EP1060532A1 - Flüssigbrennstoffzellensystem - Google Patents

Flüssigbrennstoffzellensystem

Info

Publication number
EP1060532A1
EP1060532A1 EP99913181A EP99913181A EP1060532A1 EP 1060532 A1 EP1060532 A1 EP 1060532A1 EP 99913181 A EP99913181 A EP 99913181A EP 99913181 A EP99913181 A EP 99913181A EP 1060532 A1 EP1060532 A1 EP 1060532A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
anode
cathode
water
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99913181A
Other languages
English (en)
French (fr)
Inventor
Arnold Lamm
Jens Müller
Norbert Wiesheu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ballard Power Systems Inc
Mercedes Benz Fuel Cell GmbH
Original Assignee
Ballard Power Systems Inc
Xcellsis AG
Siemens VDO Electric Drives Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ballard Power Systems Inc, Xcellsis AG, Siemens VDO Electric Drives Inc filed Critical Ballard Power Systems Inc
Publication of EP1060532A1 publication Critical patent/EP1060532A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system with a fuel cell which has an anode compartment and a cathode compartment which are separated from one another by a proton-conducting membrane.
  • the anode space of the stack is part of an anode circuit, comprising a heat exchanger for cooling the coolant / fuel mixture containing carbon dioxide derived from the anode outlet, a circulation tank in which the cooled mixture is added to a newly supplied coolant / fuel mixture, one in the circulation tank Integrated gas separator for separating carbon dioxide, and a pump for supplying the coolant / fuel mixture from the circulation tank to the anode compartment via a corresponding supply line.
  • the cathode exhaust gas comprising oxygen and water vapor from the known fuel cell system is passed through a water separator, the separated water being fed to the coolant / fuel mixture to be fed to the anode circuit and part of the remaining oxygen being fed into the oxidant feed for the cathode compartment.
  • the object of the invention is to provide a fuel cell system with a proton-conducting membrane that is simplified in terms of its structure and has an improved overall efficiency.
  • a fuel cell system with the features of claim 1 is proposed according to the invention.
  • evaporative cooling takes place in the fuel cell when the water is absorbed by the hot air of the cathode space, and is used according to the invention to cool the anode circuit. This measure saves the cooler, which would otherwise have to be provided in the anode circuit.
  • the fuel cell is advantageously operated in an equilibrium of the heat balance, ie the fuel cell is operated stationary at a temperature which depends on the one hand on the properties of the proton-conducting membrane and on the other hand can be set by the speed of the liquid pump.
  • the temperature of stationary operation is between 90 and 110 ° C.
  • the setting of a stationary operating temperature is of crucial importance for increasing the efficiency of the fuel cell or the stack formed from several fuel cells, since isothermal operation of the stack is now possible, i.e. temperature differences over the stack length, such as those in known systems of the order of magnitude of approx. 10 ° C are common, no longer occur or only insignificantly.
  • the evaporative cooling according to the invention in the fuel cell also has the advantage that the mass flow of dry air is increased to 1.5 to 2 times, which is associated with an increase in expander performance by the same factor. This is also associated with energy savings for the air supply in full load operation.
  • An air cooler is advantageously provided behind the expander, which is in thermal coupling with the vehicle cooler and which serves to condense water out to achieve a positive water balance in the system.
  • the single figure shows a schematic representation of the basic structure of a fuel cell system according to the invention.
  • the fuel cell system of the illustrated embodiment is operated with liquid methanol as the fuel and water as the coolant.
  • liquid methanol as the fuel
  • water as the coolant.
  • Liquids or ionic or nonionic additives to the water with good antifreeze properties are also particularly suitable as coolants.
  • the possible fuels are, for example, branched variants of the above general formula, such as di- or trimethoxymethane.
  • An oxygen-containing gas is fed into the cathode compartment 14 via a cathode feed line 20.
  • ambient air is used for this.
  • the fuel cell 10 the fuel is oxidized at the anode and the atmospheric oxygen at the cathode is reduced.
  • the proton-conducting membrane 16 is coated on the corresponding surfaces with suitable catalysts. Protons can now migrate through the proton-conducting membrane 16 from the anode side and combine with the oxygen ions to form water on the cathode side.
  • This electrochemical reaction creates a voltage between the two electrodes.
  • the product produced at the anode outlet is a carbon dioxide gas enriched with water and methanol.
  • This liquid / gas mixture is discharged from the anode compartment 12 via an anode discharge line 22.
  • the residual oxygen and water vapor contain
  • the cathode exhaust air is discharged via a cathode exhaust line 24.
  • the ambient air in the cathode compartment 14 is provided with overpressure.
  • a compressor 28, which is driven by an electric motor 26 and has a downstream air charging cooler 29, is arranged in the cathode feed line 20, which draws in the desired air mass flow and compresses it to the required pressure level.
  • an air filter 30 is also preferably provided in the inlet area of the cathode feed line 20 upstream of the compressor 28. Part of the energy required for the compression of the ambient air can be recovered with the help of an expander 32 arranged in the cathode exhaust gas line 24.
  • the compressor 28, the expander 32 and the electric motor 26 are preferably arranged on a common shaft. The control of the fuel line output is carried out by controlling or regulating the compressor speed and thus the available air mass flow.
  • the water / methanol mixture is circulated at a predetermined pressure with the aid of a pump 34 in order to constantly ensure an excess supply of fuel at the anode.
  • the ratio of water to methanol in the anode feed line 18 is adjusted with the aid of a sensor 36, which measures the methanol concentration in the anode feed line 18.
  • a concentration control for the water / methanol mixture then takes place as a function of this sensor signal, the liquid methanol being fed from a methanol tank 38 via a methanol feed line 40 and injected into the anode feed line 18 with the aid of an injection nozzle 44 (not shown).
  • the injection pressure is generated by an injection pump 42 arranged in the methanol feed line 40.
  • a water / methanol mixture with constant methanol concentration is thus continuously supplied to the anode compartment 12.
  • the carbon dioxide enriched with methanol and water vapor must now be separated from the liquid / gas mixture discharged through the anode lead 22.
  • the liquid keits- / gas mixture via the anode lead 22 fed to a gas separator 52, in which the carbon dioxide is separated.
  • the water / methanol mixture remaining in the gas separator 52 is returned to the anode feed line 18 via a line 54.
  • the moist carbon dioxide gas separated off in the gas separator 52 is cooled to a temperature as low as possible in a cooler 56 and further methanol and water are condensed out in a downstream water separator 58.
  • the remaining dry carbon dioxide with a low residual methanol content is fed via a line 60 to the cathode exhaust line 24, where it is mixed with the oxygen-rich cathode exhaust air.
  • a first water separator 59 is provided behind the outlet of the cathode chamber 14 and a further water separator 61 downstream of the expander 32. As much as possible of the water vapor formed on the cathode side is fed to the expander 32.
  • the expander 32 serves as a compact condensation turbine, at the outlet of which some of the water vapor condenses.
  • the water collected in the water separators 59, 61 is then returned via a return line 64 with an integrated return pump 62 to a collecting and cleaning tank 50 of a branch branch 48, 66 of the anode circuit.
  • the collection and cleaning container 50 is, in particular, an ion exchanger.
  • a branch line 48 which leads to the collecting and cleaning container 50, is provided in the anode circuit 22 downstream of the anode outlet.
  • the outlet of the collecting and cleaning container 50 is connected again to the anode lead 22 via a line 66 with an integrated valve 68 upstream of the gas separator 52.
  • the collection and cleaning container 50 is used to collect and clean the water / methanol mixture coming from the anode space 12 and in the Water separator 58 of separated water and of the product water accumulated on the cathode side via the return line 64 into the anode circuit.
  • the valve 68 serves on the one hand to prevent a backflow from the anode lead 22 into the line 66, and on the other hand to create the proportion of the mixture from the anode lead 22 which is to be passed through the collecting and cleaning container.
  • the fuel cell 10 is operated with water breakthrough from the andode space 12 into the cathode space 14.
  • the liquid water entering the cathode compartment 14 in this way is partially taken up by the dry and hot air entering the cathode compartment 14 via the cathode feed line 20 as steam up to the saturation limit.
  • the water breakthrough is the result of an electroosmotic transport phenomenon through the membrane 16.
  • water molecules are deposited around each proton. This migrates due to the electroosmotic pressure through the ion channels of the membrane 16, such as Nafion ®, on the cathode side.
  • the number of attached water molecules is slightly temperature-dependent and is also dependent on the ion channel diameter of the membrane 16. The higher the electroosmotic transport coefficient of the membrane 16, the more water reaches the cathode side, can evaporate there and thus be used for evaporative cooling of the fuel cell 10.
  • the transport over the membrane 16 brings about ten times more water into the cathode chamber 14 than there is caused by the actual water-forming reaction, the oxidation of hydrogen.
  • the oxidation of hydrogen For example, in a Nafion membrane, about 5 water molecules are attached to a proton which passes through the membrane 16 8th
  • the water passing through the membrane 16 evaporates on the cathode side and cools the fuel cell 10 by evaporative cooling.
  • the temperature of the cathode 14 is preferably close to the boiling point of water in order to evaporate as much of the water which has passed through.
  • the overpressure prevailing on the cathode 14 can be adjusted in a simple manner to regulate the boiling point of water. At 1 bar overpressure, the boiling point is around 120 ° C instead of 100 ° C at normal pressure.
  • the temperature of the fuel cell is set in accordance with the overpressure offered on the cathode side.
  • the water vapor is fed to the expander 32. It is particularly advantageous to prevent water vapor from condensing out on the way to the expander 32; the lines are advantageously thermally insulated in order to prevent the water vapor from condensing out. It is also expedient to take into account the increased volume requirement of the water vapor in the connecting lines between the cathode 16 and the expander 32 by means of adequate line diameters.
  • the fuel cell 10 Due to the operation with water breakthrough and the omission of the cooler otherwise provided in the anode circuit, the fuel cell 10 accordingly becomes stationary at a temperature which, in addition to the overpressure in the cathode compartment 14, depends on the one hand on the properties of the proton-conducting membrane 16 and on the other hand also by the speed of the pump 34, which prepares the volume flow on the anode side. poses, can be set.
  • the stationary operating temperature is advantageously between 90 and 110 ° C., in particular 105 ° C. As a result, the fuel cell or a stack formed from a plurality of fuel cells can be operated almost isothermally.
  • Evaporative cooling has the additional advantage of increasing the mass flow of dry air by 1.5 to 2 times.
  • the performance of the expander 32 is thus increased by the same factor, which is associated with energy savings for the air supply. This saving is approx. 8 kW in full load operation.
  • An air cooler 46 arranged downstream of the expander 32 is in thermal coupling with the vehicle cooler (not shown in more detail) and has the task of condensing out the water missing from the exhaust air stream in order to achieve a positive water balance in the system described.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Brennstoffzellensystem mit mindestens einer Brennstoffzelle (10), die einen Anodenraum (12) und einen Kathodenraum (14) aufweist, die durch eine protonenleitende Membran (16) voneinander getrennt sind, mit einer Kathodenzuleitung (20) zur Zufuhr von sauerstoffhaltigem Gas zum Kathodenraum, einer Anodenzuleitung (18) zur Zufuhr eines flüssigen Kühlmittel/Brennstoff-Gemisches zum Anodenraum, wobei der Anodenraum in einem einen Gasabscheider (52) und eine Pumpe (34) umfassenden Anodenkreislauf angeordnet ist und eine Kühlung des im Anodenkreislauf zirkulierenden Kühlmittel/Brennstoff-Gemisches durch die Brennstoffzelle erfolgt, die auf einen Betrieb mit Wasserdurchbruch von dem Anodenraum in den Kathodenraum ausgelegt ist. Durch die somit erzielte Verdampfungskühlung in der Brennstoffzelle erfolgt eine Kühlung des Kühlmittel/Brennstoff-Gemisches bei einer sich in der Brennstoffzelle in Abhängigkeit von den Membraneigenschaften und der Drehzahl der Pumpe einstellenden stationären Betriebstemperatur, so dass im Anodenkreislauf selbst kein zusätzlicher Kühler mehr notwendig ist.

Description

FLUSSIGBRENNSTOFFZELLENSYSTEM
Die Erfindung betrifft ein Brennstoffzellensystem mit einer Brennstoffzelle, die einen Anodenraum und einen Kathodenraum aufweist, die durch eine protonenleitende Membran voneinander getrennt sind.
Zur Zeit ist zur Verstro ung von flüssigen Energieträgern in einem Brennstoffzellensystem mit Protonenaustauschermembran (PEM-Brennstoffzelle) weltweit schwerpunktmäßig die Reformierung von Methanol in einem Gaserzeugungssystem vorgesehen. Dabei wird ein Wasser/Methanol-Gemisch verdampft und in einem Reformer zu Wasserstoff, Kohlendioxid und Kohlenmonoxid umgesetzt. Verdampfung und Reformierung sind hinsichtlich des energetischen Umsatzes sehr aufwendig. Dies hat Wirkungsgradverluste für das Gesamtsystem zur Folge. Darüber hinaus sind Gasauf- bereitungsschritte zur Reinigung des Reformierungsgases notwendig. Das gereinigte Gas wird an dem PEM-Brennstoffzellensystem zugeführt . Des weiteren muß ein Kühler zur Kühlung des in dem Anodenkreislauf umlaufenden Kühlmittel/Brennstoff-Gemisches vorgesehen sein.
Ein weiteres Problem stellt der Wassereinsatz für die Reformierung dar. Das auf der Kathodenseite anfallende Produktwasser reicht zur Deckung des Wasserhaushaltes nicht aus . Hierdurch wird ein separater Wassertank notwendig.
Bei einem sogenannten Direkt-Methanol-Brennstoffzellensystem, wie es aus der US-PS 5 599 638 bekannt ist, wird eine wässrige Methanollösung verwendet, die auf der Anodenseite zu Kohlendi- oxid reagiert. Das dort beschriebene Brennstoffzellensystem weist einen aus mehreren miteinander verschalteten Brennstoffzellen bestehenden sogenannten Stack auf . Der Anodenraum des Stacks ist Bestandteil eines Anodenkreislaufes, umfassend einen Wärmetauscher zum Kühlen des vom Anodenausgang abgeleiteten, Kohlendioxid enthaltenden Kühlmittel/Brennstoff-Gemisches, einen Zirkulationstank, in welchem das gekühlte Gemisch einem neu zugeleiteten Kühlmittel/Brennstoff-Gemisch zugesetzt wird, einem in den Zirkulationstank integrierten Gasabscheider zum Abtrennen von Kohlendioxid, und eine Pumpe zum Zuleiten des Kühlmittel/Brennstoff-Gemisches aus dem Zirkulationstank in den Anodenraum über eine entsprechende Zuleitung. Das Sauerstoff und Wasserdampf umfassende Kathodenabgas des bekannten Brennstoff- zellensystems wird durch einen Wasserabscheider geleitet, wobei das abgeschiedene Wasser dem Anodenkreislauf zuzuführenden Kühlmittel/Brennstoff-Gemisch zugeleitet und ein Teil des verbleibenden Sauerstoffes in die Oxidationsmittelzufuhr für den Kathodenraum geleitet wird.
Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein im Aufbau vereinfachtes und kompaktes Brennstoffzellensystem mit protonenleitender Membran mit verbessertem Gesamtwirkungsgrad bereitzustellen.
Zur Lösung dieser Aufgabe wird erfindungsgemäß ein Brennstoff- zellensystem mit den Merkmalen des Anspruchs 1 vorgeschlagen. Durch den erfindungsgemäßen Betrieb der Brennstoffzelle mit Wasserdurchbruch von dem Anodenraum in den Kathodenraum erfolgt in der Brennstoffzelle bei Aufnahme des Wassers durch die heiße Luft des Kathodenraums eine Verdampfungskühlung, die erfindungsgemäß zur Kühlung des Anodenkreislaufes genutzt wird. Durch diese Maßnahme kann der Kühler, der sonst im Anodenkreislauf vorgesehen sein muß, eingespart werden.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben. Vorteilhafterweise wird die Brennstoffzelle in einem Gleichgewicht der Wärmebilanz betrieben, d.h. die Brennstoffzelle wird stationär bei einer Temperatur betrieben, die zum einen von den Eigenschaften der protonenleitenden Membran abhängt und zum anderen durch die Drehzahl der Flüssigkeitspumpe einstellbar ist . Je nach Lastpunkt beträgt die Temperatur des stationären Betriebs zwischen 90 und 110°C. Die Einstellung einer stationären Betriebstemperatur ist von entscheidender Bedeutung zur Wirkungsgradsteigerung der Brennstoffzelle bzw. des aus mehreren Brennstoffzellen gebildeten Stacks, da nunmehr ein isothermer Betrieb des Stacks möglich ist, d.h. Temperaturdifferenzen über die Stacklänge, wie sie bei bekannten Systemen in einer Größenordnung von ca. 10°C üblich sind, treten nicht mehr bzw. nur unwesentlich auf.
Die erfindungsgemäße Verdampfungskühlung in der Brennstoffzelle hat darüber hinaus den Vorteil, daß der Massenstrom der trockenen Luft auf das 1,5 bis 2-fache angehoben wird, womit eine Steigerung der Expanderleistung um den gleichen Faktor verbunden ist . Damit ist auch eine Energieeinsparung für die Luftversorgung im Vollastbetrieb verbunden.
Vorteilhafterweise ist ein Luftkühler hinter dem Expander vorgesehen, der in thermischer Kopplung mit dem Fahrzeugkühler steht und der zum Auskondensieren von Wasser zum Erreichen einer positiven Wasserbilanz im System dient.
Die Erfindung wird anhand eines Ausführungsbeispieles in der Zeichnung schematisch dargestellt und im folgenden unter Bezugnahme auf die Zeichnung näher erläutert .
Die einzige Figur zeigt in schematischer Darstellung den Prinzipaufbau eines erfindungsgemäßen Brennstoffzellensystems .
Das in der Figur dargestellte Brennstoffzellensystem umfaßt eine Brennstoffzelle 10, die aus einem Anodenraum 12 und einem Kathodenraum 14 besteht, die durch eine protonenleitende Mem- bran 16 voneinander getrennt sind. Über eine Anodenzuleitung 18 wird dem Anodenraum 12 ein flüssiges Kühlmittel/Brennstof - Gemisch zugeführt. Als Brennstoff kann hierbei jede elektrochemisch oxidierbare Substanz mit der allgemeinen Strukturformel H - [- CH2O -]n - F mit l</7<5 und Y=Η oder Y=CH3 verwendet werden.
Das Brennstoffzellensystem des dargestellten Ausführungsbeispieles wird mit flüssigem Methanol als Brennstoff und Wasser als Kühlmittel betrieben. Obwohl im folgenden nur noch die Verwendung eines Wasser/Methanol-Gemisches beschrieben wird, soll der Schutzbereich dieser Anmeldung jedoch nicht auf dieses Aus- führungsbeispiel beschränkt sein. Als Kühlmittel kommen insbesondere auch Flüssigkeiten oder ionische beziehungsweise nichtionische Zusätze zum Wasser mit guten Frostschutzeigenschaften in Frage. Bei den möglichen Brennstoffen handelt es sich beispielsweise um verzweigte Varianten obiger allgemeiner Formel, wie zum Beispiel Di- oder Trimethoxymethan.
In den Kathodenraum 14 wird über eine Kathodenzuleitung 20 ein Sauerstoffhaltiges Gas geleitet. Gemäß dem dargestellten Ausführungsbeispiel wird hierzu Umgebungsluft verwendet . In der Brennstoffzelle 10 wird der Brennstoff an der Anode oxidiert, der Luftsauerstoff an der Kathode reduziert. Hierzu wird die protonenleitende Membran 16 auf den entsprechenden Oberflächen mit geeigneten Katalysatoren beschichtet. Von der Anodenseite können nun Protonen durch die protonenleitende Membran 16 wandern und sich an der Kathodenseite mit den Sauerstoffionen zu Wasser verbinden. Bei dieser elektrochemischen Reaktion entsteht zwischen den beiden Elektroden eine Spannung. Durch Parallel- bzw. Hintereinanderschaltung vieler solcher Zellen zu einem sogenannten Stack können Spannungen und Stromstärken erreicht werden, die zum Antrieb eines Fahrzeugs ausreichen.
Als Produkt entsteht am Anodenausgang ein mit Wasser und Methanol angereichertes Kohlendioxidgas. Dieses Flüssigkeits- /Gasgemisch wird über eine Anodenableitung 22 aus dem Anodenraum 12 abgeführt. Die Restsauerstoff und Wasserdampf enthal- tende Kathodenabluft wird über eine Kathodenabgasleitung 24 abgeführt. Um einen guten Wirkungsgrad zu erhalten, wird die Um- gebungsluft im Kathodenraum 14 mit Überdruck bereitgestellt. Hierzu ist in der Kathodenzuleitung 20 ein mit Hilfe eines Elektromotors 26 angetriebener Kompressor 28 mit nachgeordnetem Luftladekühler 29 angeordnet, der den gewünschten Luftmassen- strom ansaugt und auf das erforderliche Druckniveau verdichtet. Beim Betrieb mit Umgebungsluft wird außerdem vorzugsweise im Eintrittsbereich der Kathodenzuleitung 20 stromauf des Kompressors 28 ein Luftfilter 30 vorgesehen. Ein Teil der für die Komprimierung der Umgebungsluft benötigten Energie kann mit Hilfe eines in der Kathodenabgasleitung 24 angeordneten Expanders 32 zurückgewonnen werden. Vorzugsweise sind der Kompressor 28, der Expander 32 und der Elektromotor 26 auf einer gemeinsamen Welle angeordnet . Die Regelung der BrennstoffZeilenleistung erfolgt durch Steuerung oder Regelung der Kompressordrehzahl und damit des zur Verfügung stehenden Luftmassenstromes .
Auf der Anodenseite wird das Wasser/Methanol-Gemisch mit Hilfe einer Pumpe 34 bei einem vorgegebenen Druck zirkuliert, um an der Anode ständig ein Überangebot an Brennstoff zu gewährleisten. Das Verhältnis von Wasser zu Methanol in der Anodenzuleitung 18 wird mit Hilfe eines Sensors 36 eingestellt, der die Methanolkonzentration in der Anodenzuleitung 18 mißt. In Abhängigkeit von diesem Sensorsignal erfolgt dann eine Konzentrati- onsregelung für das Wasser/Methanol-Gemisch, wobei das flüssige Methanol aus einem Methanoltank 38 über eine MethanolZuführungsleitung 40 zugeführt und mit Hilfe einer nicht näher gezeigten Einspritzdüse 44 in die Anodenzuleitung 18 eingespritzt wird. Der Einspritzdruck wird durch eine in der Methanolzufüh- rungsleitung 40 angeordnete Einspritzpumpe 42 erzeugt. Dem Anodenraum 12 wird somit ständig ein Wasser/Methanol-Gemisch mit konstanter Methanolkonzentration zugeführt.
Aus dem durch die Anodenableitung 22 abgeführten Flüssigkeits- /Gasgemisch muß nun das mit Methanol- und Wasserdampf angereicherte Kohlendioxid abgetrennt werden. Dazu wird das Flüssig- keits-/Gasgemisch über die Anodenableitung 22 einem Gasabscheider 52 zugeführt, in welchem das Kohlendioxid abgetrennt wird. Das in dem Gasabscheider 52 verbleibende Wasser/Methanol- Gemisch wird über eine Leitung 54 in die Anodenzuleitung 18 zurückgeführt .
Das in dem Gasabscheider 52 abgetrennte feuchte Kohlendioxidgas wird in einem Kühler 56 auf eine möglichst niedrige Temperatur abgekühlt und in einem nachgeordneten Wasserabscheider 58 wird weiteres Methanol und Wasser auskondensiert. Das verbleibende trockene Kohlendioxid mit einem geringen Gehalt an Restmethanol wird über eine Leitung 60 der Kathodenabgasleitung 24 zugeführt, wo es mit der Sauerstoffreichen Kathodenabluft vermischt wird.
Um möglichst viel flüssiges Wasser aus der Kathodenabluft abzutrennen, sind hinter dem Ausgang des Kathodenraums 14 ein erster Wasserabscheider 59 und stromab des Expanders 32 ein weiterer Wasserabscheider 61 vorgesehen. Dem Expander 32 wird dabei möglichst viel des kathodenseitig gebildeten Wasserdampfs zugeführt. Der Expander 32 dient dabei als kompakte Kondensationsturbine, an deren Ausgang ein Teil des Wasserdampfes auskon- densiert. Das in den Wasserabscheidern 59, 61 gesammelte Wasser wird anschließend über eine Rückspeiseleitung 64 mit integrierter Rückspeisepumpe 62 in einen Sammel- und Reinigungsbehälter 50 eines Nebenzweiges 48, 66 des Anodenkreislaufes zurückgeleitet. Bei dem Sammel- und Reinigungsbehälter 50 handelt es sich insbesondere um einen Ionentauscher.
In dem Anodenkreislauf ist stromab des Anodenausgangs in der Anodenableitung 22 eine Abzweigungsleitung 48 vorgesehen, die zu dem Sammel- und Reinigungsbehälter 50 führt. Der Ausgang des Sammel- und Reinigungsbehälters 50 ist über eine Leitung 66 mit integriertem Ventil 68 stromauf des Gasabscheiders 52 wieder mit der Anodenableitung 22 verbunden. Der Sammel- und Reinigungsbehälter 50 dient zum Sammeln und Reinigen des von dem Anodenraum 12 kommenden Wasser/Methanol-Gemisches und des in dem Wasserabscheider 58 abgeschiedenen Wassers sowie des über die Rückspeiseleitung 64 in den Anodenkreislauf zurückgeleiteten kathodenseitig angefallenen Produktwassers . Das Ventil 68 dient zum einen zur Verhinderung eines Rückflußeε aus der Anodenableitung 22 in die Leitung 66, zum anderen zur Erstellung des Anteils des Gemisches aus der Anodenableitung 22, der durch den Sammel- und Reinigungsbehälter geleitet werden soll.
Erfindungsgemäß wird die Brennstoffzelle 10 mit Wasserdurchbruch von dem Andodenrau 12 in den Kathodenraum 14 betrieben. Das auf diese Weise in den Kathodenraum 14 gelangende flüssige Wasser wird von der über die Kathodenzuleitung 20 in den Kathodenraum 14 eintretenden trockenen und heißen Luft teilweise als Dampf bis zur Sättigungsgrenze aufgenommen. Dadurch kommt es in der Brennstoffzelle 10 zu einer Verdampfungserkühlung, die er- findungsgemäß zur Kühlung des in dem Anodenkreislauf zirkulierenden Kühlmittel/Brennstoff-Gemisches genutzt wird. Auf diese Weise kann der sonst üblicherweise in der Anodenableitung 22 vorgesehene Kühler eingespart werden.
Der Wasserdurchbruch ist die Folge eines elektroosmotischen Transportphänomens durch die Membran 16. Anodenseitig lagern sich Wassermoleküle um jedes Proton. Dieses wandert aufgrund des elektroosmotischen Drucks durch die Ionenkanäle der Membran 16, z.B. Nafion®, auf die Kathodenseite. Die Zahl der angelagerten Wassermoleküle ist dabei leicht temperaturabhängig und ist auch von dem Ionenkanaldurchmesser der Membran 16 abhängig. Je höher der elektroosmotische Transportkoeffizient der Membran 16 ist, desto mehr Wasser gelangt auf die Kathodenseite, kann dort verdampfen und somit zur Verdampfungskühlung der Brennstoffzelle 10 verwendet werden.
Durch den Transport über die Membran 16 gelangt etwa zehnmal mehr Wasser in den Kathodenraum 14 als dort durch die eigentliche wasserbildende Reaktion, die Oxidation von Wasserstoff, entsteht. So sind z.B. bei einer Nafionmembran etwa 5 Wassermolekule an ein Proton angelagert, welches durch die Membran 16 8
wandert, während bei der Oxidation nur ein Wassermolekül pro zwei Protonen gebildet wird. Bei 80°C sind im Mittel etwas weniger als 5, bei 120°C etwas mehr als 5 Wassermoleküle an ein Proton angelagert . Bei einem Membranmaterial mit größeren Ionenkanälen können mehr Wassermoleküle an ein Proton angelagert sein, bei einem Membranmaterial mit kleineren Ionenkanälen weniger.
Das durch die Membran 16 tretende Wasser verdampft auf der Kathodenseite und kühlt die Brennstoffzelle 10 durch Verdampfungskühlung .
Vorzugsweise liegt die Temperatur der Kathode 14 nahe des Siedepunkts von Wasser, um möglichst viel von dem durchtretenden Wasser zu verdampfen. Der auf der Kathode 14 herrschende Überdruck kann dabei auf einfache Weise zum Regeln des Siedepunkts von Wasser eingestellt werden. Bei 1 bar Überdruck liegt der Siedepunkt bei etwa 120°C statt bei 100°C bei Normaldruck. Entsprechend dem angebotenen Überdruck auf der Kathodenseite stellt sich die Temperatur der Brennstoffzelle ein.
Der Wasserdampf wird dem Expander 32 zugeführt. Es ist besonders vorteilhaft zu verhindern, daß Wasserdampf auf dem Weg zum Expander 32 auskondensiert; vorteilhafterweise werden die Leitungen entsprechend thermisch isoliert, um ein Auskondensieren des Wasserdampf zu verhindern. Auch ist es zweckmäßig, bei den Verbindungsleitungen zwischen Kathode 16 und Expander 32 den erhöhten Volumenbedarf des Wasserdampfs durch entsprechende ausreichende Leitungsdurchmesser zu berücksichtigen.
In der Brennstoffzelle 10 stellt sich aufgrund des Betriebs mit Wasserdurchbruch und dem Weglassen des sonst in dem Anodenkreislauf vorgesehenen Kühlers demnach ein stationärer Betrieb bei einer Temperatur ein, die neben dem Überdruck im Kathodenraum 14 zum einen von den Eigenschaften der protonenleitenden Membran 16 abhängt und zum anderen auch durch die Drehzahl der Pumpe 34, welche den Volumenstrom auf der Anodenseite bereit- stellt, eingestellt werden kann. Vorteilhafterweise beträgt die stationäre Betriebstemperatur zwischen 90 und 110°C, insbesondere 105°C. Dadurch kann die Brennstoffzelle bzw. ein aus mehreren Brennstoffzellen gebildeter Stack nahezu isotherm betrieben werden.
Die Verdampfungskühlung hat, wie vorstehend bereits erwähnt, darüber hinaus den Vorteil, den Massenstrom der trockenen Luft auf das 1,5 bis 2 -fache anzuheben. Damit wird die Leistung des Expanders 32 um den gleichen Faktor gesteigert, womit eine Energieeinsparung für die Luftversorgung verbunden ist . Diese Einsparung beträgt ca. 8 kW im Vollastbetrieb. Ein stromab des Expanders 32 angeordneter Luftkühler 46 steht in thermischer Kopplung mit dem nicht näher dargestellten Fahrzeugkühler und hat die Aufgabe, das zum Erreichen einer positiven Wasserbilanz in dem beschriebenen System fehlende Wasser aus dem Abluftstrom auszukondensieren.

Claims

10P > f. srit-.an πpτι"ι r.h e
1. Brennstoffzellensystem mit mindestens einer Brennstoffzelle (10) , die einen Anodenraum (12) und einen Kathodenraum (14) aufweist, die durch eine protonenleitende Membran (16) voneinander getrennt sind, mit einer Kathodenzuleitung (20) zur Zufuhr von Sauerstoffhaltigem Gas zum Kathodenraum (14) , einer Anodenzuleitung (18) zur Zufuhr eines flüssigen Kühlmittel/Brennstoff-Gemisches zum Anodenraum (12) , wobei der Anodenraum (12) in einem einen Gasabscheider und eine Pumpe (34) umfassenden Anodenkreislauf angeordnet ist, dadurch gekennzeichnet, daß eine Kühlung des im Anodenkreislauf zirkulierenden Kühlmittel/Brennstoff-Gemisches durch die Brennstoffzelle (10) erfolgt, die auf einen Betrieb mit Wasserdurchbruch von dem Anodenraum (12) in den Kathodenraum (14) ausgelegt ist, und daß die Betriebstemperatur der Brennstoffzelle (10) durch einen Druck im Kathodenraum (14) und/oder die Förderleistung der Pumpe (34) im Anodenkreislauf einstellbar ist.
2. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, daß der im Kathodenraum (14) erzeugte Wasserdampf im wesentlichen einer Expander-Einheit (32) zugeführt ist.
3. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, daß der Anodenkreislauf einen Sammel- und Reinigungsbehälter (50) umfaßt. 11
4. Brennstoffzellensystem nach Anspruch 3, dadurch gekennzeichnet, daß der Sammel- und Reinigungsbehälter (50) in einem Nebenzweig (48, 66) der Anodenableitung vor dem Gasabscheider
(52) angeordnet ist.
5. Brennstoffzellensystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Kathodenraum (14) in einem eine Kompressor/Expander-Einheit (28, 32) umfassenden Kathodenkreislauf angeordnet ist.
6. Brennstoffzellensystem nach Anspruch 5, dadurch gekennzeichnet, daß in dem Kathodenkreislauf hinter dem Kompressor (28) ein Luftladekühler (29) und hinter dem Expander (32) ein Kühler (46) und mindestens ein Wasserabscheider (61) zur Wasserrückgewinnung vorgesehen ist .
7. Brennstoffzellensystem nach Anspruch 6, dadurch gekennzeichnet, daß eine Rückführung von zurückgewonnenem Wasser in den Anodenkreislauf über eine Rückspeiseleitung (64) vorgesehen ist .
8. Brennstoffzellensystem nach Anpruch 7, dadurch gekennzeichnet, daß die Rückführung von zurückgewonnenem Wasser in den Sammel- und Reinigungsbehälter (50) erfolgt.
EP99913181A 1998-02-25 1999-02-23 Flüssigbrennstoffzellensystem Withdrawn EP1060532A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19807876A DE19807876C2 (de) 1998-02-25 1998-02-25 Brennstoffzellensystem
DE19807876 1998-02-25
PCT/EP1999/001144 WO1999044250A1 (de) 1998-02-25 1999-02-23 Flüssigbrennstoffzellensystem

Publications (1)

Publication Number Publication Date
EP1060532A1 true EP1060532A1 (de) 2000-12-20

Family

ID=7858843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913181A Withdrawn EP1060532A1 (de) 1998-02-25 1999-02-23 Flüssigbrennstoffzellensystem

Country Status (7)

Country Link
US (2) US6759153B1 (de)
EP (1) EP1060532A1 (de)
JP (1) JP2002505508A (de)
AU (1) AU3141399A (de)
CA (1) CA2321548A1 (de)
DE (1) DE19807876C2 (de)
WO (1) WO1999044250A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952384A1 (de) * 1999-10-30 2001-05-17 Forschungszentrum Juelich Gmbh Optimierung der Betriebsparameter eines Direkt-Methanol-Brennstoffzellensystems
DE19958830B4 (de) * 1999-11-30 2005-09-22 P21 - Power For The 21St Century Gmbh Brennstoffzellensystem sowie dessen Verwendung
US6331694B1 (en) * 1999-12-08 2001-12-18 Lincoln Global, Inc. Fuel cell operated welder
DE10000514C2 (de) * 2000-01-08 2002-01-10 Daimler Chrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines solchen
DE10001717C1 (de) * 2000-01-18 2001-04-26 Xcellsis Gmbh Brennstoffzellensystem
US6599652B2 (en) 2000-02-22 2003-07-29 General Motors Corporation Fuel cell with a degassing device
DE10024531A1 (de) * 2000-02-22 2001-09-13 Gen Motors Corp Brennstoffzellensytem
DE10015332A1 (de) * 2000-03-28 2001-10-04 Volkswagen Ag Verfahren zum Beaufschlagen eines für eine Brennstoffzelle vorgesehenen Brennstoffgemischs mit Brennstoffbestandteilen und entsprechende Vorrichtung
DE10034401A1 (de) * 2000-07-14 2002-01-24 Daimler Chrysler Ag Brennstoffzellen-System mit wenigstens einer mit einem flüssigen Kühlmittel/Brennstoff-Gemisch betriebenen Brennstoffzelle
DE10035756A1 (de) 2000-07-22 2002-01-31 Daimler Chrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines solchen
DE10037402A1 (de) * 2000-08-01 2002-02-28 Daimler Chrysler Ag Vorrichtung zur Aufbereitung eines Kohlenwasserstoff-Wasser-Gemischs
DE10040086C1 (de) * 2000-08-16 2002-01-10 Siemens Ag Verfahren zur Abtrennung von Kohlendioxid aus einem Gemisch von Wasser und Brennstoff sowie zugehörige Vorrichtung
DE10040084A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Verfahren zur Mischung von Brennstoff in Wasser, zugehörige Vorrichtung und Verwendung dieser Vorrichtung
DE10039960C1 (de) * 2000-08-16 2001-11-08 Siemens Ag Verfahren zur Abtrennung von Kohlendioxid aus einem Gemisch von Wasser und Brennstoff sowie zugehörige Vorrichtung
DE10130095B4 (de) * 2000-08-25 2020-12-17 General Motors Corporotion Brennstoffzellensystem mit einer Antriebseinrichtung, Brennstoffzellensystem mit einer mit elektrischer Energie betriebenen Einrichtung und Verfahren zum Betrieb eines Brennstoffzellensystems
JP2003288908A (ja) * 2002-03-28 2003-10-10 Honda Motor Co Ltd 燃料電池自動車
DE10225557B4 (de) * 2002-06-10 2007-03-29 Forschungszentrum Jülich GmbH Niedertemperatur-Brennstoffzellensystem sowie Verfahren zum Betreiben eines solchen
KR100533298B1 (ko) * 2002-09-30 2005-12-05 가부시끼가이샤 도시바 연료 전지 시스템
US20040247960A1 (en) * 2003-03-31 2004-12-09 Kabushiki Kaisha Toshiba Fuel cell system
CA2529926C (en) * 2003-06-25 2012-07-03 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
US8318368B2 (en) 2003-06-27 2012-11-27 UltraCell, L.L.C. Portable systems for engine block
US20050186455A1 (en) * 2003-06-27 2005-08-25 Ultracell Corporation, A California Corporation Micro fuel cell system start up and shut down systems and methods
US7381489B2 (en) * 2003-08-04 2008-06-03 Utc Power Corporation PEM fuel cell with high porosity hydrophilic water transport plates and temperature increase before shutdown in environment which may reach subfreezing temperatures
US20050233182A1 (en) * 2004-04-20 2005-10-20 Fuss Robert L Method for real-time monitoring and control of cathode stoichiometry in fuel cell system
CA2576887C (en) * 2004-09-03 2013-04-23 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte part, membrane electrode assembly, and polymer electrolyte type fuel cell
US20060141329A1 (en) * 2004-12-28 2006-06-29 Utc Fuel Cells, Llc Fuel cell demineralizers integrated with coolant accumulator
DE112005003309B4 (de) 2004-12-29 2020-11-12 Audi Ag Verdampfungskühlung von Reaktantengas und betriebsmäßiger Gefrierschutz für Brennstoffzellenstromerzeuger
JP2006278159A (ja) * 2005-03-29 2006-10-12 Toshiba Corp 燃料電池
TWI282639B (en) * 2005-06-16 2007-06-11 Ind Tech Res Inst Fuel supply control systems of fuel cell systems
US8293418B2 (en) * 2005-06-16 2012-10-23 Industrial Technology Research Institute Fuel supply control method and system for fuel cells
DE102006024694A1 (de) * 2006-05-19 2007-11-22 Samsung Sdi Germany Gmbh Kombinationsgerät zum Abscheiden und Mischen von Fluiden
US20080168009A1 (en) 2007-01-08 2008-07-10 Robert Paul Johnson Business methods of renewable hydrocarbon-based fuel
US8071248B2 (en) * 2007-01-23 2011-12-06 Bloom Energy Corporation Structure and method for optimizing system efficiency when operating an SOFC system with alcohol fuels
US8367256B2 (en) * 2008-01-09 2013-02-05 Fuelcell Energy, Inc. Water recovery assembly for use in high temperature fuel cell systems
US8652694B2 (en) * 2008-03-04 2014-02-18 Fuelcell Energy, Inc. Water recovery assembly for transferring water from fuel cell cathode exhaust
US7923162B2 (en) * 2008-03-19 2011-04-12 Dana Canada Corporation Fuel cell assemblies with integrated reactant-conditioning heat exchangers
CA2775156A1 (en) * 2009-09-25 2011-03-31 Danmarks Tekniske Universitet - Dtu Method of operating a direct dme fuel cell system
US8951690B2 (en) * 2012-10-29 2015-02-10 Nissan North America, Inc. Apparatus and method of in-situ measurement of membrane fluid crossover
US9093676B2 (en) 2012-10-29 2015-07-28 Nissan North America, Inc. Apparatus and method of in-situ measurement of membrane fluid crossover
JP6986047B2 (ja) * 2019-05-31 2021-12-22 本田技研工業株式会社 燃料電池システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925454A (en) 1955-02-12 1960-02-16 Ruhrchemie Ag Direct production of electrical energy from liquid fuels
US3227585A (en) 1960-11-07 1966-01-04 Leesona Corp Fuel cell
FR1436154A (fr) 1964-04-01 1966-04-22 Thomson Houston Comp Francaise Perfectionnements à des piles à combustibles
JPS5697972A (en) 1980-01-07 1981-08-07 Hitachi Ltd Fuel cell
JPS56118275A (en) * 1980-02-22 1981-09-17 Nissan Motor Co Ltd Water-removing device for fuel cell
JPS57196479A (en) * 1981-05-27 1982-12-02 Nissan Motor Co Ltd Liquid fuel cell
US4450055A (en) 1983-03-30 1984-05-22 Celanese Corporation Electrogenerative partial oxidation of organic compounds
JPS6366860A (ja) * 1986-09-09 1988-03-25 Hitachi Ltd メタノ−ル燃料電池
JPH04229958A (ja) * 1990-12-27 1992-08-19 Aisin Aw Co Ltd 液体燃料電池の気液分離器
DE4318818C2 (de) * 1993-06-07 1995-05-04 Daimler Benz Ag Verfahren und Vorrichtung zur Bereitstellung von konditionierter Prozessluft für luftatmende Brennstoffzellensysteme
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
DE4425634C1 (de) * 1994-07-20 1995-10-26 Daimler Benz Ag Verfahren und Vorrichtung zum dosierten Zuführen von flüssigen Reaktanden zu einem Brennstoffzellensystem
US5573866A (en) 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US5747185A (en) 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
EP0978892B1 (de) 1995-12-06 2004-05-19 Honda Giken Kogyo Kabushiki Kaisha Direkte Methanol-Brennstoffzelle
US5860215A (en) 1996-08-07 1999-01-19 Roskam; Scott H. Scissors using a reversed handle orientation with a levered handle
DE19636908C2 (de) * 1996-09-11 2001-08-16 Siemens Ag Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage
US6444343B1 (en) * 1996-11-18 2002-09-03 University Of Southern California Polymer electrolyte membranes for use in fuel cells
JPH10189022A (ja) 1996-12-27 1998-07-21 Nkk Corp 燃料電池
DE19701560C2 (de) * 1997-01-17 1998-12-24 Dbb Fuel Cell Engines Gmbh Brennstoffzellensystem
US5856036A (en) 1997-03-11 1999-01-05 Illinois Institute Of Technology Single phase ternary Pt-Ru-Os catalysts for direct oxidation fuel cells
JPH10255830A (ja) 1997-03-13 1998-09-25 Toshiba Corp 燃料電池の運転方法
DE19722598B4 (de) * 1997-05-29 2006-11-09 Areva Energietechnik Gmbh Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems sowie dessen Verwendung in einer Anordnung zur unterbrechungsfreien Stromversorgung
US6299744B1 (en) * 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
JP4054095B2 (ja) 1997-11-10 2008-02-27 エヌ・イーケムキャット株式会社 直接型ジメチルエーテル燃料電池、直接型積層ジメチルエーテル燃料電池システム、発電方法および前記燃料電池用電極触媒
US6410175B1 (en) * 1998-11-12 2002-06-25 Ballard Power Systems Inc. Fuel cell system with improved starting capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9944250A1 *

Also Published As

Publication number Publication date
DE19807876C2 (de) 2002-10-24
DE19807876A1 (de) 1999-08-26
CA2321548A1 (en) 1999-09-02
JP2002505508A (ja) 2002-02-19
US6759153B1 (en) 2004-07-06
AU3141399A (en) 1999-09-15
US6777116B1 (en) 2004-08-17
WO1999044250A1 (de) 1999-09-02

Similar Documents

Publication Publication Date Title
DE19807876C2 (de) Brennstoffzellensystem
DE19701560C2 (de) Brennstoffzellensystem
DE19807878C2 (de) Brennstoffzellensystem
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
EP0907979B1 (de) Direkt-methanol-brennstoffzelle (dmfc)
DE10202471B4 (de) Brennstoffzellensystem
EP0850494B1 (de) Verfahren zum betreiben einer brennstoffzellenanlage und brennstoffzellenanlage zum durchführen des verfahrens
DE10085063B4 (de) Verfahren und Vorrichtung für die Entfernung von Kontaminanten aus dem Kühlmittelvorrat eines Brennstoffzellenkraftwerks
EP1356533B1 (de) Brennstoffzellen mit integrierter befeuchtung sowie verfahren zum befeuchten von brennstoffzellen-prozessgas
DE10102447A1 (de) Befeuchter zur Verwendung mit einer Brennstoffzelle
DE10359952B4 (de) Brennstoffzellensystem
EP1032066B1 (de) Brennstoffzellensystem
EP1338047A2 (de) Verfahren zum betrieb eines brennstoffzellensystems und zugehörige brennstoffzellenanlage
DE102010041465B4 (de) Brennstoffzellensystem mit Direktmethanolbrennstoffzelle und Verfahren zu dessen Betrieb
WO2004079846A2 (de) Brennstoffzellensystem mit wenigstens einer brennstoffzelle und einem gaserzeugungssystem
EP2399314B1 (de) Brennstoffzellensystem mit wenigstens einer brennstoffzelle
DE102020100599A1 (de) Verfahren für einen Froststart eines Brennstoffzellensystems, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen
DE102019133091A1 (de) Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
DE102012014609B3 (de) Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
DE19958830A1 (de) Brennstoffzellensystem
EP1509963B1 (de) Niedertemperatur-brennstoffzellensystem sowie verfahren zum betreiben eines solchen
DE102021100185A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems mit Befeuchtungsspeicher, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen Brennstoffzellensystem
DE102020114746A1 (de) Verfahren zum Abstellen einer Brennstoffzellenvorrichtung sowie Brennstoffzellenvorrichtung und Kraftfahrzeug
DE102006004395A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Computerprogrammprodukt zum Ausführen des Verfahrens
DE102018209430A1 (de) Verfahren zur Abgabe von Wärme, Brennstoffzellensystem und Brennstoffzellenfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BALLARD POWER SYSTEMS INC.

Owner name: BALLARD POWER SYSTEMS AG

17Q First examination report despatched

Effective date: 20020712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050706