EP1159065A1 - Adsorbants zeolitiques agglomeres leur procede d'obtention et leurs utilisations - Google Patents

Adsorbants zeolitiques agglomeres leur procede d'obtention et leurs utilisations

Info

Publication number
EP1159065A1
EP1159065A1 EP00905148A EP00905148A EP1159065A1 EP 1159065 A1 EP1159065 A1 EP 1159065A1 EP 00905148 A EP00905148 A EP 00905148A EP 00905148 A EP00905148 A EP 00905148A EP 1159065 A1 EP1159065 A1 EP 1159065A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
barium
adsorbents
potassium
paraxylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00905148A
Other languages
German (de)
English (en)
French (fr)
Inventor
Dominique Plee
Alain Methivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Carbonisation et Charbons Actifs CECA SA
Original Assignee
IFP Energies Nouvelles IFPEN
Carbonisation et Charbons Actifs CECA SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9542345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1159065(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by IFP Energies Nouvelles IFPEN, Carbonisation et Charbons Actifs CECA SA filed Critical IFP Energies Nouvelles IFPEN
Priority to EP07115954.5A priority Critical patent/EP1864712B2/fr
Publication of EP1159065A1 publication Critical patent/EP1159065A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast

Definitions

  • the field of the invention is that of agglomerated zeolitic adsorbents based on zeolite X exchanged with barium or based on zeolite X exchanged with barium and potassium.
  • adsorbents consisting of X or Y zeolites exchanged by means of ions such as barium, potassium or strontium, alone or as a mixture, are effective in selectively adsorbing paraxylene in a mixture containing at least one other isomer.
  • aromatic in Cs- US Patents 3,558,730, US 3,558,732, US 3,626,020 and US 3,663,638 disclose adsorbents comprising aluminosilicates exchanged by barium and potassium which effectively separate paraxylene from a mixture of isomers aromatic in Cs-
  • US 3,878,127 describes a method for the preparation of adsorbents intended for the separation of xylenes which consists in treating hot agglomerates (zeolite X + binder) with an Na2 ⁇ / A_2 ⁇ 3 ratio strictly less than 0.7 in order to replace the exchangeable cations of the zeolite (such as protons or cations of Group IIA) with sodium prior to a barium or barium + potassium exchange, the prior exchange with sodium allowing a greater quantity of barium or barium + potassium ions to be added to the zeolitic structure.
  • hot agglomerates zeolite X + binder
  • Na2 ⁇ / A_2 ⁇ 3 ratio strictly less than 0.7
  • the exchangeable cations of the zeolite such as protons or cations of Group IIA
  • adsorbents are used as adsorption agents in liquid phase processes, preferably of simulated counter-current type similar to those described in US 2,985,589, which apply inter alia to aromatic Ce cuts derived, for example, from processes of benzene dialkylation, in gas phase processes.
  • Barium-exchanged X zeolites have many other applications as adsorption agents, among which there may be mentioned: * the separation of sugars, see for example EP 115,631, EP 115,068,
  • the zeolitic adsorbents are in the form of powder or in the form of agglomerates mainly consisting of zeolite and at least 15 to 20% by weight of inert binder and the Dubinin volume measured by nitrogen adsorption at 77 ° K after degassing under vacuum at 300 ° C for 16 hours is less than 0.230 cm 3 / g.
  • X zeolites being carried out mainly by nucleation and crystallization of gels of silicoaluminates, powders are obtained, the use of which on an industrial scale is particularly difficult (large pressure drops during handling of the powders) and it is preferred granular agglomerated forms.
  • agglomerates whether in the form of platelets, beads or extrudates, commonly consist of a zeolite powder, which constitutes the active element and of a binder intended to ensure the cohesion of the crystals in the form of grains.
  • This binder has no adsorbent properties, its function being to give the grain sufficient mechanical strength to withstand the vibrations and movements to which it is subjected during its various uses.
  • the agglomerates are prepared by mashing zeolite powder with a clay paste, in proportions of the order of 80 to 85% of zeolite powder for 20 to 15% of binder, then shaping into beads, platelets or extrusions, and heat treatment at high temperature for firing the clay and reactivating the zeolite, the barium exchange being able to be carried out either before or after the agglomeration of the pulverulent zeolite with the binder.
  • the result is zeolitic bodies with a particle size of a few millimeters, and which, if the choice of the binder and the granulation are made in the rules of the art, have a set of satisfactory properties, in particular porosity, resistance mechanical, abrasion resistance. However, the adsorption properties are obviously reduced in the ratio of the active powder to the powder and its inert agglomeration binder.
  • FLANK et al show in US 4,818,508 that agglomerates based on zeolite A, X or Y can be prepared by digestion of reactive clay preforms (obtained by heat treatment of non-reactive clay such as halloysite or kaolinite- at least 50% by weight of which is in the form of particles with a particle size of between 1.5 and 15 ⁇ m, preferably in the presence of blowing agent) with an alkali metal oxide.
  • reactive clay preforms obtained by heat treatment of non-reactive clay such as halloysite or kaolinite- at least 50% by weight of which is in the form of particles with a particle size of between 1.5 and 15 ⁇ m, preferably in the presence of blowing agent
  • the examples relating to the synthesis of agglomerates based on zeolite X show that it is necessary to add a source of silica, which is not the case for preparing agglomerates based on zeolite A.
  • the subject of the present invention is agglomerated zeolitic adsorbents based on zeolite X with an Si / Ai ratio such as 1.15 ⁇ Si / Ai ⁇ 1.5, at least 90% of which are the exchangeable cationic sites of the zeolite X are occupied either by barium ions alone or by barium ions and potassium ions, the exchangeable sites occupied by potassium being able to represent up to 1/3 of the exchangeable sites occupied by barium + potassium (the possible complement being generally ensured by alkaline or alkaline earth ions other than barium (and potassium)) and of inert binder, characterized in that their Dubinin volume measured by nitrogen adsorption at 77 ° K after degassing under vacuum at 300 ° C for 16 hours is greater than or equal to 0.240 cm 3 / g and preferably greater than or equal to 0.245 cm 3 / g.
  • the invention also relates to a process for the preparation of these agglomerates which comprises the following steps:
  • Agglomeration and shaping can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compacting, agglomeration.
  • the agglomeration binder used in step a / contains at least 80% by weight of zeolitizable clay and may also contain other mineral binders such as bentonite, attapulgite, and additives intended for example to facilitate the agglomeration or to improve the hardening of the agglomerates formed.
  • Zeolite clay belongs to the family of kaoiinite, Phalloysite, nacrite or dickite. We generally use kaolin.
  • the calcination which follows the drying is carried out at a temperature generally between 500 and 600 ° C.
  • the zeolitization of the binder (step b /) is carried out by immersion of the agglomerate in an alkaline liquor, for example sodium hydroxide or mixture of sodium hydroxide and potassium hydroxide, the concentration of which is preferably greater than 0.5 M. It is preferably carried out hot, working at a higher temperature than ambient temperature, typically at temperatures of the order of 80-100 ° C., improving the kinetics of the process and reducing the immersion times. Zeolitizations of at least 50% of the binder are thus easily obtained. We then wash with water followed by drying.
  • an alkaline liquor for example sodium hydroxide or mixture of sodium hydroxide and potassium hydroxide, the concentration of which is preferably greater than 0.5 M. It is preferably carried out hot, working at a higher temperature than ambient temperature, typically at temperatures of the order of 80-100 ° C., improving the kinetics of the process and reducing the immersion times. Zeolitizations of at least 50% of the binder are thus easily obtained. We then wash with water followed
  • the barium exchange from cations of the zeolite is carried out by bringing the agglomerates from step b / (or d /) into contact with a barium salt, such as BaC-2, in aqueous solution. at a temperature between room temperature and 100 ° C, and preferably between 80 and 100 ° C.
  • a barium salt such as BaC-2
  • 203 in the order of 10 to 12, by successive exchanges so as to reach the minimum target exchange rate of at least 90% and preferably at least 95%.
  • the exchange rates are calculated in equivalent and not in molarity.
  • the possible exchange with potassium (step d /)) can be carried out before or after the exchange with barium (step c /); it is also possible to agglomerate zeolite X powder already containing potassium ions.
  • Activation is the last step in obtaining the adsorbents according to the invention. Its purpose is to fix the water content, more simply the loss on ignition of the adsorbent within optimal limits. In general, thermal activation is carried out, which is preferably carried out between 200 and 300 ° C.
  • the invention also relates to the uses of the zeolitic adsorbents described above as adsorption agents capable of advantageously replacing the adsorption agents described in the literature based on zeolite
  • the invention relates in particular to an improvement of a process for recovering paraxylene from sections of aromatic Cs isomers consisting in using as adsorption agent for p-xylene a zeolitic adsorbent according to the invention implemented in liquid phase processes but also in the gas phase.
  • the operating conditions of an industrial adsorption unit of the simulated counter-current type are generally as follows: number of beds 6 to 30 number of zones at least 4 temperature 100 to 250 ° C, preferably 150 to 190 ° C pressure 0.2 to 3 MPa ratio of desorbent flow rates on load 1 to 2.5
  • the desolventing solvent can be a desorbent whose boiling point is lower than that of the filler, such as toluene but also a desorbent whose boiling point is higher than that of the filler, such as paradiethylbenzene (PDEB )
  • PDEB paradiethylbenzene
  • the selectivity of the adsorbents according to the invention for the adsorption of p-xylene contained in aromatic Cg cuts is optimal when their loss on ignition measured at 900 ° C. is generally between 4.0 and 7.7%, and preferably between 5.2 and 7.7%. Water and a little carbon dioxide go into the loss on ignition.
  • the following examples illustrate the invention. EXAMPLES These examples call for the measurement or appreciation of certain quantities characteristic of the adsorbents of the invention.
  • the test consists of immersing an adsorbent (17 g) previously activated thermally and cooled in the absence of air, in 80 g of a mixture of aromatics dissolved in 2,2,4-trimethylpentane.
  • composition of the mixture is as follows:
  • the autoclave is carried out at 150 ° C. for 4 hours, a time sufficient to ensure equilibrium of adsorption. Part of the liquid is then removed, condensed at -30 ° C and analyzed by gas chromatography. It is then possible to go back to the concentrations in the adsorbed phase and in the non-adsorbed phase and to express the quantity of paraxylene adsorbed and the selectivities in paraxylene with respect to the other aromatics and to the desorbent.
  • the 2,2,4-trimethyIpentane does not disturb these results, being very little adsorbed.
  • the desorbent used is toluene.
  • the selectivity of the adsorbent thus prepared is measured according to the test described below:
  • the selectivity Sel (B / A) of an adsorbent for a compound (B) relative to a compound (A) is defined as the ratio of concentrations of the compounds in the adsorbed phase divided by the ratio of the concentrations of the compounds in the non-adsorbed phase at equilibrium.
  • the extrudate is dried, crushed so as to recover grains whose equivalent diameter is equal to 0.7 mm, then calcined at 550 ° C. under a stream of nitrogen for 2 h.
  • the ratio of the volume of solution to the mass of solid is 20 ml / g and the exchange is continued for 4 hours each time. Between each exchange, the solid is washed several times so as to rid it of excess salt. It is then activated at a temperature of 250 ° C for 2 h under a stream of nitrogen.
  • the barium exchange rate is 97%.
  • the toluene adsorption capacity is 14.8%, assimilated to a microporous volume of 0.17 cm 3 / g.
  • the microporous volume measured according to the Dubinin method by nitrogen addition at 77 ° K after degassing under vacuum at 300 ° C for 16 h is 0.22 cm 3 / g.
  • the amount of paraxylene adsorbed is equal to 0.054 cm 3 / g.
  • toluene adsorption capacity determined at 25 ° C and under a partial pressure of 0.5, is 19.8%; it is inte ⁇ reted as corresponding to a microporous volume of 0.23 cm 3 / g from the density of adsorbed toluene, estimated from that of liquid toluene.
  • the toluene adsorption capacity of the granules thus obtained is determined under the same conditions as those described in Example 1: 22.5%, corresponding to a microporous volume of 0.26 cm 3 / g, that is to say a gain in crystallinity of approximately 13% compared to the granules of Example 1.
  • a barium exchange is then carried out under operating conditions identical to those of Example 1 with the exception of the concentration of the BaC 2 solution which is 0.6 M followed by washing and then drying at 80 ° C for 2 h and finally an activation at 250 ° C for 2 h under a stream of nitrogen.
  • the barium exchange rate of this adsorbent is 97.4%, its toluene adsorption capacity is 16.2% and its loss on ignition is 5.2%.
  • the microporous volume measured according to the Dubinin method by nitrogen adsorption at 77 ° K after degassing under vacuum at 300 ° C for 16 h is 0.244 cm 3 / g.
  • a pilot continuous liquid chromatography unit comprising 24 columns in series of 1 m in length and 1 cm in diameter, the circulation between the 24th column and the 1st being done by means of a recycling pump. Each of these columns is loaded with the adsorbent prepared in Example 1 and the entire unit (columns + pipes + distribution valves) is placed in an oven at 150 ° C.
  • the recycling pump delivers (at room temperature) 38.7 cm 3 / min; it delivers 45.5 cm 3 / min during the 3rd period, 40.5 cm 3 / min during the following 3 periods and 45.9 cm 3 / min during the last 2 periods.
  • Para-xylene is obtained with a purity of 92.2% and with a recovery rate of 98.1%.
  • the temperature is 150 ° C and the pressure decreases from 30 to 5 bars. It is calculated that the productivity of the adsorbent is 0.034 m 3 of para-xylene adsorbed per m 3 of adsorbent and per hour.
  • EXAMPLE 4 (according to the invention) The pilot unit described in Example 3 is now operated with the adsorbent prepared in Example 2. It is observed that the same purity of para-xylene can be obtained by increasing the charge flow entering the pilot unit up to 5.5 cm 3 / min (an increase of 10%).
  • the quantity of desorbent introduced corresponds to a rate of 7.92 cm 3 / min
  • the permutation time is 5.4 min
  • the productivity of the adsorbent is 0.0374 m 3 of para -xylene adsorbed per m 3 of adsorbent per hour.
EP00905148A 1999-02-22 2000-02-16 Adsorbants zeolitiques agglomeres leur procede d'obtention et leurs utilisations Ceased EP1159065A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07115954.5A EP1864712B2 (fr) 1999-02-22 2000-02-16 Procédé d'obtention d'adsorbants zéolitiques agglomerés et leurs utilisation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9902151A FR2789914B1 (fr) 1999-02-22 1999-02-22 Adsorbants zeolitiques agglomeres a faible taux de liant inerte, leur procede d'obtention et leurs utilisations
FR9902151 1999-02-22
PCT/FR2000/000382 WO2000050166A1 (fr) 1999-02-22 2000-02-16 Adsorbants zeolitiques agglomeres leur procede d'obtention et leurs utilisations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07115954.5A Division EP1864712B2 (fr) 1999-02-22 2000-02-16 Procédé d'obtention d'adsorbants zéolitiques agglomerés et leurs utilisation

Publications (1)

Publication Number Publication Date
EP1159065A1 true EP1159065A1 (fr) 2001-12-05

Family

ID=9542345

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07115954.5A Expired - Lifetime EP1864712B2 (fr) 1999-02-22 2000-02-16 Procédé d'obtention d'adsorbants zéolitiques agglomerés et leurs utilisation
EP00905148A Ceased EP1159065A1 (fr) 1999-02-22 2000-02-16 Adsorbants zeolitiques agglomeres leur procede d'obtention et leurs utilisations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07115954.5A Expired - Lifetime EP1864712B2 (fr) 1999-02-22 2000-02-16 Procédé d'obtention d'adsorbants zéolitiques agglomerés et leurs utilisation

Country Status (17)

Country Link
US (2) US6884918B1 (ja)
EP (2) EP1864712B2 (ja)
JP (2) JP5047416B2 (ja)
KR (1) KR100650963B1 (ja)
CN (1) CN1347339A (ja)
AR (1) AR022713A1 (ja)
AU (1) AU2678100A (ja)
BR (1) BR0008404A (ja)
ES (1) ES2425758T3 (ja)
FR (1) FR2789914B1 (ja)
IL (2) IL144985A0 (ja)
MY (1) MY136804A (ja)
PT (1) PT1864712E (ja)
RU (1) RU2323775C2 (ja)
SA (1) SA00201023B1 (ja)
TW (1) TW497988B (ja)
WO (1) WO2000050166A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795657B1 (fr) * 1999-07-02 2001-09-14 Air Liquide Procede de purification d'air par adsorption sur zeolite echangee au baryum
AU2002230549A1 (en) 2000-11-16 2002-05-27 Uop Llc Adsorptive separation process for recovery of para-xylene
JP5108184B2 (ja) * 2001-07-11 2012-12-26 大陽日酸株式会社 一酸化炭素の精製方法
FR2903978B1 (fr) * 2006-07-19 2010-09-24 Ceca Sa Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
FR2916654B1 (fr) * 2007-06-04 2011-04-08 Ceca Sa Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse.
FR2919604B1 (fr) * 2007-07-30 2012-09-21 Inst Francais Du Petrole Procede et dispositif de separation ameliore de metaxylene en lit mobile simule
FR2925367B1 (fr) * 2007-12-20 2010-01-15 Ceca Sa Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
FR2925366B1 (fr) * 2007-12-20 2011-05-27 Ceca Sa Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
CN101497022B (zh) * 2008-01-31 2011-06-15 中国石油化工股份有限公司 聚结型沸石吸附剂及其制备方法
DE102008046155B4 (de) 2008-03-03 2017-01-26 Chemiewerk Bad Köstritz GmbH Verfahren zur Herstellung eines Adsorptionsmittelgranulates
US20090326308A1 (en) * 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
US8609925B2 (en) * 2008-06-30 2013-12-17 Uop Llc Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US7820869B2 (en) * 2008-06-30 2010-10-26 Uop Llc Binderless adsorbents and their use in the adsorptive separation of para-xylene
US7812208B2 (en) * 2008-09-22 2010-10-12 Uop Llc Binderless adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene
US8283274B2 (en) 2009-07-20 2012-10-09 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents
CN101875614A (zh) * 2009-12-10 2010-11-03 甘肃银达化工有限公司 一种二硝基甲苯氢化焦油中回收间位二氨基甲苯的方法
RU2444404C1 (ru) * 2010-06-25 2012-03-10 Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") Способ получения агломерированного цеолита
US8557028B2 (en) * 2011-03-31 2013-10-15 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and adsorptive separation processes using the binderless zeolitic adsorbents
US8603433B2 (en) * 2011-04-13 2013-12-10 Uop Llc Aluminosilicate X-type zeolite compositions with low LTA-type zeolite
FR2999098B1 (fr) 2012-12-12 2022-01-14 Ceca Sa Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
FR3002461B1 (fr) 2013-02-22 2016-12-09 Ifp Energies Now Procede de separation des xylenes en lit mobile simule au moyen d'un solide adsorbant zeolithique de granulometrie comprise entre 150 et 500 microns
FR3004966B1 (fr) 2013-04-30 2016-02-05 IFP Energies Nouvelles Adsorbants zeolithiques comprenant de la zeolithe emt, leur procede de preparation et leurs utilisations
FR3009300B1 (fr) * 2013-08-05 2022-11-25 Ceca Sa Zeolithes a porosite hierarchisee
FR3010402B1 (fr) 2013-09-09 2015-08-28 Ceca Sa Adsorbants zeolithiques de haute surface externe, leur procede de preparation et leurs utilisations
FR3013236B1 (fr) * 2013-11-20 2015-12-11 Ceca Sa Materiau granulaire zeolithique a structure connexe
FR3024666B1 (fr) 2014-08-05 2022-01-14 Ifp Energies Now Adsorbants zeolithiques comprenant une zeolithe a porosite hierarchisee
FR3024667B1 (fr) 2014-08-05 2022-01-14 Ceca Sa Adsorbants zeolithiques a faible taux de liant et a haute surface externe, leur procede de preparation et leurs utilisations
FR3028431B1 (fr) 2014-11-13 2016-11-18 Ceca Sa Adsorbants zeolithiques a base de zeolithe x a faible taux de liant et a faible surface externe, leur procede de preparation et leurs utilisations
FR3028430B1 (fr) 2014-11-13 2018-08-17 IFP Energies Nouvelles Adsorbants zeolithiques a base de zeolithe lsx de surface externe controlee, leur procede de preparation et leurs utilisations
CN104477937A (zh) * 2014-12-05 2015-04-01 上海绿强新材料有限公司 介孔x型分子筛、基于该分子筛的吸附剂及其制备与应用
FR3038529B1 (fr) * 2015-07-09 2020-10-23 Ceca Sa Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
FR3038528B1 (fr) * 2015-07-09 2020-10-23 Ifp Energies Now Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
CN108147945B (zh) * 2016-12-05 2021-01-26 中国科学院大连化学物理研究所 一种生产高纯度间甲酚的方法
KR102250288B1 (ko) 2017-02-24 2021-05-07 한화솔루션 주식회사 크레졸 흡착력이 우수한 제올라이트 흡착제의 제조방법 및 이를 이용한 제올라이트 흡착제
CN107469767B (zh) * 2017-09-14 2019-10-25 山东理工大学 处理含氰废水的二氧化硅/纳米二氧化钛/硅沸石复合材料及其应用
DE202017107560U1 (de) 2017-12-12 2018-01-11 Clariant International Ltd. Testvorrichtung
FR3075792B1 (fr) 2017-12-22 2019-11-29 Arkema France Adsorbants zeolitiques contenant du strontium
FR3075793B1 (fr) 2017-12-22 2019-11-29 Arkema France Adsorbants zeolithiques a base de baryum, strontium et potassium, leur procede de preparation et leurs utilisations
DE102018109701A1 (de) 2018-04-23 2019-10-24 Clariant International Ltd Zeolithhaltiges Adsorbens zur selektiven Abtrennung von Isomeren aus aromatischen Kohlenwasserstoffgemischen, seine Herstellung und Verwendung zur selektiven Abtrennung von Isomeren aus aromatischen Kohlenwasserstoffgemischen
CN111097371B (zh) * 2018-10-29 2022-03-11 中国石油化工股份有限公司 一种对二甲苯吸附剂的制备方法
US20220258124A1 (en) * 2019-06-26 2022-08-18 China Petroleum & Chemical Corporation Composite layer agglomerating adsorbent and preparation process thereof
FR3097855B1 (fr) * 2019-06-28 2021-07-23 Ifp Energies Now Séparation en phase liquide des sucres de deuxième génération par adsorption sur zéolithe de type FAU de ratio atomique Si/Al inférieur à 1,5
FR3112289B1 (fr) 2020-07-10 2022-07-22 Arkema France Purification de liquides aromatiques
FR3117379A1 (fr) 2020-12-15 2022-06-17 IFP Energies Nouvelles Procede de preparation d'un materiau microporeux zeolithique contenant plus de 95% de zeolithe x et ayant une bonne resistance mecanique

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US589981A (en) 1897-09-14 Machine for stripping or stemming tobacco leaves
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3119660A (en) 1960-09-26 1964-01-28 Union Carbide Corp Process for producing molecular sieve bodies
US3558730A (en) * 1968-06-24 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3626020A (en) 1969-03-12 1971-12-07 Universal Oil Prod Co Separation of paraxylene from mixture of c aromatic utilizing crystalline aluminosilicate adsorbent
US3558732A (en) 1969-05-12 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3588730A (en) 1969-11-10 1971-06-28 Gordon Eng Co Variable frequency generator combining outputs of two phase locked loops
US3663638A (en) 1970-08-31 1972-05-16 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3960774A (en) * 1973-05-02 1976-06-01 Universal Oil Products Company Zeolitic adsorbent for xylene separation
US3878127A (en) 1973-05-02 1975-04-15 Universal Oil Prod Co Method of manufacturing a zeolitic absorbent
JPS5813527B2 (ja) * 1976-02-02 1983-03-14 旭化成株式会社 改良されたキシレノ−ルの分離方法
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4471114A (en) * 1982-12-30 1984-09-11 Union Carbide Corporation Separation of mannose by selective adsorption on zeolitic molecular sieves
US4516566A (en) * 1982-12-30 1985-05-14 Union Carbide Corporation Separation of arabinose by selective adsorption on zeolitic molecular sieves
ATE28443T1 (de) * 1983-10-08 1987-08-15 Union Carbide Corp Industrielle abtrennung von mehrwertigen alkoholen an zeolitischen molekularsieben.
JPS60179134A (ja) * 1984-02-28 1985-09-13 Union Showa Kk 分子ふるい成形体
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
US4818508A (en) 1985-08-20 1989-04-04 Uop Process for preparing molecular sieve bodies
US4642406A (en) * 1985-09-13 1987-02-10 Uop Inc. High severity process for xylene production employing a transalkylation zone for xylene isomerization
US4642397A (en) * 1985-10-01 1987-02-10 Uop Inc. Process for separating isomers of dinitrotoluene
US4633018A (en) 1985-12-20 1986-12-30 Uop Inc. Process for separating isomers of toluenediamine
JPS6368531A (ja) * 1986-09-10 1988-03-28 Idemitsu Kosan Co Ltd ジオ−ル類の吸着・分離方法
ATE77255T1 (de) * 1987-03-09 1992-07-15 Uop Inc Adsorptives reinigungsverfahren.
US4859217A (en) * 1987-06-30 1989-08-22 Uop Process for separating nitrogen from mixtures thereof with less polar substances
US4940548A (en) 1989-04-17 1990-07-10 Uop Chromatographic separation process for recovering individual diethyltoluene isomers
US5149887A (en) * 1989-12-28 1992-09-22 Uop Separation of alkyl-substituted phenolic isomers with barium-potassium exchanged zeolitic adsorbent
TW200454B (ja) * 1991-09-05 1993-02-21 Inst Of France Petroleum
JP3066430B2 (ja) 1991-12-10 2000-07-17 東ソー株式会社 ゼオライトx型成形体の製造方法
US5849981A (en) * 1994-10-11 1998-12-15 Uop Llc Adsorptive separation of para-xylene using isopropylbenzene desorbent
FR2743798B1 (fr) * 1996-01-18 1998-02-27 Air Liquide Procede de purification d'une solution de sels de lithium contaminee par des cations metalliques et utilisation de ce procede dans la fabrication de zeolites echangees au lithium
JP3799678B2 (ja) * 1996-09-13 2006-07-19 東ソー株式会社 高強度低摩耗性ゼオライト粒状物、その製造方法及びそれを用いた吸着分離方法
JPH1128354A (ja) * 1997-05-15 1999-02-02 Mitsubishi Chem Corp アミン担持吸着剤の製法
FR2766475B1 (fr) * 1997-07-22 1999-09-03 Ceca Sa Procede pour l'obtention de corps granulaires en zeolite lsx a faible taux de liant inerte
FR2766476B1 (fr) * 1997-07-22 1999-09-03 Ceca Sa Adsorbant zeolitique ameliore pour la separation des gaz de l'air et son procede d'obtention
FR2767524B1 (fr) * 1997-08-21 1999-09-24 Ceca Sa Procede ameliore d'obtention de paraxylene a partir de coupes de c8 aromatiques
JP4158223B2 (ja) 1998-03-31 2008-10-01 住友化学株式会社 害虫忌避組成物
FR2800995B1 (fr) * 1999-10-05 2002-01-04 Ceca Sa Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0050166A1 *

Also Published As

Publication number Publication date
JP2002537109A (ja) 2002-11-05
WO2000050166A1 (fr) 2000-08-31
IL144985A0 (en) 2002-06-30
ES2425758T3 (es) 2013-10-17
EP1864712B2 (fr) 2020-01-29
EP1864712A3 (fr) 2007-12-26
JP6183580B2 (ja) 2017-08-23
SA00201023B1 (ar) 2006-08-21
AU2678100A (en) 2000-09-14
FR2789914A1 (fr) 2000-08-25
EP1864712A2 (fr) 2007-12-12
CN1347339A (zh) 2002-05-01
AR022713A1 (es) 2002-09-04
US7452840B2 (en) 2008-11-18
KR100650963B1 (ko) 2006-11-29
RU2323775C2 (ru) 2008-05-10
US20050170947A1 (en) 2005-08-04
IL144985A (en) 2006-12-31
TW497988B (en) 2002-08-11
KR20010102327A (ko) 2001-11-15
JP5047416B2 (ja) 2012-10-10
EP1864712B1 (fr) 2013-06-05
RU2001125937A (ru) 2003-07-27
BR0008404A (pt) 2002-01-29
JP2012143757A (ja) 2012-08-02
FR2789914B1 (fr) 2001-04-06
US6884918B1 (en) 2005-04-26
MY136804A (en) 2008-11-28
PT1864712E (pt) 2013-07-30

Similar Documents

Publication Publication Date Title
EP1864712B1 (fr) Procédé d'obtention d'adsorbants zéolitiques agglomerés et leurs utilisation
EP2043775B1 (fr) Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
EP1011858B2 (fr) Adsorbants zeolitiques agglomeres leur procede d'obtention et leur utilisation pour l'adsorption de paraxylene a partir de coupes de c8 aromatiques
EP2237877B1 (fr) Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
EP2237878B1 (fr) Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
EP2931417B1 (fr) Adsorbants zéolithiques et leurs utilisations
FR2516499A1 (fr) Procede de production de perles sans liant de zeolite 3a, procede de production d'un extrudat 3a sans liant, extrudat et agent adsorbant obtenus et procede de sechage d'un hydrocarbure
EP2991760B1 (fr) Adsorbants zéolithiques comprenant de la zeolithe emt, leur procédé de préparation et leurs utilisations
FR2811313A1 (fr) Procede de preparation de zeolites x et lsx agglomerees et echangees au lithium
EP3679004B1 (fr) Procede hybride de production de paraxylene de haute purete avec solvant toluene
EP0275855B1 (fr) Procédé de purification du benzène
FR2655640A1 (fr) Procede d'obtention de zeolites 5a a grande stabilite, utiles notamment pour la separation des paraffines.
BE588211A (ja)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030916

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT FRANCAIS DU PETROLE

Owner name: CECA S.A.

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20070911