, offenes System zur Verfügung steht, bei dem auch der flexiblen Raumgestaltung Gewicht zu kommt.
  • Eine elektronisch betriebene Anregungsvorrichtung zum berührungslosen Anregen der mindestens einen Saite umfasst vorzugsweise auf beiden Seiten der mindestens einen Saite einen Elektromagneten. Die aus dem Stande der Technik bekannten Anregungsvorrichtungen mit dem lediglich auf einer Seite der Saite angeordneten Elektromagneten können die bevorzugten starken Anregungskräfte, bzw. hohen Beschleunigungen der Saite, nicht gewährleisten, zumindest nicht mit einer vertretbaren Mregungsleistung. Bei einer einseitigen Anregungsvorrichtung kann die magnetische Feldenergie zuwenig effizient zur Auslenkung bzw. Beschleunigung der Saite eingesetzt werden. Um die magnetische Feldenergie effizient zur Beschleunigung einer Saite einzusetzen, wird ein System mit zwei Spulen verwendet, wobei sich die anzuregende Saite durch einen Luftspalt zwischen den beiden Spulen erstreckt.
  • Damit das Magnetfeld der Spulen eine Kraftwirkung auf die Saite erzielen kann, muss die Saite entweder von Strom durchflossen werden, oder aber sie muss magnetisierbares Material umfassen. Auf eine stromdurchflossene Saite wirkt in einem Magnetfeld die Biot-Savart Kraft senkrecht zum Magnetfeld und zur Saite, so dass eine Auslenkung der Saite quer zur Achse der Spulen und somit in Längsrichtung des Luftspaltes erwartet wird. Wenn die Saite magnetisches oder magnetisierbares, insbesondere ferromagnetisches, Material umfasst, so kann über eine magnetische Wirkung vom Magnetfeld eine Auslenkungskraft auf die Saite übertragen werden. Aus der Energiedichte des Magnetfeldes mit der Saite, bzw. aus einer Maxwell-Spannung dieses Systems, ergibt sich im inhomogenen Feld eine resultierende Kraft, die mit dem variablen Magnetfeld alternierend in entgegengesetzte Richtungen wirkt. Die Auslenkung der Saite erfolgt in der Richtung der Achse der Spulen und somit alternierend gegen je eine der Spulen, bzw. quer zum Luftspalt.
  • Mit einer stromdurchflossenen leitenden Saite kann nur eine schwache Anregung erzielt werden. Die vom Magnetfeld auf die durchströmte Saite wirkende Kraft lässt sich folgendermassen formulieren: F = i l × B
    Figure imgb0001

    wobei
    • F: Kraft auf die Saite [N]
    • i: Strom durch die Saite [A]
    • I: Länge des dem Magnetfeld ausgesetzten Leiterabschnittes [m]
    • B: magnetische Flussdichte [T]
  • Wenn die Saite und die Magnetfeldvektoren bei der Saite rechtwinklig zueinander stehen, so ergibt sich die folgende Auslenkungskraft: F = ilB
    Figure imgb0002
  • Das erforderliche Magnetfeld wird durch zwei gleichsinnig gekoppelte Spulen erzeugt. Es wird kein Dauermagnet benötigt. Die Saite befindet sich in der Mitte des Luftspaltes, in welchem näherungsweise ein homogenes Feld mit Feldlinien in Richtung der gemeinsamen Spulenachse besteht. Eine sich ändernde Kraftwirkung wird durch ein sich änderndes Magnetfeld B oder einen sich ändernden Strom i durch die Saite herbeigeführt. Bei diesem Prinzip ist darauf zu achten, dass durch den Stromfluss durch die Saite keine Erwärmung derselben auftritt. Dies hätte eine Ausdehnung der Saite zur Folge und das Instrument würde verstimmt. Bei einem maximal tolerierbaren Stromfluss durch die Saite von i = 1A, einer Länge des magnetischen Gebers von 10mm und einer gewünschten Kraftwirkung auf die Saite von F = 0.1N ist eine magnetische Flussdichte im Luftspalt von 10T nötig. Dies ist, insbesondere bei einem erforderlichen Luftspalt von ca. 5 bis 6mm realistischerweise kaum erreichbar.
  • Mit einem Experiment und einer Simulation wurde die Rechnung bestätigt. Die Kraftwirkung zwischen einer stromdurchflossene Saite und einem Magnetfeld kann mit vertretbarem Aufwand keine genügende Anregung der Saite ermöglichen. Die erzielbare Magnetfeld-Flussdichte reicht nicht aus, um die Saite seitlich auszulenken. Wenn sich die Saite nicht vollkommen zentriert im Luftspalt befindet, tritt zudem eine unkontrollierte Kraft in Richtung der Achse der Spulen auf. Diese Kraft hat im oszillierenden Magnetfeld einen oszillierenden Anteil, so dass die Saite in Schwingung versetzt wird. Die Saite wird aber auch gegen die nähere Spule gezogen und gelang bei einem zu kleinen Abstand mit dieser in Kontakt. Dies liegt daran, dass die Saite aus magnetisierbarem Material gebildet ist. Wenn das magnetisierbare Material der Saite eine kleine Remanenz hat, bzw. weichmagnetisch ist, wird die beschriebene Anziehungskraft unabhängig von der momentanen Richtung des Magnetfeldes auftreten.
  • Um eine genügend grosse Anregungskraft mit vertretbarem Aufwand erzeugen zu können, wird eine Saite verwendet, die magnetisierbares, insbesondere ferromagnetisches, Material umfasst, vorzugsweise aber aus diesem gebildet ist. Mit mindestens einem Dauermagneten und zwei beidseits der Saite angeordneten Spulen wird ein im Bereich der Saite inhomogenes Magnetfeld und daher, wie oben bereits erwähnt eine Auslenkungskraft erzielbar. Zur Veranschaulichung kann angenommen werden, dass der mindestens eine Permanentmagnet im Luftspalt und somit im Bereich der Saite ein starkes Magnetfeld erzeugt, das eine Art Potentialfunktion übernimmt. Um die Saite in diesem permanenten Magnetfeld in Oszillation zu versetzen, werden von den Spulen gemäss dem Anregungssignal Inhomogenitäten im Magnetfeld erzeugt. Die Spulen sind gegensinnig gewickelt und erzeugen somit bei einer Durchströmung Magnetfelder, die jeweils mit gleichen Polen gegeneinander gerichtet sind. In der einen bzw. anderen Stromrichtung wird die gesamte, durch die Spulen und das permanente Feld gegebene, Magnetfelddichte gegen die eine bzw. andere Spule hin erhöht. Die entsprechend der Stromrichtung alternierenden inhomogenen Magnetfelder im Luftspalt wirken mit entsprechenden Kräften auf das magnetisierbare Material der Saite. Fliesst ein Strom durch die Spulen, so verändert sich das Magnetfeld im Luftspalt. Dort, wo das durch eine Spule erzeugte Feld die gleiche Richtung aufweist wie das statische Feld, wird die Flussdichte grösser, auf der anderen Seite der Saite wirken sich die Felder entgegen, was zu einem schwächeren Magnetfeld fuhrt. Aufgrund dieser Asymmetrie wirkt auf die Saite eine resultierende Kraft.
  • Um ein möglichst starkes Dauermagnetfeld bereitzustellen, werden vorzugsweise zwei Permanentmagnete eingesetzt. In einer ersten Ausführungsform sind die beiden Permanentmagnete je in einer der Spulen und somit beidseits des Luftspaltes angeordnet. Diese Anordnung hat aber den Nachteil, dass die Permanentmagnete dort angeordnet sind, wo die Elektromagnete die höchste Flussdichte haben, was bei starken Wechselfeldem der Elektromagnete zu einer Entmagnetisierung der Dauermagnete führen kann. Die Elektromagnete und die Dauermagnete erzeugen geschlossene Magnetfeldlinien, die im Luftspalt und um die Elektromagnete in der Luft einen grossen Widerstand erfahren. Durch die Verwendung von magnetisierbaren Kernen, insbesondere von Eisenkernen, die bis auf den Luftspalt mit der Saite einen geschlossenen Weg für die Magnetfeldlinien anbieten, kann der Widerstand der magnetischen Felder, bzw. der Luftanteil in dem sich die Magnetfeldlinien ausbilden und damit der Widerstand gegen das Magnetfeld, reduziert werden. Dadurch kann die Felddichte im Bereich des Luftspaltes erhöht werden. Zudem können die Permanentmagnete ausserhalb der Spulen in den geschlossenen Weg des Kernteiles eingesetzte werden, wodurch sie einer kleineren Felddichte des von den Spulen erzeugten Magnetfeldes ausgesetzt sind. Bei der Auslegung muss darauf geachtet werden, dass die von den Elektromagneten erzeugte Feldstärke bei den Permanentmagneten kleiner ist als die Koerzitivfeldstärke der Dauermagneten, so dass deren Magnetisierung nicht beeinträchtigt wird. Der Widerstand zum Erzielen der magnetischen Wechselfeldern kann noch weiter verkleinert werden, indem der Kernteil durch aneinander anliegende Kernbleche mit elektrischer Isolation gebildet wird, wodurch das Auftreten von Wirbelströmen relevant verkleinert wird.
  • Durch die Überlagerung der Felder der Dauer- und Elektromagneten entsteht im Luftspalt mit der Saite ein inhomogenes Feld. Die Kraftwirkung des inhomogenen Feldes auf die Saite kann ausgehend von der Maxwell-Spannung folgendermassen beschrieben werden: F = 1 / 2 B H A
    Figure imgb0003
  • Mit einer Integration über eine die Saite umschliessende Systemgrenze G kann die Kraftwirkung der Magnetfelder der Spulen und der Permanentmagnete auf die Saite bestimmt werden. Eine Abschätzung der resultierenden Kraft zeigt, dass diese von der Feldstärke der Dauermagneten und von den Feldstärken der Spulen abhängt. Durch die Verwendung von Dauermagneten mit hohen magnetischen Flussdichten kann der Wirkungsgrad der Anregungvorrichtung wesentlich erhöht werden. Wenn mit einer kleinen durch die Elektromagneten zugeführten Wirkleistung eine möglichst grosse Amplitude der Saite erzielt werden soll, so müssen möglichst hochwertige Dauermagnete, beispielsweise Samarium-Kobalt (SmCo) oder Neodymium-Eisen-Bor (NdFeB) Magnete verwendet werden. Der Wirkungsgrad kann dadurch gegenüber von Lösungen mit Ferrit-Magneten zumindest verdoppelt werden. Ein vorteilhaft einsetzbarer Dauermagnet muss möglichst hohe magnetische Flussdichten erzielbar machen und darf gegenüber Fremdfeldem nicht empfindlich sein, bzw. sollte eine genügend grosse Koerzitivfeldstärke aufweisen.
  • Zur Erzeugung der Inhomogenität im Magnetfeld wäre es auch denkbar, lediglich eine Spule zu verwenden, wobei dann aber die auf die Saite wirkende Kraft bei gleichbleibendem Spulenstrom kleiner wäre. Bei einem höheren Spulenstrom würde eine grössere lokale Wärmeentwicklung entstehen. Zudem könnte mit nur einer Spule auf der von dieser abgelegenen Seite der Saite keine analoge Inhomogenität erzielt werden, wie bei der Spule. Entsprechend wäre die Anregung gegen die Spule hin und die Anregung von der Spule weg bei gleicher Stromstärke unterschiedlich stark, was bei der Anregung mit einem sinusförmigen Signal eine asymmetrische Anregung bewirken würde. Daher wird eine Anregungsvorrichtung mit einem bezüglich einer Mittelebene symmetrischen Aufbau bevorzugt, wobei die Mittelebene durch die Achse der Saite senkrecht zu einer gemeinsamen Achse der Spulen verlaüft.
  • Eine Anregungsvorrichtung mit zwei E-förmigen Kernteilen, die bei den äusseren beiden Vorsprüngen über je einen Dauermagneten miteinander verbunden sind und am mittleren Vorsprung je eine Spule umfassen, ermöglicht eine äusserst effiziente Saitenanregung. Durch eine Verengung oder Verbreiterung des mittleren Vorsprunges kann die Feldstärke im Luftspalt und die Ausdehnung des Feldes in Richtung der Saite verändert werden. Wenn etwa Schwingungen mit kleinen Wellenlängen angeregt werden sollen, so muss gewährleistet sein, dass die Ausdehnung des Magnetfeldes in der Richtung der Saite im wesentlichen nicht grösser ist, als die halbe Wellenlänge des Tones mit der kürzesten Wellenlänge, die noch anregbar sein soll. Wenn diese gewünschte Magnetfeldausdehnung kleiner ist als der Durchmesser der einzusetzenden Magnete, so kann das von den Permanentmagneten ausgehende Magnetfeld durch eine Verengung des Kernteiles beim Mittleren Vorsprung auf die gewünschte Ausdehnung verengt werden. Weil E-förmige Kembleche handelsüblich sind und auch hochwertige Dauermagnete, beispielsweise Samarium-Kobalt (SmCo) oder Neodymium-Eisen-Bor (NdFeB) Magnete, günstig erhältlich sind, können die vorteilhaften Anregungsvorrichtungen günstig hergestellt werden. Es versteht sich von selbst, dass anstelle der zusammengestellten E-förmigen Kerne auch je zwei C-förmige Kerne zusammengestellt werden können, wobei zwei einander zugeordnete Vorsprünge über einen Permanentmagneten miteinander verbunden werden und die anderen beiden einander zugeordneten Vorsprünge je mit einer Spule versehen werden. Gegebenenfalls werden auch Kerne mit mehr als drei, beispielsweise mit 13 oder 14 Vorsprüngen, zusammengestellt, wobei zumindest zwischen zwei einander zugeordneten Vorsprüngen ein Permanentmagnet eingesetzt ist, zwischen den anderen Vorsprungpaaren jeweils ein Luftspalt mit einer Saite angeordnet ist und an den Vorsprüngen dieser Vorsprungpaare jeweils im Gegensinn gewickelte Spulen angeordnet sind. Dadurch geht das permanente Magnetfeld für alle Luftspalte von mindestens einem gemeinsamen Magneten aus, wobei das Zuführen des Magnetfeldes zu den luftspalten durch die Kernteile erfolgt. Es versteht sich von selbst, dass der mindestens eine gemeinsame Magnet auch als Elektromagnet ausgebildet werden kann. Anordnungen mit 13 oder 14 Vorsprungspaaren können bei chromatisch gestimmten Saitensätzen mit 12 einfach oder mehrfach besetzten Saiten verwendet werden, wenn die Freiräume zwischen den Saiten zu klein sind, um den Verbindungsbereich eines Kernteiles oder einen Permanentmagneten darin einzusetzen. Gegebenenfalls sind solche Anordnungen auch vorteilhaft einsetzbar an bekannten Instrumenten mit Metallsaiten, wie beispielsweise einem Klavier.
  • Um bei einem Instrument mit mehreren Saiten, die einzelnen Saiten schnell und stark anregen zu können, ist vorzugsweise jeder Saite, gegebenenfalls aber auch jeweils zwei oder mehr gleichgestimmten Saiten, eine Anregungsvorrichtung mit zwei Spulen, mindestens einem Permanentmagneten und zwei über den mindestens einen Permanentmagneten miteinander verbundenen Kernteilen zugeordnet. Es versteht sich von selbst, dass das permanente Magnetfeld, dessen Feldlinien vor allem durch die Kernteile geführt werden, auch von einer stromdurchflossenen Spule, die um zumindest einen der Kernteile angeordnet ist, erzeugt werden kann. Wenn aufgrund des elektrisch erzeugten permanenten Magnetfeldes kein Permanentmagnet zwischen die Kernteile eingesetzt wird, so genügt gegebenenfalls ein Kernteil. Modellrechnungen und Versuche haben gezeigt, dass die Saite empfindlich auf Frequenzänderungen reagiert. Schon bei geringen Abweichungen der Anregungsfrequenz von der Schwingfrequenz der Saite verschlechtert sich die Ankoppelung stark. Dadurch können auch nahe beieinander liegende Obertöne gezielt, bzw. je einzeln, angeregt werden.
  • Auch bei dauerndem Betrieb des Instrumentes mit grosser Amplitude der Saitenschwingung steigt die Temperatur an der Aussenseite der Spulen nicht über 50°C an. Diese gute thermische Eigenschaft ergibt sich dadurch, dass bereits bei kleiner zugeführter Leistung genügend grosse Anregungskräfte erzielt werden. Durch die Kernteile besitzt das System zudem gute thermische Leiter, welche die bei den Spulen entstehende Wärme nach aussen abführen.
  • Durch die Verwendung von geschlossenen Anordnungen mit Kernteilen und eingesetzten hochwertigen Dauermagneten kann der Wirkungsgrad gegenüber Lösungen mit Ferrit-Magneten in den Spulen um den Faktor 10 bis 15 erhöht werden. Ein möglichst hoher Wirkungsgrad erlaubt es, die Saiten mit einem vertretbaren Energieaufwand schnell in äusserst starke Schwingungen zu versetzen. Dies ist nötig, wenn der Klang der Saitenschwingung akustisch abgestrahlt werden soll und insbesondere, wenn das erfinderische Instrument beispielsweise den Klang einer gezupften Bassaite bereitstellen soll. Ein hoher Wirkungsgrad ermöglicht eine gute Kopplung der Saitenschwingung an das Anregungssignal. Dadurch kann sowohl der Frequenz- als auch der Amplituden-Verlauf kontrolliert werden.
  • Die Anregungsvorrichtung ermöglicht nicht nur das initiale Anregen der Saitenschwingung, sondern auch das Kontrollieren des Verlaufs der Schwingung, insbesondere auch ein Dämpfen der Saitenschwingung. Zum Erzielen einer selektiven Dämpfung wird vorzugsweise die effektive Schwingung erfasst, ein gegenphasiges Anregungssignal bereitgestellt und die Saite damit angeregt. Das Erfassen der effektiven Schwingung kann über ein separates Pickup, über eine optische Auslenkungserfassung bei der zum Dämpfen eingesetzten Anregungsvorrichtung oder über ein von der Anregungsvorrichtung erfasstes Signal erfolgen. Wenn Schwingungen mit unterschiedlichen Frequenzen auch verschieden gedämpft werden sollen, so muss die Amplitudenmessung frequenzabhängig durchgeführt werden.
  • Es versteht sich von selbst, dass anstelle der aktiven Dämpfung durch eine Anregungsvorrichtung, auch eine mechanische Dämpfung vorgesehen werden kann. Die mechanische Dämpfung erfolgt mit Hilfe von Dämpferelementen, die an die Saite herangeführt werden können. Vorzugsweise umfasst eine mechanische Dämpfung für jede Saite zwei Dämpferelemente die je von einander gegenüberliegenden Seiten gegen die Saite bewegbar sind. Als Antrieb der Dämpfer dient beispielsweise ein elektromechanisches System, mit welchem sowohl jede Saite einzeln als auch alle Saiten zusammen gedämpft werden können. Das elektromechanische System umfasst Elektromotoren und/oder elektromagnetische Hubvorrichtungen, insbesondere positionierbare Hubmagnete.
  • Jede Anregungsvorrichtung wird über das Interface betrieben, wobei dem interface über zumindest einen Eingang ein Signal von aussen zuführbar ist. Das Interface ist vorzugsweise so ausgebildet, dass im wesentlichen beliebige elektrische oder elektronische Signale, analog, digital oder auch im MIDI-Format insbesondere Signale von Synthesizern, Keyboards, Computern und Signale von Mikrophonen oder Lautsprecherausgängen eingespiesen werden können. Um MIDI-Signale bereitzustellen, stehen für verschiedene instrumentaltechniken Geräte, wie Masterkeyboards, MIDI-Sax, MIDI-Gitarre oder andere MIDI-Controller zur Verfügung. Um eine vielseitige Umsetzung verschiedener elektrischer Signale zu ermöglichen, umfasst das Interface vorzugsweise nebst zumindest einem MIDI-Eingang mehrere parallele Sound-Eingänge, die insbesondere von analog auf digital und umgekehrt umschaltbar sind. Um auch Signale, die von einem Mikrophon stammen, zur Steuerung des erfingungsgemässen Instrumentes benützen zu können, ist zumindest ein Mikrophon-Eingang vorgesehen. Ober einen Mikrophon-Eingang kann beispielsweise der Klang einer Geige zur Steuerung verwendet werden. Wenn nun für ein Instrument mit einem chromatischen Saitensatz ein Signal zum Ansteuern der einzelnen Saiten vorliegt, so ist es zweckmässig ein Interface mit einem Chromatic-Eingangeinzusetzen, Weil bei Saiten mit langen Schwingungsdauern auch das Dämpfen der Saiten für eine gute Klangqualität wichtig ist, umfasst das Interface vorzugsweise einen Dämpfungs-Eingang bzw. Pedal-Eingang, der beispielsweise mit mindestens einem Dämpfungspedal verbunden ist. Über den Dämpfungs-Eingang wird das Dämpfungsverhalten der mechanischen Dämpfer und gegebenenfalls der berührungslosen Dämpfung mittels der Anregungsvorrichtungen beeinflusst, beispielsweise indem bei gedrücktem Pedal die Dämpfung weggelassen bzw. geschwächt wird.
  • Das Interface erzeugt ausgehend von den Eingangssignalen Steuersignale für die Anregungsvorrichtungen, bzw. für Verstärker der Anregungsvorrichtungen. Im einfachsten Fall wird direkt ein Eingangssignal an die Anregungsvorrichtungen weitergeleitet, so dass das Interface lediglich als Signaleingang zu betrachten ist. Wenn die Signale, die über Mikrophon- oder Sound-Eingänge zur Steuerung des Instrumentes eingesetzt werden, nicht auf die Eigenschaften des Instrumentes ausgerichtet sind, so kann die Klangqualität durch die Verwendung von Filtern und zwei verschiedenen Anregungsweisen optimiert werden. Eine erste, Resonanzmodus genannte, Anregungsweise benützt ein gemeinsames Anregungssignal zur gleichzeitigen Ansteuerung aller Anregungsvorrichtungen, wobei die Saiten entsprechend ihrer Eigenfrequenzen bzw. Obertonspektren nur auf die Signalanteile mit den Eigenfrequenzen der jeweiligen Saite ansprechen. Eine zweite, Tonaufteilungsmodus genannte, Anregungsweise ordnet die Töne des Signales den Saiten zu, auf denen diese Töne klingen. Entsprechend werden Signalanteile jeweils entsprechenden Anregungsvorrichtungen, bzw. deren Verstärkern, zugeführt.
  • Der Verstärker einer Anregungsvorrichtung sollte einen hohen Wirkungsgrad haben, so das ein möglichst grosser Leistungs-Anteil in die Anregung der Saite und ein kleiner Leistungs-Anteil in Wärme übergeht. Um die durch die Verlustleistung entstehende Wärme abzuführen, ist in der Regel eine Kühlung nötig, was zu grossen Dimensionen des Verstärkers führt. Um die Wirkleistung zu verbessem, soll vorzugsweise ein Klasse D Verstärker vorgesehen werden. Klasse D Verstärker basieren auf dem Prinzip der Pulsweiten-Modulation und sind in B. Schweber, Class D IC Amps: Ready for audio prime time, EDN Magazine 1.7.1999 beschrieben. Das Eingangssignal schaltet den Ausgang entweder ein oder aus. Die Höhe des Ausgangssignals wird durch die Pulsbreite gesteuert. Der Grund für den hohen erreichbaren Wirkungsgrad liegt in der binären Wirkungsweise der Schaltung: Die Verluste werden hauptsächlich durch die Leistungsschalter erzeugt. Im Gegensatz dazu entsteht bei AB-Verstärkem die Verlustleistung u.a. bereits durch die Einstellung des Arbeitspunktes. Der erreichbare Wirkungsgrad von Klasse D Verstärkern liegt im Bereich 80 bis 90%. Bei Anwendungen im Audio-Bereich sind für den Einsatz solcher Verstärker spezielle Ausgangsfilter notwendig, um den Klirrfaktor zu minimieren. Da die Anregungsvorrichtung selbst bereits eine recht grosse Induktivität aufweist, ist dies beim vorliegenden Instrument nicht notwendig.
  • Damit ein Verstärker zur Ansteuerung der Anregungsvorrichtung entworfen werden kann, muss der benötigte Frequenzgang bekannt sein. Aus diesem Grund soll der Frequenzgang des Systems aus Anregungsvorrichtung und Saite bestimmt werden. Weil die Leistungs-Ansprüche an einen Verstärker zum Anregen einer Basssaite besonders hoch sind, wurde die Anregung einer Basssaite genau analysiert. Der gemessene relative Schalldruck zeigt, dass oberhalb einer Frequenz von ca. 6kHz kein Schwingen der Basssaite mehr festgestellt wird. Auch durch eine Erhöhung der eingespeisten Leistung kann die Basssaite nicht mehr angeregt werden. Ab einer Frequenz von ungefähr 5kHz wird die Schwingung der Basssaite von einem Singen der Geberspulen überlagert. Bei höheren Frequenzen ist der Abstand zwischen den Resonanzen nicht mehr exakt λ/2, was durch die physikalische Eigenschaften der Basssaite, insbesondere die Tatsache dass die Knotenpunkte nicht unendlich klein sind, zu erklären ist. Der Tiefpasscharakter des Systems ist im Frequenzgang deutlich zu erkennen. Dies ist durch die induktive Last der Anregungsvorrichtung zu erklären. Wenn die anzuregende Saite nicht genügend stark gespannt ist, so wird insbesondere auch bei tiefen Frequenzen eine schlechte Übertragung der Saitenschwingung auf den Klangkörper beobachtet. Um mit der berührungslosen Anregungsvorrichtung im unteren Frequenzbereich einen guten Wirkungsgrad zu erzielen, müssen die Saiten genügend gut gespannt werden.
  • Um auch hochfrequente Signalanteile in einen genügend starken Schall umzuwandeln, wird dem Verstärker vorzugsweise ein Equalizer vorgeschaltet, welcher die hohen Frequenzen anhebt. Die Begrenzung des Frequenzganges wird durch die Trägheit der Saite hervorgerufen. Zudem liegt bei hohen Frequenzen die halbe Wellenlänge im Bereich oder unterhalb der Ausdehnung der Anregungsvorrichtung bzw. Geberlänge. Bei einer mit 6kHz schwingenden Versuchssaite beträgt λ/2=12.5mm. Mit einer Geberlänge von 10mm ist somit die Grenze einer sinnvollen Anregung der Saite erreicht. Wenn nun also keine Töne oberhalb von 6kHz erzeugt werden können, so muss auch der Verstärker nur unterhalb von 6kHz ein lineares Verhalten aufweisen. Solche Klasse D bzw. Pulsweiten-Modulations Verstärker sind im Handel erhältlich. Daher kann eine berührungslose Anregungsvorrichtung mit einem hohen Wirkungsgrad Saitenschwingungen erzielen, die genügend grosse Frequenz- und Lautstärkenbereiche abdecken.
  • Bis anhin stand den Kompositions- und Improvisationstechniken, welche sich des Computers bedienten, lediglich der elektronisch erzeugte und durch Lautsprecher abgestrahlte Klang zur Verfügung. Durch das erfindungsgemässe Instrument kommen diese Kompositionen über den natürlichen Saitenklang und dessen Abstrahlung durch den aus Holz gefertigten Klangkörper zu einer neuartigen, hervorragenden Klangwirkung.
  • Um das Instrument zu schützen und/oder die Klangabstrahlung zu beeinflussen, ist vorzugsweise eine Hülle vorgesehen. Die Hülle ist mit der Haltevorrichtung verbunden und umfasst zumindest ein flächiges, vorzugsweise gewölbtes, Richtungselement, das zur Beschränkung des Raumbereiches, in den der Klang des Klangkörpers abgestrahlt wird, einsetzbar ist. Damit die Hülle auch eine Schutzfunktion übernehmen kann, umfasst diese auf der von den Saiten abgewandten Rückseite des Klangkörpers einen Bodenbereich und daran anschliessend einen um den Klangkörper führenden Wandbereich. Das mindestens eine Richtungselement ist vorzugsweise als Deckel an den Wandbereich anlegbar, so dass die Hülle den Klangkörper vollständig umschliesst. In einer besonders bevorzugten Ausführungsform sind lamellenförmige Richtungselemente an einer Führungsvorrichtung geführt. Die Richtungselemente können beispielsweise im wesentlichen in Richtung einer dominanten Abstrahlungsrichtung ausgerichtet werden. Gegebenenfalls können die Richtungselemente Umlenkflächen bilden, die beispielsweise bei einem horizontal ausgerichteten Klangkörper unter einem Winkel von im wesentlichen 45° zur Horizontalen über dem Klangkörper verlaufen und den dominant vertikal nach oben austretenden Schall des Klangkörpers im wesentlichen in eine horizontale Richtung umlenken.
  • Bei Instrumenten mit Metallsaiten, die genügend stark gespannt sind, kann eine Anregungsvorrichtung zum berührungslosen Anregen mindestens einer Saite vorteilhaft eingesetzt werden. Das heisst, dass zumindest eine Saite des bekannten Instrumentes durch den Einbau der Anregungsvorrichtung über ein Interface mit einem zugeführten elektrischen oder elektronischen Signal steuerbar ist Dabei muss, die anzuregende Saite magnetisierbares Material umfassen. Die einsetzbare Anregungsvorrichtung umfasst zwei, beidseits eines Luftspaltes zur Aufnahme der Saite, im wesentlichen um eine gemeinsame Spulenachse angeordnete Spulen und eine Magnetvorrichtung zum Erzeugen eines permanenten Magnetfeldes, vorzugsweise mindestens einen Permanentmagnet. Das permanente Magnetfeld im Bereich des Luftspaltes steht im wesentlichen parallel zur Spulenachse und die Spulen sind so gewickelt und angeschlossen, dass sie im stromdurchflossenen Zustand Magnetfelder mit gegeneinander gerichteten gleichen Polen erzeugen, so dass im Luftspalt ein inhomogenes Magnetfeld erzielbar ist, das die Saite mit einer Auslenkungskraft beaufschlagbar macht.
  • Es wäre insbesondere auch möglich ein elektrisches Instrument mit einem chromatischen Saitensatz und berührungslosen Anregungsvorrichtungen zu bauen, wobei der Klang über Pickups, Verstärker und Lautsprecher abgestrahlt würde. Die Klangqualität würde zwar verschlechtert, aber die von der Anregungsvorrichtung ausgehenden Anregungsmöglichkeiten und insbesondere auch die beschriebenen Dämpfungsmöglichkeiten könnten vorteilhaft für die Erzeugung des Klanges eingesetzt werden.
  • Die Erfindung wird in den Figuren anhand von Beispielen weiter beschrieben. Dabei zeigt
    • Fig. 1 eine perspektivische Ansicht eines Saiteninstrumentes mit einer berührungslosen Anregungsvorrichtung,
    • Fig. 2 eine perspektivische Darstellung des Klangkörpers,
    • Fig. 2a, 2b Schnitte gemäss A bzw. B in Fig. 2
    • Fig. 2c ein Detail aus Fig. 2a
    • Fig. 3, 4 eine schematische Darstellungen von Anregungsvorrichtungen
    • Fig. 5a eine schematische Darstellung der auftretenden Kräfte
    • Fig. 5b eine funktionale Darstellung der Kraftwirkung als Funktion der Auslenkung bei verschiedenen Magnetfeldstärken
    • Fig. 6 eine funktionale Darstellung der Anregungswirkung in Funktion der Lage der Anregungsvorrichtung
    • Fig. 7a, 7b, 7c schematische Darstellungen der mechanischen Dämpfung
    • Fig. 8 eine schematische Darstellung der berührungslosen Dämpfung
    • Fig. 9 eine schematische Darstellung des Interface
    • Fig. 10 eine perspektivische Darstellung der Anwendungsmöglichkeiten des Instrumentes
    • Fig. 11, 12, 13, 14 schematische Darstellungen von berührungslosen Anregungsvorrichtungen
    • Fig. 15a eine Seitenansicht eines Instrumentes
    • Fig. 15b, 15c, 15d schematische Frontansichten des Instrumentes und
    • Fig. 16a-d schematische Darstellungen der Instrumentenhülle
  • Fig. 1 zeigt ein erfindungsgemässes Instrument 101 mit 12 chromatisch gestimmten Saiten 102, die von einer Haftevorrichtung 103 spannbar gehalten werden. In einer bevorzugten Ausführungsform werden jedem Ton zumindest zwei direkt nebeneinander liegende Saiten, bzw. ein Mehrfach-Saitenstrang zugeordnet. Um die einzelnen Saiten, bzw. die Mehrfach-Saitenstränge in Schwingung zu bringen, ist jeder Saite 102 bzw. jedem Mehrfach-Saitenstrang eine elektrisch oder elektronisch betriebene Anregungsvorrichtung zugeordnet. Zum Halten der Anregungsvorrichtungen ist zumindest ein Träger 104 mit Durchtrittsöffnungen 104a für die Saiten 102 vorgesehen. Gegebenenfalls sind zwei Träger 104 mit Anregungsvorrichtungen an verschiedenen Positionen entlang der Saiten 102 angeordnet. Weil die Eigenschwingungen in den Bereichen ihrer Knoten nicht anregbar sind, sind an den verschiedenen Positionen verschiedene Eigenschwingungen der Saiten 102 unterschiedlich gut anregbar. Zudem können die Anregungsvorrichtungen des einen Trägers 104 so ausgestaltet werden, dass sie im Vergleich zu den Anregungsvorrichtungen des anderen Trägers 104 über eine grössere Länge mit Anregungskräften auf die Saiten 102 wirken und somit mehr geeignet sind Schwingungen mit grösseren Wellenlängen anzuregen.
  • Die Haltevorrichtung 103 umfasst zwei Seitenteile 105 und zumindest eine, vorzugsweise zwei, insbesondere aber drei oder mehr, mit beiden Seitenteilen 105 verbundene Tragsäulen 106. Die Saiten 102 werden zwischen den beiden Seitenteilen 105 angeordnet, wobei zur spannbaren Befestigung am einen Seitenteil 105 jeweils eine Spanneinrichtung vorgesehen ist. Das eine Seitenteil 105 umfasst eine Mensurplatte 107, so dass die Saitenlänge von einer kürzesten zu einer längsten Saite schrittweise zunimmt. Um die hohe Spannkraft aller Saiten aufnehmen zu können, sind an den Seitenteilen 105 nach innen stehende Rippen 105a ausgebildet, die mit den Tragsäulen 106 verbunden sind. Um das Entstehen unerwünschter Geräusche zu verhindern, sind die Rippen 105a vorzugsweise als Doppelrippen mit einer Hartgummi-Zwischenlage ausgebildet und die Tragsäulen 106 sind zumindest abschnittweise mit Hartgummi gefüllt. Die Träger 104 mit den Anregungsvorrichtungen sind an den Tragsäulen 106 befestigt und können etwas verstellt werden, so dass die Saiten 102 im wesentlichen zentriert durch die Durchtrittsöffnungen 104a geführt sind.
  • Zum akustischen Abstrahlen der Saitenschwingungen ist ein Klangkörper 108 vorgesehen. Der Klangkörper 108 ist als Hohlkörper ausgebildet und umfasst eine Membran 109, ringförmig geschlossen angeordnete Zargen 110 und insbesondere einen Boden 111. An der einen Stirnseite der Zargen 110 ist die Membran 109 und an der anderen Stirnseite der Boden 111 angeordnet. Die Membran 109 ist den Saiten 102 zugewandt, wobei die Saiten 102 an einem Steg 112 anliegen, der seinerseits mit der Membran 109 in Kontakt ist. Der Klangkörper 108 ist über eine nicht dargestellte Abstands-Verstelleinrichtung mit dämpfenden Gummielementen an der Haltevorrichtung 103, insbesondere an den Tragsäulen 106, befestigt. Mittels der Abstands-Verstelleinrichtung kann die Spannung mit der die Saiten 102 am Steg 112 anliegen optimal eingestellt werden.
  • Zum Zuführen von Signalen an die Anregungsvorrichtungen in den Trägem 104, ist zumindest ein Interface 113 vorgesehen, dem Steuersignale über zumindest einen Eingang 113a zuführbar ist. Vom Interface führen Kabel 113b zu den Anregungsvorrichtungen.
  • Um eine hohe Klangqualität des Instrumentes 101 zu gewährleisten, wurde ein neuer, einfach aufgebauter Klangkörper 108 mit einer vorgespannten Membran 109 entwickelt. Gemäss Fig. 2, 2a, 2b und 2c sind vier Zargen 110 zu einem Rechteck zusammengestellt und an einer Stirnseite mit dem Boden 111 verbunden. Die langen seitlichen Zargen 110 stehen gegen die Membran 109 hin etwas nach aussen. Um die Stabilität der langen Zargen 110 bei der Membran 109 zu erhöhen, sind an den Zargen 110 bei der Membran 109 nach innen stehende, im wesentlichen parallel zur Membran 109 verlaufende, von dieser aber etwas beabstandete Längsrippen 114 befestigt. Damit die Membrane 109 besonders gute Schwingungseigenschaften hat, wird sie aus Klangholz mit engen Jahrringen hergestellt und in einem vorgespannten Zustand mit den Zargen verbunden. Im Klangholz stehen die Jahrringe senkrecht zur Oberfläche, die Faserrichtung erstreckt sich vorzugsweise in Richtung der grossen Recheckseite und in Richtung der kleinen Recheckseite folgt Jahrring auf Jahrring. Die Membran 109 wird zumindest senkrecht zur Faserrichtung, vorzugsweise aber auch entlang der Faserrichtung etwas gebogen und somit vorgespannt an den Zargen 110 befestigt, insbesondere damit verleimt. Die Zargen 110 sind an der Stirnseite, die der Membran 109 zugewandt ist, gekrümmt, wobei die Stirnseiten der kürzeren Zargen stärker gekrümmt sind als die Stirnseiten der längeren Zargen. Die bevorzugten Krümmungsradien hängen von der Holzqualität ab und liegen für die kurze Seite unterhalb von 1.2m, insbesondere unterhalb von 1m, vorzugsweise bei im wesentlichen 0.95m. Für die lange Seite liegen die bevorzugten Krümmungsradien oberhalb von 10m, insbesondere oberhalb von 12m, vorzugsweise bei im wesentlichen 14m. Die Membran 109 erhält dadurch die Form einer Teilfläche eines Torus oder eines Tonnenkörpers, wobei diese toroide Fläche vorzugsweise gegen die Saite vorsteht und daher in einen grösseren Raumwinkel abstrahlt als eine gegen das Innere des Klangkörpers gebogene Fläche. Die Längsrippen 114 verhindern, dass die Spannung der Membran 109 zu einer Verformung der langen Zargen 110 führt.
  • Um die Spannungsverteilung in der Membran 109 nicht durch eine Öffnung negativ zu verändern, wird gemäss einer bevorzugten Lösung die mindestens eine Öffnung 115 für den Luftaustausch und das Abstrahlen von Schall aus dem Innern des Klangkörpers 108 im mittleren Bereich der langen Zargen 110 ausgebildet. Die Öffnung 115 erstreckt sich schlitzförmig durch die Zargen 110 und die Längsrippen 114. Um auch im Bereich der Öffnungen 115 die Membran 109 zu halten, ist an den Längsrippen 114 ein bis zur Membran 109 vorstehender Haltebereich 114a ausgebildet.
  • Fig. 3 zeigt eine Annegungsvorrichtung 116, mit der auf eine Saite 117 mit magnetisierbarem Material eine oszillierende Kraft F senkrecht zur Längsrichtung der Saite 117 ausgeübt werden kann. Beidseits der Saite 117 sind Spulen 118 und in den Spulen 118 Permanentmagnete 119 angeordnet. Die beiden Permanentmagnete sind gleich ausgerichtet und erzeugen in einem Luftspaft 120 mit der Saite 117 ein starkes Magnetfeld. Um die Saite in diesem permanenten Magnetfeld in Oszillation zu versetzen, werden von den Spulen 118 gemäss einem Anregungssignal Inhomogenitäten im Magnetfeld erzeugt. Die Spulen 118 sind gegensinnig gewickelt und so angeschlossen, dass Magnetfelder, die jeweils mit gleichen Polen gegeneinander gerichtet sind, entstehen. In der einen bzw. anderen Stromrichtung wird die gesamte, durch die Spulen und das permanente Feld gegebene, Magnetfelddichte gegen die eine bzw. andere Spule hin erhöht Die entsprechend der Stromrichtung alternierenden inhomogenen Magnetfelder im Luftspalt wirken mit entsprechenden Kräften auf das magnetisierbare Material der Saite 117.
  • Fig. 4 zeigt eine bevorzugte Anregungsvorrichtung 116', bei der magnetisierbare Kernteile 121, insbesondere aus Elektroblechen aufgebaute Eisenkerne, eingesetzt sind. Diese Kernteile 121 sind E-förmig, wobei die äusseren beiden Vorsprüngen 121 a über je einen Dauermagneten 119 miteinander verbunden sind und um den mittleren Vorsprung 121 b je eine Spule 118 angeordnet ist. Die Spulen 118 sind wie gemäss Fig. 3 gegensinnig gewickelt bzw. angeschlossen. Durch eine Verengung oder Verbreiterung des mittleren Vorsprunges 121b kann die Feldstärke im Luftspalt 120 und die Ausdehnung des Feldes in Richtung der Saite 117 verändert werden. Durch die Kernteile 121 kann der Luftanteil in dem sich die Magnetfeldlinien ausbilden und damit der Widerstand gegen das Magnetfeld, reduziert werden. Dadurch kann die Felddichte im Bereich des luftspaltes 120 erhöht werden. Die Überlagerung der Felder der Dauer-und Elektromagneten 119, 118 führt im Luftspalt 120 zum eingezeichneten inhomogenen Magnetfeld. Die Kraftwirkung des inhomogenen Feldes auf die Saite 117 kann ausgehen von der Maxwell-Spannung durch eine Integration über eine, die Saite umschliessende Systemgrenze G, bestimmt werden. Gemäss Fig. 5a wird für eine Abschätzung der Kräfte in Richtung der gemeinsamen Achse der Spulen 118 die Systemgrenze G in vier Teilflächen A1, A2, A3 und A4 aufgeteilt und davon ausgegangen, dass das Magnetfeld senkrecht zu den Fläche A1 bzw. A2 den im wesentlichen konstanten Wert B1 bzw. B2 hat Senkrecht zu den Flächen A3 und A4 ist das Magnetfeld verschwindend klein. In einer ersten Näherung lassen sich die auf die Teilflächen A1 bzw. A2 wirkenden Kräfte F1 bzw. F2 folgendermassen berechnen: F 1 = A L 2 μ 0 B d 1 + B E 2
    Figure imgb0004
    F 2 = A L 2 μ 0 B d 2 - B E 2
    Figure imgb0005
    • wobei Bd1, Bd2 von den Permanentmagneten erzeugte Flussdichten bei den Flächen A1 bzw. A2,
    • BE von einem Elektromagneten erzeugte Flussdichte bei A1 bzw. A2,
    • AL eine Fläche und
    • µ0 eine magnetische Feldkonstante darstellt
  • Die resultierende Kraft berechnet sich für Bd1 = Bd2= Bd folgendermassen: F = F 1 - F 2 = k B d B E
    Figure imgb0006
  • Die Anregungskraft nimmt also sowohl mit der Feldstärke der Permanentmagneten als auch mit der Feldstärke der Elektromagneten zu. Weil BE in F1 vom einen und in F2 vom anderen Elektromagneten 118 herrührt, würde eine Anordnung mit nur einer Spule eine deutlich kleinere Kraft erzielbar machen.
  • Fig. 5b zeigt die Kraftwirkung auf die Saite 117 in Funktion ihrer Auslenkung in Richtung der Achse der Elektromagneten 118 für drei verschiedene Sorten von Permanentmagneten 119, die im Luftspalt Magnetfelder von 0.25, 0.5 und 1T erzeugen. Im Zentrum des Luftspaltes, bzw. bei der Auslenkung 0 ist die Kraft im wesentlichen proportional zum Magnetfeld des Dauermagnete.
  • Fig. 6 zeigt, dass die Positionierung der Anregungsvorrichtung 116, 116' bzw. des Trägers 104 längs der Saite 102,117 eine entscheidende Rolle spielt Vor allem für die Anregung der tieffrequenten Schwingungen ist es wichtig, genügend Abstand vom nächsten Knoten zu haben, weil mit zunehmender Distanz von einem Knotenpunkt, der zu Verfügung stehende Hebel grösser wird, so dass bei gleicher Kraftwirkung eine grössere Auslenkungerzielt wird. Für die in y-Richtung dargestellte Anregungsfähigkeit in Abhängigkeit von der relativen Lage der Anregungsvorrichtung entlang der frei schwingenden Saite, also zwischen dem einen Seitenteil 105 und dem Steg 112, wurden die untersten vier Teilschwingungen berücksichtigt. Die Anregungsfähigkeit hat bei einer Position x/l=0.83 ein absolutes Maximum. Das bedeutet, dass an dieser Stelle eine optimale Anregung der untersten vier Teilfrequenzen möglich ist Werden höhere Eigenfrequenzen der Saite in die Berechnung einbezogen, so verschiebt sich das Maximum gegen eine Position x/l=0.87. Die Saiten können also optimal in der Nähe des Steges oder aber auch in der Nähe des gegenüberliegenden Seitenteiles angeregt werden.
  • Weil die Saiten 102 aufgrund der hohen Spannkräfte lange nachklingen, müssen sie gedämpft werden können. Fig. 7a und 7b zeigen schematisch zwei Lösungen für das mechanische Dämpfen einer Saite 102. Die mechanische Dämpfung erfolgt mit Hilfe von Dämpfern 122, die von zwei Seiten an die Saite herangeführt werden. Gemäss Fig. 7a werden die Dämpfer 122 um einen Drehpunkt 123 je auf einer Seite dieses Drehpunktes zur Saite 102 hin und weg bewegt. Gemäss Fig. 7b werden die Dämpfer gegeneinander bewegt, wobei die Saite zwischen den Dämpfern festgeklemmt werden kann.
  • Als Antrieb für die Bewegung der Dämpfer dient ein elektromechanisches System, mit welchem sowohl jede Saite einzeln als auch alle Saiten zusammen gedämpft werden können. Die Dämpfungsart, insbesondere der minimale Abstand der Dämpfer 122 von der Saite 102, wird beispielsweise über ein Pedal, oder auch eine andere Steuerungseinrichtung eingestellt. Gemäss Fg. 7c kann jeder Dämpfer eine Position einnehmen, bzw. eine Positionsbewegung durchführen, im Bereich zwischen dem maximalen Dämpfdruck auf die Saite + und der vollständigen Freigabe der Saite -. Die effektive Position und/oder eine beim Dämpfen durchgeführte Hubbewegung kann durch das Pedal verstellt werden. Es ist möglich, den durch das Pedal gegebenen Nullpunkt, flexibel zu überschreiten, insbesondere bis zum maximalen Dämpfdruck. Dadurch können stark schwingende Saiten auch bei einer aufgrund der Pedallage schwachen Dämpfung ideal gedämpft werden.
  • Die mechanischen Dämpfer umfassen jeweils pro Saite eine Dämpfersohle mit einem Dämpferschuh sowie eine Justiervorrichtung zum Ausrichten des Dämpferschuhs längs und quer zur Saite. Die Betätigung der Dämpfer erfolgt über mechanische Hubvorrichtungen mit Elektromotoren oder Elektromagneten. Um eine reproduzierbare Dämpfung zu erreichen, müssen die Antriebssysteme eine Positionsregelung aufweisen. Die Nullpunkteinstellung erfolgt entweder durch eine synchrone Positionierung der Magnetsysteme oder zentral durch ein separates Antriebssystem.
  • Fig. 8 zeigt eine Dämpfungs-Lösung, bei der die Schwingung der Saiten 102 einzeln erfasst wird und entsprechend der erfassten Saitenschwingung mit einer Anregungsvorrichtung 116' die Saiten 102 in Gegenphase angeregt werden. Dazu wird über eine Positionsmesseinrichtung 124, beispielsweise eine optische Distanzmessung, gegebenenfalls aber über eine Messung an der Anregungsvorrichtung, beispielsweise eine Induktionsmessung, die Bewegung der Saite 102 erfasst. Aus der Positionsmessung kann ein Geschwindigkeitssignal abgeleitet werden, das zum Erzeugen einer Dämpfungskraft einsetzbar ist. Die Lage bzw. Bewegung der Saite wird möglichst in der Nähe der Anregungs- bzw. Dämpfungsvorrichtung gemessen.
  • Zur Steuerung der berührungslosen Dämpfung wird vorzugsweise ein Regelkreis verwendet, der Ober eine Sollfunktion den Amplitudenverlauf der Saitenschwingung während des Dämpfungsvorganges vorgibt. Mit einer Amplitudenmessung kann der Abklingvorgang überwacht und gegebenenfalls aufgrund von Abweichungen beeinflusst werden. Die Amplitudenmessung muss bezüglich seitlicher Schwingungen unempfindlich sein, damit durch die Dämpfung nicht ungewollte Bewegungen angeregt werden können. Wenn die Amplitudenmessung frequenzselektive erfolgt, so kann auch die Dämpfung frequenzselektiv durchbeführt werden. Durch die berührungslose Dämpfung ist ein gezieltes Löschen von Signalspektren in einem Signal möglich. Diese Funktionalität ist mit einem mechanischen Dämpfer nicht möglich. Für eine optimale Dämpfung sollte die übertragene Kraft in einem Schwingungsbauch angreifen.
  • Fig. 9 zeigt eine Ausführungsform eines Interface 113 mit verschiedenen Eingängen. Nebst zumindest einem MIDI-Eingang 125 gibt es mehrere parallele Sound-Eingänge 126, die insbesondere von analog 126a auf digital 126b und umgekehrt umschaltbar sind. Vorzugsweise ist zumindest ein Mikrophon-Eingang 127 vorgesehen. Ober einen Mikrophon-Eingang kann beispielsweise der Klang einer Geige zur Steuerung verwendete werden. Wenn nun für ein Instrument mit einem chromatischen Saitensatz ein chromatisches Signal zum Ansteuern der einzelnen Saiten vorliegt, so ist es zweckmässig ein Interface mit einem Chromatic-Eingang 128 einzusetzen, was ein ideales Zuordnen der Töne und insbesondere keine Tonverklumpung ergibt. Weil bei Saiten 102 mit langen Schwingungsdauem auch das Dämpfen der Saiten für eine gute Klangqualität wichtig ist, umfasst das Interface 113 insbesondere einen Dämpfungs-Eingang 129, der beispielsweise mit mindestens einem Dämpfungspedal verbunden ist. Ober den Dämpfungs-Eingang wird das Dämpfungsverhalten der mechanischen Dämpfer und/oder der Dämpfung mittels der Anregungsvorrichtungen beeinflusst, beispielsweise indem bei gedrücktem Pedal die Dämpfung weggelassen bzw. geschwächt wird.
  • Das Interface erzeugt ausgehend von den Eingangssignalen Steuersignale für die Anregungsvorrichtungen 116, 116', bzw. für Verstärker 130 der Anregungsvorrichtungen. Bei einem Instrument mit 12 Saiten werden 12 Anregungsvorrichtungen 116' und 12 Verstärker 130 eingesetzt. Die Verstärker 130 können als Teile der Anregungsvorrichtungen 116' oder als Teile des Interface 113 betrachtet werden. Die Signale, die über einen MIDI-Eingang 125 ins Interface 113 gelangen, können die verschiedenartigsten Informationen umfassen, wobei das Interface 113 zur Umsetzung dieser Informationen verschiedene Elemente umfasst. Zum Bereitstellen von Steuersignalen für die mechanische Dämpfung 131 ist eine erste Dämpfungssteuerung 132 vorgesehen, der Signale vom Dämpfungs-Eingang 129 und vom MIDI-Eingang 125 zuführbar sind. Zur Steuerung der berührungslosen Dämpfung ist eine zweite Dämpfungssteuerung 133 vorgesehen, die Signale von Positionsmesseinrichtung 124, vom Dämpfungs-Eingang 129 und vom MIDI-Eingang 125 verarbeitet und den Verstärkern 130 Steuersignale zuführbar macht.
  • Weil die Signale, die Ober Mikrophon- oder Sound-Eingänge 127, 126 zur Steuerung des Instrumentes eingesetzt werden, nicht auf die Eigenschaften des Instrumentes ausgerichtet sind, so kann die Klangqualität durch die Verwendung eines ersten und eines zweiten Filters 134 bzw. 135 zwei verschieden Anregungsweisen ermöglichen. Eine erste, Resonanzmodus genannte, Anregungsweise benützt ein gemeinsames Anregungssignal des ersten Filters 134 zur gleichzeitigen Ansteuerung aller Verstärker 130, wobei die Saiten 102 entsprechend ihrer Eigenfrequenzen bzw. Obertonspektren nur auf die Signalanteile mit den Eigenfrequenzen der jeweiligen Saite 102 ansprechen. Eine zweite, Tonaufteilungsmodus genannte, Anregungsweise ordnet die Töne des eines Signales den Saiten 102 zu auf denen diese Töne klingen. Entsprechend werden Signalanteile ausgehend vom zweiten Filter 135 über ein Tonaufteilungselement 136 jeweils entsprechenden Verstärkern 130 zugeführt. Wenn das Ursprungssignal vom Mikrophon-Eingang stammt, so wird es vor dem zweiten Filter 135 verändert, vorzugsweise durch ein Tonanalyseelement 137 verarbeitet, insbesondere werden Signale für die Dämpfungssteuerungen .132, 133 aus dem Signal abgeleitet und diesen zuführbar gemacht Es sind auch Verbindungen vorgesehen, die es erlauben, die Filter 134, 135 und das Tonaufteilungselement 136 über den MIDI-Eingang zu beeinflussen bzw. zu steuern. Die Signale des Chromatic-Eingangs 128 werden im wesentlichen direkt den entsprechenden Verstärkern 130 zugeführt.
  • Fig. 10 zeigt die vielseitigen Einsatzmöglichkeiten des efindungsgemässen Instrumentes 101, das in hochgestellter Lage oder gegebenenfalls in horizontaler Lage einsetzbar ist. Das Instrument steht jeweils auf Füssen 146. Um das Instrument 101 zu schützen und/oder die Marigabstrahlung zu beeinflussen, ist vorzugsweise eine Hülle 138 vorgesehen. Die Hülle. 138 ist mit der Haltevorrichtung 106 verbunden und umfasst mindestens drei, flächige, vorzugsweise gewölbte lamellenförmige, Richtungselemente 139, die zur Beschränkung des Raumbereiches, in den der Klang des Klangkörpers 109 abgestrahlt wird, einsetzbar ist. Damit die Hülle 138 auch eine Schutzfunktion übernehmen kann, umfasst diese auf der von den Saiten abgewandten Rückseite des Klangkörpers einen Bodenbereich 140 und daran anschliessend einen um den Klangkörper führenden Wandbereich 141: Die Richtungselemente 139 sind als Deckel an den Wandbereich 141 anlegbar, so dass die Hülle 138 den Klangkörper 109 vollständig umschliesst. Die Richtungselemente 139 sind an einer nicht dargestellten Führungsvorrichtung mit Scharnieren für die radiale Bewegung und mit Parallelogrammen zur proportionalen Längsverstellung geführt. Die Richtungselemente können beispielsweise Umlenkflächen bilden, die beispielsweise bei einem horizontal ausgerichteten Klangkörper unter einem Winkel von im wesentlichen 45° zur Horizontalen über dem Klangkörper verlaufen und den dominant vertikal nach oben austretenden Schall des Klangkörpers im wesentlichen in eine horizontale Richtung umlenken.
  • Zum Spielen des Instrumentes, bzw. zum Bereitstellen von Steuersignalen für das Instrument, können Geräte wie ein Keyboard 142, ein Mikrophon 143, ein Synthesizer mit Keyboard 144 oder auch ein beliebiges Audio-Endgerät 145 mit einem Signalausgang, beispielsweise einem Lautsprecherausgang, verwendet werden. Das Instrument kann wie ein Tasteninstrument gespielt werden. Es kann aber auch die Mikrophon-Aufnahme eines herkömmlichen Instrumentes zum Ansteuern verwendet werden. Wenn das Instrument die Signale eines Audio-Endgerätes oder eines Sequenzers erhält, so kann es als automatisches Hausinstrument verwendet werden.
  • Beim erfindungsgemässen Saiteninstrument können durch verschiedene berührunslose Anregungsvorrichtungen Saiten zum Schwingen gebracht werden. Fig. 11. zeigt eine elektromagnetische Anregungsvorrichtung mit zwei Hartmagneten 11 und 12, die einige Millimetern von einander beabstandet angeordnet und von je einem Elektromagnet 13 und 14 umgeben sind. Durch den Abstand zwischen den Magneten 11 und 12 wird ein Ein- oder Mehrfachsaitenstrang geführt 15. Die beiden Hartmagnete 11, 12 müssen so angeordnet sein, dass Nordpol auf Südpol zeigt. Der Wickelsinn der Elektromagnete 13, 14 hingegen muss gegeneinander laufen (z.B. Nord- auf Nordpol).
  • Fig. 12 zeigt eine Anregungsvorrichtung mit zwei Weichmagneten 21 und 22, die in einigen Mittimetem Abstand zueinander angeordnet und von je einem Elektromagnet 23 und 24 umgeben sind. Die beiden Elektromagnete 23, 24. sollen durch einen Anker 25 magnetischen Schluss bekommen. Durch den Abstand zwischen den Magneten 21, 22 wird ein Einoder Mehrfachsaitenstrang 26 geführt Die Saite 26 wird durch einen konstanten Strom durchflossen. Der Strom ist so zu wählen, dass in der Saite noch keine thermischen Effekte zum Tragen kommen. Der Strom bewirkt ein magnetisches Feld um die Saite 26. Die magnetischen Felder der Elektromagnete 23, 24 und das magnetisches Feld der Saite führen zu einer Kraftwirkung auf die Saite 26, die eine Schwingung zur Folge hat
  • Fig. 13 beschreibt eine Anregungsvorrichtung, welche die Kraftwirkung durch ein moduliertes elektrostastisches Feld bzw. mittels einer Platte, die längs zur Saite angeordnet ist, erzielt. An der Saite oder der Platte liegt zusätzlich eine Modulierspannung an.
  • Fig. 14 zeigt eine Anregungsvorrichtung mit einer Zweifach-Plattenanordnung, welche die Kraftwirkung durch ein moduliertes elektrostastisches Feld mittels zweier Platten (+U=/+1000V und -U=/ -1000V), die parallel und längs zur Saite angeordnet sind, erreicht. An der Saite liegt zusätzlich die Modulierspannung an.
  • Das geometrische Maß der Magnete 11, 12, 21 und 22 gemäss Fig. 11 und Fig. 12, bzw. der Platten gemäss Fig. 13 und 14, in Längsrichtung zur Saite, soll im Verhältnis zur Saitenlänge möglichst klein sein. Die kürzeste Wellenlänge auf der Saite (Grenzfrequenz), die angeregt werden kann, entspricht diesem Maß des Magneten oder der Platten. Bei einer Lösung gemäss Fig. 11 darf dieses geometrische Maß nur so klein ausfallen, dass die Magnetisierung des Elektromagneten die Remanenz des Hartmagneten nicht übersteigt.
  • Bei den Anregungsvorrichtungen gemäss den Fig. 11 bis 14 kann durch ein Zweiwegsystem bestehend aus einer Tiefton-Anregungsvorrichtung (mit vergrößertem geometrischem Maß zur Saitenlänge) und einer Mittelton-Anregungsvorrichtung (mit kleinerem geometrischem Maß zur Saitenlänge) ein erhöhter Leistungsfluss erreicht werden. Bei der Anordnung dieses Zweiwegsystems müssen die Positionen der beiden Anregungsvorrichtungen auf der Saitenlänge gezielt gewählt werden, damit möglichst wenige Kontenpunkte von Teiltönen der Saite überlagert werden, bzw. keine Phasenverkehrungen von der Tiefton-Anregungsvor richtung zur Mittelton-Anregungsvorrichtung und umgekehrt stattfinden.
  • Das erfindungsgemässe Saiteninstrument regelt die Zufuhr von digitalen oder elektrosynthetisch generierten Sounds auf die Saiten über zwei Kanäle: a) die Klänge werden den Saiten einzeln nach Frequenz/Tonhöhe zugeordnet, und b) jede Klangfarbe kann der gesamten Oktave (12 Saitenstränge), global reguliert, eingespiesen werden (Volume). Damit wird das Obertonspektrum über eine Saite hinaus erweitert Viele Klangfarben beinhalten auch irreguläre Obertöne, die sich dadurch auf Nachbarsaiten bilden.
  • Das erfindungsgemässe Saiteninstrument speist, um die schwingenden Saiten dämpfen zu können, die den Saiten über ein Tonabnehmer (z.B. Optokoppler) abgenommenen Schwingungen den Saiten über die berührungslosen Anregungsvorrichtungen phasenverkehrt wieder ein.
  • Gemäss Fig. 15a hat das Interface und der Verstärker 59 des erfindungsgemässen Saiteninstruments im Rücken hinter dem Kiangkorpus ihren Platz.
  • Das erfindungsgemässe Saiteninstrument setzt für die 12 chromatischen Töne je einen Ein- oder Mehrfachsaitenstrang und ein Tongebersystem bzw. eine Anregungsvorrichtung ein. Dadurch kann in allen 12 Tonarten musiziert werden; auf dem 2. Teilton eines Saitenstrangs kann die erste Oktave gebildet werden, bzw. auf dem 4. Teilton die Doppeloktave, usw.
  • Das erfindungsgemässe Saiteninstrument kann aus einem Einzelinstrument bestehen oder aus mehreren Registerinstrumenten. Ein Einzelinstrument benötigt eine Besaitung von zwei chromatischen Oktaven (Alt-Oktave, z.B. g - fis und Bass-Oktave, Kontra G bis FIS), um den standardgemässen Tonumfang zu erreichen (zuzüglich der 2., 4., usw. Teiltöne). Ein Registerinstrument muss mit einer chromatischen Oktave Besaitung ausgestattet sein (12 Saitenstränge). Zwei Registerinstrumente (Alt und Bass) erreichen den standardgemässen Tonumfang ebenfalls zuzüglich der 2., 4., usw. Teiltöne. Ein Quartett von vier, bzw. ein Quintett von fünf Registerinstrumenten (Sopran, Alt, Tenor, Bass und Kontra-Bass) lässt sich mittels Tonumfang-Splitting vernehrt durch Grundtöne spielen.
  • Die Konstruktion des erfindungsgemässen Registerinstruments (Fig. 15a) trennt die klanglichen, die statischen und die schützenden Teile. Ober dem Klangkorpus 51; der von Übergangsteilen 52 in der Aussenkonstruktion gehalten wird, werden die Saiten 53 über den Steg 54 gespannt Der Saitenzug wird von einem Hüllrahmen gehalten, welcher zwei Seitenteile 55 umfasst, die von der zentralen Tragsäule 57 gestützt und von zwei Gegenzügen 56 mit einer Gegenkraft beaufschlagt werden. Die Hülle 58 findet sowohl als Schutz, wie auch als Schallrichter Verwendung oder kann vom eigentlichen Instrument (Klangkorpus mit Hüllrahmen) getrennt werden.
  • Die Konstruktion des erfindungsgemässen Registerinstrumentes ermöglicht das Spielen in horizontaler (liegend wie ein Flügel) wie auch in vertikaler Position (stehend wie ein Kirchenorgelregister). Das Instrument lässt sich in beiden Positionen auf der Hauptachse verdrehen (Fig. 15c, 15d). Dies ist in der horizontalen Position sehr nützlich, damit der Abstrahlungswinkel zur spielenden Person oder zum Publikum hin wählbar ist.
  • Die erfindungsgemässe Schutz-Hülle (Fig. 16a; horizontaler Schnitt des stehenden Instruments) besteht aus einem Rückenelement R und aus zwei beweglichen Flügeln F1 und F2. Die beiden Flügel sind mit Scharnieren hinten Sh und in der Mitte Sm versehen und dadurch beweglich. Durch eine Anzahl Lamellen, die sich übereinander schieben lassen, können die Flügel F1, F2 verkürzt, bzw. verlängert werden (Fig. 16c). Diese. Lamellen lassen sich auch ausdrehen und öffnen, damit die Klangabstrahlung durch die Schutzhülle hindurch möglich ist (Fig. 16b).
  • Die beiden Flügel F1 und F2 des erfindungsgemässen Registerinstruments lassen sich wie folgt anordnen und umbauen:
    • Instrument stehend: geschlossener Zustand (Fig. 16a; horizontaler Schnitt).
    • Instrument stehend: Lamellen ausgedreht, geöffnet (Fig. 16b; horizontaler Schnitt). Instrument stehend: beide Flügel sind als Schallrichter zum Konzertsaal hin geöffnet (Fig. 16c; horizontaler Schnitt).
  • Instrument liegend: der erste Flügel F1 ist in Teil H und V zerlegt und seitlich (als Zargen) montiert und der zweite ganze Flügel F2 wird als Deckel und Schallrichter H und V verwendet, das mittlere Scharnier wird arretiert (Fig. 16d).

Claims (15)

  1. Instrument mit mindestens einer stimmbaren Saite (102), einer Haltevorrichtung (103) zum Halten der mindestens einen Saite (102), mindestens einer elektrisch oder elektronisch betriebenen Anregungsvorrichtung (116, 116') zum berührungslosen Anregen der mindestens einen Saite (102), einem Klangkörper (108) zum akustischen Abstrahlen der Saitenschwingung und einem Interface (113) zum Zuführen eines Signales für die Ansteuerung der mindestens einen Anregungsvorrichtung (116, 116'), dadurch gekennzeichnet, dass ein Steg (112) die Saitenschwingungen auf den Klangkörper (108) übertragbar macht, die mindestens eine Saite (102) magnetisierbares, insbesondere ferromagnetisches, Material umfasst, die mindestens eine Anregungsvorrichtung (116, 116') zwei, beidseits eines Luftspaltes (120) mit der Saite (102, 117), im Wesentlichen um eine gemeinsame Spulenachse angeordnete Spulen (118) und eine Magnetvorrichtung zum Erzeugen eines permanenten Magnetfeldes umfasst, wobei das permanente Magnetfeld im Bereich des Luftspaltes (120) im wesentlichen parallel zur Spulenachse steht und die Spulen (118) so gewickelt und angeschlossen sind, dass sie im stromdurchflossenen Zustand Magnetfelder mit gegeneinander gerichteten gleichen Polen erzeugen, so dass im Luftspalt (120) ein inhomogenes Magnetfeld erzielbar ist, das die Saite mit einer Auslenkungskraft beaufschlagbar macht.
  2. Instrument nach Anspruch 1, dadurch gekennzeichnet, dass die Haltevorrichtung (103) zwei Seitenteile (105) und zumindest eine, mit beiden Seitenteilen (105) verbundene Tragsäule (106) umfasst, wobei die mindestens eine Saite (102) an beiden Seitenteilen (105), oder damit verbundenen Teilen, befestigt und dabei zum Stimmen spannbar ist.
  3. Instrument nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Klangkörper (108) zwischen den Saiten (102) und der mindestens einen Tragsäule (106) angeordnet ist und vorzugsweise eine Abstands-Verstelleinrichtung zwischen dem Klangkörper (108) und der Haltevorrichtung (103), insbesondere der mindestens einen Tragsäule (106), eingesetzt ist, welche den Klangkörper (108) mitsamt dem Steg (112) gegen die mindestens eine Saite (102) pressbar macht.
  4. Instrument nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Klangkörper (108) eine Membran (109), ringförmig geschlossen angeordnete Zargen (110) und insbesondere einen Boden (111) umfasst, wobei an der einen Stirnseite der Zargen (110) die Membran (109) und an der anderen Stirnseite der Boden (111) angeordnet ist und die Membran (109) der mindestens einen Saite (102) zugewandt, sowie vorzugsweise aus Klangholz gebildet und insbesondere in einem durch Biegen vorgespannten Zustand mit der Form einer Teilfläche eines Torus oder eines Tonnenkörpers mit den Zargen (110) verbunden ist.
  5. Instrument nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Klangkörper (108) zumindest eine Öffnung (115) ausgebildet ist, durch die ein Luftaustausch vom Inneren des Klangkörpers (108) zur Umgebung ermöglicht wird, wobei die mindestens eine Öffnung (115) vorzugsweise im Bereich einer Zarge (110) ausgebildet ist.
  6. Instrument nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein chromatisch stimmbarer Saitensatz, bei dem gegebenenfalls zumindest einzelne Saiten (102) mindestens zweifach vertreten sind, eingespannt ist, wobei insbesondere eine chromatische Besaitung von zwei Oktaven mit mindestens 24 Saiten, beispielsweise in der Lage g - fis' und Kontra G bis FIS, vorzugsweise aber lediglich von einer Oktave mit mindestens 12 Saiten, beispielsweise in einer Sopran-, Alt-, Tenor-, Bass- oder Kontra-Bass-Lage, bereitgestellt wird.
  7. Instrument nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Magnetvorrichtung zum Erzeugen eines permanenten Magnetfeldes mindestens einen Permanentmagneten (119) mit hoher magnetischen Flussdichte umfasst, vorzugsweise einen Samarium-Kobalt (SmCo) oder ein Neodymium-Eisen-Bor (NdFeB) Magneten.
  8. Instrument nach Anspruch 7, dadurch gekennzeichnet, dass mindestens ein, vorzugsweise aber zwei, Kernteile (121) aus magnetisierbarem Material vorgesehen sind, der bzw. die ausgehend von den beiden Seiten des Luftspaltes (120) zusammen mit dem mindestens einen eingesetzten Permanentmagneten (119) einen bis auf den Luftspalt (120) im wesentlichen geschlossenen Magnetfeldleiter bilden, wobei insbesondere zwei E-förmige Kernteile (121) eingesetzt sind, die bei den äusseren beiden Vorsprüngen (121 a) über je einen Dauermagneten (119) miteinander verbunden sind und um deren mittleren Vorsprung (121b) je eine der beiden Spulen (118) angeordnet ist.
  9. Instrument nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Interface (113) zumindest einen MIDI-Eingang (125), vorzugsweise mehrere parallele Sound-Eingänge (126), die insbesondere von analog auf digital und umgekehrt umschaltbar sind, insbesondere zumindest einen Mikrophon-Eingang (127), gegebenenfalls einen Chromatic-Eingang (128) und einen Dämpfungs-Eingang (129) umfasst, wobei das Interface Signalbearbeitungselemente, wie Filter (135, 134), Analyseelemente (137) und Aufteilungselemente (136) umfasst, die ausgehend von den Eingangssignalen Steuersignale für Verstärker (130) der Anregungsvorrichtungen (116, 116') erzielbar machen.
  10. Instrument nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Dämpfungsvorrichtung ausgebildet ist, die vorzugsweise zum Erzielen einer selektiven Dämpfung mit einem Sensor (124) die effektive Schwingung, insbesondere deren Phasenlage, erfassbar und ein gegenphasiges Anregungssignal der Anregungsvorrichtung (116, 116') der Saite (102) zuführbar macht und/oder dass eine mechanische Dämpfungsvorrichtung ausgebildet ist, die elektromechanisch betätigte Dämpfungselemente (122) gegen die Saite (102) drückbar macht, wobei die Bewegung der Dämpfungselemente (122) vorzugsweise von der effektiven Saitenschwingung abhängig und/oder über eine vorgegebene Bewegungsfunktion steuerbar ist
  11. Instrument nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Instrument sowohl horizontal als auch vertikal aufstellbar ist und/oder eine Hülle (138) an der Haltevorrichtung (103) befestigt ist, die auf der von den Saiten (102) abgewandten Rückseite des Klangkörpers (108) einen Bodenbereich (140) und daran anschliessend einen um den Klangkörper führenden Wandbereich (141), sowie einen an den Wandbereich (141) anlegbaren Deckel, vorzugsweise mit zumindest einem verstellbaren Richtungselement (139) umfasst.
  12. Anregungsvorrichtung zum berührungslosen Anregen mindestens einer gespannten Saite (102) mit magnetisierbarem Material, gekennzeichnet durch, zwei, beidseits eines Luftspaltes (120) zur Aufnahme der Saite (102), im wesentlichen um eine gemeinsame Spulenachse angeordnete Spulen (118) und eine Magnetvorrichtung zum Erzeugen eines permanenten Magnetfeldes, vorzugsweise mindestens einen Permanentmagnet (119), wobei das permanente Magnetfeld im Bereich des Luftspaltes (120) im wesentlichen parallel zur Spulenachse steht und die Spulen (119) so gewickelt und angeschlossen sind, dass sie im stromdurchflossenen Zustand Magnetfelder mit gegeneinander gerichteten gleichen Polen erzeugen, so dass im Luftspalt (120) ein inhomogenes Magnetfeld erzielbar ist, das die Saite (102) mit einer Auslenkungskraft beaufschlagbar macht.
  13. Ein Verfahren zum Erzeugen von Klängen bei dem ein externes Signal zu einem Steuersignal für zumindest einen Verstärker (130) verarbeitet wird, eine eingespannte Saite (102) durch eine vom Verstärker (130) elektrisch oder elektronisch betriebene Anregungsvorrichtung (116, 116') berührungslos angeregt wird und die auf einen Klangkörper (108) übertragenen Schwingungen akustisch abgestrahlt werden dadurch gekennzeichnet, dass die Saitenschwingung über einen Steg (112) auf den Klangkörper (108) übertragen wird, zum berührungslosen Anregen der Saite (102) die Saite (102) magnetisierbares Material umfasst und zwei gegensinnig um eine gemeinsame Spulenachse gewickelte Spulen (118), die beidseits eines Luftspaltes (120) mit der mindestens einen Saite (102) angeordnet sind, gleichzeitig vom Verstärker (130) gespeist werden, wobei die Spulen (118) im Bereich des Luftspaltes (120) mit der mindestens einen eingespannten Saite (102) in einem permanenten Magnetfeld in Richtung der Spulenachse wechselnde Inhomogenitäten erzeugen.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das permanente Magnetfeld von mindestens einem Permanentmagneten (119) mit hoher magnetischer Flussdichte, vorzugsweise von einem Samarium-Kobalt (SmCo) oder einem Neodymium-Eisen-Bor (NdFeB) Magneten, erzeugt wird.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass ein chromatischer Saitensatz mit zumindest 12 Saiten (102) sowie für jede Saite (102) eine Anregungsvorrichtung (116, 116') vorgesehen ist und die Klangqualität durch die Verwendung von Filtern (134, 135) und zwei verschiedenen Anregungsweisen optimiert wird, wobei eine erste, Resonanzmodus genannte, Anregungsweise ein gemeinsames Anregungssignal zur gleichzeitigen Ansteuerung aller Anregungsvorrichtungen und eine zweite, Tonaufteilungsmodus genannte, Anregungsweise jeder Anregungsvorrichtung entsprechend der Stimmung der damit anregbaren Saite (102) ein spezielles Anregungssignal zuführt.
EP01931307A 2000-05-23 2001-05-23 Instrument und verfahren zum erzeugen von klängen Expired - Lifetime EP1285431B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH102900 2000-05-23
CH10292000 2000-05-23
PCT/CH2001/000323 WO2001091103A2 (de) 2000-05-23 2001-05-23 Instrument und verfahren zum erzeugen von klängen

Publications (2)

Publication Number Publication Date
EP1285431A2 EP1285431A2 (de) 2003-02-26
EP1285431B1 true EP1285431B1 (de) 2009-10-07

Family

ID=4553579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931307A Expired - Lifetime EP1285431B1 (de) 2000-05-23 2001-05-23 Instrument und verfahren zum erzeugen von klängen

Country Status (6)

Country Link
US (1) US7087828B2 (de)
EP (1) EP1285431B1 (de)
AT (1) ATE445213T1 (de)
AU (1) AU2001258134A1 (de)
DE (1) DE50115159D1 (de)
WO (1) WO2001091103A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016788A6 (nl) * 2005-09-30 2007-06-05 Kelst Jan Van Snaarinstrument.
US20070084335A1 (en) * 2005-10-14 2007-04-19 Silzel John W Musical instrument with bone conduction monitor
US7812244B2 (en) * 2005-11-14 2010-10-12 Gil Kotton Method and system for reproducing sound and producing synthesizer control data from data collected by sensors coupled to a string instrument
US8314322B2 (en) * 2007-01-03 2012-11-20 Eric Aaron Langberg System and method for remotely generating sound from a musical instrument
US9589551B2 (en) 2007-01-03 2017-03-07 Eric Aaron Langberg System for remotely generating sound from a musical instrument
US7595444B2 (en) * 2007-04-07 2009-09-29 Bret Thomas Stewart Electromagnetic transducer for instrument pickups
US7989690B1 (en) * 2007-04-16 2011-08-02 Andrew Scott Lawing Musical instrument pickup systems
CN101604518A (zh) * 2008-06-13 2009-12-16 朝元音乐科技有限公司 声音重现装置及系统
US8664507B1 (en) 2010-09-01 2014-03-04 Andrew Scott Lawing Musical instrument pickup and methods
DE102011003976B3 (de) * 2011-02-11 2012-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Eingabeschnittstelle zur Erzeugung von Steuersignalen durch akustische Gesten
US8222504B1 (en) 2011-04-20 2012-07-17 Ernie Ball Inc. Musical instrument string having cobalt alloy wrap wire
US8921675B2 (en) 2011-06-23 2014-12-30 Ernie Ball, Inc. Adjustable bridge for stringed musical instrument
JP6227887B2 (ja) * 2012-04-17 2017-11-08 通 中谷 弦楽器
JP5281185B1 (ja) * 2012-04-17 2013-09-04 通 中谷 弦楽器
US20130312588A1 (en) * 2012-05-01 2013-11-28 Jesse Harris Orshan Virtual audio effects pedal and corresponding network
JP6098856B1 (ja) * 2016-11-02 2017-03-22 株式会社スリック 電子オルゴール
RU2714548C1 (ru) * 2019-05-07 2020-02-18 Станислав Евгеньевич Данилин Музыкальный электроакустический аппарат

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE31083C (de) R. K. boyle in Liverpool, England Elektromagnetisches Musikinstrument
US2030230A (en) * 1933-07-19 1936-02-11 Creative Ind Inc Split phase impulser for musical instruments
DE927550C (de) 1948-09-30 1956-02-02 J Herrburger Ets Elektrisches Klavier
GB1343766A (en) 1971-04-19 1974-01-16 Button C G Attachment for ladders
FR2315740A1 (fr) 1975-06-24 1977-01-21 Vassilakis Panayotis Instrument de musique
US4024787A (en) * 1975-12-29 1977-05-24 Larson Harold W Foot operated musical instrument
US5070759A (en) * 1989-05-12 1991-12-10 Hoover Alan A String vibration sustaining device
US5142961A (en) * 1989-11-07 1992-09-01 Fred Paroutaud Method and apparatus for stimulation of acoustic musical instruments
CA2081246A1 (en) 1991-10-24 1993-04-25 Kenji Tumura Electric stringed instrument having a device for sustaining the vibration of a string and an electromagnetic driver for the device
GB9722985D0 (en) 1996-12-20 1998-01-07 Univ York Tuning of musical instruments

Also Published As

Publication number Publication date
AU2001258134A1 (en) 2001-12-03
US20030136248A1 (en) 2003-07-24
WO2001091103A3 (de) 2002-02-28
ATE445213T1 (de) 2009-10-15
EP1285431A2 (de) 2003-02-26
US7087828B2 (en) 2006-08-08
DE50115159D1 (de) 2009-11-19
WO2001091103A2 (de) 2001-11-29

Similar Documents

Publication Publication Date Title
EP1285431B1 (de) Instrument und verfahren zum erzeugen von klängen
DE102004019848B4 (de) Tonabnehmereinrichtung für Schlaginstrument
EP1616147B1 (de) Pianoforteinstrument mit zusätzlicher energieeinspeisung in den resonanzboden und verfahren zur beeinflussung des klanges eines pianoforteinstrumentes
DE112010004669T5 (de) Kombiniertes akustisches und elektrisches Saiteninstrument aus der Gruppe der Streichinstrumente
WO1990003025A1 (de) Vorrichtung zur schallabstrahlung und musikinstrument
US3530756A (en) Electromagnetic piano
DE112013004930T5 (de) Aufnehmer und Tonhalter für Saiteninstrumente
DE202009004266U1 (de) Modulare Gitarre mit Wechselmodulen
DE2748937A1 (de) Stereophonisches schallsystem
US2672781A (en) Vibratory reed electronic musical instrument
US3474180A (en) Electronic stringed musical instrument of percussion
US3629483A (en) Multivocal music system
EP2509066A1 (de) Elektromechanisches Schlaginstrument
US2536800A (en) Electronic carillon
DE3929726A1 (de) Musikinstrument, insbesondere klavier oder fluegel, mit saiten
AT135779B (de) Elektrisches Musikinstrument.
DE4240739A1 (de) Schwingungsauskopplung
AT137754B (de) Verfahren und Einrichtung zur Erzeugung musikalischer, sprachähnlicher oder sonstiger Klänge.
DE2316000C3 (de) Magnetischer Tonabnehmer für einen schwingenden Resonanzkörper aufweisende Musikinstrumente
DE3913527A1 (de) Tastenbetaetigtes musikinstrument mit einer datenverarbeitungseinrichtung
Wijnand et al. A physical model for the electromagnetic loudspeaker used in early ondes Martenot diffuseurs
DE10024023C2 (de) Resonanzsystem für elektrisch verstärkte Saiteninstrumente
AT130528B (de) Lautsprecher mit ebenem, plattenförmigem Resonanzkörper.
DE379110C (de) Einrichtung zur Erzeugung von Ton- oder Sprachschwingungen mittels Resonanzraeume
DE2906987B1 (de) Anordnung fuer die elektrische Wiedergabe des Klanges eines Saiteninstrumentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20070212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50115159

Country of ref document: DE

Date of ref document: 20091119

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, VON REVY & PARTNER

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100208

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100108

BERE Be: lapsed

Owner name: KRIEGER, ROLF

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120601

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120615

Year of fee payment: 12

Ref country code: GB

Payment date: 20120528

Year of fee payment: 12

Ref country code: SE

Payment date: 20120524

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120524

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120530

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATWIL AG, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 445213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130523

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50115159

Country of ref document: DE

Representative=s name: MURGITROYD & COMPANY, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160525

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115159

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201