EP1187987B1 - Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique - Google Patents

Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique Download PDF

Info

Publication number
EP1187987B1
EP1187987B1 EP00949547A EP00949547A EP1187987B1 EP 1187987 B1 EP1187987 B1 EP 1187987B1 EP 00949547 A EP00949547 A EP 00949547A EP 00949547 A EP00949547 A EP 00949547A EP 1187987 B1 EP1187987 B1 EP 1187987B1
Authority
EP
European Patent Office
Prior art keywords
chamber
measuring
injection
pressure
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00949547A
Other languages
German (de)
English (en)
Other versions
EP1187987A1 (fr
Inventor
François SCHMIDT
Pierre Eynard
Bernard Maurin
Christian Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFS SA
Original Assignee
EFS SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EFS SA filed Critical EFS SA
Publication of EP1187987A1 publication Critical patent/EP1187987A1/fr
Application granted granted Critical
Publication of EP1187987B1 publication Critical patent/EP1187987B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector

Definitions

  • Injection systems typically have one or several injection pumps to put fuel under a pressure that can currently range from 100 to 2500 bar, one or more fuel tanks under pressure, one or more injectors per engine cylinder to feed and a steering system, more and more often electronic, responsible for controlling the value of the masses or volumes of fuel injected according to environmental conditions engine, fuel characteristics and the requirements of the driving the engine.
  • Measuring devices have been designed to enable manufacturers of injection systems and thermal engines, to focus the injectors as well as the settings and compliance checks during manufacture and during installation for the end use.
  • Known measuring devices are used in conjunction with a specific test bed whose role is essentially to ensure the rotation of an injection pump and the fixing of the various elements of the injection system under test. These devices are not usable on a injection heat engine in nominal operation. The measures often do this by using a different fluid than the fuel for the injection which injection system is designed. This fluid is chosen to present hydraulic characteristics close to those of the fuel but with a higher flashpoint temperature to minimize the risks fire and explosion. So, after that, the term fuel will be also used to designate the fluid used to carry out measurements of debit.
  • the measuring apparatus comprises a mechanical section as well than an electronic section.
  • the mechanical section includes a system attachment for receiving one or more injectors, a measuring cell by injector for the elaboration of an electrical image of the quantity of injected fluid and a fluid evacuation system.
  • the electronic section is usually in the form of a box equipped with different means of interface with the operator such a screen and keyboard as well as other external processing systems.
  • the electronics section processes an electrical signal provided by the section mechanical control and pilot various elements of servitude concourrant to the measurement process.
  • the basic technique used for the realization of these devices is based on measuring the displacement of a sliding piston in a folder, the assembly delimiting a deformable measuring volume in which the injected fuel is directed. Any quantity of fuel added in this volume causes a displacement of the piston which can be easily converted into an electrical signal by the use of one of the many sensor types available for this purpose. This is a measure volume.
  • the conversion to mass measurement is done by calculation using the value of the fuel density. To guarantee an accurate calculation, the Fuel temperature is measured in the measurement volume.
  • German patent application DE 4 130 394 describes a device measuring a quantity of fuel, injected by an injector used in a thermal engine, implementing a first chamber for the measurement of pressure and injection temperature, a second chamber for the measurement of the injected fuel volume, and a fast solenoid valve piloted for partially empty the first chamber after an injection up to find the pressure prevailing in it before the injection.
  • This device makes it possible to know both the precise quantity of fuel injected and the flow of fluid as a function of time, provided to obtain, in the first measuring chamber, a final pressure, after the emptying, strictly equal to the nominal initial pressure, which is difficult, less at the desired level of accuracy.
  • the device then provides results imprecise measurement when the emptying of the first chamber is imperfectly achieved.
  • the present invention aims to avoid this disadvantage by providing a precise measuring device capable of taking into account variations relatively important to this parameter.
  • the inventive idea is to provide the electronic section with a electronic device for reciprocal compensation of measurements, compensation allowed by simultaneous processing of the measurements obtained in each room for each individual injection.
  • the device compensation makes it possible to take into account a possible imperfection of the phase of emptying the first chamber of measurement and provide results of accurate measurement even though the final pressure in the first chamber after the emptying is not strictly equal to the initial nominal pressure before injection.
  • an injection is performed. This causes a pressure increase in the first measuring chamber, related to the amount of fluid injected, the characteristics of the fluid, the conditions environment, including temperature, initial pressure and volume from the room.
  • the fluid that has been injected is drained to the second measuring chamber.
  • the pressure in the first chamber of measure is thus reduced to its initial value and this first chamber is ready to receive a second injection.
  • the fluid that arrives in the second measuring chamber actually increases the volume of this chamber by pushing the piston. This displacement is measured and, knowing the diameter of the piston, a part of the electronic section calculates the exact volume of fluid. This measurement allows the electronic section to calibrate, at any time, very exactly, the measurements that are made by the first measurement chamber.
  • the first measuring chamber thus makes it possible to provide with precision of the "shape" of the injection, while the second is used to measure the amount of fuel injected.
  • the treatment performed by the electronic section allows to compensate the defects of each of the measures by the qualities of the other.
  • the mechanical design of the device is more robust than the devices of the existing prior art. It is not necessary in particular to use pressure balancing device in the second chamber of measured. Counter pressure is directly provided by the injection pressure in the first cell playing on his drain. The piston can then be simply recalled by a spring. Constraints in the second chamber the measurement range is significantly lower than in a chamber of the same type of the prior art, this room withstands much better and wears much less quickly.
  • a rapid drain solenoid valve is advantageously provided downstream of the second measuring chamber, as well as a discharger intended to maintain the pressure in the second measuring chamber to a set value.
  • the piston can be prestressed by example by a spring towards the second measuring chamber.
  • the piston moves in a smooth-walled cylinder and has an annular groove open towards the cylinder wall.
  • This groove makes it possible to trap possible leaks of gas or of fluid by preventing these leaks from disturbing the measurement. She permits also to lighten the piston. It also allows to limit the surface of the piston which must be lapped and paired. Finally, it increases the flexibility of the piston, which makes it less difficult to slip it into the cylinder.
  • the displacement sensor of the piston used is for example a inductive sensor, but any other type of sensor can be used here.
  • Such sensor is more accurate, linear and does not add moving mass to the mass of the piston.
  • its cost is higher and its implementation more delicate.
  • the measuring device can advantageously have a cooling system to cool the injector, the first measuring chamber, piston and piston displacement sensor. So, the temperature in the measuring device is standardized and its variations are limited, which makes it possible to increase the precision of the measurements made. It is then advantageous to use in the cooling system the same fluid than the one used to perform the injections.
  • the measuring method also consists of correct the measures for each injection from calibration including pre-recorded.
  • the measuring process may also consist, during the emptying of the second chamber, to carry out this emptying until there is a pressure of setpoint.
  • the single figure shows very schematically the part the mechanics of a fuel quantity measuring device injected by a injector according to the invention.
  • the single figure represents an injector 2 mounted on a support injector 4.
  • This injector 2 has an injection nozzle 6 which is located in a first measuring chamber 8.
  • This measuring chamber is a chamber of constant volume. It is filled with a fluid that presents hydraulic characteristics close to those of a fuel but with a much higher flashpoint temperature than a fuel in order to minimize the risk of fire and explosion.
  • This fluid is also the fluid that is used in the injector 2.
  • a reservoir 10 of this fluid is provided in the device shown in the drawing.
  • the first measurement chamber 8 has several inputs and several outputs. It firstly presents a filling inlet 12, a purge outlet 14, a rapid drain outlet 16, and an outlet 18 to a second measuring chamber 20.
  • a fast filling solenoid valve 26 is mounted between the pump 22 and the filling inlet 12 to control the filling of the first measuring chamber 8.
  • a solenoid valve 28 is also provided at the level of the purge outlet 14.
  • a rapid drain solenoid valve 30 is provided for the emptying of the chamber 8. We can notice here that the rapid drain outlet 16 is advantageously placed at a point bottom of the first measuring chamber 8, while the purge outlet 14 is placed at a high point of this room 8.
  • a drain solenoid valve 32 and a pressure relief valve 34 are arranged between the first measuring chamber 8 and the second chamber 20.
  • the second measurement chamber 20 has a variable volume. It is made in a cylinder 36 in which a piston 38 moves.
  • piston 38 has a bottom 40 and a skirt 42.
  • the bottom 42 is curved and forms a wall closing the measuring chamber 20.
  • a spring 44 bears on the bottom 40, on the side opposite to the measuring chamber 20.
  • the displacement of the measuring piston 38 is provided by a displacement sensor 46, engaged by a contact tip 48 with the face of the bottom 40 opposite to the measuring chamber 20.
  • This sensor of displacement 46 is for example an inductive sensor.
  • the second measurement chamber 20 also comprises a drain channel 50 whose opening and closing are controlled by a drain solenoid valve 52 associated with an overflow valve 54.
  • the fluid drained back into the tank 10.
  • the cylinder wall 36 along which moves the piston 38 is a smooth wall. This cylinder can be or not jacketed.
  • the skirt 42 has on its outer face a throat annular 56. This groove extends over substantially half of the height of the piston 38 and is centered with respect to the height thereof. We realize thus two annular guide surfaces 58.
  • This mechanical device described above is associated with a electronic device not shown here and which receives information from two temperature sensors 60, each chamber being equipped with a temperature sensor 60 fast response as well as a sensor of pressure 62 located at the first measuring chamber 8.
  • a cooling system is also provided in the measuring device.
  • the coolant is the same as the one that is injected at the level of the injector 2. Downstream of the pump 22, there is a heat exchanger 64. The same tank 10 is therefore used for the fluid injected and for the coolant.
  • This coolant is sent to the injector support 4 and then around the first measuring chamber 8, at the displacement sensor 46 and at the piston 38.
  • An annular chamber 66 surrounds the sensor of displacement 46 and comprises a fluid supply channel of cooling and a channel for the return of this fluid to the reservoir 10.
  • a groove 68 is provided in the injector support 4 to allow the circulation around it of the coolant.
  • This throat 36 is supplied with coolant by a pipe and the liquid of cooling, after leaving the throat 36, goes into a room ring 70 located around the first measuring chamber 8 before return to the tank 10.
  • the first measuring chamber is first filled with fluid pumped into the tank 10 using the pump 22 and opening the solenoid valve 26. Once the chamber is filled, it is purged using solenoid valve 28 to ensure that no air bubbles or other gases, is inside of it. To fill the second chamber of measurement, it is possible, during this filling, to open the solenoid valve 32 towards the second measuring chamber 20.
  • the discharge valve 34 makes it possible to maintain this residual setpoint pressure in the first measuring chamber 8.
  • the fluid coming out of the first measuring chamber 8 is sent into the second measuring chamber 20.
  • the volume of this second measuring chamber 20 therefore increases, which causes movement of the piston 38.
  • the displacement sensor 46 measure this displacement of the piston 38, and knowing thanks to the sensor temperature 60 the temperature of the fluid in the chamber 20, it is possible to determine the amount of fluid that has been introduced in the second measuring chamber 20.
  • the main data is the pressure initial in the first chamber of measurement, the final pressure in this chamber, and the pressure difference during the injection, as well as the movement of the piston 38.
  • a treatment method known as "crossed matrices”
  • These results are obtained already before a second injection. Indeed, during of the first injection the fluid is injected into the first chamber of measured. Then the fluid is transferred to the second measuring chamber 20. A second injection can then take place in the first chamber of 8. The results are obtained as soon as the transfer of the first measuring chamber 8, towards the second measuring chamber 20 is completed, just before the second injection.
  • the second measuring chamber is drained thanks to the solenoid valve 52.
  • the second discharger 54 makes it possible to maintain in the second measuring chamber 20 a second set pressure.
  • the relationship between the increase in pressure and the injected volume is not linear. It depends in particular on the characteristics of the fluid, the temperature and the pressure. This pressure varies during injection, and this phenomenon is used for measurement.
  • the calibration is performed by injecting small volumes, but not too small to maintain accuracy on the measurement, 10 mm 3 for example for a measurement scale of 200 mm 3 .
  • Several injections are made successively by starting the injection at different pressures, chosen to cover the entire range of pressures encountered during the nominal operation. Each injection is measured precisely by the second chamber 20. A series of points of correspondence between a starting pressure in the chamber, a small pressure variation due to the injection and the injected volume is obtained at the nominal temperature of the measurements with the actual test fluid, in its current state.
  • the calculation unit periodically stores a table of values for linearizing and correcting in real time the subsequent measurements.
  • the advantage of this procedure is that it does not use any external device.
  • the exploration of the different starting pressures is simply done by adding a few injections without opening the transfer solenoid valve to the second chamber which has the effect of gradually increasing the pressure in the first chamber 8 to the vicinity of each desired value to memorize a linearization curve.
  • This calibration method is indicated by way of example and other methods are possible here.
  • This measuring device makes it possible to obtain precisely the quantity of fluid injected by the injector and also provided with precision the flow curve as a function of time.
  • An electronic compensation device is provided to hold account of a possible imperfection of the emptying phase of the first measuring chamber 8 and provide accurate measurement results even though the final pressure in this room, after emptying, is not strictly equal to the nominal initial pressure.
  • the system is able to hold relatively large variations in this parameter.
  • This compensation function is important because, among other factors, response time to closing and opening the solenoid valve are not absolutely stable or predictable, even if their average value is taken into account by the system in the piloting sequence of this valve.
  • Displacement of the piston measured by the displacement sensor 46 allows, knowing the exact diameter of the piston, to calculate the injected volume. This measure allows the section to calibrate, at any moment, exactly the measures are made by the first cell.
  • the groove 56 made in the piston brings several advantages. It allows first of all to trap possible leaks of gas or fluid avoiding that they do not come disrupt the measurement. It also makes it possible to lighten the piston and therefore to limit the undesirable effects due to its mechanical inertia. It finally allows to reduce the surface of the piston which must be perfectly lapped and paired with the inner surface of the cylinder by limiting this guide surface to two crowns located at the ends of the piston.
  • the piston particularly level of its skirt, has a greater flexibility than pistons used in the devices of the prior art thanks to the thinning of the skirt. All this is achieved without making it more difficult to achieve the piston and by allowing more, to reduce the constraints that hinder the sliding of the piston 38 in the cylinder 36.
  • the processing carried out by the electronic section brings together the information obtained at the two measuring chambers and allows to compensate for the defects of each by the qualities of the other.
  • the results provided to the operator or the external treatment systems of connected data are completely preprocessed by the section and integrate all the compensations.
  • this measuring device is much more robust than in the systems of the prior art.
  • it is no longer necessary to use the balancing device of pressure in the first measuring chamber.
  • This back pressure is provided directly by the injection pressure in this chamber in playing on his drain.
  • the second piston measuring chamber no longer need to be particularly "fast” since it is filled by the solenoid valve for emptying the first measuring chamber, of which control the operation. She no longer needs to work with a back pressure and a simple spring is therefore sufficient to ensure its return.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

La présente invention concerne un dispositif et un procédé permettant d'analyser instantanément le débit d'injection coup par coup fourni par un système d'injection utilisé dans un moteur thermique. Les systèmes d'injection concernés sont aussi bien ceux que l'on retrouve sur des véhicules équipés d'un moteur Diesel, d'un moteur essence, d'un moteur fonctionnant au GPL (gaz de pétrole liquéfié), ou tout autre type de moteur.
Les systèmes d'injection comportent typiquement une ou plusieurs pompes à injection chargée de mettre du carburant sous une pression qui peut aller actuellement de 100 à 2 500 bars, un ou plusieurs réservoirs de carburant sous pression, un, voire plusieurs, injecteurs par cylindre du moteur à alimenter et un système de pilotage, de plus en plus souvent électronique, chargé de commander la valeur des masses ou volumes de carburant injecté en fonction des conditions d'environnement du moteur, des caractéristiques du carburant et des nécessités de la conduite du moteur.
L'évolution actuelle des systèmes d'injection va vers l'augmentation de la pression du carburant et de la précision du contrôle des quantités injectées. On essaie d'optimiser tout paramètre qui permet d'améliorer le rendement du moteur et de diminuer l'impact de son fonctionnement sur l'environnement, notamment sous forme de pollutions gazeuses et sonores.
Des dispositifs de mesure ont été conçus pour permettre aux constructeurs de systèmes d'injection et de moteurs thermiques, d'effectuer la mise au point des injecteurs ainsi que les réglages et les vérifications de conformité en cours de fabrication et lors de l'installation pour l'utilisation finale.
Les dispositifs de mesure connus sont utilisés en conjonction avec un banc d'essai spécifique dont le rôle est essentiellement d'assurer la rotation d'une pompe d'injection et la fixation des différents éléments du système d'injection sous test. Ces dispositifs ne sont pas utilisables sur un moteur thermique à injection en fonctionnement nominal. Les mesures se font souvent en utilisant un fluide différent du carburant pour l'injection duquel le système d'injection est conçu. Ce fluide est choisi pour présenter des caractéristiques hydrauliques proches de celles du carburant mais avec une température de point d'éclair plus élevée afin de minimiser les risques d'incendie et d'explosion. Ainsi, par la suite, le terme carburant sera également utilisé pour désigner le fluide utilisé pour réaliser des mesures de débit.
L'appareil de mesure comprend une section mécanique ainsi qu'une section électronique. La section mécanique comprend un système de fixation pour recevoir un ou plusieurs injecteurs, une cellule de mesure par injecteur pour l'élaboration d'une image électrique de la quantité de fluide injecté et un système d'évacuation de fluide.
La section électronique présente généralement la forme d'un coffret équipé de différents moyens d'interface avec l'opérateur tels un écran et un clavier ainsi que d'autres systèmes de traitement extérieur. La section électronique traite un signal électrique fourni par la section mécanique, contrôle et pilote différents éléments de servitude concourrant au processus de mesure.
La technique de base utilisée pour la réalisation de ces appareils de mesure repose sur la mesure du déplacement d'un piston coulissant dans une chemise, l'ensemble délimitant un volume de mesure déformable dans lequel est dirigé le carburant injecté. Toute quantité de carburant ajoutée dans ce volume provoque un déplacement du piston qui peut être facilement converti en signal électrique par l'utilisation d'un des nombreux types de capteur disponible pour cet usage. Il s'agit d'une mesure volumique. La conversion en mesure massique se fait par calcul en utilisant la valeur de la densité du carburant. Pour garantir un calcul précis, la température du carburant est mesurée dans le volume de mesure.
D'autres méthodes sont utilisées pour obtenir des informations de type temporel, lorsqu'on se réfère à une échelle temporelle, ou angulaire lorsqu'on se réfère à une échelle liée à la rotation de l'arbre moteur. Deux méthodes sont principalement utilisées. Elles sont fondées sur une mesure de variation de pression instantanée et sont mises en oeuvre dans des appareils de mesure de structure géométrique différentes de celles mettant en oeuvre un piston. La méthode dite de "Bosch" utilise un long tube enroulé et celle dite de "Zuech" un volume de quelques centaines de mm3. Ces méthodes permettent de savoir à quel instant précis du carburant est injecté mais elles apportent une mauvaise précision quant-à l'amplitude du débit de carburant. Ces méthodes ne permettent donc pas de connaítre précisément la quantité de carburant injectée.
La demande de brevet allemand DE 4 130 394 décrit un dispositif de mesure d'une quantité de carburant, injectée par un injecteur utilisé dans un moteur thermique, mettant en oeuvre une première chambre pour la mesure de la pression et de la température d'injection, une deuxième chambre pour la mesure du volume de carburant injecté, et une électrovanne rapide pilotée pour vidanger partiellement la première chambre après une injection jusqu'à retrouver la pression régnant dans celle-ci avant l'injection.
Ce dispositif permet de connaítre à la fois la quantité précise de carburant injectée et le débit de fluide en fonction du temps, à condition d'obtenir, dans la première chambre de mesure, une pression finale, après la vidange, strictement égale à la pression initiale nominale, ce qui est difficile, du moins au niveau de précision souhaité. Le dispositif fournit alors des résultats de mesure imprécis lorsque la vidange de la première chambre est imparfaitement réalisée.
La présente invention vise à éviter cet inconvénient en fournissant un dispositif de mesure précis et capable de tenir compte de variations relativement importantes de ce paramètre.
A cet effet, le dispositif qu'elle propose est un dispositif de mesure d'une quantité de carburant injectée par un injecteur utilisé dans un moteur thermique comportant :
  • une première chambre de mesure dans laquelle est injecté le carburant, un capteur de pression et un capteur de température mesurant respectivement la pression et la température régnant dans la première chambre de mesure,
  • en aval de la première chambre de mesure, une seconde chambre de mesure qui est reliée à la première chambre par une conduite de vidange, et dont le volume est variable selon le mouvement d'un piston dont le déplacement est mesuré à l'aide d'un capteur de déplacement,
  • une section électronique pilotant le système et analysant des informations reçues des capteurs,
  • une électrovanne rapide pilotée par une partie de la section électronique et un déverseur qui sont disposés entre les deux chambres de mesure pour vidanger partiellement la première chambre de mesure après une injection jusqu'à retrouver dans la première chambre de mesure sensiblement la pression régnant dans celle-ci avant cette injection,
   dans lequel la section électronique comporte un dispositif de compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure après deux vidanges successives.
Ainsi, l'idée inventive consiste à doter la section électronique d'un dispositif électronique de compensation réciproque des mesures, compensation permise grâce au traitement simultané des mesures obtenues dans chaque chambre pour chaque injection individuelle. Le dispositif de compensation permet de tenir compte d'une possible imperfection de la phase de vidange de la première chambre de mesure et de fournir des résultats de mesure précis même si la pression finale dans la première chambre, après la vidange, n'est pas strictement égale à la pression initiale nominale, avant l'injection.
Le fonctionnement de ce dispositif de mesure est par exemple celui décrit dans le paragraphe ci-après.
Lorsque le dispositif est prêt à réaliser une mesure, c'est à dire lorsque du fluide se trouve dans les première et seconde chambres de mesure et qu'une pression de consigne prédéterminée est établie dans la première chambre de mesure, une injection est réalisée. Celle-ci provoque une augmentation de pression dans la première chambre de mesure, liée à la quantité de fluide injecté, aux caractéristiques du fluide, aux conditions d'environnement, notamment la température, la pression initiale et au volume de la chambre. A la fin de l'injection, le fluide qui a été injecté est vidangé vers la seconde chambre de mesure. La pression dans la première chambre de mesure est ainsi ramenée à sa valeur initiale et cette première chambre est prête à recevoir une seconde injection. Le fluide qui arrive dans la seconde chambre de mesure fait augmenter le volume de cette chambre en poussant le piston. Ce déplacement est mesuré et, connaissant le diamètre du piston, une partie de la section électronique calcule le volume exact de fluide. Cette mesure permet à la section électronique de calibrer, à tout instant, très exactement, les mesures qui sont faites par la première chambre de mesure.
La première chambre de mesure permet donc de fournir avec précision la "forme" de l'injection, tandis que la seconde permet de mesurer la quantité de carburant injecté. Le traitement effectué par la section électronique permet de compenser les défauts de chacune des mesures par les qualités de l'autre. La conception mécanique du dispositif est plus robuste que les dispositifs de l'art antérieur existant. Il n'est pas nécessaire notamment d'utiliser de dispositif d'équilibrage de pression dans la seconde chambre de mesure. La contre pression est directement fournie par la pression d'injection dans la première cellule en jouant sur sa vidange. Le piston peut alors être simplement rappelé par un ressort. Les contraintes dans la seconde chambre de mesure étant sensiblement moindres que dans une chambre de même type de l'art antérieur, cette chambre résiste beaucoup mieux et s'use bien moins rapidement.
Pour pouvoir réaliser une vidange de la seconde chambre de mesure après chaque déplacement du piston, et ainsi effectuer les mesures en partant toujours sensiblement de la même position initiale du piston, une électrovanne de vidange rapide est avantageusement prévue en aval de la seconde chambre de mesure, ainsi qu'un déverseur destiné à maintenir la pression dans la deuxième chambre de mesure à une valeur de consigne.
Comme déjà évoqué plus haut, le piston peut être précontraint par exemple par un ressort vers la seconde chambre de mesure.
Dans une forme de réalisation avantageuse, le piston se déplace dans un cylindre à paroi lisse et comporte une gorge annulaire ouverte vers la paroi du cylindre. Cette gorge permet de piéger d'éventuelles fuites de gaz ou de fluide en évitant que ces fuites ne viennent perturber la mesure. Elle permet également d'alléger le piston. Elle permet aussi de limiter la surface du piston qui doit être rodée et appairée. Enfin, elle augmente la flexibilité du piston, ce qui permet de moins gêner le glissement de celui-ci dans le cylindre.
Le capteur de déplacement du piston utilisé est par exemple un capteur inductif, mais tout autre type de capteur peut être utilisé ici. On peut par exemple aussi utiliser un capteur optique, de type interférométrique. Un tel capteur est plus précis, linéaire et n'ajoute pas de masse mobile à la masse du piston. Par contre son coût est plus élevé et sa mise en oeuvre plus délicate.
Le dispositif de mesure selon l'invention peut avantageusement comporter un système de refroidissement pour refroidir l'injecteur, la première chambre de mesure, le piston et le capteur de déplacement du piston. Ainsi, la température dans le dispositif de mesure est uniformisée et ses variations sont limitées, ce qui permet d'augmenter la précision des mesures effectuées. On utilise alors avantageusement dans le système de refroidissement le même fluide que celui qui est utilisé pour réaliser les injections.
L'invention a également pour objet un procédé de mesure des caractéristiques d'une injection de carburant effectuée par un injecteur du type consistant à mettre en oeuvre une première chambre pour la mesure de la pression et de la température d'injection et une deuxième chambre à volume variable pour la mesure du volume de carburant injecté, et pour chaque injection:
  • à mesurer la pression et la température dans la première chambre avant l'injection,
  • à injecter au moyen de l'injecteur du carburant dans la première chambre,
  • pendant l'injection mesurer, régulièrement au moins, la pression et la température dans la première chambre,
  • en fin d'injection, vidanger dans la deuxième chambre une partie du carburant contenu dans la première chambre jusqu'à rétablir dans la première chambre sensiblement la pression d'avant l'injection,
  • mesurer le volume du carburant vidangé et en déduire le volume de l'injection,
  • vidanger le carburant contenu dans la deuxième chambre,
   dans lequel est réalisée une compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure après deux vidanges successives.
Selon une possibilité, le procédé de mesure consiste également à corriger les mesures relatives à chaque injection à partir de données de calibration notamment préenregistrées.
Le procédé de mesure peut aussi consister, lors de la vidange de la deuxième chambre, à effectuer cette vidange jusqu'à y établir une pression de consigne.
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence à la figure unique ci-jointe représentant à titre d'exemple non limitatif une forme de réalisation d'un dispositif et d'un procédé de mesure selon l'invention.
L'unique figure montre de manière très schématique la partie mécanique d'un dispositif de mesure de quantité de carburant injectée par un injecteur selon l'invention.
L'unique figure représente un injecteur 2 monté sur un support d'injecteur 4. Cet injecteur 2 comporte une buse d'injection 6 qui se trouve dans une première chambre de mesure 8. Cette chambre de mesure est une chambre de volume constant. Elle est remplie d'un fluide qui présente des caractéristiques hydrauliques proches de celles d'un carburant mais avec une température de point d'éclair bien plus élevée qu'un carburant afin de minimiser les risques d'incendie et d'explosion. Ce fluide est également le fluide qui est utilisé dans l'injecteur 2. Un réservoir 10 de ce fluide est prévu dans le dispositif représenté au dessin.
La première chambre de mesure 8 présente plusieurs entrées et plusieurs sorties. Elle présente tout d'abord une entrée de remplissage 12, une sortie de purge 14, une sortie de vidange rapide 16, et une sortie 18 vers une seconde chambre de mesure 20.
Pour remplir la première chambre de mesure 8, du fluide est pompé dans le réservoir 10 à l'aide d'une pompe 22 actionnée par un moteur 24. Une électrovanne 26 de remplissage rapide est montée entre la pompe 22 et l'entrée de remplissage 12 afin de commander le remplissage de la première chambre de mesure 8. Une électrovanne 28 est également prévue au niveau de la sortie 14 de purge. Pour la vidange de la chambre 8, une électrovanne de vidange rapide 30 est prévue. On peut remarquer ici que la sortie de vidange rapide 16 est avantageusement placée en un point bas de la première chambre de mesure 8, tandis que la sortie de purge 14 est placée en un point haut de cette chambre 8.
Entre la première chambre de mesure 8 et la seconde chambre de mesure 20 sont disposés une électrovanne de vidange 32 et un déverseur à pression réglable 34.
La seconde chambre de mesure 20 présente un volume variable. Elle est réalisée dans un cylindre 36 dans lequel se meut un piston 38. Ce piston 38 présente un fond 40 et une jupe 42. Le fond 42 est bombé et forme une paroi fermant la chambre de mesure 20. Pour maintenir le piston 38 en équilibre, un ressort 44 vient en appui sur le fond 40, du côté opposé à la chambre de mesure 20. On peut aussi bien avoir un piston à fond bombé, convexe ou concave, qu'un piston à fond plat.
Le déplacement du piston de mesure 38 est fourni par un capteur de déplacement 46, en prise par une pointe de contact 48 avec la face du fond 40 opposée à la chambre de mesure 20. Ce capteur de déplacement 46 est par exemple un capteur inductif.
La seconde chambre de mesure 20 comporte également un canal de vidange 50 dont l'ouverture et la fermeture sont commandées par une électrovanne de vidange 52 associée à un déverseur 54. Le fluide vidangé retourne dans le réservoir 10. La paroi du cylindre 36 le long de laquelle se déplace le piston 38 est une paroi lisse. Ce cylindre peut être ou non chemisé. La jupe 42 présente sur sa face extérieure une gorge annulaire 56. Cette gorge s'étend sur sensiblement la moitié de la hauteur du piston 38 et est centrée par rapport à la hauteur de celui-ci. On réalise ainsi deux surfaces annulaires de guidage 58.
Ce dispositif mécanique décrit ci-dessus est associé à un dispositif électronique non représenté ici et qui reçoit des informations de deux capteurs de température 60, chaque chambre étant équipée d'un capteur de température 60 à réponse rapide ainsi que d'un capteur de pression 62 situé au niveau de la première chambre de mesure 8.
Un système de refroidissement est également prévu dans le dispositif de mesure. Le fluide de refroidissement est le même que celui qui est injecté au niveau de l'injecteur 2. En aval de la pompe 22, se trouve un échangeur de chaleur 64. Le même réservoir 10 sert donc pour le fluide injecté et pour le liquide de refroidissement. Ce fluide de refroidissement est envoyé au niveau du support d'injecteur 4 puis ensuite autour de la première chambre de mesure 8, au niveau du capteur de-déplacement 46 et au niveau du piston 38. Une chambre annulaire 66 entoure le capteur de déplacement 46 et comporte un canal d'alimentation en fluide de refroidissement et un canal pour le retour de ce fluide vers le réservoir 10. Une gorge 68 est prévue dans le support d'injecteur 4 pour permettre la circulation autour de celui-ci du liquide de refroidissement. Cette gorge 36 est alimentée en liquide de refroidissement par une conduite et le liquide de refroidissement, après avoir quitté la gorge 36, passe dans une chambre annulaire 70 située autour de la première chambre de mesure 8 avant de retourner au réservoir 10.
La gorge annulaire 56 du piston 38 est également alimentée en fluide de refroidissement. Un canal d'alimentation est prévu à cet effet dans le cylindre 36. Un autre canal est également prévu pour le retour du fluide de refroidissement vers le réservoir 10. Ce canal de retour est avantageusement décalé en hauteur par rapport au canal d'alimentation et se trouve de préférence au-dessus de ce dernier diamétralement opposé à celui-ci.
Le fonctionnement de ce dispositif de mesure est décrit ci-après.
La première chambre de mesure est tout d'abord remplie de fluide pompé dans le réservoir 10 à l'aide de la pompe 22 et en ouvrant l'électrovanne 26. Une fois la chambre remplie, celle-ci est purgée à l'aide de l'électrovanne 28 pour garantir qu'aucune bulle d'air ou d'autre gaz, ne se trouve à l'intérieur de celle-ci. Pour remplir la seconde chambre de mesure, on peut, au cours de ce remplissage, ouvrir l'électrovanne 32 vers la seconde chambre de mesure 20.
Pour mettre la première chambre de mesure 20 sous pression, on injecte du fluide par l'injecteur 2 dans la première chambre de mesure 8 jusqu'à obtenir une pression au-dessus de la pression de consigne. Grâce à l'électrovanne de vidange 32 et au déverseur 34, on ramène la pression dans la première chambre de mesure à la pression de consigne. La mesure proprement dite peut alors commencer. L'injecteur 2 réalise alors une injection de fluide dans la première chambre de mesure 8. Grâce aux capteurs, notamment le capteur de pression 62, on peut ainsi déterminer la courbe de débit de fluide injecté en fonction du temps. Cette injection provoque en effet une augmentation de la pression dans la première chambre de mesure. Lorsque la pression dans cette chambre n'augmente plus, on en déduit que l'injection est terminée. L'électrovanne 32 s'ouvre alors et reste ouverte jusqu'à ce que la pression dans la première chambre de mesure retrouve sensiblement la pression de consigne initiale. Le déverseur 34 permet de maintenir cette pression de consigne résiduelle dans la première chambre de mesure 8. Le fluide qui sort de la première chambre de mesure 8 est envoyé dans la seconde chambre de mesure 20. Le volume de cette seconde chambre de mesure 20 augmente donc, ce qui provoque un déplacement du piston 38. Le capteur de déplacement 46 mesure ce déplacement du piston 38, et en connaissant grâce au capteur de température 60 la température du fluide se trouvant dans la chambre 20, il est possible de déterminer la quantité de fluide qui a été introduite dans la seconde chambre de mesure 20.
Toutes les données obtenues sont alors envoyées dans une unité de traitement électronique. Les principales données sont la pression initiale dans la première chambre de mesure, la pression finale dans cette chambre, et la différence de pression au cours de l'injection, ainsi que le déplacement du piston 38. A l'aide d'une méthode de traitement dite des "matrices croisées", on obtient alors les résultats de la mesure. Ces résultats sont obtenus déjà avant une seconde injection. En effet, au cours de la première injection le fluide est injecté dans la première chambre de mesure. Puis le fluide est transféré vers la seconde chambre de mesure 20. Une seconde injection peut alors avoir lieu dans la première chambre de mesure 8. Les résultats sont obtenus dès que le transfert de la première chambre de mesure 8, vers la seconde chambre de mesure 20 est terminé, soit juste avant la seconde injection.
La deuxième chambre de mesure est vidangée grâce à l'électrovanne 52. Le second déverseur 54 permet de maintenir dans la seconde chambre de mesure 20 une seconde pression de consigne.
Dans la première chambre 8, la relation entre l'augmentation de la pression et le volume injecté n'est pas linéaire. Elle dépend notamment des caractéristiques du fluide, de la température et de la pression. Cette pression varie pendant l'injection, et ce phénomène est utilisé pour la mesure. La calibration est réalisée en injectant des volumes petits, mais pas trop petits afin de conserver une précision sur la mesure, 10 mm3 par exemple pour une échelle de mesure de 200 mm3. On effectue plusieurs injections successivement en commencant l'injection à des pressions différentes, choisies pour couvrir toute la plage des pressions rencontrées pendant le fonctionnement nominal. Chaque injection est mesurée précisément par la deuxième chambre 20. Une série de points de correspondance entre une pression de départ dans la chambre, une petite variation de pression due à l'injection et le volume injecté est obtenue, à la température nominale des mesures avec le fluide d'essai réel, dans son état actuel. L'unité de calcul mémorise, périodiquement, un tableau de valeurs permettant de linéariser et corriger en temps réel les mesures ultérieures. L'avantage de cette procédure est qu'elle ne fait appel à aucun dispositif extérieur. L'exploration des différentes pressions de départ se fait simplement en cumulant quelques injections sans ouvrir l'électrovanne de transfert vers la deuxième chambre ce qui a pour effet d'augmenter progressivement la pression dans la première chambre 8 jusqu'aux environs de chaque valeur souhaitée pour mémoriser une courbe de linéarisation. Ce procédé de calibration est indiqué à titre d'exemple et d'autres procédés sont envisageables ici.
Ce dispositif de mesure permet d'obtenir avec précision la quantité de fluide injectée par l'injecteur et fourni également avec précision la courbe de débit en fonction du temps.
Un dispositif électronique de compensation est prévu pour tenir compte d'une possible imperfection de la phase de vidange de la première chambre de mesure 8 et fournir des résultats de mesure précis même si la pression finale dans cette chambre, après la vidange, n'est pas strictement égale à la pression initiale nominale. Le système est capable de tenir compte de variations relativement importantes de ce paramètre. Cette fonction de compensation est importante car, entre autres facteurs, les temps de réponse à la fermeture et à l'ouverture de l'électrovanne ne sont pas absolument stables ni prévisibles, même si leur valeur moyenne est prise en compte par le système dans la séquence de pilotage de cette électrovanne.
Le déplacement du piston mesuré par le capteur de déplacement 46, par exemple un capteur inductif, permet, connaissant le diamètre exact du piston, de calculer le volume injecté. Cette mesure permet à la section électronique de calibrer, à tout instant, très exactement les mesures qui sont faites par la première cellule. La gorge 56 réalisée dans le piston apporte plusieurs avantages. Elle permet tout d'abord de piéger d'éventuelles fuites de gaz ou de fluide en évitant qu'elles ne viennent perturber la mesure. Elle permet également d'alléger le piston et donc de limiter les effets indésirables dus à son inertie mécanique. Elle permet enfin de réduire la surface du piston qui doit être parfaitement rodée et appairée avec la surface intérieure du cylindre en limitant cette surface de guidage à deux couronnes situées aux extrémités du piston. Le piston, notamment au niveau de sa jupe, présente une flexibilité supérieure à celle des pistons utilisés dans les dispositifs de l'art antérieur grâce à l'amincissement de la jupe. Tout ceci est réalisé sans rendre plus difficile la réalisation du piston et en permettant de plus, de réduire les contraintes qui gênent le glissement du piston 38 dans le cylindre 36.
De par la conception de ce système, il est inutile de prévoir une contre-pression sur le piston de mesure à l'aide d'azote sous pression. On évite ainsi tout risque de fuite de ce gaz. De plus, la mesure du volume et de la masse de carburant injecté au niveau de l'injecteur 2 se fait à température stabilisée. Ceci apporte fiabilité et précision à la mesure effectuée.
Le traitement effectué par la section électronique réunit les informations obtenues au niveau des deux chambres de mesure et permet de compenser les défauts de chacune par les qualités de l'autre. Les résultats fournis à l'opérateur ou aux systèmes extérieurs de traitement de données connectées sont complètement prétraités par la section électronique et intègrent toutes les compensations.
La conception mécanique de ce dispositif de mesure est beaucoup plus robuste que dans les systèmes de l'art antérieur. Notamment, il n'est plus nécessaire d'utiliser le dispositif d'équilibrage de pression dans la première chambre de mesure. Cette contre-pression est fournie directement par la pression d'injection dans cette chambre en jouant sur sa vidange. La deuxième chambre de mesure à piston n'a plus besoin d'être particulièrement "rapide" puisqu'elle est remplie par l'électrovanne de vidange de la première chambre de mesure, dont on maítrise le fonctionnement. Elle ne nécessite plus de travailler avec une contre-pression et un simple ressort est donc suffisant pour assurer son retour. Le piston travaillant avec des contraintes de pression moins élevées, les contraintes entre le piston et sa chemise sont limitées et l'usure est très sensiblement réduite.
Comme il va de soi, l'invention ne se limite pas au mode de réalisation décrit ci-dessus à titre d'exemple non limitatif ; elle en embrasse au contraire toutes les variantes dans le cadre des revendications ci-après.

Claims (10)

  1. Dispositif de mesure d'une quantité de carburant injectée par un injecteur (2) utilisé dans un moteur thermique comportant :
    une première chambre de mesure (8) dans laquelle est injecté le carburant, un capteur de pression (62) et un capteur de température (60) mesurant respectivement la pression et la température régnant dans la première chambre de mesure (8),
    en aval de la première chambre de mesure (8), une seconde chambre de mesure (20) qui est reliée à la première chambre (8) par une conduite de vidange (18), et dont le volume est variable selon le mouvement d'un piston (38) dont le déplacement est mesuré à l'aide d'un capteur de déplacement (46),
    une section électronique pilotant le système et analysant des informations reçues des capteurs (46, 60, 62),
    une électrovanne rapide (32) pilotée par une partie de la section électronique et un déverseur (34) qui sont disposés entre les deux chambres de mesure (8, 20) pour vidanger partiellement la première chambre de mesure (8) après une injection jusqu'à retrouver dans la première chambre de mesure (8) sensiblement la pression régnant dans celle-ci avant cette injection.
       caractérisé en ce que la section électronique comporte un dispositif de compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure (8) après deux vidanges successives.
  2. Dispositif de mesure selon la revendication 1, caractérisé en ce qu'il comporte une électrovanne de vidange rapide (52) en aval de la seconde chambre de mesure (20).
  3. Dispositif de mesure selon la revendication 1 ou 2, caractérisé en ce qu'il comporte un déverseur (54) destiné à maintenir la pression dans la deuxième chambre de mesure (20) à une valeur de consigne.
  4. Dispositif de mesure selon l'une des revendications 1 à 3, caractérisé en ce que le piston (38) est précontraint par un ressort (44) vers la seconde chambre de mesure (20).
  5. Dispositif de mesure selon l'une des revendications 1 à 4, caractérisé en ce que le piston (38) se déplace dans un cylindre (36) à paroi lisse et en ce qu'il comporte une gorge annulaire (56) ouverte vers la paroi du cylindre (36).
  6. Dispositif de mesure selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte un système de refroidissement pour refroidir l'injecteur (2), la première chambre de mesure (8), le piston (38) et le capteur de déplacement (46) du piston.
  7. Dispositif de mesure selon la revendication 6, caractérisé en ce que le fluide utilisé dans le système de refroidissement est le même que celui qui est utilisé pour réaliser les injections.
  8. Procédé de mesure des caractéristiques d'une injection de carburant effectuée par un injecteur (2) du type consistant à mettre en oeuvre une première chambre (8) pour la mesure de la pression et de la température d'injection et une deuxième chambre à volume variable (20) pour la mesure du volume de carburant injecté, et pour chaque injection :
    à mesurer la pression et la température dans la première chambre (8) avant l'injection,
    à injecter au moyen de l'injecteur (2) du carburant dans la première chambre (8),
    pendant l'injection mesurer, régulièrement au moins, la pression et la température dans la première chambre (8),
    en fin d'injection, vidanger dans la deuxième chambre (20) une partie du carburant contenu dans la première chambre (8) jusqu'à rétablir dans la première chambre (8) sensiblement la pression d'avant l'injection,
    mesurer le volume du carburant vidangé et en déduire le volume de l'injection,
    vidanger le carburant contenu dans la deuxième chambre (20),
       caractérisé en ce qu'est réalisée une compensation permettant de tenir compte d'une éventuelle différence de pression dans la première chambre de mesure (8) après deux vidanges successives.
  9. Procédé de mesure selon la revendication 8, caractérisé en ce qu'il consiste à corriger les mesures relatives à chaque injection à partir de données de calibration notamment préenregistrées.
  10. Procédé de mesure selon la revendication 8 ou 9, caractérisé en ce qu'il consiste, lors de la vidange de la deuxième chambre (20), à effectuer cette vidange jusqu'à y établir une pression de consigne.
EP00949547A 1999-06-18 2000-06-15 Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique Expired - Lifetime EP1187987B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9907982 1999-06-18
FR9907982A FR2795139B1 (fr) 1999-06-18 1999-06-18 Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique
PCT/FR2000/001660 WO2000079125A1 (fr) 1999-06-18 2000-06-15 Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique

Publications (2)

Publication Number Publication Date
EP1187987A1 EP1187987A1 (fr) 2002-03-20
EP1187987B1 true EP1187987B1 (fr) 2005-03-23

Family

ID=9547180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949547A Expired - Lifetime EP1187987B1 (fr) 1999-06-18 2000-06-15 Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique

Country Status (8)

Country Link
US (1) US6755076B1 (fr)
EP (1) EP1187987B1 (fr)
JP (1) JP2003502578A (fr)
AT (1) ATE291694T1 (fr)
DE (1) DE60018928T2 (fr)
ES (1) ES2237440T3 (fr)
FR (1) FR2795139B1 (fr)
WO (1) WO2000079125A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100459A1 (de) * 2001-01-08 2002-08-01 Bosch Gmbh Robert Vorrichtung und Verfahren zum Messen der Einspritzmenge von Einspritzsystemen, insbesondere für Brennkraftmaschinen von Kraftfahrzeugen
DE10107032A1 (de) * 2001-02-15 2002-08-29 Bosch Gmbh Robert Verfahren, Computerprogramm und Vorrichtung zum Messen der Einspritzmenge von Einspritzdüsen, insbesondere für Kraftfahrzeuge
DE10331228B3 (de) 2003-07-10 2005-01-27 Pierburg Instruments Gmbh Vorrichtung zur Messung von zeitlich aufgelösten volumetrischen Durchflußvorgängen
US7197918B2 (en) * 2003-08-14 2007-04-03 International Engine Intellectual Property Company, Llc Apparatus and method for evaluating fuel injectors
CN100376884C (zh) * 2005-04-08 2008-03-26 天津大学 可模拟高压共轨、增压中冷和废气再循环的全气缸取样系统
ATE482379T1 (de) * 2005-07-20 2010-10-15 Aea Srl Messgerät zur messung der von einem injektor eingepritzten fluidmenge
JP4821994B2 (ja) * 2006-08-28 2011-11-24 いすゞ自動車株式会社 ガスインジェクタの特性測定試験装置および特性測定試験方法
FR2935757B1 (fr) 2008-09-05 2010-09-24 Efs Sa Procede permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
FR2935758B1 (fr) * 2008-09-05 2010-09-24 Efs Sa Dispositif permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
IT1392001B1 (it) * 2008-11-27 2012-02-09 Aea Srl Metodo per misurare la portata istantanea di un iniettore per combustibili gassosi
DE102009058932B4 (de) * 2009-12-17 2013-08-14 Avl List Gmbh System und Verfahren zur Messung von Einspritzvorgängen
JP5418259B2 (ja) * 2010-02-02 2014-02-19 株式会社デンソー 噴射量計測装置
RU2449164C2 (ru) * 2010-05-19 2012-04-27 Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный государственный технический университет (МАДИ) Устройство для регистрации характеристики впрыскивания топлива форсункой дизеля
DE102010031486A1 (de) * 2010-07-16 2012-01-19 Robert Bosch Gmbh Prüfstand für Fluidpumpen und Fluidinjektoren
EP2455604B1 (fr) * 2010-11-22 2015-07-22 Continental Automotive GmbH Appareil de mesure et procédé permettant de déterminer une fuite dans une soupape d'injection
JP5429266B2 (ja) * 2011-11-25 2014-02-26 株式会社デンソー 流体ポンプの検査装置および検査方法
JP5920084B2 (ja) * 2012-07-20 2016-05-18 株式会社デンソー 噴射量計測装置
FR2995640B1 (fr) 2012-09-19 2015-03-20 Efs Sa Dispositif de mesure d’une quantite de fluide injectee par un injecteur
ITUB20154960A1 (it) * 2015-11-06 2017-05-06 Giacomo Buitoni Metodo e dispositivo per la misura dell?andamento temporale della portata (injection rate) di un qualsivoglia dispositivo comandato per il controllo di un efflusso di fluido
DE102015225736A1 (de) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Einspritzrate eines Einspritzventils
CN109386420B (zh) * 2018-10-15 2021-02-02 哈尔滨工程大学 多次喷射燃油喷射规律测量方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577967A (en) * 1968-07-13 1971-05-11 Bosch Gmbh Robert Control device for fuel injection pumps
DE2054911A1 (de) * 1970-11-07 1972-05-10 Robert Bosch Gmbh, 7000 Stuttgart Regelorgan für eine Kraftstoffeinspritzanlage
US4040405A (en) * 1975-06-10 1977-08-09 Nippon Soken, Inc. Fuel injection system for internal combustion engine
JPS5853669A (ja) * 1981-09-28 1983-03-30 Hitachi Ltd 内燃機関用燃料噴射ポンプ装置
JPS6065271A (ja) * 1983-09-19 1985-04-15 Nippon Soken Inc 内燃機関の燃料噴射装置
JPS614860A (ja) * 1984-06-16 1986-01-10 Mitsubishi Heavy Ind Ltd 噴射率計
JP2806019B2 (ja) * 1990-09-13 1998-09-30 株式会社デンソー 噴射量計測装置
US6135100A (en) * 1994-05-06 2000-10-24 Sanshin Kogyo Kabushiki Kaisha Sensor arrangement for engine control system
DE4434597B4 (de) * 1994-09-28 2006-09-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Messung kleiner Kraftstoffeinspritzmengen
JPH08270478A (ja) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd 酸素濃度センサを用いた内燃機関の制御方法及び装置及びその内燃機関
DE19758660B4 (de) * 1997-01-08 2004-01-22 Sonplas Gmbh Verfahren zur Einstellung des Brennstoffdurchflusses von Bauteilöffnungen für Einspritzventile

Also Published As

Publication number Publication date
DE60018928T2 (de) 2006-04-27
WO2000079125A1 (fr) 2000-12-28
ES2237440T3 (es) 2005-08-01
DE60018928D1 (de) 2005-04-28
JP2003502578A (ja) 2003-01-21
EP1187987A1 (fr) 2002-03-20
FR2795139A1 (fr) 2000-12-22
US6755076B1 (en) 2004-06-29
FR2795139B1 (fr) 2001-07-20
ATE291694T1 (de) 2005-04-15

Similar Documents

Publication Publication Date Title
EP1187987B1 (fr) Dispositif permettant d'analyser instantanement le debit d'injection coup par coup fourni par un systeme d'injection utilise dans un moteur thermique
EP1705355B1 (fr) Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection
FR2878292A1 (fr) Dispositif et procede de determination des variations de pression d'un systeme d'alimentation en carburant
FR2826064A1 (fr) Systeme d'alimentation en carburant pour carburant de remplacement
FR2895512A1 (fr) Procede et dispositif de mesure automatique de la consommation en huile d'un moteur a combustion interne et de vidange dudit moteur
FR2762647A1 (fr) Procede pour determiner la duree d'injection dans un moteur a combustion interne a injection directe
FR2734213A1 (fr) Procede de diagnostic de l'etancheite d'un systeme de ventilation de reservoir
FR2936593A1 (fr) Generateur d'air chaud
EP2318689B1 (fr) Procede permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
FR2935758A1 (fr) Dispositif permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
FR2725021A1 (fr) Procede et dispositif de mesure de petites quantites de carburant injecte notamment dans un moteur a combustion interne a allumage non commande
WO2011154528A1 (fr) Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz
FR2790515A1 (fr) Procede et dispositif de mise en oeuvre en fonctionnement transitoire d'un moteur a combustion interne, notamment d'un vehicule automobile
FR2492003A1 (fr) Dispositif de pompage pour injection de carburant
FR2901848A1 (fr) Procede et dispositif de correction du debit de l'injection de carburant dit pilote dans un moteur diesel a injection directe du type a rampe commune, et moteur comprenant un tel dispositif
EP1159522B1 (fr) Procede de determination de la pression regnant dans la rampe d'injection du carburant d'un moteur a combustion interne et dispositif correspondant
FR3027999A1 (fr) Station d'approvisionnement en hydrogene gazeux et procede associe permettant de determiner avec une precision donnee le debit massique d'hydrogene gazeux
WO2021165096A1 (fr) Procédé de mesure d'un débit de liquide à la sortie d'une pompe
FR2948410A3 (fr) Dispositif de regeneration d'un filtre a particules pour un banc d'essai d'un moteur a combustion interne et banc moteur comportant un tel dispositif
FR2617908A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
FR2795173A1 (fr) Dispositif a piston permettant de mesurer de petites quantites de carburant injecte par un injecteur
FR2844307A1 (fr) Procede et dispositif pour determiner la masse de carburant d'un film de paroi lors de l'injection dans la conduite d'aspiration d'un moteur a combustion interne
FR2960914A1 (fr) Procede et dispositif de regulation du debit de carburant a injecter dans une chambre de combustion de turbomachine
FR2722247A1 (fr) Procede de commande d'un moteur a combustion interne a recyclage de gaz de purge de l'event du reservoir
EP2044312A2 (fr) Procede de reduction des emissions d'hydrocarbures d'un moteur froid a injection indirecte d'essence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050323

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60018928

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2237440

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051227

BERE Be: lapsed

Owner name: EFS SA

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150630

Year of fee payment: 16

Ref country code: CH

Payment date: 20150630

Year of fee payment: 16

Ref country code: LU

Payment date: 20150630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150716

Year of fee payment: 16

Ref country code: ES

Payment date: 20150730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150630

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60018928

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160615

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615