WO2011154528A1 - Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz - Google Patents

Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz Download PDF

Info

Publication number
WO2011154528A1
WO2011154528A1 PCT/EP2011/059701 EP2011059701W WO2011154528A1 WO 2011154528 A1 WO2011154528 A1 WO 2011154528A1 EP 2011059701 W EP2011059701 W EP 2011059701W WO 2011154528 A1 WO2011154528 A1 WO 2011154528A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous fuel
combustion chamber
temperature
valve
control
Prior art date
Application number
PCT/EP2011/059701
Other languages
English (en)
Inventor
Serge Fauqueux
Denis Martin
Nicolas Pourron
Original Assignee
Ge Energy Products France Snc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Energy Products France Snc filed Critical Ge Energy Products France Snc
Priority to CN201180030834.1A priority Critical patent/CN102947572B/zh
Publication of WO2011154528A1 publication Critical patent/WO2011154528A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Definitions

  • the present invention relates to gas turbines.
  • the present invention relates to a method of starting or stopping a gas turbine, and the device implementing the method.
  • Gas turbines generally comprise an air intake system, a compressor with one or more compression stages with an air flow regulating device, an internal combustion system, an expansion turbine mechanically connected to the compressor, and a conduit for rejection and exhaust.
  • Gas turbines are designed with combustion systems capable of injecting liquid fuel or gaseous fuel into the combustion system via concentric injectors. Most thermal installations using combustion turbines are powered by gaseous fuels.
  • the present invention relates to combustion turbines fueled by a gaseous fuel. Furthermore, the present invention relates to the transient operation of a gas turbine, particularly the start and stop phases of the gas turbine.
  • a launch engine When starting up the gas turbine, a launch engine is used which fulfills the function of starter.
  • the different fluids necessary for the operation of the turbine arrive by independent circuits. There is thus distinguished the intake circuit of the ambient air capable of being compressed in the compressor, a liquid fuel circuit associated with an atomization air circuit of the liquid fuel after entering the combustion chamber and a circuit of gaseous fuel.
  • the characteristics of the gaseous fuel can vary over time, particularly in terms of the composition of the constituents forming the gaseous fuel.
  • different types of gas can be used to power a gas turbine. It can be for example natural gas, propane, butane, refined gas, synthesis gas (in English: "syngaz") etc. Energy
  • Each of these gases may vary depending on its origin and, obviously, there may be variations in the lower heating value (rich or poor gas) between these different types of gas.
  • the temperature of the gases supplying a combustion chamber can also be different from one system to another. For example, many generating stations producing electricity at the gas turbine outlet include a heating system upstream of the combustion chamber to maintain a desired constant temperature. Other installations may include compressors to increase the temperature.
  • different systems can provide gas with different lower caloric powers, at different temperatures and pressures.
  • several facilities can fuel from different suppliers, which can result in a change in both temperature and gas composition.
  • the composition and temperature characteristics of a fuel can be characterized by a reference parameter called the Modified Wobbe Index (MWI).
  • MWI Modified Wobbe Index
  • the MWI allows a comparison of the volumetric energy of different gases at different temperatures.
  • the modified Wobbe index MWI, with temperature correction is defined by:
  • PCI is the lower calorific value of the gas in which:
  • BTU / SCF English “British Thermal Unit for Standard Cubic Foot”
  • Sg the density of the gas with respect to the air (under the same conditions of temperature and pressure)
  • T its absolute temperature in ° R (degree Rankine ).
  • an industrial gas network may have variations of Wobbe index modified by plus or minus 10% around an average value.
  • US patent application 2008/1 15482 and US Pat. No. 7,472,540 disclose devices comprising gas analyzers for measuring the fuel characteristics and then regulating the valves at the inlet of the combustion chamber according to the variations of the characteristics to compensate for these variations.
  • a buffer tank may optionally be used, between the measuring device and the valves, as a gas reserve of known composition and volume, in order to compensate for the analysis time of the measuring device and to reduce the rapid variations of the PCI.
  • the operation of the gas turbine is then adapted to changes in gas characteristics.
  • US patent application 2007/0101724 describes a method of regulating the gas flow rate in which the flow coefficient Cv of a valve is calculated as a function of the pressure and the temperature of the gas, and then adjusted according to the difference. inlet pressure of the injectors.
  • the pressure downstream inj ectors that is to say in the combustion chamber.
  • a pressure sensor must therefore be installed in the high temperature zones of the combustion chamber.
  • the variations in the characteristics of the gaseous fuel supplying the combustion chamber cause problems such as: flame losses at the start of the turbine or difficulty maintaining the rate of acceleration during the starting phase when the modified Wobbe index is too much low, propagation of pressure waves in the combustion chamber, thermal fatigue of the turbine elements, too fast acceleration in the starting phase or deceleration too slow in the stop phase, when the Wobbe index is too high.
  • the object of the present invention is to solve the problems mentioned above.
  • an object of the present invention is to make it possible to limit the impact of the modified Wobbe index change on the operation of a gas turbine, during the starting or stopping phases, in particular when the variation of the Modified Wobbe Index is greater than plus or minus 10%.
  • Another object of the invention is to overcome in part the long response time of gas analyzers.
  • a method for starting or stopping a gas turbine comprising at least one combustion chamber fed, according to one or more feed controls, with a gaseous fuel that may comprise one or more different gases. given, said gases each having a lower calorific value and a given temperature.
  • the feed control (s) are determined according to a heat flow rate determined from a model considering that the gaseous fuel has a heating value that is substantially lower than the upper value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures, and possibly depending on the speed of the turbine,
  • At least one of the feed control (s) is corrected, depending, for example, solely on the measured temperature and / or Wobbe index of the gaseous fuel supplying the combustion chamber.
  • the Wobbe WI index is defined by:
  • the lower heating value and the temperature of each gas can be provided for example by the operator of the gas turbine.
  • the gas turbine may comprise means for regulating the pressure of the gaseous fuel supplying the combustion chamber and one of the supply controls may be the control of the pressure regulating means.
  • the pressure of the gaseous fuel supplying the combustion chamber varies according to the instantaneous speed of the gas turbine.
  • the control of the pressure of the gaseous fuel supplying the combustion chamber is determined as a function of the speed, in particular the instantaneous speed, of the gas turbine.
  • the gas turbine may comprise a valve for supplying the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow rate of gaseous fuel supplying the combustion chamber being proportional to the percentage of opening of the valve, and one of the power controls may be the percentage of opening of the valve.
  • the supply valve may be a sonic type valve.
  • the starting phase corresponds substantially to the stage during which the flames are obtained in the combustion chamber and during which a rotation speed of the turbine approximately equal to 10% of the nominal speed (in continuous operation) is reached.
  • the end of the start - up phase corresponds to the moment when the turbine reaches its nominal speed.
  • the stopping phase of the turbine corresponds to extinguishing the flames in the combustion chamber and at a speed less than or equal to 30% of the nominal speed.
  • the start and stop phases correspond in particular to the (transient) operating phases of the gas turbine between the ignition or extinction phase of the flames in the combustion chamber and the continuous operation phase of the turbine. gas.
  • the operating controls of the gas turbine during the start and stop phases depend in particular on the speed of the gas turbine.
  • the corrections of the feed controls can be weighted by multiplicative factors, the sum of the multiplicative factors being equal to 1.
  • the corrections of the feed controls can be weighted by multiplicative factors, the sum of the factors multip licatives being equal to 1.
  • a device for starting or stopping a gas turbine comprising a combustion chamber capable of being fed, according to one or more supply controls, with a gaseous fuel which may comprise one or several different gases given, said gases each having a lower heating value and a given temperature.
  • the device comprises:
  • a determining means adapted to receive as input the speed of the turbine measured by the measurement means and able to deliver, at the output, the supply control or commands as a function of a heat flow rate determined from a minimum considering that the gaseous fuel has a lower heating value substantially equal to the higher value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures, a means for measuring the temperature and / or the Wobbe index of the gaseous fuel supplying the combustion chamber and
  • - correction means adapted to receive at input the supply control or commands determined by the determination means and the temperature and / or the Wobbe index measured by the measuring means, and capable of outputting the or power controls corrected for temperature and / or Wobbe index.
  • the gas turbine may comprise means for regulating the pressure of the gaseous fuel supplying the combustion chamber and one of the supply controls is the control of the pressure regulating means.
  • the gas turbine may comprise a valve for supplying the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow rate of gaseous fuel supplying the combustion chamber being proportional to the percentage of opening of the valve, and one of the supply controls is the percentage of opening of the valve.
  • the supply valve may be a sonic type valve.
  • the invention also relates to a gas turbine comprising a starting or stopping device as described above.
  • Figure 1 shows, schematically, a gas turbine
  • Figure 2 illustrates, schematically, a device for supplying gaseous fuel to the gas turbine
  • FIG. 3 is a block diagram of a method of supplying gaseous fuel to a gas turbine during a start-up or shutdown phase; and FIG. 4 represents an exemplary model for controlling the supply of gaseous fuel to a gas turbine during a start-up phase.
  • FIG. 1 schematically represents a gas turbine 1 fed with a gaseous fuel coming, for example, from a tank 2. Gas turbines are generally used in power plants, to drive generators and to produce energy. electric.
  • the gas turbine 1 comprises an axial compressor 3 with a rotor shaft 4. The air is introduced through the inlet 5 of the compressor, is compressed by the axial compressor 3 and then directed towards a combustion chamber 6.
  • the combustion chamber 6 is also supplied with a gaseous fuel, for example natural gas which, during combustion, produces high-energy hot gases capable of driving a turbine 7.
  • a gaseous fuel for example natural gas which, during combustion, produces high-energy hot gases capable of driving a turbine 7.
  • the gaseous fuel can be conveyed from the tank 2 to the combustion chamber 6 by a gaseous fuel supply device 8 which comprises an inlet connected to the tank 2 and an outlet connected to the combustion chamber 6.
  • the energy of the hot gases is converted into work, part of which is used to drive the compressor 3, via the rotor shaft 4, and the other part of which is used to drive a generator.
  • the exhaust gas then flows out of the turbine 7 through an outlet 11, and can be used for other applications.
  • FIG. 2 shows in more detail, the device 8 for supplying gaseous fuel to the combustion chamber.
  • the feed device 8 comprises an inlet 12 for receiving the gaseous fuel, and outlets 13 for supplying the combustion chamber with the gaseous fuel, and a conveying line 14 connecting the inlet 12 to the outlets 13.
  • the feed line 14 of the gaseous fuel comprises successively, in the direction of circulation of the gaseous fuel: an isolation valve 15 (in English: S afety Shut-Off Valve S SOV) connected to the inlet 12, a control valve 16 (in English: Stop Ratio Valve SRV) mounted downstream of the isolation valve 1 5, and feed lines 17, for example three, connected in parallel, downstream of the control valve 16 and each comprising a gas control valve 1 8 (in English: Gas Control Valve GCV) mounted upstream of an outlet 13 to the combustion chamber.
  • an isolation valve 15 in English: S afety Shut-Off Valve S SOV
  • a control valve 16 in English: Stop Ratio Valve SRV
  • Isolation valve 15 is a safety valve and is intended to isolate the gaseous fuel supply circuit of the fuel supply circuit of the combustion chamber.
  • the valve 15 thus makes it possible to interrupt the supply of gaseous fuel in the event of a problem of operation of the gas turbine, or in the event of its stopping.
  • the control valve 16 also makes it possible to interrupt the supply of gaseous fuel to the combustion chamber, but above all it makes it possible to control the pressure of the gaseous fuel in the conveyance line between the control valve 16 and the control valves. 1 8, which varies according to the instantaneous speed of the turbine.
  • the control of the control valve 16 is therefore determined in particular according to the speed of the turbine.
  • the control valves 1 8 determine the amount of gaseous fuel delivered by the supply line 1 3 to the combustion chamber.
  • the valves 1 8 are valves for which the flow of gas passing through them is proportional to the percentage of opening of the valves or the pressure of the gaseous fuel upstream of the valves 1 8, it is that is, the gas flow rate is proportional to the opening percentage of the valve 1 8 for a constant gas pressure, or the gas flow rate is proportional to the gas pressure, for a percentage of opening of the gas. valve 1 8 constant.
  • the quantity of gaseous fuel supplying the combustion chamber is thus controlled by the opening control of at least one of the control valves 1 8 or by the opening control of the control valve 16.
  • the valves 1 8 can be for example valves controlled according to a hydraulic / electrical techno logy: such a technology allows in effect a fast and accurate positioning of the valve to adjust the flow of gaseous fuel.
  • the valves 1 8 may be sonic type.
  • the gaseous fuel supply device 8 aims to determine and control the amount of gaseous fuel delivered to the combustion chamber, in particular to allow the gas turbine to operate under conditions of high reliability and efficiency.
  • the feed device 8 is able to take into account variations in intrinsic characteristics of the gaseous fuel coming from the supply network.
  • the gaseous fuel can vary over time, including the type of gas and the composition. This variation of the gaseous fuel causes a change in the characteristics of the fuel, in particular its lower heating value (LPI), its temperature and its density, which are characteristics having an impact on the combustion of said gas, on the operation of the supply valves, and so on the operation of the turbine.
  • LPI lower heating value
  • the gaseous fuel may be composed of several given gases, whose lower heating capacities and temperatures are different. This information can be known, for example, by measuring the characteristics of these different gases or by communication of this information by the suppliers of these different gases.
  • the device for supplying gaseous fuel must therefore take into account the variations in the characteristics of the gas, with respect to the selected reference values which are, in the present case, the higher value of the lower calorific values given and the lower value of the given temperatures, that is, the richest gas given at the lowest temperature given.
  • the supply device 8 comprises, for this purpose, an electronic control unit 19.
  • the control unit 19 makes it possible on the one hand to determine the quantity of gaseous fuel to be delivered to the combustion chamber by controlling the percentage of opening at least one of the valves 1 8 and the gaseous fuel pressure at said valve 1 8, and secondly to adapt the pressure and opening controls according to the characteristics of the gaseous fuel, in particular its Wobbe index and its temperature, in order to correct the difference between the real characteristics of the gaseous fuel supplying the combustion chamber and the selected reference values which are, in the present case, the higher value of the given lower heating values and the lower value of the given temperatures.
  • the control unit 19 also controls the valves 16 and 18, for example their opening and closing, or even their percentage of opening.
  • the valves 16 and 18 are controlled by the supply control unit supplied by the control unit 19.
  • the control unit 19 can therefore supply the combustion chamber with the quantity of gaseous fuel determined via the of the valve 16 (which controls the pressure of the gaseous fuel upstream of the valves 1 8) and / or via the opening percentage of at least one of the valves 1 8.
  • the control unit 1 9 receives information relating to the gaseous fuel supplying the combustion chamber and relating to the operation of the turbine.
  • the control unit 19 receives as input the speed of rotation of the turbine, supplied by a measuring means (not shown), the temperature of the gaseous fuel delivered by a temperature sensor 20 mounted between the isolation valve. 15 and the regulating valve 16, and characteristics of the gaseous fuel (for example the Wobbe index) by a measuring means 21 (for example of the Wobbe index) mounted upstream of the Isolation valve 15.
  • the control unit 1 9 can also receive the data provided by a pressure sensor 22, mounted between the control valve and the supply lines 17.
  • the control unit 19 can check, from the pressure measured by the sensor 22 if the control of the control valve 16 makes it possible to obtain the desired gas fuel pressure.
  • control unit 19 comprises a means 23 for determining the supply control supplied to the valves 16 and 1 8.
  • the supply control can be, for example, the opening percentage of the regulation valve 16, in order to modify the pressure upstream of the control valves 1 8, and / or the flow of gaseous fuel through said control valve 1 8.
  • the supply control can also be the opening percentage of the control valve 1 8. In this case, and for a constant gaseous fuel pressure, it is possible to control the flow of gaseous fuel through said valve 1 8.
  • the feed control can also be, as represented in FIG. 2, both the opening percentage of the regulating valve 16 and the control valve 1 8: in this case, the flow rate is controlled. through valve 1 8 by two modifiable quantities.
  • the determination means 23 receives as input the speed of the turbine in real time, and knows the characteristics of the gaseous reference fuel, that is to say the fuel having a lower heating value substantially equal to the largest value of power. lower calorific value, and a temperature substantially equal to the smallest given temperature value. These values are stored in the means 23. The determination means 23 then determines the supply control (s), that is to say, the percentage of opening of the valve 16 determining the pressure upstream of the valves. the percentage of opening of valve 1 8, which make it possible to obtain a desired heat flow rate, said desired heat flow rate being determined by considering that the gaseous fuel has a lower heating value substantially equal to the greater value of the lower calorific value given, and has a temperature substantially equal to the smallest given temperature value.
  • the supply control that is to say, the percentage of opening of the valve 16 determining the pressure upstream of the valves. the percentage of opening of valve 1 8, which make it possible to obtain a desired heat flow rate, said desired heat flow rate being determined by considering that the gaseous fuel has
  • the feed control can then be corrected and adjusted either by modifying the pressure or the opening percentage of the valve 1 8, depending on parameters (gas Wobbe index and / or gas temperature supplying the combustion chamber). ) measured on the routing line.
  • parameters gas Wobbe index and / or gas temperature supplying the combustion chamber).
  • the relationship used by the determining means 23 may be an affine type function with respect to the speed of the turbine. From this pressure, it is possible to determine the opening percentage of the valve 1 8.
  • the control unit 1 9 may comprise a first correction means 24.
  • the first correction means 24 receives as input the power commands determined by the means 23, and the temperature of the gaseous fuel measured by the temperature sensor 20. From the gaseous fuel temperature, the first means 24 determines a first correction factor to be applied to the supply controls received from the determination means 23.
  • a correction factor A 'applied to the feed control for the opening percentage of the control valve 1 8 can be of the form: A'
  • T m easured is the temperature measured by the sensor 20
  • T m ⁇ orOH is the temperature substantially equal to the smallest temperature value stored in the means 23.
  • Cmeasured the specific heat capacity of the gas supplying the combustion chamber.
  • corrected power commands are obtained which correspond more to the actual temperature characteristics of the gaseous fuel. feeding the combustion chamber.
  • the temperature correction factor may be applied to the supply control for control valve 1 8 only (factor A ') on the supply control for control valve 16 only (factor A). "), or on the supply controls for both valves.
  • the correction factors are weighted by multiplicative factors, for example a and (1-a) where a is between 0 and 1, such that the sum of the multiplicative factors is equal to 1.
  • the corrections applied to two valves may be respectively ⁇ * ⁇ 'and (la) * A. The same applies to 1 or 0 as the commands applied to the control valve 18 only or to the control valve 16 only.
  • the control unit 19 may also comprise a second correction means 25.
  • the second correction means 25 receives as input the supply commands corrected by the first correction means 24, and the Wobbe index of the gaseous fuel measured by the sensor 21. From the Wobbe index of the gaseous fuel, the second means 25 determines a correction factor to be applied to the corrected power commands received from the correction means 24. Thus, a correction factor B applied to the supply control for the control valve 18 or the
  • Wmeasurea is the Wobbe index measured by the sensor 21
  • Wlemorized is the Wobbe index of the gas considered by the determination means 23.
  • the correction factor can be applied to the supply control for the opening percentage of the control valve 16 only (factor B "), on the supply control for opening the control valve 18 only (Factor B '), or on the supply controls for both valves
  • the correction factors are weighted by multiplicative factors, for example ⁇ and (l- ⁇ ) where ⁇ is between 0 and 1, such as the sum of the factors multiplicative equals 1.
  • the corrections applied to the two valves can be respectively ⁇ * ⁇ 'and (1- ⁇ ) * ⁇ ". For ⁇ equal to 1 or 0, we find the commands applied to the control valve 18 only or at control valve 16 only
  • the feed control from the determination means 23 and intended for the opening of the valve 18 is multiplied by the factors A 'and B', or the feed control from the determination means 23 and intended for the valve 16 is multiplied by the factors A "and B", or the two supply controls of the valves 18 and 16 are multiplied respectively by ⁇ * ⁇ 'and ⁇ * ⁇ ', and by (la) * A "and (1- ⁇ ) * ⁇ ".
  • FIG. 3 is a block diagram of a method of supplying gaseous fuel to a gas turbine during a start-up or shutdown phase.
  • the process begins with a step 31 during which the speed of the turbine is measured.
  • a step 32 it determines the control of the opening percentage of the control valve 16, that is to say the supply pressure of the combustion chamber, considering that the gaseous fuel has a power lower calorific substantially equal to the largest value of lower calorific value given, and has a temperature substantially equal to the smallest given temperature value.
  • a step 33 the temperature of the gaseous fuel actually supplying the combustion chamber is measured, then, in a step 34, the correction factor based on the temperature of the gaseous fuel is calculated, for example as a function of the difference between the measured temperature and the temperature of the gas considered in step 32.
  • the correction factor A "to be applied to the control of the control valve 16 is calculated to take into account the temperature of the gaseous fuel supplying the chamber of combustion.
  • a step 36 the Wobbe index of the gaseous fuel actually supplying the chamber is measured. combustion, then, in a step 37, the correction factor based on the Wobbe index of the gaseous fuel is calculated, for example as a function of the difference between the measured Wobbe index and the Wobbe index of the gas considered. in step 32. In a step 38, the correction factor B "to be applied to the control of the control valve 16 is calculated to take into account the Wobbe index of the gaseous fuel supplying the combustion chamber.
  • the percentage of opening of the control valve 18 is determined, in particular from the opening percentage of the control valve 16 determined in step 32, that is to say from the design parameters of the device.
  • the correction factor * A 'and ⁇ * ⁇ ' are applied to the opening percentage of the control valve 18, and said corrected control is applied to the control valve 18, during a step 43, for supplying the combustion chamber with the gaseous fuel.
  • FIG. 4 represents an exemplary control model 40 for supplying gaseous fuel to a gas turbine during a start-up phase.
  • the model solid line in the figure, has a first portion for a turbine speed less than VI, during which the turbine is driven by an electric motor. Then, in a second part for a turbine speed between VI and V2, the model comprises a so-called start-up step during which the flow of gaseous fuel has a first value D1.
  • the model comprises a so-called heating step during which the gaseous fuel flow has a second value D2 less than D l.
  • the model comprises a so-called acceleration step during which the gaseous fuel flow increases from the value D2 to a value D3 greater than D1 and corresponding to the operation in operation. continuous of the gas turbine.
  • the model 40 corresponds to the desired flow rate (and therefore to the desired supply control) when the combustion chamber is fed with a gas having a heating value lower than substantially the upper value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures.
  • the feed control corresponding to the model 40 can be corrected according to the temperature and Wobbe index of the gaseous fuel.
  • a flow corresponding to the dashed curve 41 is obtained which has values D 1 'and D 2' greater than the values D 1 and D 2.
  • the speed V3 ' is greater than the speed V3.
  • a power control controlling both the control valve 16 and the control valve 1 8 has been considered.
  • the corrections are assigned entirely to the power control considered.

Abstract

L'invention concerne un procédé (30) de démarrage ou d'arrêt d'une turbine à gaz (1) comprenant une chambre de combustion (6) alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés. Selon le procédé on mesure la vitesse de la turbine (31), on détermine la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, on mesure la température (33) et/ou l'indice de Wobbe (36) du combustible gazeux alimentant la chambre de combustion, et on corrige (39, 42) au moins une de la ou des commandes d'alimentation, en fonction de la température et/ou de l'indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion. L'invention concerne également le dispositif de démarrage ou d'arrêt d'une turbine à gaz, mettant en oeuvre le procédé.

Description

PROCÉDÉ ET DISPOSITIF DE DÉMARRAGE OU D'ARRÊT
D'UN MOTEUR À TURBINE À GAZ
La présente invention concerne les turbines à gaz . En particulier, la présente invention concerne un procédé de démarrage ou d' arrêt d 'une turbine à gaz, et le dispositif mettant en œuvre le procédé.
Les turbines à gaz comprennent généralement un système d' admission d' air, un compresseur à un ou plusieurs étages de compression avec un dispositif de régulation de débit d' air, un système de combustion interne, une turbine de détente reliée mécaniquement au compresseur, et un conduit pour le rej et des gaz d' échappement. Les turbines à gaz sont conçues avec des systèmes de combustion capables d' inj ecter du combustible liquide ou du combustible gazeux dans le système de combustion, par l ' intermédiaire d ' inj ecteurs concentriques . La plupart des installations thermiques utilisant des turbines à combustion sont alimentées par des combustibles gazeux.
La présente invention concerne les turbines à combustion alimentées par un combustible gazeux. Par ailleurs, la présente invention concerne le fonctionnement transitoire d 'une turbine à gaz, notamment les phases de démarrage et d' arrêt de la turbine à gaz. Lors de la mise en route de la turbine à gaz, on utilise un moteur de lancement qui remplit la fonction de démarreur. Les différents fluides nécessaires au fonctionnement de la turbine, arrivent par des circuits indépendants . On distingue ainsi le circuit d' admission de l ' air ambiant apte à être comprimé dans le compresseur, un circuit de combustible liquide associé à un circuit d' air d' atomisation du combustible liquide après son entrée dans la chambre de combustion et un circuit de combustible gazeux.
Cependant, les caractéristiques du combustible gazeux peuvent varier dans le temps, notamment en termes de composition des constituants formant le combustible gazeux . En effet, différents types de gaz peuvent être utilisés pour alimenter une turbine à gaz . Il peut s ' agir par exemple de gaz naturel, de propane, butane, de gaz de raffinage, de gaz de synthèse (en anglais : « syngaz ») etc. L ' énergie de chacun de ces gaz peut varier en fonction de son origine et, évidemment, il peut y avoir des variations du pouvoir calorifique inférieur (gaz riche ou pauvre), entre ces différents types de gaz. La température des gaz alimentant une chambre de combustion peut aussi être différente d'un système à l ' autre. Par exemple, beaucoup de centrales produisant de l ' électricité en sortie de turbines à gaz comprennent un système de réchauffage en amont de la chambre de combustion afin de maintenir une température constante voulue . D ' autres installations peuvent comprendre des compresseurs pour augmenter la température . Ainsi, différents systèmes peuvent fournir du gaz avec différents pouvoirs caloriques inférieurs, à des températures et pressions différentes . De plus, plusieurs installations peuvent s ' alimenter en combustible à partir de différents fournisseurs, ce qui peut entraîner une variation à la fois de température et de composition du gaz.
Les caractéristiques de composition et de température d'un combustible peuvent être caractérisées par un paramètre de référence appelé l 'indice de Wobbe modifié (MWI). Le MWI permet une comparaison de l ' énergie vo lumétrique de différents gaz, à différentes températures . Ainsi, l ' indice de Wobbe dit modifié MWI, avec correction de température, est défini par :
MWI
JSg T
dans laquelle : PCI est le pouvoir calorifique inférieur du gaz en
BTU/SCF (en anglais « British Thermal Unit per Standard Cubic Foot »), Sg la densité du gaz par rapport à l ' air (dans les mêmes conditions de température et de pression) et T sa température absolue en °R (degré Rankine).
Actuellement, un réseau industriel de gaz peut avoir de variations d' indice de Wobbe modifié de plus ou moins 10% autour d'une valeur moyenne.
Il existe différents systèmes permettant de s ' accommoder de variations de caractéristiques du combustible gazeux. La demande de brevet US 2008/ 1 15482 et le brevet US 7,472,540 décrivent des dispositifs comprenant des analyseurs de gaz, permettant de mesurer les caractéristiques du combustible, puis de réguler les vannes en entrée de la chambre de combustion en fonction des variations des caractéristiques pour compenser ces variations. En outre, un réservoir tampon peut éventuellement être utilisé, entre le dispositif de mesure et les vannes, comme réserve de gaz à composition et volume connus, afin de compenser le temps d' analyse du dispositif de mesure et réduire les variations rapides du PCI . Le fonctionnement de la turbine à gaz est alors adapté aux changements de caractéristiques du gaz.
La demande de brevet US 2007/0 101724 décrit une méthode de régulation du débit de gaz dans laquelle le coefficient de débit Cv d'une vanne est calculé en fonction de la pression et de la température du gaz, puis ajusté en fonction de la différence de pression en entrée des injecteurs . Toutefois, il est nécessaire, dans cette méthode, de connaître la pression en aval des inj ecteurs, c ' est-à-dire dans la chambre de combustion. Un capteur de pression doit donc être installé dans les zones de haute température de la chambre de combustion.
Cependant, les variations des caractéristiques du combustible gazeux alimentant la chambre de combustion entraînent des problèmes tels que : pertes de flamme au démarrage de la turbine ou difficulté de maintien du taux d' accélération en phase de démarrage lorsque l ' indice de Wobbe modifié est trop faible, propagation d' ondes de pression dans la chambre de combustion, fatigue thermique des éléments de la turbine, accélération trop rapide en phase de démarrage ou décélération trop lente en phase d' arrêt, lorsque l 'indice de Wobbe est trop élevé.
Une so lution consisterait à mesurer en temps réel l ' indice de Wobbe modifié, et de modifier le fonctionnement de la turbine à gaz en conséquence. Cependant, une telle solution est difficile à mettre en œuvre, en raison notamment : du temps de réponse élevé des analyseurs de gaz par rapport à la vitesse de variation de l ' indice de Wobbe modifié des combustibles gazeux, de l 'inertie relative des dispositifs de chauffage des gaz, de la courte durée de la phase de démarrage d'une turbine à gaz, et de la consommation de gaz relativement importante au démarrage.
Le but de la présente invention est de résoudre les problèmes cités précédemment. Notamment, un but de la présente invention est de permettre de limiter l ' impact du changement d 'indice de Wobbe modifié sur le fonctionnement d 'une turbine à gaz, pendant les phases de démarrage ou d' arrêt, en particulier lorsque la variation de l ' indice de Wobbe mo difié est supérieure à plus ou moins 10%. Un autre but de l' invention est de s ' affranchir en partie du temps de réponse long des analyseurs de gaz.
Selon un aspect, il est proposé un procédé de démarrage ou d' arrêt d 'une turbine à gaz comprenant au moins une chambre de combustion alimentée, selon une ou plusieurs commandes d' alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés . Selon le procédé :
- on mesure la vitesse de la turbine,
- on détermine la ou les commandes d' alimentation en fonction d'un débit calorifique déterminé à partir d'un mo dèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, et éventuellement en fonction de la vitesse de la turbine,
- on mesure la température et/ou l ' indice de Wobbe du combustible gazeux alimentant la chambre de combustion et
- on corrige au moins une de la ou des commandes d' alimentation, en fonction, par exemple uniquement en fonction, de la température et/ou de l ' indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion.
L 'indice de Wobbe WI est défini par :
PCS
WI = dans laquelle : PC S est le pouvoir calorifique supérieur du gaz et Sg est sa densité (par rapport à l ' air) .
Le pouvoir calorifique inférieur et la température de chaque gaz peut être fournie par exemp le par l ' exploitant de la turbine à gaz .
La turbine à gaz peut comprendre un moyen de régulation de la pression du combustible gazeux alimentant la chambre de combustion et une des commandes d' alimentation peut être la commande du moyen de régulation de la pression. En particulier, la pression du combustible gazeux alimentant la chambre de combustion varie en fonction de la vitesse instantanée de la turbine à gaz. Autrement dit, la commande de la pression du combustible gazeux alimentant la chambre de combustion est déterminée en fonction de la vitesse, notamment la vitesse instantanée, de la turbine à gaz.
La turbine à gaz peut comprendre une vanne d' alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion étant proportionnel au pourcentage d' ouverture de la vanne, et une des commandes d' alimentation peut être le pourcentage d' ouverture de la vanne.
La vanne d' alimentation peut être une vanne de type sonique .
Ainsi, il est possible de compenser les variations de caractéristiques du gaz alimentant la chambre de combustion en corrigeant les commandes d' alimentation de la chambre de combustion, c ' est-à-dire en modifiant la pression du combustible gazeux et/ou le pourcentage d 'ouverture de la vanne d' alimentation.
La phase de démarrage correspond sensiblement à l ' étape durant laquelle on obtient les flammes dans la chambre de combustion et durant laquelle on atteint une vitesse de rotation de la turbine environ égale à 10% de la vitesse nominale (en fonctionnement continu) . La fin de la phase de démarrage correspond à l 'instant où la turbine a atteint sa vitesse nominale.
La phase d' arrêt de la turbine correspond à l ' extinction des flammes dans la chambre de combustion et à une vitesse inférieure ou égale à 30% de la vitesse nominale. Ainsi, les phases de démarrage et d ' arrêt correspondent notamment aux phases (transitoires) de fonctionnement de la turbine à gaz entre la phase d' allumage ou d' extinction des flammes dans la chambre de combustion et la phase de fonctionnement continu de la turbine à gaz.
Les commandes de fonctionnement de la turbine à gaz pendant les phases de démarrage et d' arrêt dépendent notamment de la vitesse de la turbine à gaz.
Lorsque plusieurs commandes d' alimentation sont corrigées en fonction de la température du combustible gazeux alimentant la chambre de combustion, on peut pondérer les corrections des commandes d' alimentation, par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1 . Alternativement, ou en complément, lorsque plusieurs commandes d' alimentation sont corrigées en fonction de l ' indice de Wobbe du combustible gazeux alimentant la chambre de combustion, on peut pondérer les corrections des commandes d' alimentation par des facteurs multiplicatifs, la somme des facteurs multip licatifs étant égale à 1 .
Selon un autre aspect, il est également proposé un dispositif de démarrage ou d' arrêt d'une turbine à gaz comprenant une chambre de combustion apte à être alimentée, selon une ou plusieurs commandes d' alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés . Le dispositif comprend :
- un moyen de mesure de la vitesse de la turbine,
- un moyen de détermination apte à recevoir en entrée la vitesse de la turbine mesurée par le moyen de mesure et apte à délivrer, en sortie, la ou les commandes d' alimentation en fonction d'un débit calorifique déterminé à partir d'un mo dèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, - un moyen de mesure de la température et/ou de l 'indice de Wobbe du combustible gazeux alimentant la chambre de combustion et
- un moyen de correction, apte à recevoir en entrée la ou les commandes d' alimentation déterminées par le moyen de détermination et la température et/ou l ' indice de Wobbe mesurés par le moyen de mesure, et apte à délivrer en sortie la ou les commandes d' alimentation corrigées en fonction de la température et/ou de l' indice de Wobbe.
La turbine à gaz peut comprendre un moyen de régulation de la pression du combustible gazeux alimentant la chambre de combustion et une des commandes d' alimentation est la commande du moyen de régulation de la pression.
La turbine à gaz peut comprendre une vanne d' alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion étant proportionnel au pourcentage d' ouverture de la vanne, et une des commandes d' alimentation est le pourcentage d' ouverture de la vanne.
La vanne d' alimentation peut être une vanne de type sonique .
L 'invention concerne également une turbine à gaz comprenant un dispositif de démarrage ou d' arrêt tel que décrit précédemment.
D ' autres avantages et caractéristiques de l 'invention apparaîtront à l ' examen de la description détaillée d'un mode de réalisation de l' invention nullement limitatif, et des dessins annexés, sur lesquels :
la figure 1 représente, de manière schématique, une turbine à gaz ;
la figure 2 illustre, de manière schématique, un dispositif d ' alimentation en combustible gazeux de la turbine à gaz ;
la figure 3 présente un synoptique d 'un procédé d' alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage ou d' arrêt ; et la figure 4 représente un exemple de modèle de commande d' alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage. La figure 1 représente de manière schématique une turbine à gaz 1 alimentée par un combustible gazeux provenant, par exemple, d'un réservoir 2. Les turbines à gaz sont généralement utilisées dans des centrales électriques, pour entraîner des générateurs et produire de l ' énergie électrique . La turbine à gaz 1 comprend un compresseur axial 3 avec un arbre de rotor 4. L ' air est introduit par l ' entrée 5 du compresseur, est comprimé par le compresseur axial 3 puis dirigé vers une chambre de combustion 6. La chambre de combustion 6 est également alimentée par un combustible gazeux, par exemp le du gaz naturel qui, lors de la combustion, produit des gaz chauds à haute énergie aptes à entraîner une turbine 7. Le combustible gazeux peut être acheminé du réservoir 2 à la chambre de combustion 6 par un dispositif d' alimentation en combustible gazeux 8 qui comprend une entrée reliée au réservoir 2 et une sortie reliée à la chambre de combustion 6.
Dans la turbine 7, l ' énergie des gaz chauds est convertie en travail dont une partie est utilisée pour entraîner le compresseur 3 , par l' intermédiaire de l ' arbre du rotor 4, et dont l ' autre partie est utilisée pour entraîner un générateur 9 de production d' électricité, par l' intermédiaire d'un arbre 10. Les gaz d' échappement sortent ensuite de la turbine 7 par une sortie 1 1 , et peuvent être utilisés pour d' autres applications.
La figure 2 représente de manière plus détaillée, le dispositif d' alimentation 8 en combustible gazeux de la chambre de combustion. Le dispositif d' alimentation 8 comprend une entrée 12 pour recevoir le combustible gazeux, et des sorties 13 pour alimenter la chambre de combustion avec le combustible gazeux, et une ligne d' acheminement 14 reliant l ' entrée 12 aux sorties 13.
La ligne d' acheminement 14 du combustible gazeux comprend successivement, dans le sens de circulation du combustible gazeux : une vanne d' iso lation 15 (en anglais : S afety Shut-Off Valve S SOV) reliée à l ' entrée 12, une vanne de régulation 16 (en anglais : Stop Ratio Valve SRV) montée en aval de la vanne d' iso lation 1 5 , et des lignes d' alimentation 17 , par exemple trois, montées en parallèle, en aval de la vanne de régulation 16 et comprenant chacune une vanne de contrôle des gaz 1 8 (en anglais : Gaz Control Valve GCV) montée en amont d 'une sortie 13 vers la chambre de combustion.
La vanne d'iso lation 15 est une vanne de sécurité et a pour but d'iso ler le circuit d' alimentation en combustible gazeux du circuit d' alimentation de la chambre de combustion. La vanne 15 permet ainsi d'interrompre l ' alimentation en combustible gazeux en cas de problème de fonctionnement de la turbine à gaz, ou en cas d' arrêt de celle-ci.
La vanne de régulation 16 permet également d 'interrompre l ' alimentation en combustible gazeux de la chambre de combustion, mais permet surtout de contrôler la pression du combustible gazeux dans la ligne d' acheminement, entre la vanne de régulation 16 et les vannes de contrôle 1 8 , qui varie en fonction de la vitesse instantanée de la turbine. La commande de la vanne de régulation 16 est donc déterminée notamment en fonction de la vitesse de la turbine.
Les vannes de contrôle 1 8 déterminent la quantité de combustible gazeux délivrée par la ligne d ' alimentation 1 3 à la chambre de combustion. On considère dans la suite de la description que les vannes 1 8 sont des vannes pour lesquelles le débit de gaz les traversant est proportionnel au pourcentage d' ouverture des vannes ou à la pression du combustible gazeux en amont des vannes 1 8 , c ' est-à- dire que le débit de gaz est proportionnel au pourcentage d 'ouverture de la vanne 1 8 pour une pression de gaz constante, ou que le débit de gaz est proportionnel à la pression du gaz, pour un pourcentage d' ouverture de la vanne 1 8 constant. La quantité de combustible gazeux alimentant la chambre de combustion est donc commandée par la commande d' ouverture d' au moins l 'une des vannes de contrôle 1 8 ou par la commande d'ouverture de la vanne de régulation 16. Les vannes 1 8 peuvent être par exemple des vannes commandées selon une techno logie hydraulique/électrique : une telle technologie permet en effet un positionnement rapide et précis de la vanne pour ajuster le débit de combustible gazeux. En particulier, les vannes 1 8 peuvent être de type sonique .
Le dispositif d' alimentation en combustible gazeux 8 vise à déterminer et à contrôler la quantité de combustible gazeux délivrée à la chambre de combustion, afin notamment de permettre à la turbine à gaz de fonctionner dans des conditions de fiabilité et de rendement élevées. En particulier, le dispositif d' alimentation 8 est apte à tenir compte des variations de caractéristiques intrinsèques du combustible gazeux provenant du réseau d' alimentation. En effet, le combustible gazeux peut varier dans le temps, notamment le type de gaz et la composition. Cette variation du combustible gazeux entraîne un changement des caractéristiques du combustible, notamment son pouvoir calorifique inférieur (PCI), sa température et sa densité, qui sont des caractéristiques ayant un impact sur la combustion dudit gaz, sur le fonctionnement des vannes d' alimentation, et donc sur le fonctionnement de la turbine.
Ainsi, lors des phases de démarrage ou d' arrêt de la turbine, il est important de contrôler l ' énergie délivrée par la chambre de combustion à la turbine, c ' est-à-dire l ' énergie délivrée par la combustion du combustible gazeux.
On considère dans la suite de la description, que le combustible gazeux peut être composé de plusieurs gaz donnés, dont les pouvoirs calorifiques inférieurs et les températures sont différents . Ces informations peuvent être connues, par exemple, par mesure des caractéristiques de ces différents gaz ou par communication de ces informations par les fournisseurs de ces différents gaz . Le dispositif d' alimentation en combustible gazeux doit donc tenir compte des variations des caractéristiques du gaz, par rapport aux valeurs de référence choisies qui sont, dans le cas présent, la valeur supérieure des pouvoirs calorifiques inférieurs donnés et la valeur inférieure des températures données, c ' est-à-dire le gaz le plus riche donné à la température la plus basse donnée. On considère dans la suite de la description que la turbine fonctionne pendant une telle phase, c ' est-à- dire pendant une phase de démarrage ou d' arrêt.
Le dispositif d' alimentation 8 comprend, à cet effet, une unité de contrôle électronique 19. L 'unité de contrôle 19 permet d 'une part de déterminer la quantité de combustible gazeux à délivrer à la chambre de combustion en commandant le pourcentage d'ouverture d' au moins l'une des vannes 1 8 et la pression du combustible gazeux au niveau de ladite vanne 1 8 , et d' autre part d' adapter les commandes de pression et d 'ouverture en fonction des caractéristiques du combustible gazeux, notamment son indice de Wobbe et sa température, afin de corriger l ' écart entre les caractéristiques réelles du combustible gazeux alimentant la chambre de combustion et les valeurs de référence choisies qui sont, dans le cas présent, la valeur supérieure des pouvoirs calorifiques inférieurs donnés et la valeur inférieure des températures données. De plus, l 'unité de contrôle 19 permet également de contrôler les vannes 16 et 18 , par exemp le leur ouverture et fermeture, ou bien encore leur pourcentage d'ouverture. Les vannes 16 et 1 8 sont contrôlées par la commande d' alimentation délivrée par l 'unité de contrôle 19. L 'unité de contrôle 1 9 peut donc délivrer à la chambre de combustion, la quantité de combustible gazeux déterminée, par l 'intermédiaire de la vanne 16 (qui contrôle la pression du combustible gazeux en amont des vannes 1 8) et/ou par l' intermédiaire du pourcentage d' ouverture d' au moins l 'une des vannes 1 8.
Pour déterminer la commande d' au moins l 'une des vannes 1 8 et/ou de la vanne 16, l 'unité de contrôle 1 9 reçoit des informations relatives au combustible gazeux alimentant la chambre de combustion et relatives au fonctionnement de la turbine. Ainsi, l'unité de contrôle 19 reçoit en entrée la vitesse de rotation de la turbine, fournie par un moyen de mesure (non représenté), la température du combustible gazeux délivrée par un capteur de température 20 monté entre la vanne d'iso lation 15 et la vanne de régulation 16, et des caractéristiques du combustible gazeux (par exemple l ' indice de Wobbe) par un moyen de mesure 21 (par exemple de l 'indice de Wobbe) monté en amont de la vanne d' iso lation 15. L 'unité de contrôle 1 9 peut également recevoir les données fournies par un capteur de pression 22, monté entre la vanne de régulation et les lignes d ' alimentation 17. En particulier, l 'unité de contrôle 19 peut vérifier, à partir de la pression mesurée par le capteur 22 si la commande de la vanne de régulation 16 permet bien d' obtenir la pression de combustible gazeux voulue.
On considère dans la suite de la description que la régulation du pourcentage d' ouverture sera faite sur une seule vanne 1 8 lors des phases de démarrage ou d' arrêt de la turbine à gaz, les deux autres vannes 1 8 étant maintenues fermées pendant ces périodes .
Plus précisément, l 'unité de contrôle 19 comprend un moyen de détermination 23 de la commande d' alimentation délivrée aux vannes 16 et 1 8. La commande d' alimentation peut être par exemple le pourcentage d' ouverture de la vanne de régulation 16, afin de modifier la pression en amont des vannes de contrôle 1 8 , et/ou le débit de combustible gazeux à travers ladite vanne de contrôle 1 8. La commande d' alimentation peut également être le pourcentage d' ouverture de la vanne de contrôle 1 8. Dans ce cas, et pour une pression de combustible gazeux constante, il est possible de contrôler le débit de combustible gazeux à travers ladite vanne 1 8.
Enfin, la commande d' alimentation peut être également, comme représenté sur la figure 2, à la fois le pourcentage d' ouverture de la vanne de régulation 16 et de la vanne de contrôle 1 8 : on contrôle dans ce cas, le débit à travers la vanne 1 8 par deux grandeurs modifiables .
Le moyen de détermination 23 reçoit en entrée la vitesse de la turbine en temps réel, et connaît les caractéristiques du combustible gazeux de référence, c ' est-à-dire le combustible présentant un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et une température sensiblement égale à la plus petite valeur de température donnée. Ces valeurs sont mémorisées dans le moyen 23. Le moyen de détermination 23 détermine alors la ou les commandes d' alimentation, c ' est-à-dire soit le pourcentage d' ouverture de la vanne 16 déterminant la pression en amont des vannes 1 8 , soit le pourcentage d' ouverture de la vanne 1 8 , qui permettent d' obtenir un débit calorifique voulu, ledit débit calorifique voulu étant déterminé en considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et présente une température sensiblement égale à la plus petite valeur de température donnée. La commande d ' alimentation peut ensuite être corrigée et ajustée soit en mo difiant la pression soit le pourcentage d' ouverture de la vanne 1 8 , en fonction de paramètres (indice de Wobbe du gaz et/ou température du gaz alimentant la chambre de combustion) mesurés sur la ligne d' acheminement. Par exemple, pour déterminer la pression du combustible gazeux voulue, la relation utilisée par le moyen de détermination 23 peut être une fonction de type affine par rapport à la vitesse de la turbine. A partir de cette pression, il est possible de déterminer le pourcentage d' ouverture de la vanne 1 8.
L 'unité de contrôle 1 9 peut comprendre un premier moyen de correction 24. Le premier moyen de correction 24 reçoit en entrée les commandes d' alimentation déterminées par le moyen 23 , et la température du combustible gazeux mesurée par le capteur de température 20. A partir de la température du combustible gazeux, le premier moyen 24 détermine un premier facteur de correction à appliquer aux commandes d' alimentation reçues du moyen de détermination 23. Ainsi, lorsque la commande d' alimentation n' est destinée qu ' à la vanne 1 8 , un facteur de correction A' appliqué sur la commande d' alimentation destinée au pourcentage d' ouverture de la vanne de contrôle 1 8 peut être de la forme : A'
Figure imgf000015_0001
où Tmesurée est la température mesurée par le capteur 20, et Tmé morisée est la température sensiblement égale à la plus petite valeur de température mémorisée dans le moyen 23.
De même, lorsque la commande d' alimentation n' est destinée qu' à la vanne 16, un facteur de correction A" appliqué sur la commande d' alimentation destinée à la vanne de contrôle 16 peut être de la forme A" = mesurée l mémorisée
mémorisée C Imesurée
ave
Figure imgf000016_0001
Cpmémorisée
mémorisée
C vmemorisee
Cpmesurée
k m, esurée ou --pmemorisee la chaleur spécifique du gaz considéré par le moyen de détermination 23 ,
Cvmémorisée : la capacité de chaleur spécifique du gaz considéré par le moyen de détermination 23 ,
Cpmesurée : la chaleur spécifique du gaz alimentant la chambre de combustion,
Cvmesurée : la capacité de chaleur spécifique du gaz alimentant la chambre de combustion.
En multipliant la commande d' alimentation délivrée par le moyen de détermination 23 par le facteur de correction A' ou A" ou une combinaison des deux, on obtient alors des commandes d' alimentation corrigées qui correspondent plus aux caractéristiques réelles de température du combustible gazeux alimentant la chambre de combustion.
Le facteur de correction en fonction de la température peut être appliqué sur la commande d' alimentation destinée à la vanne de contrôle 1 8 uniquement (facteur A' ), sur la commande d' alimentation destinée à la vanne de régulation 16 uniquement (facteur A" ), ou sur les commandes d' alimentations destinées aux deux vannes . Dans ce dernier cas, les facteurs de correction sont pondérés par des facteurs multiplicatifs, par exemple a et (1-a) où a est compris entre 0 et 1, tels que la somme des facteurs multiplicatifs soit égale à 1. Ainsi, les corrections appliquées aux deux vannes peuvent être respectivement α*Α' et (l-a)*A". On retrouve, pour a égal à 1 ou 0, les commandes appliquées à la vanne de contrôle 18 uniquement ou à la vanne de régulation 16 uniquement.
L'unité de contrôle 19 peut également comprendre un deuxième moyen de correction 25. Le deuxième moyen de correction 25 reçoit en entrée les commandes d'alimentation corrigées par le premier moyen de correction 24, et l'indice de Wobbe du combustible gazeux mesuré par le capteur 21. A partir de l'indice de Wobbe du combustible gazeux, le deuxième moyen 25 détermine un facteur de correction à appliquer aux commandes d'alimentation corrigées reçues du moyen de correction 24. Ainsi, un facteur de correction B appliqué sur la commande d'alimentation destinée à la vanne de contrôle 18 ou à la
WI ,
vanne de régulation 16, peut être de la forme : B =— memonse
WI mesure .
où Wlmesurée est l'indice de Wobbe mesuré par le capteur 21, et Wlmémorisée est l'indice de Wobbe du gaz considéré par le moyen de détermination 23.
En multipliant la commande d'alimentation délivrée par le premier moyen de correction 24 par le facteur de correction B'=B ou B"=B, on obtient alors une commande d'alimentation corrigée qui correspond plus aux caractéristiques réelles du combustible gazeux alimentant la chambre de combustion.
Le facteur de correction peut être appliqué sur la commande d'alimentation destinée au pourcentage d'ouverture de la vanne de régulation 16 uniquement (facteur B"), sur la commande d'alimentation destinée à l'ouverture de la vanne de contrôle 18 uniquement (facteur B'), ou sur les commandes d'alimentations destinées aux deux vannes. Dans ce dernier cas, les facteurs de correction sont pondérés par des facteurs multiplicatifs, par exemple β et (l-β) où β est compris entre 0 et 1, tels que la somme des facteurs multiplicatifs soit égale à 1. Ainsi, les corrections appliquées aux deux vannes peuvent être respectivement β*Β' et (1-β)*Β". On retrouve, pour β égal à 1 ou 0, les commandes appliquées à la vanne de contrôle 18 uniquement ou à la vanne de régulation 16 uniquement
Ainsi, avec les deux moyens de correction 24 et 25, la commande d'alimentation issue du moyen de détermination 23 et destinée à l'ouverture de la vanne 18 est multipliée par les facteur A' et B', ou la commande d'alimentation issue du moyen de détermination 23 et destinée à la vanne 16 est multipliée par les facteur A" et B", ou les deux commandes d'alimentation des vannes 18 et 16 sont multipliées respectivement par α*Α' et β*Β', et par (l-a)*A" et (1- β)*Β".
La figure 3 représente un synoptique 30 d'un procédé d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage ou d'arrêt. Le procédé commence par une étape 31 pendant laquelle la vitesse de la turbine est mesurée. Puis, dans une étape 32, on détermine la commande du pourcentage d'ouverture de la vanne de régulation 16, c'est-à-dire la pression d'alimentation de la chambre de combustion, en considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et présente une température sensiblement égale à la plus petite valeur de température donnée.
Dans une étape 33, on mesure la température du combustible gazeux alimentant effectivement la chambre de combustion, puis, dans une étape 34, on calcule le facteur de correction basé sur la température du combustible gazeux, par exemple en fonction de l'écart entre la température mesurée et la température du gaz considéré à l'étape 32. Dans une étape 35, on calcule le facteur de correction A" à appliquer sur la commande de la vanne de régulation 16 pour tenir compte de la température du combustible gazeux alimentant la chambre de combustion.
De même, dans une étape 36, on mesure l'indice de Wobbe du combustible gazeux alimentant effectivement la chambre de combustion, puis, dans une étape 37, on calcule le facteur de correction basé sur l'indice de Wobbe du combustible gazeux, par exemple en fonction de l'écart entre l'indice de Wobbe mesuré et l'indice de Wobbe du gaz considéré à l'étape 32. Dans une étape 38, on calcule le facteur de correction B" à appliquer sur la commande de la vanne de régulation 16 pour tenir compte de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion. On applique, dans une étape 39, les facteur de correction (l-a)*A" et (1- β)*Β" au pourcentage d'ouverture de la vanne de régulation 16, et on applique ladite commande corrigée à la vanne de régulation 16, lors d'une étape 40, pour alimenter la chambre de combustion avec le combustible gazeux.
Par ailleurs, il est également possible de déterminer et corriger la commande de la vanne de contrôle 18. Ainsi, dans une étape 41, on détermine le pourcentage d'ouverture de la vanne de contrôle 18, notamment à partir du pourcentage d'ouverture de la vanne de régulation 16 déterminé à l'étape 32, c'est-à-dire à partir des paramètres de conception du dispositif.
Puis, dans une étape 42, on applique les facteur de correction * A' et β*Β' au pourcentage d'ouverture de la vanne de contrôle 18, et on applique ladite commande corrigée à la vanne de contrôle 18, lors d'une étape 43, pour alimenter la chambre de combustion avec le combustible gazeux.
La figure 4 représente un exemple 40 de modèle de commande d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage. Le modèle, en trait plein sur la figure, présente une première partie pour une vitesse de turbine inférieure à VI, durant laquelle la turbine est entraînée par un moteur électrique. Puis, dans une seconde partie pour une vitesse de turbine comprise entre VI et V2, le modèle comprend une étape dite de démarrage durant laquelle le débit de combustible gazeux présente une première valeur Dl.
Dans une troisième partie, pour une vitesse de turbine comprise entre V2 et V3, le modèle comprend une étape dite de réchauffage durant laquelle le débit de combustible gazeux présente une deuxième valeur D2 inférieure à D l .
Dans une quatrième partie, pour une vitesse de turbine comprise entre V3 et V4, le modèle comprend une étape dite d' accélération durant laquelle le débit de combustible gazeux augmente de la valeur D2 à une valeur D3 supérieure à D l et correspondant au fonctionnement en continue de la turbine à gaz.
Le modèle 40 correspond au débit souhaité (et donc à la commande d' alimentation voulue) lorsque la chambre de combustion est alimentée par un gaz présentant un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données . Cependant, pour adapter la commande d' alimentation aux caractéristiques réelles du combustible gazeux, la commande d' alimentation correspondant au mo dèle 40 peut être corrigée en fonction de la température et de l ' indice de Wobbe du combustible gazeux. On obtient alors un débit correspondant à la courbe en pointillés 41 qui présente des valeurs D l ' et D2 ' supérieures aux valeurs D l et D2. De même, la vitesse V3 ' est supérieure à la vitesse V3.
Dans la description, on a considéré une commande d' alimentation contrôlant à la fois la vanne de régulation 16 et la vanne de contrôle 1 8. Cependant, il est également possible de déterminer la commande d' alimentation et les facteurs de correction pour un mode de réalisation dans lequel seule la vanne de régulation 16 est commandée (c ' est-à-dire la pression du combustible gazeux) ou dans lequel seule la vanne de contrôle 1 8 est commandée (c ' est-à-dire le pourcentage d' ouverture de la vanne 1 8). Dans ces cas, les corrections sont affectées entièrement à la commande d' alimentation considérée.
On obtient ainsi une commande d' alimentation limitant l' impact des variations de caractéristiques du combustible gazeux sur le fonctionnement de la turbine à gaz, pendant les phases de démarrage et d' arrêt. Par ailleurs, il est également possible d ' ajuster la commande d'alimentation aux caractéristiques réelles du combustible gazeux, en corrigeant la commande d'alimentation en fonction de mesures effectuées sur le combustible gazeux, afin d'obtenir un fonctionnement optimum de la turbine à gaz en fonction du combustible gazeux l'alimentant.

Claims

REVENDICATIONS
1 . Procédé (30) de démarrage ou d' arrêt d'une turbine à gaz ( 1 ) comprenant au moins une chambre de combustion (6) alimentée, selon une ou plusieurs commandes d ' alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés, procédé dans lequel :
- on mesure la vitesse de la turbine (3 1 ),
- on détermine la ou les commandes d' alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle de référence considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données,
- on mesure la température (33) et/ou l' indice de Wobbe (36) du combustible gazeux alimentant la chambre de combustion et
- on corrige (39, 42) au moins une de la ou des commandes d' alimentation, en fonction de la température et/ou de l ' indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion.
2. Procédé selon la revendication 1 , dans lequel la turbine à gaz comprend un moyen de régulation ( 16) de la pression du combustible gazeux alimentant la chambre de combustion, et dans lequel une des commandes d' alimentation est la commande du moyen de régulation de la pression.
3. Procédé selon la revendication 2, dans lequel la turbine à gaz comprend une vanne ( 1 8) d' alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion (6) étant proportionnel au pourcentage d' ouverture de la vanne, et dans lequel une des commandes d ' alimentation est le pourcentage d' ouverture de la vanne ( 1 8) .
4. Procédé selon la revendication 3 , dans lequel la vanne d' alimentation ( 1 8) est une vanne de type sonique.
5. Procédé selon l'une des revendications 1 à 4, dans lequel plusieurs commandes d' alimentation sont corrigées en fonction de la température du combustible gazeux alimentant la chambre de combustion, et dans lequel on pondère les corrections des commandes d' alimentation par des facteurs multiplicatifs, la somme des facteurs multip licatifs étant égale à 1 , et/ou dans lequel plusieurs commandes d' alimentation sont corrigées en fonction de l' indice de Wobbe du combustible gazeux alimentant la chambre de combustion, et dans lequel on pondère les corrections des commandes d' alimentation par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1 .
6. Dispositif (8) de démarrage ou d' arrêt d 'une turbine à gaz ( 1 ) comprenant une chambre de combustion (6) apte à être alimentée, selon une ou plusieurs commandes d ' alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés, dans lequel le dispositif comprend :
- un moyen de mesure de la vitesse de la turbine,
- un moyen de détermination (23) apte à recevoir en entrée la vitesse de la turbine mesurée par le moyen de mesure et apte à délivrer, en sortie, la ou les commandes d' alimentation en fonction d'un débit calorifique déterminé à partir d'un mo dèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données,
- un moyen de mesure de la température et/ou de l 'indice de Wobbe du combustible gazeux alimentant la chambre de combustion et
- un moyen de correction (24, 25), apte à recevoir en entrée la ou les commandes d' alimentation déterminées par le moyen de détermination et la température et/ou l 'indice de Wobbe mesurés par le moyen de mesure, et apte à délivrer en sortie la ou les commandes d' alimentation corrigées en fonction de la température et/ou de l' indice de Wobbe.
7. Dispositif selon la revendication 6, dans lequel la turbine à gaz comprend un moyen de régulation ( 16) de la pression du combustible gazeux alimentant la chambre de combustion et dans lequel une des commandes d' alimentation est la commande du moyen de régulation de la pression.
8. Dispositif selon la revendication 7, dans lequel la turbine à gaz comprend une vanne ( 1 8) d ' alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion (6) étant proportionnel au pourcentage d' ouverture de la vanne, et dans lequel une des commandes d' alimentation est le pourcentage d' ouverture de la vanne ( 1 8) .
9. Dispositif selon la revendication 8 , dans lequel la vanne d' alimentation ( 1 8) est une vanne de type sonique.
10. Turbine à gaz comprenant un dispositif (8) de démarrage ou d' arrêt selon l 'une des revendications 6 à 9.
PCT/EP2011/059701 2010-06-11 2011-06-10 Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz WO2011154528A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180030834.1A CN102947572B (zh) 2010-06-11 2011-06-10 起动或停止燃气涡轮发动机的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054657A FR2961261B1 (fr) 2010-06-11 2010-06-11 Procede et dispositif de demarrage ou d'arret d'une turbine a gaz
FR1054657 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011154528A1 true WO2011154528A1 (fr) 2011-12-15

Family

ID=43530073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/059701 WO2011154528A1 (fr) 2010-06-11 2011-06-10 Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz

Country Status (3)

Country Link
CN (1) CN102947572B (fr)
FR (1) FR2961261B1 (fr)
WO (1) WO2011154528A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053885A (zh) * 2012-02-21 2014-09-17 三菱重工业株式会社 燃气轮机起动停止装置
US9677764B2 (en) 2013-02-25 2017-06-13 Ansaldo Energia Ip Uk Limited Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine
US10260368B2 (en) 2013-02-01 2019-04-16 Siemens Aktiengesellschaft Method for starting a combustion system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017185B (zh) * 2021-10-11 2022-11-29 广东粤电新会发电有限公司 一种燃气轮机天然气调节管道充氮气阻防泄漏系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052315A2 (fr) * 1999-02-26 2000-09-08 Alliedsignal Inc. Commande adaptative de pouvoir calorifique de combustible variable destinee aux turbines a gaz
DE102006008483A1 (de) * 2005-09-14 2007-03-22 Mitsubishi Heavy Industries, Ltd. Verbrennungssteuervorrichtung für eine Gasturbine
US20070101724A1 (en) 2005-11-10 2007-05-10 Siemens Power Generation, Inc. Fuel control for starting a gas turbine engine
US20080115482A1 (en) 2006-11-16 2008-05-22 Siemens Power Generation, Inc. Integrated Fuel Gas Characterization System
US7472540B2 (en) 2003-10-13 2009-01-06 Siemens Aktiengesellschaft Method and device for compensating variations in fuel composition in a gas turbine system
DE102008002941A1 (de) * 2007-08-01 2009-02-05 General Electric Co. Wobbe Steuerung und verbesserte Bedienbarkeit durch In-Linie Treibstoffumwandlung
EP2085577A1 (fr) * 2008-02-04 2009-08-05 Nuovo Pignone S.P.A. Procédé pour le démarrage d'une turbine à gaz
WO2010061646A1 (fr) * 2008-11-28 2010-06-03 三菱重工業株式会社 Contrôleur pour turbine à gaz

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082092A (en) * 1998-04-08 2000-07-04 General Electric Co. Combustion dynamics control for variable fuel gas composition and temperature based on gas control valve feedback
US7565805B2 (en) * 2005-11-22 2009-07-28 General Electric Company Method for operating gas turbine engine systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052315A2 (fr) * 1999-02-26 2000-09-08 Alliedsignal Inc. Commande adaptative de pouvoir calorifique de combustible variable destinee aux turbines a gaz
US7472540B2 (en) 2003-10-13 2009-01-06 Siemens Aktiengesellschaft Method and device for compensating variations in fuel composition in a gas turbine system
DE102006008483A1 (de) * 2005-09-14 2007-03-22 Mitsubishi Heavy Industries, Ltd. Verbrennungssteuervorrichtung für eine Gasturbine
US20070101724A1 (en) 2005-11-10 2007-05-10 Siemens Power Generation, Inc. Fuel control for starting a gas turbine engine
US20080115482A1 (en) 2006-11-16 2008-05-22 Siemens Power Generation, Inc. Integrated Fuel Gas Characterization System
DE102008002941A1 (de) * 2007-08-01 2009-02-05 General Electric Co. Wobbe Steuerung und verbesserte Bedienbarkeit durch In-Linie Treibstoffumwandlung
EP2085577A1 (fr) * 2008-02-04 2009-08-05 Nuovo Pignone S.P.A. Procédé pour le démarrage d'une turbine à gaz
WO2010061646A1 (fr) * 2008-11-28 2010-06-03 三菱重工業株式会社 Contrôleur pour turbine à gaz

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053885A (zh) * 2012-02-21 2014-09-17 三菱重工业株式会社 燃气轮机起动停止装置
US10260368B2 (en) 2013-02-01 2019-04-16 Siemens Aktiengesellschaft Method for starting a combustion system
US9677764B2 (en) 2013-02-25 2017-06-13 Ansaldo Energia Ip Uk Limited Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine
US9810428B2 (en) 2013-02-25 2017-11-07 Ansaldo Energia Ip Uk Limited Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine

Also Published As

Publication number Publication date
CN102947572B (zh) 2016-05-11
FR2961261B1 (fr) 2017-12-22
CN102947572A (zh) 2013-02-27
FR2961261A1 (fr) 2011-12-16

Similar Documents

Publication Publication Date Title
EP2441937B1 (fr) Dispositif et procédé de purge pour système d'injection de carburant liquide dans une turbine à gaz
EP0091852B1 (fr) Procédé de régulation du rapport de mélange des propergols pour un moteur à propergols liquides
FR3068114B1 (fr) Systeme d'alimentation en fluide pour turbomachine, comprenant une pompe a cylindree variable suivie d'un doseur de fluide
FR2585407A1 (fr) Dispositif pour commander la circulation de l'air de refroidissement d'une turbine a gaz
EP1672269A1 (fr) Installation pour la fourniture de combustible gazeux à un ensemble de production énergétique d'un navire de transport de gaz liquéfié
FR2919673A1 (fr) Assistance et secours a l'entrainement electrique d'une pompe a carburant dans un turbomoteur
FR2965586A1 (fr) Procede et dispositif de demarrage de turbine a gaz
CA2656418A1 (fr) Procede pour faire fonctionner une turbine a gaz et turbine a gaz permettant la mise en oeuvre du procede
FR2961259A1 (fr) Procede de controle de combustible pour demarrer un moteur de turbine a gaz
WO2011154528A1 (fr) Procédé et dispositif de démarrage ou d'arrêt d'un moteur à turbine à gaz
FR2930969A1 (fr) Controle proportionnel d'amplitude de pression du carburant dans les turbines a gaz
FR2744173A1 (fr) Procede permettant de commander un dispositif de recyclage des gaz d'echappement dans un moteur a combustion interne
FR2626673A1 (fr) Procede et dispositif de mesurage de la puissance calorifique vehiculee par un courant de matiere combustible
CA3140074A1 (fr) Procede de regulation d'une acceleration d'une turbomachine
FR2467987A1 (fr) Procede et installation pour la regulation de la composition du melange dans un moteur a combustion interne
EP3994349B1 (fr) Turbogénérateur avec système de régulation simplifié pour aéronef
FR3018561A1 (fr) Procede de controle du fonctionnement de vannes d'un dispositif d'alimentation en gaz de turbine a gaz
FR2921461A1 (fr) Dispositif de regulation des debits de gaz alimentant un bruleur equipe d'un tel dispositif
EP1072772B1 (fr) Module de génération d'électricité à pile combustible comportant une régulation de pression de la pile à combustible
FR2962490A1 (fr) Dispositif d'evacuation de fuites de gaz dans un dispositif d'alimentation en combustible gazeux d'une turbine a gaz et procede associe
FR2491144A1 (fr) Circuits de carburant pour commandes de carburant
WO2024084168A1 (fr) Systeme d'alimentation en hydrogene d'une turbomachine et dispositif de regulation d'un tel systeme d'alimentation en hydrogene
FR2960914A1 (fr) Procede et dispositif de regulation du debit de carburant a injecter dans une chambre de combustion de turbomachine
EP1664500A1 (fr) Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse
EP2306085B1 (fr) Brûleur à air soufflé et combustible liquide avec modulation du ratio comburant / carburant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030834.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11724252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11724252

Country of ref document: EP

Kind code of ref document: A1